Discrimination and Classification

Size: px
Start display at page:

Download "Discrimination and Classification"

Transcription

1 Dirimination and Claifiation Nathaniel E. Helwig Aitant Profeor of Pyhology and Statiti Unierity of Minneota (Twin Citie) Updated 14-Mar-2017 Nathaniel E. Helwig (U of Minneota) Dirimination and Claifiation Updated 14-Mar-2017 : Slide 1

2 Copyright Copyright 2017 by Nathaniel E. Helwig Nathaniel E. Helwig (U of Minneota) Dirimination and Claifiation Updated 14-Mar-2017 : Slide 2

3 Outline of Note 1) Claifying Two Population Oeriew of Problem Cot of Milaifiation 2) Two Multiariate Normal Equal Coariane Unequal Coariane 3) Ealuating Claifiation Milaifiation Meaure Quality in LDA 4) Claifying g 2 Population Oeriew of Problem Cot of Milaifiation Diriminant Analyi 5) Iri Data Example Data Oeriew LDA Example QDA Example Nathaniel E. Helwig (U of Minneota) Dirimination and Claifiation Updated 14-Mar-2017 : Slide 3

4 Purpoe of Dirimination and Claifiation Dirimination attempt to eparate ditint et of objet, and laifiation attempt to alloate new objet to predefined group. There are two typial goal of dirimination and laifiation: 1 Data deription: find diriminant that bet eparate group 2 Data alloation: put new objet in group ia the diriminant Note that goal 1 i dirimination, and goal 2 i laifiation/alloation. Nathaniel E. Helwig (U of Minneota) Dirimination and Claifiation Updated 14-Mar-2017 : Slide 4

5 Claifying Two Population Claifying Two Population Nathaniel E. Helwig (U of Minneota) Dirimination and Claifiation Updated 14-Mar-2017 : Slide 5

6 Claifying Two Population Oeriew of Problem The Two Population Claifiation Problem Let X = (X 1,..., X p ) denote a random etor and let f 1 (x) denote the probability denity funtion (pdf) for population π 1 f 2 (x) denote the probability denity funtion (pdf) for population π 2 Problem: Gien a realization X = x, we want to aign x to π 1 or π 2. We want to find ome laifiation rule to determine whether a realization X = x hould be aigned to population π 1 or π 2. Nathaniel E. Helwig (U of Minneota) Dirimination and Claifiation Updated 14-Mar-2017 : Slide 6

7 Claifying Two Population Viualizing a Claifiation Rule Oeriew of Problem Let Ω denote the ample pae, i.e., all poible alue of x, and R 1 Ω i the ubet of Ω for whih we laify x a π 1 R 2 = Ω R 1 i the ubet of Ω for whih we laify x a π 2 Figure: Figure 11.2 from Applied Multiariate Statitial Analyi, 6th Ed (Johnon & Wihern). Viualization i for p = 2 ariable. Nathaniel E. Helwig (U of Minneota) Dirimination and Claifiation Updated 14-Mar-2017 : Slide 7

8 Claifying Two Population Probability of Milaifiation Cot of Milaifiation The onditional probability P(2 1) of laifying an objet a π 2 when the objet really belong to π 1 i gien by P(2 1) = P(X R 2 π 1 ) = f 1 (x)dx R 2 The onditional probability P(1 2) of laifying an objet a π 1 when the objet really belong to π 2 i gien by P(1 2) = P(X R 1 π 2 ) = f 2 (x)dx R 1 Nathaniel E. Helwig (U of Minneota) Dirimination and Claifiation Updated 14-Mar-2017 : Slide 8

9 Claifying Two Population Cot of Milaifiation Viualizing the Probability of Milaifiation Figure: Figure 11.3 from Applied Multiariate Statitial Analyi, 6th Ed (Johnon & Wihern). Viualization i for p = 1 ariable. Nathaniel E. Helwig (U of Minneota) Dirimination and Claifiation Updated 14-Mar-2017 : Slide 9

10 Claifying Two Population Inorporating Prior Probabilitie Cot of Milaifiation Let p 1 and p 2 denote the prior probabilitie that an objet belong to π 1 and π 2, repetiely, with the ontraint that p 1 + p 2 = 1. The oerall probabilitie of the four outome hae the form P(orretly laify a π 1 ) = P(X R 1 π 1 )P(π 1 ) = P(1 1)p 1 P(orretly laify a π 2 ) = P(X R 2 π 2 )P(π 2 ) = P(2 2)p 2 P(milaify π 1 a π 2 ) = P(X R 2 π 1 )P(π 1 ) = P(2 1)p 1 P(milaify π 2 a π 1 ) = P(X R 1 π 2 )P(π 2 ) = P(1 2)p 2 Nathaniel E. Helwig (U of Minneota) Dirimination and Claifiation Updated 14-Mar-2017 : Slide 10

11 Claifying Two Population Cot of Milaifiation Claifiation Table and Milaifiation Cot In many real world ae, ot of milaifiation are not equal: π 1 and π 2 are dieaed and healthy π 1 and π 2 are guilty and not guilty π 1 and π 2 are buy and not buy tok We an make a ot matrix to tabulate our milaifiation ot: Truth: Claify a: π 1 π 2 π 1 0 (2 1) π 2 (1 2) 0 The expeted ot of milaifiation (ECM) i defined a ECM = (2 1)P(2 1)p 1 + (1 2)P(1 2)p 2 Nathaniel E. Helwig (U of Minneota) Dirimination and Claifiation Updated 14-Mar-2017 : Slide 11

12 Claifying Two Population Cot of Milaifiation Claifiation Rule (Region) Minimizing ECM The R 1 and R 2 that minimize the ECM are defined ia the inequalitie: ( ) ( ) f 1 (x) (1 2) R 1 : f 2 (x) p2 (2 1) p ( ) ( 1 ) f 1 (x) (1 2) R 2 : f 2 (x) < p2 (2 1) p 1 If (1 2) = (2 1), then we are laifying ia poterior probabilitie. If (1 2) = (2 1) and p 1 = p 2, then the laifiation rule redue to R 1 : R 2 : f 1 (x) f 2 (x) 1 f 1 (x) f 2 (x) < 1 Nathaniel E. Helwig (U of Minneota) Dirimination and Claifiation Updated 14-Mar-2017 : Slide 12

13 Claifiation with Two Multiariate Normal Population Two Multiariate Normal Population Nathaniel E. Helwig (U of Minneota) Dirimination and Claifiation Updated 14-Mar-2017 : Slide 13

