Fully Perturbative Calculation of nd Scattering to Next-to-next. Next-to-next-to-leading-order

Size: px
Start display at page:

Download "Fully Perturbative Calculation of nd Scattering to Next-to-next. Next-to-next-to-leading-order"

Transcription

1 Fully Perturbative Calculation of nd Scattering to Next-to-next-to-leading-order Duke University April 15, 14

2 Ingredients of Pionless Effective Field Theory For momenta p < m π pions can be integrated out as degrees of freedom and only nucleons and external currents are left. For any effective (field) theory one writes down all terms with degrees of freedom that respect symmetries. Develop a power counting to organize terms by their relative importance. Calculate respective observables up to a given order in the power counting.

3 Lagrangian Building Blocks Lagrangian Dibaryon Propagators The Lagrangian in EFT π is ( L = ˆN i + ) ( ˆN ˆt i M N ( ŝ a i + (1 S ) 4M ( 1) S ) (1 () N ] + y s [ŝ a ˆN T P a ˆN + H.c.. i + (3 S 1 ) 4M ( 1) S 1 ) (3 () N ) ŝ a + y t [ˆt i ) ˆt i ] ˆN T P i ˆN + H.c. The projector P i = 1 8 σ σ i τ ( P a = 1 8 τ a τ σ ) projects out the spin-triplet iso-singlet (spin-singlet iso-triplet) combination of nucleons.

4 Lagrangian Dibaryon Propagators The LO dressed deuteron propagator is given by a bubble sum (LO) (NLO) (NNLO) (Z-parametrization) At LO coefficients are fit to reproduce the deuteron pole and at NLO to reproduce the residue about the deuteron pole. 1 y t = M N 8πγ t Z t (Z t 1), (3 S 1 ) ( 1) = y t M N γ t µ Z t 1, (3 S 1 ) () = γ t M N

5 Lagrangian Dibaryon Propagators The spin-triplet ( deuteron ) and spin-singlet dibaryon propagator to NNLO are given by idt,s NNLO (p, p) = 4πi 1 M N yt,s p γ t,s 4 M Np iɛ ( 1 + Z ) t,s 1 p γ t,s + γ t,s 4 M Np iɛ }{{}}{{} LO NLO ( ) Zt,s 1 ( ) p + γ t,s 4 M Np γt +. }{{} NNLO

6 (nd Scattering) Higher Orders Partial Resummation Technique New Technique At LO in the Quartet channel, nd scattering is given by an infinite sum of diagrams. This infinite sum of diagrams can be represented by an integral equation.

7 Higher Orders Partial Resummation Technique New Technique The integral equation gives ( it ji ) βb αa ( k, p, h) = y t (σi σ j ) β αδ b a + y t (σi σ k ) β γδc b ( k id () t k 4M N k 4M N d 4 q (π) 4 (itjk ) γc 4M N γ t M N + h + q, q γ t M N i + h + q ( q+ p) M N i + γ t M N + h ( k+ p) M N + iɛ αa( k, q, h + q ) ) k M N. + iɛ i h q q M N + iɛ

8 Higher Orders Partial Resummation Technique New Technique Projecting spin and isospin in the Quartet channel and projecting out in angular momentum gives tq(k, l p) = y t M N pk where + π Λ Q l ( p + k M N E iɛ dqq t l q(k, q) pk 3 q γ t Q l ( p + q M N E iɛ pq Q l (a) = ) M qp NE iɛ ), dx P l(x) x + a.

9 Higher Orders NLO correction is Building Blocks Higher Orders Partial Resummation Technique New Technique NNLO corrections are Note the second diagram contains full off-shell scattering amplitude.

10 The NNLO scattering amplitude is Higher Orders Partial Resummation Technique New Technique t l,q(k, p) + t l 1,q(k, p) + t l,q(k, p) = B l (k, p) + B l 1(k, p) + B l (k, p)+ + (K l (q, p, E) + K l 1(q, p, E) + K l (q, p, E)) (t l,q(q, k) + t l 1,q(q, k) + t l,q(q, k)), where Λ A(q) B(q) = dqq A(q)B(q). π The inhomogeneous and homogeneous terms are B(k, l p) = y t M N pk Q l K l n(q, p, E) = M Ny t 4π ( p + k M N E iɛ D(n) t pk ) (E q 1, q M N qp Q l ), B l 1(k, p) = B l (k, p) = ( q + p ) M N E iɛ pq

11 Higher Orders Partial Resummation Technique New Technique Partial Resummation Technique Denoting tnlo l = tl,q + tl 1,q, for the partial resummation technique one finds tnlo l (k, p) = Bl (k, p)+b1(k, l p)+(k(q, l p, E)+K1(q, l p, E)) tnlo l (k, q), with the diagrammatic representation

12 Higher Orders Partial Resummation Technique New Technique New Full Perturbative technique Picking out only LO pieces gives t,q(k, l p) = B(k, l p) + K(q, l p, E) t,q(k, l q), only NLO pieces t l 1,q(k, p) = B l 1(k, p)+k l 1(q, p, E) t l,q(k, q)+k l (q, p, E) t l 1,q(k, q), and only NNLO pieces t l,q(k, p) = B l (k, p)+k l t l,q(k, q) + K l 1(q, p, E) t l 1,q(k, q) + K l (q, p, E) t l,q(k, q). Terms are reshuffled to inhomogeneous term. Kernel at each order is the same

13 Higher Orders Partial Resummation Technique New Technique Diagrammatically NLO correction is now given by NLO LO NLO, and NNLO correction by NNLO LO NLO NNLO Note all corrections are half off-shell.

14 nd scattering At LO in the Doublet channel, nd scattering is given by a coupled set of integral equations

15 Using the perturbative technique, the Doublet nd scattering amplitude integral equation at LO is at NLO t l,d(k, p) = B l (k, p) + K l (q, p, E) t l,d(k, q), t l 1,d(k, p) = B l 1(k, p) + K l 1(q, p, E) t l,d(k, q) + K l (q, p, E) t l 1,d(k, q), and at NNLO t l,d(k, p) = B l (k, p) + K l (q, p, E) t l,d(k, q)+ + K l 1(q, p, E) t l 1,d(k, q) + K l (q, p, E) t l,d(k, q). The Equations are the same as in Quartet case but are now matrix equations in cluster configuration space.

16 The vector t l n,d (k, q) is The inhomogeneous term is B l (k, p) = ( t t l l n,d (k, q) = n,nt Nt (k, q) tn,nt Ns l (k, q) yt M N pk Q l 3ytysM N pk ( B l H1 (E, Λ)δ 1(k, p) = l H 1 (E, Λ)δ l ( ) p +k M N E iɛ ( pk Q p +k M N E iɛ l pk ), B l (k, p) = ). + H (E, Λ)δ l ) H (E, Λ)δ l ( H (E, Λ)δ l H (E, Λ)δ l ).