14 Claifiation with Two Multiariate Normal Population Equal Coariane Matrie MVN Two Population Claifiation Problem Let X = (X 1,..., X p ) denote a random etor and let f 1 (x) N(µ 1, Σ) denote the pdf for population π 1 f 2 (x) N(µ 2, Σ) denote the pdf for population π 2 Problem: Gien a realization X = x, we want to aign x to π 1 or π 2. We want to find ome laifiation rule to determine whether a realization X = x hould be aigned to population π 1 or π 2. Nathaniel E. Helwig (U of Minneota) Dirimination and Claifiation Updated 14-Mar-2017 : Slide 14

15 Claifiation with Two Multiariate Normal Population Equal Coariane Matrie Claifiation Rule Minimizing ECM The multiariate normal denitie hae the form f k (x) = (2π) p/2 Σ 1/2 exp{ (1/2)(x µ k ) Σ 1 (x µ k )} for k {1, 2}, whih implie that f = f { 1(x) f 2 (x) = exp 1 2 (x µ 1) Σ 1 (x µ 1 ) + 1 } 2 (x µ 2) Σ 1 (x µ 2 ) { = exp (µ 1 µ 2 ) Σ 1 x 1 } 2 (µ 1 µ 2 ) Σ 1 (µ 1 + µ 2 ) The R 1 and R 2 that minimize the ECM are defined ia the inequalitie: [( ) ( )] (1 2) R 1 : log(f p2 ) log (2 1) p [( ) ( 1 )] (1 2) R 2 : log(f p2 ) < log (2 1) Nathaniel E. Helwig (U of Minneota) Dirimination and Claifiation Updated 14-Mar-2017 : Slide 15 p 1

16 Claifiation with Two Multiariate Normal Population Claifiation Rule in Pratie Equal Coariane Matrie The rule on the preiou lide depend on the population parameter µ 1, µ 2, and Σ, whih are often unknown in pratie. Gien n 1 independent oberation from π 1 and n 2 independent oberation from π 2, we an etimate the needed parameter: ˆµ 1 = x 1 = 1 n 1 x i(1) and ˆµ n 2 = x 2 = 1 n 2 1 n 2 ˆΣ = S p = i=1 1 n 1 + n 2 2 [ n1 i=1 x i(2) ] n 2 (x i(1) x 1 )(x i(1) x 1 ) + (x i(2) x 2 )(x i(2) x 2 ) i=1 i=1 The etimated laifiation rule replae f with it ample etimate: { ˆf = exp ( x 1 x 2 ) S 1 p x 1 } 2 ( x 1 x 2 ) S 1 p ( x 1 + x 2 ) Nathaniel E. Helwig (U of Minneota) Dirimination and Claifiation Updated 14-Mar-2017 : Slide 16

17 Claifiation with Two Multiariate Normal Population Equal Coariane Matrie Claifiation Rule in Pratie (ontinued) If ν = ( ) ( ) (1 2) p2 (2 1) p 1 = 1, then the rule beome R 1 : R 2 : ŷ ˆm ŷ < ˆm where ŷ = â x and ˆm = 1 2 (ȳ 1 + ȳ 2 ) with â = ( x 1 x 2 ) S 1 p, ȳ 1 = â x 1, and ȳ 2 = â x 2 Sale of â i not uniquely determined, o normalize â uing either: 1 â = â/ â (unit length) 2 â = â/â 1 (firt element 1) Nathaniel E. Helwig (U of Minneota) Dirimination and Claifiation Updated 14-Mar-2017 : Slide 17

18 Claifiation with Two Multiariate Normal Population Equal Coariane Matrie Fiher Linear Diriminant Funtion R. A. Fiher arried at the deiion rule on the preiou lide uing an entirely different argument. Fiher onidered finding the linear ombination Y = a X that bet eparate the group: where eparation = ȳ 1 ȳ 2 y ȳ 1 i the mean of the Y ore for the oberation from π 1 ȳ 2 i the mean of the Y ore for the oberation from π 2 2 y = n1 i=1 (y i(1) ȳ 1 ) 2 + n 2 i=1 (y i(2) ȳ 2 ) 2 n 1 +n 2 2 i the pooled ariane Nathaniel E. Helwig (U of Minneota) Dirimination and Claifiation Updated 14-Mar-2017 : Slide 18

19 Claifiation with Two Multiariate Normal Population Equal Coariane Matrie Fiher Linear Diriminant Funtion (ontinued) Setting â = ( x 1 x 2 ) S 1 p maximize the eparation eparation 2 = (ȳ 1 ȳ 2 ) 2 2 y = (â x 1 â x 2 ) 2 â S p â = (â d) 2 â S p â = d S 1 p d = D 2 oerall all poible a etor, where d = x 1 x 2. Nathaniel E. Helwig (U of Minneota) Dirimination and Claifiation Updated 14-Mar-2017 : Slide 19

20 Claifiation with Two Multiariate Normal Population Equal Coariane Matrie Viualizing Fiher Linear Diriminant Funtion Figure: Figure 11.5 from Applied Multiariate Statitial Analyi, 6th Ed (Johnon & Wihern). Viualization i for p = 2 ariable. Nathaniel E. Helwig (U of Minneota) Dirimination and Claifiation Updated 14-Mar-2017 : Slide 20

21 Claifiation with Two Multiariate Normal Population Unequal Coariane Matrie MVN Two Population Claifiation Problem (Σ 1 Σ 2 ) Let X = (X 1,..., X p ) denote a random etor and let f 1 (x) N(µ 1, Σ 1 ) denote the pdf for population π 1 f 2 (x) N(µ 2, Σ 2 ) denote the pdf for population π 2 Problem: Gien a realization X = x, we want to aign x to π 1 or π 2. We want to find ome laifiation rule to determine whether a realization X = x hould be aigned to population π 1 or π 2. Nathaniel E. Helwig (U of Minneota) Dirimination and Claifiation Updated 14-Mar-2017 : Slide 21

22 Claifiation with Two Multiariate Normal Population Unequal Coariane Matrie Claifiation Rule Minimizing ECM (Σ 1 Σ 2 ) The multiariate normal denitie hae the form f k (x) = (2π) p/2 Σ k 1/2 exp{ (1/2)(x µ k ) Σ 1 k (x µ k)} for k {1, 2}, whih implie that f = f ( ) 1/2 { 1(x) f 2 (x) = Σ1 exp 1 Σ 2 2 (x µ 1 ) Σ 1 1 (x µ 1 ) + 1 } 2 (x µ 2 ) Σ 1 2 (x µ 2 ) The R 1 and R 2 that minimize the ECM are defined ia the inequalitie: [( ) ( )] (1 2) R 1 : log(f p2 ) log (2 1) p [( ) ( 1 )] (1 2) R 2 : log(f p2 ) < log (2 1) p 1 Nathaniel E. Helwig (U of Minneota) Dirimination and Claifiation Updated 14-Mar-2017 : Slide 22

23 Claifiation with Two Multiariate Normal Population Unequal Coariane Matrie Claifiation Rule in Pratie (Σ 1 Σ 2 ) The rule on the preiou lide depend on the population parameter µ 1, µ 2, Σ 1, and Σ 2, whih are often unknown in pratie. Gien n 1 independent oberation from π 1 and n 2 independent oberation from π 2, we an etimate the needed parameter: ˆµ 1 = x 1 = 1 n 1 x i(1) and ˆΣ1 = S 1 = 1 n 1 n 1 1 i=1 ˆµ 2 = x 2 = 1 n 2 n 2 i=1 x i(2) and ˆΣ2 = S 2 = 1 n 2 1 n 1 i=1 n 2 (x i(1) x 1 )(x i(1) x 1 ) (x i(2) x 2 )(x i(2) x 2 ) i=1 The etimated laifiation rule replae f with it ample etimate: ( ) 1/2 { ˆf S1 = exp 1 S 2 2 (x x 1) S 1 1 (x x 1) + 1 } 2 (x x 2) S 1 2 (x x 2) Nathaniel E. Helwig (U of Minneota) Dirimination and Claifiation Updated 14-Mar-2017 : Slide 23

24 Claifiation with Two Multiariate Normal Population Unequal Coariane Matrie Claifiation Rule in Pratie (Σ 1 Σ 2 ), ontinued Note that we an write [ ( S1 ) ] log(ˆf 1/2 ) = log e 1 2 (x x 1) S 1 1 (x x 1)+ 1 2 (x x 2) S 1 2 (x x 2) S 2 where = ŷ ˆm ŷ = 1 2 x (S 1 1 S 1 2 )x + ( x 1 S 1 1 x 2 S 1 2 )x ˆm = 1 ( ) 2 log S1 + 1 S 2 2 ( x 1 S 1 1 x 1 x 2 S 1 2 x 2 ) ŷ i a quadrati funtion of x, o thi a quadrati laifiation rule. Nathaniel E. Helwig (U of Minneota) Dirimination and Claifiation Updated 14-Mar-2017 : Slide 24

25 Claifiation with Two Multiariate Normal Population Unequal Coariane Matrie Caution: Quadrati Claifiation of Non-Normal Data Figure: Figure 11.6 from Applied Multiariate Statitial Analyi, 6th Ed (Johnon & Wihern). Viualization i for p = 1 ariable. Nathaniel E. Helwig (U of Minneota) Dirimination and Claifiation Updated 14-Mar-2017 : Slide 25

26 Ealuating Claifiation Funtion Ealuating Claifiation Funtion Nathaniel E. Helwig (U of Minneota) Dirimination and Claifiation Updated 14-Mar-2017 : Slide 26

27 Ealuating Claifiation Funtion Milaifiation Meaure Quantifying the Quality of a Claifiation Rule To determine if a laifiation rule i good we an examine the error rate, i.e., milaifiation probabilitie. The population parameter are unknown in pratie, o we fou on approahe that an etimate the error rate from the obered data. We want our laifiation rule to ro-alidate to new data, o we onider ro-alidation proedure. Nathaniel E. Helwig (U of Minneota) Dirimination and Claifiation Updated 14-Mar-2017 : Slide 27

28 Ealuating Claifiation Funtion Milaifiation Meaure Total Probability of Milaifiation The Total Probability of Milaifiation (TPM) i defined a TPM(R 1, R 2 ) = p 1 f 1 (x)dx + p 2 f 2 (x)dx R 2 R 1 for any laifiation rule (region) that partition Ω = R 1 R 2. The Optimum Error Rate (OER) i the minimum poible alue of TPM OER = min R 1,R 2 TPM(R 1, R 2 ) ubjet to Ω = R 1 R 2 whih i obtained when R 1 : f 1(x) f 2 (x) p 2 p 1 and R 2 : f 1(x) f 2 (x) < p 2 p 1. If (1 2) = (2 1), minimizing TPM i ame a minimizing ECM Nathaniel E. Helwig (U of Minneota) Dirimination and Claifiation Updated 14-Mar-2017 : Slide 28

29 Atual Error Rate Ealuating Claifiation Funtion Milaifiation Meaure The error rate on the preiou lide require knowledge of the (typially unknown) parameter that define the denitie f 1 ( ) and f 2 ( ). Example: For LDA, alulating OER require µ 1, µ 2, and Σ The Atual Error Rate (AER) i defined uing the ample etimate AER( ˆR 1, ˆR 2 ) = p 1 f 1 (x)dx + p 2 f 2 (x)dx ˆR 2 ˆR 1 where ˆR 1 and ˆR 2 denote etimate from ample ize n 1 and n 2. Nathaniel E. Helwig (U of Minneota) Dirimination and Claifiation Updated 14-Mar-2017 : Slide 29

30 Ealuating Claifiation Funtion Apparent Error Rate Milaifiation Meaure The Apparent Error Rate (APER) i an optimiti etimate of AER. Etimate the AER uing the obered (training) ample of data The onfuion matrix for a ample of data i Truth: Claified a: π 1 π 2 π 1 n C1 n M1 n 1 π 2 n M2 n C2 n 2 where n Ck i the number orretly laified in population k {1, 2} n M1 = n 1 n C1 i the number from π 1 that are milaified n M2 = n 2 n C2 i the number from π 2 that are milaified Nathaniel E. Helwig (U of Minneota) Dirimination and Claifiation Updated 14-Mar-2017 : Slide 30

31 Ealuating Claifiation Funtion Apparent Error Rate (ontinued) Milaifiation Meaure Gien a ample of data with onfuion matrix Truth: Claified a: π 1 π 2 π 1 n C1 n M1 n 1 π 2 n M2 n C2 n 2 the APER i alulated a APER = n M1 + n M2 n 1 + n 2 whih i the total proportion of milaified ample oberation. Nathaniel E. Helwig (U of Minneota) Dirimination and Claifiation Updated 14-Mar-2017 : Slide 31