17 The homogeneous term is Building Blocks K l n(q, p, E) =D (n) (E, q) 1 ( q qp Q + p ) ( M N E iɛ 1 3 l qp 3 1 n ( ) + δ l D (j) 1 1 (E, q)h n j (E, Λ), 1 1 j= where ( ) D n D (n) t (E, q) (E, q) = D s (n), (E, q) and the three-body force terms defined by ) H(E, Λ) = HLO (Λ) Λ (Λ) + HNLO Λ (Λ) + HNLO Λ (Λ) Λ 4 (M N E+γd ). + HNLO

18 The SD-mixing Lagrangian is [ L SD Nd = y SD ˆd i ˆN (( T ) i ( ) j 13 ) ] δij ( ) P j ˆN +H.c. The SD-mixing amplitude is given by the sum of diagrams SD

19 The sum of all diagrams gives the amplitude (tsd xw )βb αa ( k, p) = 4M N vp T (K xw ) βb αa ( k, p)v p 8 4M N 8 4M N 8 + 4M N 8 where d 3 q (π) 3 vt p (K xy ) βb γc ( q, p)d d 3 q ( (π) 3 (t xy ) βb d 3 q (π) 3 (K zy ) δd γc( q, l)d (E q M N, q ) ( ) (t yw ) γc αa ( k, q) ) ( ) T γc ( q, p) D E q, q (K yw ) γc M αa( k, q)v p N d 3 l ( ) ) T (π) 3 (t xz ) βb δd ( l, p, ) D (E q, q M N (E l ) (, M ) l (t yw ) γc αa ( k, q), N v p = ( 1 ).

20 All angular dependence is contained in (K xw ) βb αa( q, 1 l) = q + q l + l M N E iɛ ( ( K 11 xw) βb SD αa ( q, ( l) K 1 xw) βb SD αa ( q, ) l) ( K 1 xw) βb SD αa ( q, ( l) K xw) βb SD αa ( q,, l) where ( K 11 PV xw ) βb ( k, p) = y αa t y SD (σ y σ x ) β αδa [( p b + k) w ( p + k) y 13 ] δ yw ( p + k) ( K 1 xa) βb PV αa ( k, p) = y s y SD (σ y ) β α(τ A ) b a [( k + p) x ( k + p) y 13 ] δ yx( k + p) ( K 1 PV Bw ) βb αa ( k, p) = y t y SD (σ y ) β α(τ) b a ( K BA) βb PV αa ( k, p) =. [( p + k) w ( p + k) y 13 δ yw ( p + k) ]

21 The amplitude can be projected in partial waves of J = L + S JM t SD L S,LS(k, p) = 1 ( dω k dω p Y M 4π J,L S (ˆp)) tsd ( k, p)y J,LS(ˆk). M The projected amplitude is t SD JM L S,LS(k, p) = M N 8π v T p K(k, p) J L S,LSv p+ M N 8π 3 M N 8π 3 + M N 4 8π 5 dqq v T p K(q, p) J L S,LSD dqq ( t JM L S,L S (q, p) ) T D ( E dqq K(q, l) JM L S,LSD ( ) ( (E q, q t JM M N ) q M N, q dll ( t JM L S,L S (p, l) ) T D ( E E ) l (, M ) l t JM LS,LS(k, q). N LS,LS(k, q) ) K(k, q) J L S,LSv p ) q, q M N

22 [ ] K(k, p) J L S,LS = 4π S S L 1 ( δs 11 3,1/ + δ S,3/) C,, L,,L ( 1) S +S+L J { } { } 1 1 S S 1/ S S L J L ] 1 kp (k Q L (a) + 4p Q L (a)) ( ) + 8π S S L δs,1/ + δ S,3/ C,, L,1,L C,, L,1,L L ( 1) 3/ S L L 1/ 1 S L 1 L L S L Q L (a) J ( ) + 8π S S L δs,1/ + δ S,3/ C,, L,1,L C,, L,1,L ( 1) 1/+S +L+L L { } { } 1/ L 1 S L 1 L L J L Q 1/ J S L (a) 16π 3 1 L ( ) δs,1/ + δ S,3/ ( 1) 1/ S δ L,L δ S,S + (S S )(L L )(k p) C,, L,1,L C,, 1,L,L L Q L (a) L

23 [ ] K(k, p) J L S,LS = 8π 5 S Lδ S 1/C,, L,,L ( 1) 1+S+L J 1 { } { } 1 1 S S 1 1/ S S L J L kp (k Q L (a) + 4p Q L (a)) + 8π L 1/ 1 S 6 L SδS 1/ C,, L,1,L C,, L,1,L 1 L L L S L Q L (a) J + 8π 6 L Sδ S 1/ L C,, L,1,L C,, L,1,L L ( 1) 1+L+L { L 1 L } { L 1 L 1/ J S 1/ J S + 16π ( 1) L L 1 3 L L } Q L (a) L C,, L,1,L C,, L,1,L δ S 1/δ S Sδ L LQ L (a)

24 Quartet S-wave Doublet S-wave Higher Quartet Partial Waves Higher Doublet Partial Waves mixing angles The S matrix can be decomposed into irreducible representations of J and parity. For J = 1 / it is a unitary matrix S 1 + = S 1 S 1 3, 3 3, 1, S 1 = S 1 S 1 1 1, ,1 3, S 1 1, 3 which is decomposed by u 1 + = S 1 1, 1 S Jπ = ( u Jπ) T e iδ Jπ u Jπ S 1 1 3,1 1 S 1 1 3,1 3 δ 1 + = δ 1 3, δ 1 δ 1 = δ 1 1 1, δ ( cos η 1 + sin η 1 + sin η 1 + cos η 1 + ) ( 1, u 1 cos ɛ = sin ɛ 1 sin ɛ 1 cos ɛ 1 )

25 For J 3 / S is a unitary 3 3 matrix S Jπ = S J J 3 3 S J J± 1 1,J 3 3,J 3 3 S J J± 1 3,J 3 3 S J J 3 3 S J J± 1 1 which is decomposed by δ Jπ = v Jπ = δ J J 3 3 δ J J± 1 1 Quartet S-wave Doublet S-wave Higher Quartet Partial Waves Higher Doublet Partial Waves mixing angles,j± 1 1,J± 1 1 S J J± 1 3,J± 1 δ J J± cos ɛ Jπ sin ɛ Jπ sin ɛ Jπ cos ɛ Jπ x Jπ =, w Jπ = 1 S J J 3 3 S J J± 1 1,J± 1 3,J± 1 3 S J J± 1 3,J± 1 3, u Jπ = v Jπ w Jπ x Jπ sin η Jπ cos η Jπ cos ηjπ sin η Jπ 1 1 cos ζjπ sin ζ Jπ sin ζ Jπ cos ζ Jπ,

26 Quartet S-wave Doublet S-wave Higher Quartet Partial Waves Higher Doublet Partial Waves mixing angles quartet S-wave phase shift at NNLO. Crosses are AV-18+UIX with hyperspherical harmonics method, and x s Bonn-B with Faddeev equations. - quartet-s (a) Re(δ)[deg]

27 Quartet S-wave Doublet S-wave Higher Quartet Partial Waves Higher Doublet Partial Waves mixing angles imaginary part of quartet S-wave phase shift at NNLO. Note here imaginary part is positive unlike in partial resummation technique quartet-s (b) Im(δ)[deg]

28 Quartet S-wave Doublet S-wave Higher Quartet Partial Waves Higher Doublet Partial Waves mixing angles The bands are due to cutoff variation from Λ = 16 MeV - doublet-s (c) LO NLO NNLO Re(δ)[deg]

29 Quartet S-wave Doublet S-wave Higher Quartet Partial Waves Higher Doublet Partial Waves mixing angles for l = 1: j =l 1, l + 1, l + 3 :: for l > 1: j =l 3, l 1, l + 1, l + 3 Re(δ)[deg] 3 1 quartet-p (a) Re(δ)[deg] quartet-d (b) quartet-f (c) -.5 quartet-g (d) Re(δ)[deg] Re(δ)[deg]

30 Quartet S-wave Doublet S-wave Higher Quartet Partial Waves Higher Doublet Partial Waves mixing angles 3 quartet-p (a) Re(δ)[deg]

31 Quartet S-wave Doublet S-wave Higher Quartet Partial Waves Higher Doublet Partial Waves mixing angles Re(δ)[deg] quartet-d (b)

32 Quartet S-wave Doublet S-wave Higher Quartet Partial Waves Higher Doublet Partial Waves mixing angles 1. 1 quartet-f (c) Re(δ)[deg]

33 Quartet S-wave Doublet S-wave Higher Quartet Partial Waves Higher Doublet Partial Waves mixing angles Re(δ)[deg] quartet-g (d)

34 Quartet S-wave Doublet S-wave Higher Quartet Partial Waves Higher Doublet Partial Waves mixing angles Re(δ)[deg] Re(δ)[deg] 7 6 doublet-p (a) doublet-f (e) Re(δ)[deg] Re(δ)[deg] 9 8 doublet-d (c) doublet-g (g)

35 Quartet S-wave Doublet S-wave Higher Quartet Partial Waves Higher Doublet Partial Waves mixing angles Re(η 1/+ )[deg] 3.5 η 3 1/+ (a) Re(η 3/+ )[deg] η 3/+ (c) Re(η 5/+ )[deg] -1 η 5/+ (e) Re(η 7/+ )[deg] η 7/+ (g)

36 Quartet S-wave Doublet S-wave Higher Quartet Partial Waves Higher Doublet Partial Waves mixing angles 1 5 η 3/- (a) Re(η 3/- )[deg] Re(η 5/- )[deg] η 5/- (c)

37 Quartet S-wave Doublet S-wave Higher Quartet Partial Waves Higher Doublet Partial Waves mixing angles Re(ζ 3/+ )[deg] ζ -4 3/+ (a) Re(ζ 5/+ )[deg] 6 ζ 5/+ (c) Re(ζ 7/+ )[deg] ζ 7/+ (e)

38 Quartet S-wave Doublet S-wave Higher Quartet Partial Waves Higher Doublet Partial Waves mixing angles 5 4 ζ 3/- (a) Re(ζ 3/- )[deg] 3 1 Re(ζ 5/- )[deg] ζ 5/- (c)

39 Quartet S-wave Doublet S-wave Higher Quartet Partial Waves Higher Doublet Partial Waves mixing angles Re(ε 3/+ )[deg] Re(ε 7/+ )[deg] ε 3/+ (a) ε 7/+ (e) Re(ε 5/+ )[deg] Re(ε 9/+ )[deg] ε 5/ ε 5/+ (c) ε 9/+ (g)

40 Quartet S-wave Doublet S-wave Higher Quartet Partial Waves Higher Doublet Partial Waves mixing angles -5 ε 1/- (a) 5 ε 3/- (c) Re(ε 1/- )[deg] Re(ε 3/- )[deg] Re(ε 5/- )[deg] ε 5/- (e) Re(ε 7/- )[deg] ε 7/- (g)

41 Quartet S-wave Doublet S-wave Higher Quartet Partial Waves Higher Doublet Partial Waves mixing angles Conclusions and Future Directions Most phase shifts and mixing angles are described well by NNLO EFT π at low energies. N 3 LO contributions will be important as they contain two-body P wave contact interactions, which may help fix certain mixing-angles and phase shifts. New technique makes higher order perturbative calculations much easier, which is important in order to calculate polarizaiton observables such as A y. The new technique can be used to calculate any diagram with full off-shell scattering amplitudes. This makes calculations involving external currents much simpler to calculate (e.g. 3 H and 3 He Compton scattering and photodisintegration both parity conserving and violating).

42 Numerical Techniques t i = B i + j K ij w j t j (δ ij K ij w j ) t j = B i j Integral equation is discretized and solved along contour in complex plane (Hetherington-Schick Method)

Electroweak Probes of Three-Nucleon Systems

Electroweak Probes of Three-Nucleon Systems Stetson University July 3, 08 Brief Outline Form factors of three-nucleon systems Hadronic parity-violation in three-nucleon systems Pionless Effective Field Theory Ideally suited for momenta p < m π since

More information

Coulomb effects in pionless effective field theory

Coulomb effects in pionless effective field theory Coulomb effects in pionless effective field theory Sebastian König in collaboration with Hans-Werner Hammer Helmholtz-Institut für Strahlen- und Kernphysik (Theorie) and Bethe Center for Theoretical Physics,

More information

Tritium β decay in pionless EFT

Tritium β decay in pionless EFT Ohio University June 0, 207 Recipe for EFT(/π) For momenta p < m π pions can be integrated out as degrees of freedom and only nucleons and external currents are left. Write down all possible terms of nucleons

More information

Chiral Extrapolation of the Nucleon-Nucleon S-wave scattering lengths

Chiral Extrapolation of the Nucleon-Nucleon S-wave scattering lengths Chiral Extrapolation of the Nucleon-Nucleon S-wave scattering lengths Jaume Tarrús Castellà Departament d Estructura i Constituents de la Matèria and Institut de Ciències del Cosmos Universitat de Barcelona

More information

THE THREE NUCLEON SYSTEM AT LEADING ORDER OF CHIRAL EFFECTIVE THEORY

THE THREE NUCLEON SYSTEM AT LEADING ORDER OF CHIRAL EFFECTIVE THEORY THE THREE NUCLEON SYSTEM AT LEADING ORDER OF CHIRAL EFFECTIVE THEORY Young-Ho Song(RISP, Institute for Basic Science) Collaboration with R. Lazauskas( IPHC, IN2P3-CNRS) U. van Kolck (Orsay, IPN & Arizona