32 Ealuating Claifiation Funtion Milaifiation Meaure Leae-One-Out (Ordinary) Cro-Validation Lahenbruh propoed a better approah to etimate the AER: 1. Population 1 (for i = 1,..., n 1 ) (a) Hold out the i-th oberation from π 1 and build laifiation rule (b) Ue laifiation rule from Step 1(a) to laify the i-th oberation 2. Population 2 (for i = 1,..., n 2 ) (a) Hold out the i-th oberation from π 2 and build laifiation rule (b) Ue laifiation rule from Step 2(a) to laify the i-th oberation An (almot) unbiaed etimate of the expeted AER i gien by Ê(AER) = n M1 + n M2 n 1 + n 2 where nm1 and n M2 are the number of milaified oberation uing the aboe leae-one-out proedure. Nathaniel E. Helwig (U of Minneota) Dirimination and Claifiation Updated 14-Mar-2017 : Slide 32

33 Ealuating Claifiation Funtion Reiiting Linear Diriminant Analyi Claifiation Quality in Linear Diriminant Analyi Let X = (X 1,..., X p ) denote a random etor and let f 1 (x) N(µ 1, Σ) denote the pdf for population π 1 f 2 (x) N(µ 2, Σ) denote the pdf for population π 2 Reminder: auming that ( ) ( ) (1 2) p2 (2 1) p 1 = 1, the laifiation rule i R 1 : R 2 : Y m Y < m where Y = a X and m = 1 2 (µ Y 1 + µ Y2 ) with a = (µ 1 µ 2 ) Σ 1, µ Y1 = a µ 1, and µ Y2 = a µ 2 Nathaniel E. Helwig (U of Minneota) Dirimination and Claifiation Updated 14-Mar-2017 : Slide 33

34 Ealuating Claifiation Funtion Claifiation Quality in Linear Diriminant Analyi Reiiting Linear Diriminant Analyi (ontinued) Y = a X = (µ 1 µ 2 ) Σ 1 X i a linear funtion of X, o... µ Y1 = a µ 1 = (µ 1 µ 2 ) Σ 1 µ 1 µ Y2 = a µ 2 = (µ 1 µ 2 ) Σ 1 µ 2 σ 2 Y = a Σa = (µ 1 µ 2 ) Σ 1 (µ 1 µ 2 ) = 2 And ine X i multiariate normal, we hae that { N(µY1, Y 2 ) if from π 1 N(µ Y2, 2 ) if from π 2 i.e., Y i uniariate normal with population dependent mean. Nathaniel E. Helwig (U of Minneota) Dirimination and Claifiation Updated 14-Mar-2017 : Slide 34

35 Ealuating Claifiation Funtion Viualizing Milaifiation in LDA Claifiation Quality in Linear Diriminant Analyi Figure: Figure 11.7 from Applied Multiariate Statitial Analyi, 6th Ed (Johnon & Wihern). Nathaniel E. Helwig (U of Minneota) Dirimination and Claifiation Updated 14-Mar-2017 : Slide 35

36 Ealuating Claifiation Funtion Claifiation Quality in Linear Diriminant Analyi Calulating Milaifiation in LDA (laify π 1 a π 2 ) Defining m = (1/2)(µ 1 µ 2 ) Σ 1 (µ 1 + µ 2 ), we hae that P(milaify π 1 a π 2 ) = P(X R 2 π 1 ) = P(2 1) = P (Y < m) ( ) Y µ Y1 = P < m (µ 1 µ 2 )Σ 1 µ 1 σ Y ) = P (Z < (1/2) 2 = Φ( /2) where Φ( ) denote the CDF of the tandard normal ditribution. Nathaniel E. Helwig (U of Minneota) Dirimination and Claifiation Updated 14-Mar-2017 : Slide 36

37 Ealuating Claifiation Funtion Claifiation Quality in Linear Diriminant Analyi Calulating Milaifiation in LDA (laify π 2 a π 1 ) Defining m = (1/2)(µ 1 µ 2 ) Σ 1 (µ 1 + µ 2 ), we hae that P(milaify π 2 a π 1 ) = P(X R 1 π 2 ) = P(1 2) = P (Y m) ( ) Y µ Y2 = P m (µ 1 µ 2 )Σ 1 µ 2 σ Y ) = P (Z (1/2) 2 = 1 Φ( /2) = Φ( /2) where Φ( ) denote the CDF of the tandard normal ditribution. Nathaniel E. Helwig (U of Minneota) Dirimination and Claifiation Updated 14-Mar-2017 : Slide 37

38 Ealuating Claifiation Funtion Claifiation Quality in Linear Diriminant Analyi Optimum Error Rate for Linear Diriminant Analyi For the LDA laifiation rule, we hae that OER = min R 1,R 2 TPM(R 1, R 2 ) = 1 2 P(milaify π 1 a π 2 ) P(milaify π 2 a π 1 ) = 1 2 Φ( /2) + 1 [1 Φ( /2)] 2 = Φ( /2) o the OER i a funtion of the effet ize = (µ 1 µ 2 ) Σ 1 (µ 1 µ 2 ) whih i ditane meaure between µ 1 and µ 2. Nathaniel E. Helwig (U of Minneota) Dirimination and Claifiation Updated 14-Mar-2017 : Slide 38

39 Claifying g 2 Population Claifying g 2 Population Nathaniel E. Helwig (U of Minneota) Dirimination and Claifiation Updated 14-Mar-2017 : Slide 39

40 Claifying g 2 Population Oeriew of Problem The g Population Claifiation Problem Let X = (X 1,..., X p ) denote a random etor and let f k (x) denote the probability denity funtion (pdf) for population π k for k {1,..., g}. Problem: Gien a realization X = x, we want to aign x to a π k. We want to find ome laifiation rule to determine whether a realization X = x hould be aigned to population π 1, π 2,..., or π g. Nathaniel E. Helwig (U of Minneota) Dirimination and Claifiation Updated 14-Mar-2017 : Slide 40

41 Claifying g 2 Population Oeriew of Problem Claifiation Rule with g 2 Population Let Ω denote the ample pae, i.e., all poible alue of x, and R 1 Ω i the ubet of Ω for whih we laify x a π 1 R 2 Ω i the ubet of Ω for whih we laify x a π 2. R g Ω i the ubet of Ω for whih we laify x a π g Ω = R 1 R 2 R g and R k R l = for all k l. The laifiation rule partition the ample pae The laifiation region are mutually exluie Nathaniel E. Helwig (U of Minneota) Dirimination and Claifiation Updated 14-Mar-2017 : Slide 41