More information

Quantum Monte Carlo calculations of medium mass nuclei

Quantum Monte Carlo calculations of medium mass nuclei Quantum Monte Carlo calculations of medium mass nuclei Diego Lonardoni FRIB Theory Fellow In collaboration with: J. Carlson, LANL S. Gandolfi, LANL X. Wang, Huzhou University, China A. Lovato, ANL & UniTN

More information

Pion-nucleon scattering around the delta-isobar resonance

Pion-nucleon scattering around the delta-isobar resonance Pion-nucleon scattering around the delta-isobar resonance Bingwei Long (ECT*) In collaboration with U. van Kolck (U. Arizona) What do we really do Fettes & Meissner 2001... Standard ChPT Isospin 3/2 What

More information

Lattice Simulations with Chiral Nuclear Forces

Lattice Simulations with Chiral Nuclear Forces Lattice Simulations with Chiral Nuclear Forces Hermann Krebs FZ Jülich & Universität Bonn July 23, 2008, XQCD 2008, NCSU In collaboration with B. Borasoy, E. Epelbaum, D. Lee, U. Meißner Outline EFT and

More information

Meson-baryon interaction in the meson exchange picture

Meson-baryon interaction in the meson exchange picture Meson-baryon interaction in the meson exchange picture M. Döring C. Hanhart, F. Huang, S. Krewald, U.-G. Meißner, K. Nakayama, D. Rönchen, Forschungszentrum Jülich, University of Georgia, Universität Bonn

More information

Nuclear structure I: Introduction and nuclear interactions

Nuclear structure I: Introduction and nuclear interactions Nuclear structure I: Introduction and nuclear interactions Stefano Gandolfi Los Alamos National Laboratory (LANL) National Nuclear Physics Summer School Massachusetts Institute of Technology (MIT) July

More information

C.A. Bertulani, Texas A&M University-Commerce

C.A. Bertulani, Texas A&M University-Commerce C.A. Bertulani, Texas A&M University-Commerce in collaboration with: Renato Higa (University of Sao Paulo) Bira van Kolck (Orsay/U. of Arizona) INT/Seattle, Universality in Few-Body Systems, March 10,

More information

Pionless EFT for Few-Body Systems

Pionless EFT for Few-Body Systems Pionless EFT for Few-Body Systems Betzalel Bazak Physique Theorique Institut de Physique Nucleaire d Orsay Nuclear Physics from Lattice QCD Insitute for Nuclear Theory April 7, 2016 Seattle Betzalel Bazak

More information

Three- and four-particle scattering

Three- and four-particle scattering Three- and four-particle scattering A. Deltuva Centro de Física Nuclear da Universidade de Lisboa Few-particle scattering Three-particle scattering equations Three-nucleon system Three-body direct nuclear

More information

Charming Nuclear Physics

Charming Nuclear Physics Charming Nuclear Physics Masaoki Kusunoki Univ. of Arizona (with Sean Fleming, Tom Mehen, Bira van Kolck) Outline Charming Nuclear Physics Introduction (Nuclear EFT) X(3872) as shallow DD* bound state

More information

arxiv: v1 [nucl-th] 23 Feb 2016

arxiv: v1 [nucl-th] 23 Feb 2016 September 12, 2018 Threshold pion production in proton-proton collisions at NNLO in chiral EFT arxiv:1602.07333v1 [nucl-th] 23 Feb 2016 V. Baru, 1, 2 E. Epelbaum, 1 A. A. Filin, 1 C. Hanhart, 3 H. Krebs,

More information

Photon-atom scattering

Photon-atom scattering Photon-atom scattering Aussois 005 Part Ohad Assaf and Aharon Gero Technion Photon-atom scattering Complex system: Spin of the photon: dephasing Internal atomic degrees of freedom (Zeeman sublevels): decoherence

More information

Hadronic parity-violation in pionless effective field theory

Hadronic parity-violation in pionless effective field theory Hadronic parity-violation in pionless effective field theory Matthias R. Schindler Ohio University PAVI9 June 25, 29 In collaboration with D. R. Phillips and R. P. Springer Introduction Effective Field

More information

Studies of TMD resummation and evolution

Studies of TMD resummation and evolution Studies of TMD resummation and evolution Werner Vogelsang Univ. Tübingen INT, 0/7/014 Outline: Resummation for color-singlet processes Contact with TMD evolution Phenomenology Conclusions Earlier work

More information

Hadron Phenomenology and QCDs DSEs

Hadron Phenomenology and QCDs DSEs Hadron Phenomenology and QCDs DSEs Lecture 3: Relativistic Scattering and Bound State Equations Ian Cloët University of Adelaide & Argonne National Laboratory Collaborators Wolfgang Bentz Tokai University

More information

Few Body Methods in Nuclear Physics - Lecture I

Few Body Methods in Nuclear Physics - Lecture I Few Body Methods in Nuclear Physics - Lecture I Nir Barnea The Hebrew University, Jerusalem, Israel Sept. 2010 Course Outline 1 Introduction - Few-Body Nuclear Physics 2 Gaussian Expansion - The Stochastic

More information

Proton longitudinal spin structure- RHIC and COMPASS results

Proton longitudinal spin structure- RHIC and COMPASS results Proton longitudinal spin structure- RHIC and COMPASS results Fabienne KUNNE CEA /IRFU Saclay, France Gluon helicity PHENIX & STAR: pp jets, pp p 0 COMPASS g 1 QCD fit + DG direct measurements Quark helicity

More information

Applications of Renormalization Group Methods in Nuclear Physics 2

Applications of Renormalization Group Methods in Nuclear Physics 2 Applications of Renormalization Group Methods in Nuclear Physics 2 Dick Furnstahl Department of Physics Ohio State University HUGS 2014 Outline: Lecture 2 Lecture 2: SRG in practice Recap from lecture

More information

1 Equal-time and Time-ordered Green Functions

1 Equal-time and Time-ordered Green Functions 1 Equal-time and Time-ordered Green Functions Predictions for observables in quantum field theories are made by computing expectation values of products of field operators, which are called Green functions

More information

Quantum Monte Carlo calculations of two neutrons in finite volume

Quantum Monte Carlo calculations of two neutrons in finite volume Quantum Monte Carlo calculations of two neutrons in finite volume Philipp Klos with J. E. Lynn, I. Tews, S. Gandolfi, A. Gezerlis, H.-W. Hammer, M. Hoferichter, and A. Schwenk Nuclear Physics from Lattice

More information

does not change the dynamics of the system, i.e. that it leaves the Schrödinger equation invariant,

does not change the dynamics of the system, i.e. that it leaves the Schrödinger equation invariant, FYST5 Quantum Mechanics II 9..212 1. intermediate eam (1. välikoe): 4 problems, 4 hours 1. As you remember, the Hamilton operator for a charged particle interacting with an electromagentic field can be