42 Claifying g 2 Population Oeriew of Problem Viualizing a Claifiation Rule: g = 3 Population Figure: Figure from Applied Multiariate Statitial Analyi, 6th Ed (Johnon & Wihern). Viualization i for p = 2 ariable. Nathaniel E. Helwig (U of Minneota) Dirimination and Claifiation Updated 14-Mar-2017 : Slide 42

43 Claifying g 2 Population Cot of Milaifiation Probability and Cot of Milaifiation The onditional probability P(l k) of laifying an objet a π l when the objet really belong to π k i gien by P(l k) = P(X R l π k ) = f k (x)dx R l for all k l with k, l {1,..., g}. Note that P(k k) = 1 l k P(l k) by definition. Let (l k) denote the ot of alloating an objet to π l when the objet really belong to π k, and let p k denote the prior probability of π k. Nathaniel E. Helwig (U of Minneota) Dirimination and Claifiation Updated 14-Mar-2017 : Slide 43

44 Claifying g 2 Population Cot of Milaifiation Expeted Cot of Milaifiation (reiited) The onditional expeted ot of milaifying an objet from π k i ECM(k) = l k P(l k)(l k) Inorporating the prior probabilitie, the oerall ECM i gien by g g ECM = p k ECM(k) = P(l k)(l k) l k k=1 k=1 p k Nathaniel E. Helwig (U of Minneota) Dirimination and Claifiation Updated 14-Mar-2017 : Slide 44

45 Claifying g 2 Population Cot of Milaifiation Minimum ECM Claifiation Rule The laifiation region {R 1, R 2,..., R g } that minimize the ECM are defined by alloating X = x to the population π k that minimize p l f l (x)(k l) l k To undertand the logi of the laifiation rule, uppoe that we hae equal ot, i.e., (l k) = (k l) = 1 for all k, l {1,..., g} We alloate x to the population π k that minimize l k p lf l (x) Minimizing l k p lf l (x) i the ame a maximizing p k f k (x) Alloate x to population π k if p k f k (x) > p l f l (x) for all l k Thi i equialent to maximizing the poterior probability P(π k x) Nathaniel E. Helwig (U of Minneota) Dirimination and Claifiation Updated 14-Mar-2017 : Slide 45

46 Claifying g 2 Population Fiher Diriminant Analyi Oeriew of Fiher Approah Fiher deeloped hi diriminant analyi for g > 2 population. Idea: find a mall number of linear ombination (e.g., a 1 x, a 2 x, a 3 x) that bet eparate the group. Offer a imple and ueful proedure for laifiation, whih alo proide nie iualization. Plot the linear ombination to iualize the diriminant Nathaniel E. Helwig (U of Minneota) Dirimination and Claifiation Updated 14-Mar-2017 : Slide 46

47 Claifying g 2 Population Fiher Diriminant Analyi Aumption of Fiher Diriminant Analyi Let X = (X 1,..., X p ) denote a random etor and let f k (x) (µ k, Σ) denote the pdf for population π k. Note the homogeneity of oariane matrix aumption Do not need the multiariate normality aumption Let µ = 1 g g k=1 µ k denote the mean of the ombined population, and g B µ = (µ k µ)(µ k µ) k=1 denote Between um-of-quare and roprodut (SSCP) matrix. Nathaniel E. Helwig (U of Minneota) Dirimination and Claifiation Updated 14-Mar-2017 : Slide 47

48 Claifying g 2 Population Fiher Diriminant Analyi Propertie of a Linear Combination Define new ariable Y = a X whih ha propertie E(Y π k ) = a E(X π k ) = a µ k V (Y π k ) = a V (X π k )a = a Σa and note that the oerall mean of Y ha the form µ Y = 1 g g µ Yk = 1 g k=1 g a µ k = a µ k=1 Nathaniel E. Helwig (U of Minneota) Dirimination and Claifiation Updated 14-Mar-2017 : Slide 48

49 Claifying g 2 Population Fiher Diriminant Analyi Between eru Within Group Variability Form the ratio of the between group eparation oer the ariane of Y : F = = g k=1 (µ Y k µ Y ) 2 σ 2 Y g k=1 (a µ k a µ) 2 a Σa = a [ g k=1 (µ k µ)(µ k µ) ] a a Σa = a B µ a a Σa Note that higher F alue relate to more eparation between group. Nathaniel E. Helwig (U of Minneota) Dirimination and Claifiation Updated 14-Mar-2017 : Slide 49

50 Claifying g 2 Population Fiher Diriminant Analyi Population Diriminant The population k-th diriminant i the linear ombination Y k = a k X where a k i proportional to the k-th eigenetor of Σ 1 B µ. k = 1,..., where = min(g 1, p) The a k are aled to make the Y k hae unit ariane, i.e., a k Σa k = 1. a k Σa l = 0 for k l Note that thi i only ueful if we omehow know the true population parameter µ 1,..., µ g and Σ. Nathaniel E. Helwig (U of Minneota) Dirimination and Claifiation Updated 14-Mar-2017 : Slide 50

51 Claifying g 2 Population Sample Diriminant Fiher Diriminant Analyi The ample etimated Between and Within SSCP matrie are B = g ( x k x)( x k x) and W = k=1 g n k (x i(k) x k )(x i(k) x k ) k=1 i=1 where x k = 1 n k nk i=1 x i(k) and x = 1 g g k=1 x k. The ample k-th diriminant i the linear ombination Ŷ k = â k X where â k i proportional to the k-th eigenetor of W 1 B. The â k are aled to make the Ŷk hae unit ariane, i.e., â ˆΣâ k k = 1, where ˆΣ = S p = 1 n g W with n = g k=1 n k. Nathaniel E. Helwig (U of Minneota) Dirimination and Claifiation Updated 14-Mar-2017 : Slide 51

52 Claifying g 2 Population Fiher Diriminant Analyi Propertie of Population Diriminant Let Y = A X where A = [a 1,..., a ]. Y = (Y 1,..., Y ) ontain the diriminant Column of A ontain the linear ombination weight The mean of Y i gien by and the oariane matrix for Y i E(Y π k ) = A E(X π k ) = A µ k = µ ky Co(Y ) = A Co(X π k )A = A ΣA = I beaue the diriminant hae unit ariane and are unorrelated. Remember: a k Σa l = δ kl where δ kl i Kroneker δ Nathaniel E. Helwig (U of Minneota) Dirimination and Claifiation Updated 14-Mar-2017 : Slide 52