More information

BRIDGING OVER p-wave π-production AND WEAK PROCESSES IN FEW-NUCLEON SYSTEMS WITH CHIRAL PERTURBATION THEORY

BRIDGING OVER p-wave π-production AND WEAK PROCESSES IN FEW-NUCLEON SYSTEMS WITH CHIRAL PERTURBATION THEORY MENU 2007 11th International Conference on Meson-Nucleon Physics and the Structure of the Nucleon September10-14, 2007 IKP, Forschungzentrum Jülich, Germany BRIDGING OVER p-wave π-production AND WEAK PROCESSES

More information

Bayesian Fitting in Effective Field Theory

Bayesian Fitting in Effective Field Theory Bayesian Fitting in Effective Field Theory Department of Physics Ohio State University February, 26 Collaborators: D. Phillips (Ohio U.), U. van Kolck (Arizona), R.G.E. Timmermans (Groningen, Nijmegen)

More information

Nuclear physics around the unitarity limit

Nuclear physics around the unitarity limit Nuclear physics around the unitarity limit Sebastian König Nuclear Theory Workshop TRIUMF, Vancouver, BC February 28, 2017 SK, H.W. Grießhammer, H.-W. Hammer, U. van Kolck, arxiv:1607.04623 [nucl-th] SK,

More information

Overview of low energy NN interaction and few nucleon systems

Overview of low energy NN interaction and few nucleon systems 1 Overview of low energy NN interaction and few nucleon systems Renato Higa Theory Group, Jefferson Lab Cebaf Center, A3 (ext6363) higa@jlaborg Lecture II Basics on chiral EFT π EFT Chiral effective field

More information

Nuclear Forces / DFT for Nuclei III

Nuclear Forces / DFT for Nuclei III Nuclear Forces / DFT for Nuclei III Department of Physics Ohio State University August, 2008 I. Overview of EFT/RG. II. Chiral effective field theory. III. RG for nuclear forces. EFT for many-body systems.

More information

Pion photoproduction in a gauge invariant approach

Pion photoproduction in a gauge invariant approach Pion photoproduction in a gauge invariant approach F. Huang, K. Nakayama (UGA) M. Döring, C. Hanhart, J. Haidenbauer, S. Krewald (FZ-Jülich) Ulf-G. Meißner (FZ-Jülich & Bonn) H. Haberzettl (GWU) Jun.,

More information

Faddeev equations: a view of baryon properties

Faddeev equations: a view of baryon properties E-mail: diana.nicmorus@uni-graz.at G. Eichmann E-mail: ge.eichmann@uni-graz.at A. Krassnigg E-mail: andreas.krassnigg@uni-graz.at R. Alkofer E-mail: reinhard.alkofer@uni-graz.at We present a calculation

More information

PoS(Confinement8)147. Universality in QCD and Halo Nuclei

PoS(Confinement8)147. Universality in QCD and Halo Nuclei Helmholtz-Institut für Strahlen- und Kernphysik (Theorie) and Bethe Center for Theoretical Physics, University of Bonn, Germany E-mail: hammer@itkp.uni-bonn.de Effective Field Theory (EFT) provides a powerful

More information

arxiv:nucl-th/ v1 22 Sep 2000

arxiv:nucl-th/ v1 22 Sep 2000 1 arxiv:nucl-th/967v1 22 Sep 2 Chiral Dynamics in Few Nucleon Systems E. Epelbaum a, H. Kamada a,b, A. Nogga b, H. Wita la c, W. Glöckle b, and Ulf-G. Meißner a a Forschungszentrum Jülich, Institut für

More information

Four-nucleon scattering

Four-nucleon scattering Four-nucleon scattering A. Deltuva Centro de Física Nuclear da Universidade de Lisboa Hamiltonian H + i> j 4N scattering v i j 1 v 12 4 3 2 Wave function: Schrödinger equation (HH + Kohn VP) [M. Viviani,

More information

Short-Ranged Central and Tensor Correlations. Nuclear Many-Body Systems. Reaction Theory for Nuclei far from INT Seattle

Short-Ranged Central and Tensor Correlations. Nuclear Many-Body Systems. Reaction Theory for Nuclei far from INT Seattle Short-Ranged Central and Tensor Correlations in Nuclear Many-Body Systems Reaction Theory for Nuclei far from Stability @ INT Seattle September 6-, Hans Feldmeier, Thomas Neff, Robert Roth Contents Motivation

More information

Three-Body Bound State Calculations by Using Three-Dimensional Low Momentum Interaction V low k

Three-Body Bound State Calculations by Using Three-Dimensional Low Momentum Interaction V low k Preprint number: 6.668 Three-Body Bound State Calculations by Using Three-Dimensional Low Momentum Interaction V low k arxiv:6.668v [nucl-th Feb M. R. Hadizadeh, Institute of Nuclear and Particle Physics,

More information

Modern Theory of Nuclear Forces

Modern Theory of Nuclear Forces Evgeny Epelbaum, FZ Jülich & University Bonn Lacanau, 28.09.2009 Modern Theory of Nuclear Forces Lecture 1: Lecture 2: Introduction & first look into ChPT EFTs for two nucleons Chiral Perturbation Theory

More information

Generalized Parton Distributions in PT

Generalized Parton Distributions in PT Generalized Parton Distributions in PT Nikolai Kivel in collaboration with M. Polyakov & A. Vladimirov Deeply Virtual Compton Scattering e e * A DVCS Q 2 large >> 1/R N Q 2 /s =x Bj fixed Δ 2 ~ 1/R N

More information

Three-nucleon potentials in nuclear matter. Alessandro Lovato

Three-nucleon potentials in nuclear matter. Alessandro Lovato Three-nucleon potentials in nuclear matter Alessandro Lovato PRC 83, 054003 (2011) arxiv:1109.5489 Outline Ab initio many body method Nuclear Hamiltonian: 2- and 3- body potentials Density dependent potential

More information

1 The muon decay in the Fermi theory

1 The muon decay in the Fermi theory Quantum Field Theory-I Problem Set n. 9 UZH and ETH, HS-015 Prof. G. Isidori Assistants: K. Ferreira, A. Greljo, D. Marzocca, A. Pattori, M. Soni Due: 03-1-015 http://www.physik.uzh.ch/lectures/qft/index1.html

More information

RG & EFT for nuclear forces

RG & EFT for nuclear forces RG & EFT for nuclear forces Andreas Nogga, Forschungszentrum Jülich ECT* school, Feb/March 2006 Low momentum interactions: Using the RG to simplify the nuclear force for many-body calculations. Application

More information

arxiv: v1 [nucl-th] 27 Sep 2016

arxiv: v1 [nucl-th] 27 Sep 2016 Charge and Matter Form Factors of Two-Neutron Halo Nuclei in Halo Effective Field Theory at Next-to-leading-order Jared Vanasse, Department of Physics and Astronomy Ohio University, Athens OH 457, USA

More information

A Dyson-Schwinger equation study of the baryon-photon interaction.

A Dyson-Schwinger equation study of the baryon-photon interaction. A Dyson-Schwinger equation study of the baryon-photon interaction. Diana Nicmorus in collaboration with G. Eichmann A. Krassnigg R. Alkofer Jefferson Laboratory, March 24, 2010 What is the nucleon made

More information

Coupled channel dynamics in Λ and Σ production

Coupled channel dynamics in Λ and Σ production Coupled channel dynamics in Λ and Σ production S. Krewald M. Döring, H. Haberzettl, J. Haidenbauer, C. Hanhart, F. Huang, U.-G. Meißner, K. Nakayama, D. Rönchen, Forschungszentrum Jülich, George Washington

More information

Properties of the S-matrix

Properties of the S-matrix Properties of the S-matrix In this chapter we specify the kinematics, define the normalisation of amplitudes and cross sections and establish the basic formalism used throughout. All mathematical functions

More information

Modern Theory of Nuclear Forces

Modern Theory of Nuclear Forces Evgeny Epelbaum, FZ Jülich & University Bonn Lacanau, 29.09.2009 Modern Theory of Nuclear Forces Lecture 1: Lecture 2: Lecture 3: Introduction & first look into ChPT EFTs for two nucleons Nuclear forces

More information

arxiv:nucl-th/ v2 21 Dec 1999

arxiv:nucl-th/ v2 21 Dec 1999 NT@UW-99-54 Precision Calculation of np dγ Cross Section for Big-Bang Nucleosynthesis arxiv:nucl-th/9911018v 1 ec 1999 Gautam Rupak epartment of Physics, University of Washington, Seattle, WA 98195 Abstract

More information

Donoghue, Golowich, Holstein Chapter 4, 6

Donoghue, Golowich, Holstein Chapter 4, 6 1 Week 7: Non linear sigma models and pion lagrangians Reading material from the books Burgess-Moore, Chapter 9.3 Donoghue, Golowich, Holstein Chapter 4, 6 Weinberg, Chap. 19 1 Goldstone boson lagrangians

More information

Isospin. K.K. Gan L5: Isospin and Parity 1

Isospin. K.K. Gan L5: Isospin and Parity 1 Isospin Isospin is a continuous symmetry invented by Heisenberg: Explain the observation that the strong interaction does not distinguish between neutron and proton. Example: the mass difference between

More information

Effective Field Theory for light nuclear systems

Effective Field Theory for light nuclear systems Effective Field Theory for light nuclear systems Jimmy Rotureau Chalmers University of Technology, Göteborg, Sweden B. Barrett, University of Arizona, Tucson I. Stetcu, University of Washington, Seattle

More information

Physics 125 Course Notes Identical Particles Solutions to Problems F. Porter

Physics 125 Course Notes Identical Particles Solutions to Problems F. Porter Physics 5 Course Notes Identical Particles Solutions to Problems 00 F. Porter Exercises. Let us use the Pauli exclusion principle, and the combination of angular momenta, to find the possible states which

More information

Baryon Spectroscopy: what do we learn, what do we need?

Baryon Spectroscopy: what do we learn, what do we need? Baryon Spectroscopy: what do we learn, what do we need? E. Klempt Helmholtz-Institut für Strahlen und Kernphysik Universität Bonn Nußallee 14-16, D-53115 Bonn, GERMANY e-mail: klempt@hiskp.uni-bonn.de

More information

Renormalization group methods in nuclear few- and many-body problems

Renormalization group methods in nuclear few- and many-body problems Renormalization group methods in nuclear few- and many-body problems Lecture 2 S.K. Bogner (NSCL/MSU) 2011 National Nuclear Physics Summer School University of North Carolina at Chapel Hill Lecture 2 outline

More information

At the end of Section 4, a summary of basic principles for low-energy effective theories was given, which we recap here.

At the end of Section 4, a summary of basic principles for low-energy effective theories was given, which we recap here. Nuclear Forces 2 (last revised: September 30, 2014) 6 1 6. Nuclear Forces 2 a. Recap: Principles of low-energy effective theories Figure 1: Left: high-resolution, with wavelength of probe short compared

More information

EFT as the bridge between Lattice QCD and Nuclear Physics

EFT as the bridge between Lattice QCD and Nuclear Physics EFT as the bridge between Lattice QCD and Nuclear Physics David B. Kaplan QCHSVII Ponta Delgada, Açores, September 2006 National Institute for Nuclear Theory Nuclear physics from lattice QCD? Not yet,

More information

Molecular partners of the X(3872) from heavy-quark spin symmetry:

Molecular partners of the X(3872) from heavy-quark spin symmetry: Molecular partners of the X(387) from heavy-quark spin symmetry: a fresh look V. Baru 1,,a, E. Epelbaum 1, A. A. Filin 1, C. Hanhart 3, and A.V. Nefediev,4,5 1 Institut für Theoretische Physik II, Ruhr-Universität

More information

arxiv:nucl-th/ v4 6 Mar 2000

arxiv:nucl-th/ v4 6 Mar 2000 DOE/ER/40561-57-INT99 TRI-PP-99-24 KRL MAP-248 NT@UW-99-30 Effective Theory of the Triton arxiv:nucl-th/9906032v4 6 Mar 2000 P.F. Bedaque a,1, H.-W. Hammer b,2,3, and U. van Kolck c,d,4 a Institute for

More information

Multi-Channel Systems in a Finite Volume

Multi-Channel Systems in a Finite Volume INT-12-2b Multi-Channel Systems in a Finite olume RaúL Briceño In collaboration with: Zohreh Davoudi (arxiv:1204.1110 Motivation: Scalar Sector The light scalar spectrum Its nature remains puzzling Pertinent

More information

The nucleon-nucleon system in chiral effective theory

The nucleon-nucleon system in chiral effective theory The nucleon-nucleon system in chiral effective theory Daniel Phillips Ohio University Research supported by the US Department of Energy Plan χet for nuclear forces: the proposal Leading order for S waves

More information

Electromagnetic and spin polarisabilities from lattice QCD

Electromagnetic and spin polarisabilities from lattice QCD Lattice Hadron Physics 2006 Electromagnetic and spin polarisabilities from lattice QCD William Detmold [ WD, BC Tiburzi and A Walker-Loud, PRD73, 114505] I: How to extract EM and spin polarisabilities

More information

From Halo EFT to Reaction EFT

From Halo EFT to Reaction EFT SOTANCP 4 Galveston 2018 From Halo EFT to Reaction EFT Marcel Schmidt Technische Universität Darmstadt and University of Tennessee, Knoxville with H.-W. Hammer (TUD) and L. Platter (UTK) May 15, 2018 May

More information

Effective Field Theory for Nuclear Physics! Akshay Vaghani! Mississippi State University!