53 Claifying g 2 Population Fiher Diriminant Analyi Claifying New Objet with Diriminant Gien a realization X = x, define y = A x and alulate the ditane between the obered y = (y 1,..., y ) and the k-th population mean: D k = (y µ ky ) (y µ ky ) = (y l µ kyl ) 2 = l=1 where µ ky = A µ k and y l = a l x and µ ky l = a l µ k. [a l (x µ k)] 2 l=1 To build a ditane uing r diriminant, ue D (r) k = r (y l µ kyl ) 2 = l=1 r [a l (x µ k)] 2 and laify x to the population π k that minimize the ditane D (r) k. Nathaniel E. Helwig (U of Minneota) Dirimination and Claifiation Updated 14-Mar-2017 : Slide 53 l=1

54 Claifying g 2 Population Fiher Diriminant Analyi Claifying New Objet with Sample Diriminant Gien a realization X = x, define ŷ =  x and alulate the ditane between the obered ŷ = (ŷ 1,..., ŷ ) and the k-th ample mean: ˆD k = (ŷ ˆµ ky ) (ŷ ˆµ ky ) = (ŷ l ˆµ kyl ) 2 = l=1 where ˆµ ky =  x k and ŷ l = â l x and ˆµ ky l = â l x k. [â l (x x k )] 2 l=1 To build a ditane uing r diriminant, ue ˆD (r) k = r (ŷ l ˆµ kyl ) 2 = l=1 r [â l (x x k )] 2 l=1 and laify x to the population π k that minimize the ditane ˆD (r) k. Nathaniel E. Helwig (U of Minneota) Dirimination and Claifiation Updated 14-Mar-2017 : Slide 54

55 Claifying g 2 Population Fiher Diriminant Analyi Relation to MVN Claifiation Problem Let X = (X 1,..., X p ) be a random etor and let f k (x) N(µ k, Σ k ) denote the pdf for population π k. Auming equal milaifiation ot, we alloate X = x to the population π k that minimize l k p lf l (x) maximize p k f k (x). Equialent to alloating X = x to the population π k that maximize d Q k (x) = Quadrati diriminant ore = 1 2 ln( Σ k ) 1 2 (x µ k) Σ 1 k (x µ k) + ln(p k ) dk L (x) = Linear diriminant ore = µ k Σ 1 x 1 2 µ k Σ 1 µ k + ln(p k ) where d L k i ued when Σ k = Σ for all k {1,..., g}. Nathaniel E. Helwig (U of Minneota) Dirimination and Claifiation Updated 14-Mar-2017 : Slide 55

56 Claifying g 2 Population Fiher Diriminant Analyi Relation to MVN Claifiation Problem (ontinued) If we aume that p k = 1/g for all k {1,..., g}, then d L k (x) = µ k Σ 1 x 1 2 µ k Σ 1 µ k Define the linear ombination y j = a j x, where a j = Σ 1/2 j with j denoting the j-th eigenetor of B µ = Σ 1/2 B µ Σ 1/2. Then p p D k = (y j µ kyj ) 2 = [a j (x µ k)] 2 = (x µ k ) Σ 1 (x µ k ) j=1 = 2d L k (x) + α j=1 where α = x Σ 1 x i ontant aro population. If rank( B µ ) = r, alloating to the population π k that maximize dk L (x) i equialent to alloating to the population π k that minimize D (r) k. Nathaniel E. Helwig (U of Minneota) Dirimination and Claifiation Updated 14-Mar-2017 : Slide 56

57 Fiher Iri Data Example Fiher Iri Data Example Nathaniel E. Helwig (U of Minneota) Dirimination and Claifiation Updated 14-Mar-2017 : Slide 57

58 Fiher Iri Data Example Data Oeriew Fiher (or Anderon ) Famou Iri Data R. A. Fiher publihed the LDA approah in 1936 and ued Edgar Anderon iri flower dataet a an example. The dataet onit of meaurement of p = 4 ariable taken from n k = 50 flower randomly ampled from eah of g = 3 peie. Variable: Sepal Length, Sepal Width, Petal Length, Petal Width Speie: etoa, eriolor, irginia The goal wa/i to build a linear diriminant funtion that bet laifie a new flower into one of the three peie. Nathaniel E. Helwig (U of Minneota) Dirimination and Claifiation Updated 14-Mar-2017 : Slide 58

59 Fiher Iri Data Example Fiher Famou Iri Data in R Data Oeriew > head(iri) Sepal.Length Sepal.Width Petal.Length Petal.Width Speie etoa etoa etoa etoa etoa etoa > olmean(iri[iri$speie=="etoa",1:4]) Sepal.Length Sepal.Width Petal.Length Petal.Width > olmean(iri[iri$speie=="eriolor",1:4]) Sepal.Length Sepal.Width Petal.Length Petal.Width > olmean(iri[iri$speie=="irginia",1:4]) Sepal.Length Sepal.Width Petal.Length Petal.Width > p <- 4L > g <- 3L Nathaniel E. Helwig (U of Minneota) Dirimination and Claifiation Updated 14-Mar-2017 : Slide 59

60 Fiher Iri Data Example Data Oeriew Make Pooled Coariane Matrix # make pooled oariane matrix > Sp <- matrix(0, p, p) > nx <- rep(0, g) > le <- leel(iri$speie) > for(k in 1:g){ + x <- iri[iri$speie==le[k],1:p] + nx[k] <- nrow(x) + Sp <- Sp + o(x) * (nx[k] - 1) + } > Sp <- Sp / (um(nx) - g) > round(sp, 3) Sepal.Length Sepal.Width Petal.Length Petal.Width Sepal.Length Sepal.Width Petal.Length Petal.Width Nathaniel E. Helwig (U of Minneota) Dirimination and Claifiation Updated 14-Mar-2017 : Slide 60