Effective Field Theory for Nuclear Physics! Akshay Vaghani! Mississippi State University! Effective Field Theory for Nuclear Physics! Akshay Vaghani! Mississippi State University! Overview! Introduction! Basic ideas of EFT! Basic Examples of EFT! Algorithm of EFT! Review NN scattering! NN scattering

More information

Evgeny Epelbaum. Forschungszentrum Jülich & Universität Bonn

Evgeny Epelbaum. Forschungszentrum Jülich & Universität Bonn Evgeny Epelbaum KHuK Jahrestagung, GSI, 25.10.2007 Evgeny Epelbaum Forschungszentrum Jülich & Universität Bonn Outline Motivation & Introduction Few nucleons in chiral EFT: where do we stand Work in progress:

More information

Nuclear Physics A 2943 (1997) 1{16. Electromagnetic couplings of nucleon resonances? T. Feuster 1, U. Mosel

Nuclear Physics A 2943 (1997) 1{16. Electromagnetic couplings of nucleon resonances? T. Feuster 1, U. Mosel Nuclear Physics A 943 (997) {6 Electromagnetic couplings of nucleon resonances? T. Feuster, U. Mosel Institut fur Theoretische Physik, Universitat Giessen, D-3539 Giessen, Germany Received 7 April 996;

More information

Introduction to chiral perturbation theory II Higher orders, loops, applications

Introduction to chiral perturbation theory II Higher orders, loops, applications Introduction to chiral perturbation theory II Higher orders, loops, applications Gilberto Colangelo Zuoz 18. July 06 Outline Introduction Why loops? Loops and unitarity Renormalization of loops Applications

More information

Three-particle scattering amplitudes from a finite volume formalism*

Three-particle scattering amplitudes from a finite volume formalism* INT-13-53W March 2013 Three-particle scattering amplitudes from a finite volume formalism* Zohreh Davoudi University of Washington *Raul Briceno, ZD, arxiv: 1212.3398 Why a finite volume formalism? Lattice

More information

Few- Systems. Selected Topics in Correlated Hyperspherical Harmonics. Body. A. Kievsky

Few- Systems. Selected Topics in Correlated Hyperspherical Harmonics. Body. A. Kievsky Few-Body Systems 0, 11 16 (2003) Few- Body Systems c by Springer-Verlag 2003 Printed in Austria Selected Topics in Correlated Hyperspherical Harmonics A. Kievsky INFN and Physics Department, Universita

More information

HLbl from a Dyson Schwinger Approach

HLbl from a Dyson Schwinger Approach HLbl from a Dyson Schwinger Approach Richard Williams KFUni Graz Tobias Göcke TU Darmstadt Christian Fischer Uni Gießen INT Workshop on Hadronic Light-by-Light contribution to the Muon Anomaly February

More information

The non-perturbative N/D method and the 1 S 0 NN partial wave

The non-perturbative N/D method and the 1 S 0 NN partial wave HADRONet p. 1 The non-perturbative N/D method and the 1 S NN partial wave 2nd Spanish Hadron Network Days Madrid, September 216 D.R. Entem, J.A. Oller University of Salamanca HADRONet p. 2 Summary The

More information

Extracting 3-particle scattering amplitudes from the finite-volume spectrum

Extracting 3-particle scattering amplitudes from the finite-volume spectrum Extracting 3-particle scattering amplitudes from the finite-volume spectrum Steve Sharpe University of Washington M. Hansen & S. Sharpe, arxiv:1408.5933 (PRD in press) work in progress 1 /71 The fundamental

More information

Electric Dipole Moment of Light Nuclei. Iraj R. Afnan. (The Flinders University of South Australia) Happy Birthday Tony

Electric Dipole Moment of Light Nuclei. Iraj R. Afnan. (The Flinders University of South Australia) Happy Birthday Tony Electric ipole Moment of Light Nuclei Iraj R. Afnan (The Flinders University of South Australia) Happy Birthday Tony Collaborator: Benjamin F. Gibson, Los Alamos National Laboratory. 1 How I met Tony ate:

More information

B K decays in a finite volume

B K decays in a finite volume B K decays in a finite volume Akaki Rusetsky, University of Bonn In collaboration with A. Agadjanov, V. Bernard and U.-G. Meißner arxiv:1605.03386, Nucl. Phys. B (in print) 34th International Symposium

More information

Few-nucleon contributions to π-nucleus scattering

Few-nucleon contributions to π-nucleus scattering Mitglied der Helmholtz-Gemeinschaft Few-nucleon contributions to π-nucleus scattering Andreas Nogga, Forschungszentrum Jülich INT Program on Simulations and Symmetries: Cold Atoms, QCD, and Few-hadron

More information

Fate of the neutron-deuteron virtual state as an Efimov level

Fate of the neutron-deuteron virtual state as an Efimov level Fate of the neutron-deuteron virtual state as an Efimov level Gautam Rupak Collaborators: R. Higa (USP), A. Vaghani (MSU), U. van Kolck (IPN-Orsay/UA) Jefferson Laboratory Theory Seminar, Mar 19, 2018

More information

Rotations in Quantum Mechanics

Rotations in Quantum Mechanics Rotations in Quantum Mechanics We have seen that physical transformations are represented in quantum mechanics by unitary operators acting on the Hilbert space. In this section, we ll think about the specific

More information

Recent Developments and Applications of Integral Transforms in Few- and Many-Body Physics

Recent Developments and Applications of Integral Transforms in Few- and Many-Body Physics Recent Developments and Applications of Integral Transforms in Few- and Many-Body Physics Outline Introduction Compton scattering (A=2) Δ degrees of freedom in 3He(e,e') (A=3) Role of 0+ resonance in 4He(e,e')

More information

The NN system: why and how we iterate

The NN system: why and how we iterate The NN system: why and how we iterate Daniel Phillips Ohio University Research supported by the US department of energy Plan Why we iterate I: contact interactions Why we iterate II: pion exchange How

More information

Ab initio alpha-alpha scattering using adiabatic projection method

Ab initio alpha-alpha scattering using adiabatic projection method Ab initio alpha-alpha scattering using adiabatic projection method Serdar Elhatisari Advances in Diagrammatic Monte Carlo Methods for QFT Calculations in Nuclear-, Particle-, and Condensed Matter Physics

More information

High t form factors & Compton Scattering - quark based models. Gerald A. Miller University of Washington

High t form factors & Compton Scattering - quark based models. Gerald A. Miller University of Washington High t form factors & Compton Scattering - quark based models Gerald A. Miller University of Washington Basic Philosophy- model wave function Ψ Given compute form factors, densities, Compton scattering...