61 Fiher Iri Data Example Linear Diriminant Analyi LDA in R ia the lda Funtion (MASS Pakage) # fit lda model > library(mass) > ldamod <- lda(speie ~., data=iri, prior=rep(1/3, 3)) # hek the LDA oeffiient/aling > ldamod$aling LD1 LD2 Sepal.Length Sepal.Width Petal.Length Petal.Width > roprod(ldamod$aling, Sp) %*% ldamod$aling LD1 LD2 LD e e-16 LD e e+00 # reate the (entered) diriminant ore > mu.k <- ldamod$mean > mu <- olmean(mu.k) > dore <- ale(iri[,1:p], enter=mu, ale=f) %*% ldamod$aling > um((dore - predit(ldamod)$x)^2) [1] e-28 Nathaniel E. Helwig (U of Minneota) Dirimination and Claifiation Updated 14-Mar-2017 : Slide 61

62 Fiher Iri Data Example Linear Diriminant Analyi Plot LDA Reult: Sore and Coeffiient Diriminant Sore Diriminant Coeffiient LD etoa eriolor irginia LD Petal.Width Petal.Length Sepal.Width Sepal.Length R ode for left plot: LD1 plot(dore, xlab="ld1", ylab="ld2", ph=pid, ol=pid, main="diriminant Sore", xlim=(-10, 10), ylim=(-3, 3)) legend("top",le,ph=1:3,ol=1:3,bty="n") Nathaniel E. Helwig (U of Minneota) Dirimination and Claifiation Updated 14-Mar-2017 : Slide 62 LD1

63 Fiher Iri Data Example Linear Diriminant Analyi Plot LDA Reult: Diriminant Partition LD1 LD2 app. error rate: 0.02 Partition Plot library(klar) peie <- fator(rep(("","",""), eah=50)) partimat(x=dore[,2:1], grouping=peie, method="lda") Nathaniel E. Helwig (U of Minneota) Dirimination and Claifiation Updated 14-Mar-2017 : Slide 63

64 Fiher Iri Data Example Linear Diriminant Analyi Plot LDA Reult: All Pairwie Partition Sepal.Width Sepal.Length app. error rate: Petal.Length Sepal.Length app. error rate: Petal.Length Sepal.Width app. error rate: Petal.Width Sepal.Length app. error rate: Petal.Width Sepal.Width app. error rate: Petal.Width Petal.Length app. error rate: 0.04 Partition Plot library(klar) peie <- fator(rep(("","",""), eah=50)) partimat(x=iri[,1:4], grouping=peie, method="lda") Nathaniel E. Helwig (U of Minneota) Dirimination and Claifiation Updated 14-Mar-2017 : Slide 64

65 Fiher Iri Data Example APER and Expeted AER Linear Diriminant Analyi # make onfuion matrix (and APER) > onfuion <- table(iri$speie, predit(ldamod)$la) > onfuion etoa eriolor irginia etoa eriolor irginia > n <- um(onfuion) > aper <- (n - um(diag(onfuion))) / n > aper [1] 0.02 # ue CV to get expeted AER > ldamodcv <- lda(speie ~., data=iri, prior=rep(1/3, 3), CV=TRUE) > onfuioncv <- table(iri$speie, ldamodcv$la) > onfuioncv etoa eriolor irginia etoa eriolor irginia > eaer <- (n - um(diag(onfuioncv))) / n > eaer [1] 0.02 Nathaniel E. Helwig (U of Minneota) Dirimination and Claifiation Updated 14-Mar-2017 : Slide 65

66 Fiher Iri Data Example Linear Diriminant Analyi Split Data into Training (70%) and Teting (30%) Set > # plit into eparate matrie for eah flower > X <- ubet(iri, Speie=="etoa") > X <- ubet(iri, Speie=="eriolor") > X <- ubet(iri, Speie=="irginia") # plit into training and teting > et.eed(1) > id <- ample.int(n=50, ize=35) > id <- ample.int(n=50, ize=35) > id <- ample.int(n=50, ize=35) > Xtrain <- rbind(x[id,], X[id,], X[id,]) > Xtet <- rbind(x[-id,], X[-id,], X[-id,]) # fit lda to training and ealuate on teting > ldatrain <- lda(speie ~., data=xtrain, prior=rep(1/3, 3)) > onfuiontet <- table(xtet$speie, predit(ldatrain, newdata=xtet)$la) > onfuiontet etoa eriolor irginia etoa eriolor irginia > n <- um(onfuiontet) > aer <- (n - um(diag(onfuiontet))) / n > aer [1] Nathaniel E. Helwig (U of Minneota) Dirimination and Claifiation Updated 14-Mar-2017 : Slide 66

67 Fiher Iri Data Example Linear Diriminant Analyi Two-Fold CV with 100 Random 70/30 Split > nrep <- 100 > aer <- rep(0, nrep) > et.eed(1) > for(k in 1:nrep){ + id <- ample.int(n=50, ize=35) + id <- ample.int(n=50, ize=35) + id <- ample.int(n=50, ize=35) + Xtrain <- rbind(x[id,], X[id,], X[id,]) + Xtet <- rbind(x[-id,], X[-id,], X[-id,]) + ldatrain <- lda(speie ~., data=xtrain, prior=rep(1/3, 3)) + onfuiontet <- table(xtet$speie, predit(ldatrain, newdata=xtet)$la) + onfuiontet + n <- um(onfuiontet) + aer[k] <- (n - um(diag(onfuiontet))) / n + } > mean(aer) [1] Nathaniel E. Helwig (U of Minneota) Dirimination and Claifiation Updated 14-Mar-2017 : Slide 67

68 Fiher Iri Data Example Quadrati Diriminant Analyi QDA in R ia the qda Funtion (MASS Pakage) # fit qda model > library(mass) > qdamod <- qda(speie ~., data=iri, prior=rep(1/3, 3)) > name(qdamod) [1] "prior" "ount" "mean" "aling" "ldet" "le" "N" [8] "all" "term" "xleel" # hek the QDA oeffiient/aling > dim(qdamod$aling) [1] > round(roprod(qdamod$aling[,,1], o(x[,1:p])) %*% qdamod$aling[,,1], 4) > round(roprod(qdamod$aling[,,2], o(x[,1:p])) %*% qdamod$aling[,,2], 4) > round(roprod(qdamod$aling[,,3], o(x[,1:p])) %*% qdamod$aling[,,3], 4) Nathaniel E. Helwig (U of Minneota) Dirimination and Claifiation Updated 14-Mar-2017 : Slide 68