More information

πn scattering and π photoproduction in a dynamical coupled-channels model

πn scattering and π photoproduction in a dynamical coupled-channels model π scattering and π photoproduction in a dynamical coupled-channels model Fei Huang Department of Physics and Astronomy, The University of Georgia, USA Collaborators: K. akayama (UGA), H. Haberzettl (GWU)

More information

Structure of the deuteron

Structure of the deuteron Seminar II Structure of the deuteron Author : Nejc Košnik Advisor : dr. Simon Širca Department of Physics, University of Ljubljana November 17, 004 Abstract Basic properties of the deuteron are given.

More information

Theory toolbox. Chapter Chiral effective field theories

Theory toolbox. Chapter Chiral effective field theories Chapter 3 Theory toolbox 3.1 Chiral effective field theories The near chiral symmetry of the QCD Lagrangian and its spontaneous breaking can be exploited to construct low-energy effective theories of QCD

More information

A comprehensive interpretation of the D sj states

A comprehensive interpretation of the D sj states A comprehensive interpretation of the D sj states Feng-Kun Guo Helmholtz-Institut für Strahlen- und Kernphysik, Universität Bonn Hadron 2011, München, June 13-17, 2011 Based on: F.-K.G., U.-G. Meißner,

More information

Pion production in nucleon-nucleon collisions near threshold: complete NNLO calculation in chiral EFT

Pion production in nucleon-nucleon collisions near threshold: complete NNLO calculation in chiral EFT Pion production in nucleon-nucleon collisions near threshold: complete NNLO calculation in chiral EFT a, V. Baru ab, E. Epelbaum a, C. Hanhart c, H. Krebs a, and F. Myhrer d a Institut für Theoretische

More information

Variatonal description of continuum states

Variatonal description of continuum states Variatonal description of continuum states A. Kievsky INFN, Sezione di Pisa (Italy) Collaborators Three-body systems in reactions with rare isotopes ECT*, October 2016 M. Viviani, L.E. Marcucci - INFN

More information

Finite Temperature Field Theory

Finite Temperature Field Theory Finite Temperature Field Theory Dietrich Bödeker, Universität Bielefeld 1. Thermodynamics (better: thermo-statics) (a) Imaginary time formalism (b) free energy: scalar particles, resummation i. pedestrian

More information

First Order Relativistic Three-Body Scattering. Ch. Elster

First Order Relativistic Three-Body Scattering. Ch. Elster First Order Relativistic Three-Body Scattering Ch. Elster T. Lin, W. Polyzou W. Glöcle 4//7 Supported by: U.S. DOE, NERSC,OSC Nucleons: Binding Energy of H NN Model E t [MeV] Nijm I -7.7 Nijm II -7.64

More information

Coupling of Angular Momenta Isospin Nucleon-Nucleon Interaction

Coupling of Angular Momenta Isospin Nucleon-Nucleon Interaction Lecture 5 Coupling of Angular Momenta Isospin Nucleon-Nucleon Interaction WS0/3: Introduction to Nuclear and Particle Physics,, Part I I. Angular Momentum Operator Rotation R(θ): in polar coordinates the

More information

Poincaré Invariant Three-Body Scattering

Poincaré Invariant Three-Body Scattering Poincaré Invariant Three-Body Scattering Ch. Elster T. Lin W. Polyzou, W. Glöckle 10/9/008 Supported by: U.S. DOE, OSC, NERSC A Few-Body Theorist s view of the Nuclear Chart Bound State: 3 H - 3 He Scattering:

More information

Covariant effective field theory (EFT!)

Covariant effective field theory (EFT!) Outline Covariant effective field theory (EFT!) (or, can the dinosaur learn anything from the cockroach?) Part I: The Covariant Spectator approach for two and three nucleon interactions at JLab momentum

More information

A high-accuracy extraction of the isoscalar πn scattering length from pionic deuterium data

A high-accuracy extraction of the isoscalar πn scattering length from pionic deuterium data A high-accuracy extraction of the isoscalar πn scattering length from pionic deuterium data Daniel Phillips Ohio University and Universität Bonn with V. Baru, C. Hanhart, M. Hoferichter, B. Kubis, A. Nogga

More information

Nuclear Observables at Low Resolution

Nuclear Observables at Low Resolution Nuclear Observables at Low Resolution Eric R. Anderson Department of Physics The Ohio State University September 13, 2011 In Collaboration with: S.K Bogner, R.J. Furnstahl, K. Hebeler, E.D. Jurgenson,

More information

QCD in the light quark (up & down) sector (QCD-light) has two mass scales M(GeV)

QCD in the light quark (up & down) sector (QCD-light) has two mass scales M(GeV) QCD in the light quark (up & down) sector (QCD-light) has two mass scales M(GeV) 1 m N m ρ Λ QCD 0 m π m u,d In a generic physical system, there are often many scales involved. However, for a specific

More information

The Path Integral: Basics and Tricks (largely from Zee)

The Path Integral: Basics and Tricks (largely from Zee) The Path Integral: Basics and Tricks (largely from Zee) Yichen Shi Michaelmas 03 Path-Integral Derivation x f, t f x i, t i x f e H(t f t i) x i. If we chop the path into N intervals of length ɛ, then

More information

Clebsch-Gordan Coefficients

Clebsch-Gordan Coefficients Phy489 Lecture 7 Clebsch-Gordan Coefficients 2 j j j2 m m m 2 j= j j2 j + j j m > j m > = C jm > m = m + m 2 2 2 Two systems with spin j and j 2 and z components m and m 2 can combine to give a system

More information

New Frontiers in Nuclear Structure Theory

New Frontiers in Nuclear Structure Theory New Frontiers in Nuclear Structure Theory From Realistic Interactions to the Nuclear Chart Robert Roth Institut für Kernphysik Technical University Darmstadt Overview Motivation Nucleon-Nucleon Interactions

More information

National Nuclear Physics Summer School Lectures on Effective Field Theory. Brian Tiburzi. RIKEN BNL Research Center

National Nuclear Physics Summer School Lectures on Effective Field Theory. Brian Tiburzi. RIKEN BNL Research Center 2014 National Nuclear Physics Summer School Lectures on Effective Field Theory I. Removing heavy particles II. Removing large scales III. Describing Goldstone bosons IV. Interacting with Goldstone bosons

More information

Theorie der Kondensierten Materie II SS Scattering in 2D: the logarithm and the renormalization group

Theorie der Kondensierten Materie II SS Scattering in 2D: the logarithm and the renormalization group Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Theorie der Kondensierten Materie II SS 2017 PD Dr. B. Narozhny Blatt 2 M. Sc. M. Bard Lösungsvorschlag 1. Scattering

More information

Ultrarelativistic Heavy-Ions

Ultrarelativistic Heavy-Ions Kinematics November 11, 2010 / GSI Outline Introduction 1 Introduction 2 3 3 Notation Introduction A parallel to z-axis (beam): A A = A A transverse to z-axis: A = A A A = A Transverse mass: m = m 2 +

More information