69 Fiher Iri Data Example Quadrati Diriminant Analyi Plot QDA Reult: All Pairwie Partition Sepal.Width Sepal.Length app. error rate: Petal.Length Sepal.Length app. error rate: Petal.Length Sepal.Width app. error rate: Petal.Width Sepal.Length app. error rate: Petal.Width Sepal.Width app. error rate: Petal.Width Petal.Length app. error rate: 0.02 Partition Plot library(klar) peie <- fator(rep(("","",""), eah=50)) partimat(x=iri[,1:4], grouping=peie, method="qda") Nathaniel E. Helwig (U of Minneota) Dirimination and Claifiation Updated 14-Mar-2017 : Slide 69

70 Fiher Iri Data Example APER and Expeted AER Quadrati Diriminant Analyi # make onfuion matrix (and APER) > onfuion <- table(iri$speie, predit(qdamod)$la) > onfuion etoa eriolor irginia etoa eriolor irginia > n <- um(onfuion) > aper <- (n - um(diag(onfuion))) / n > aper [1] 0.02 # ue CV to get expeted AER > qdamodcv <- qda(speie ~., data=iri, prior=rep(1/3, 3), CV=TRUE) > onfuioncv <- table(iri$speie, qdamodcv$la) > onfuioncv etoa eriolor irginia etoa eriolor irginia > eaer <- (n - um(diag(onfuioncv))) / n > eaer [1] Nathaniel E. Helwig (U of Minneota) Dirimination and Claifiation Updated 14-Mar-2017 : Slide 70

71 Fiher Iri Data Example Quadrati Diriminant Analyi Split Data into Training (70%) and Teting (30%) Set > # plit into eparate matrie for eah flower > X <- ubet(iri, Speie=="etoa") > X <- ubet(iri, Speie=="eriolor") > X <- ubet(iri, Speie=="irginia") > # plit into training and teting > et.eed(1) > id <- ample.int(n=50, ize=35) > id <- ample.int(n=50, ize=35) > id <- ample.int(n=50, ize=35) > Xtrain <- rbind(x[id,], X[id,], X[id,]) > Xtet <- rbind(x[-id,], X[-id,], X[-id,]) # fit qda to training and ealuate on teting > qdatrain <- qda(speie ~., data=xtrain, prior=rep(1/3, 3)) > onfuiontet <- table(xtet$speie, predit(qdatrain, newdata=xtet)$la) > onfuiontet etoa eriolor irginia etoa eriolor irginia > n <- um(onfuiontet) > aer <- (n - um(diag(onfuiontet))) / n > aer [1] Nathaniel E. Helwig (U of Minneota) Dirimination and Claifiation Updated 14-Mar-2017 : Slide 71

72 Fiher Iri Data Example Quadrati Diriminant Analyi Two-Fold CV with 100 Random 70/30 Split > nrep <- 100 > aer <- rep(0, nrep) > et.eed(1) > for(k in 1:nrep){ + id <- ample.int(n=50, ize=35) + id <- ample.int(n=50, ize=35) + id <- ample.int(n=50, ize=35) + Xtrain <- rbind(x[id,], X[id,], X[id,]) + Xtet <- rbind(x[-id,], X[-id,], X[-id,]) + qdatrain <- qda(speie ~., data=xtrain, prior=rep(1/3, 3)) + onfuiontet <- table(xtet$speie, predit(qdatrain, newdata=xtet)$la) + onfuiontet + n <- um(onfuiontet) + aer[k] <- (n - um(diag(onfuiontet))) / n + } > mean(aer) [1] Nathaniel E. Helwig (U of Minneota) Dirimination and Claifiation Updated 14-Mar-2017 : Slide 72

73 Fiher Iri Data Example Quadrati Diriminant Analyi Plot LDA and QDA Reult uing PCA LDA Reult QDA Reult PC etoa eriolor irginia PC etoa eriolor irginia PC PC1 Nathaniel E. Helwig (U of Minneota) Dirimination and Claifiation Updated 14-Mar-2017 : Slide 73

74 Fiher Iri Data Example Quadrati Diriminant Analyi Plot LDA and QDA Reult uing PCA (R ode) R ode for plot on preiou lide: # iualize LDA and QDA reult ia PCA ldaid <- a.integer(predit(ldamod)$la) qdaid <- a.integer(predit(qdamod)$la) pamod <- prinomp(iri[,1:4]) de.new(width=10, height=5, norstudiogd=true) par(mfrow=(1,2)) plot(pamod$ore[,1:2], xlab="pc1", ylab="pc2", ph=ldaid, ol=ldaid, main="lda Reult", xlim=(-4, 4), ylim=(-2, 2)) legend("topright",le,ph=1:3,ol=1:3,bty="n") abline(h=0,lty=3) abline(=0,lty=3) plot(pamod$ore[,1:2], xlab="pc1", ylab="pc2", ph=qdaid, ol=qdaid, main="qda Reult", xlim=(-4, 4), ylim=(-2, 2)) legend("topright",le,ph=1:3,ol=1:3,bty="n") abline(h=0,lty=3) abline(=0,lty=3) Nathaniel E. Helwig (U of Minneota) Dirimination and Claifiation Updated 14-Mar-2017 : Slide 74

CART: Classification and Regression Trees

CART: Classification and Regression Trees CART: Claifiation and Regreion Tree Günther Sawitzki Otober, 04 Literature [] L. Breiman, J. H. Friedman, R. A. Olhen, and C. J. Stone. Claifiation and Regreion Tree. Wadworth, Belmont, CA., 984. [] J.

More information

WEIGHTED PRINCIPAL COMPONENT ANALYSIS BASED ON FUZZY CLUSTERING MIKA SATO-ILIC. Received May 12, 2003

WEIGHTED PRINCIPAL COMPONENT ANALYSIS BASED ON FUZZY CLUSTERING MIKA SATO-ILIC. Received May 12, 2003 Sientiae Mathematiae Japoniae Online, Vol. 10, (2004), 359 368 359 WEIGHTED PRINCIPAL COMPONENT ANALYSIS BASED ON FUZZY CLUSTERING MIKA SATO-ILIC Reeied May 12, 2003 Abtrat. In thi paper, we propoe a weighted

More information

5.2.6 COMPARISON OF QUALITY CONTROL AND VERIFICATION TESTS

5.2.6 COMPARISON OF QUALITY CONTROL AND VERIFICATION TESTS 5..6 COMPARISON OF QUALITY CONTROL AND VERIFICATION TESTS Thi proedure i arried out to ompare two different et of multiple tet reult for finding the ame parameter. Typial example would be omparing ontrator

More information

To determine the biasing conditions needed to obtain a specific gain each stage must be considered.

To determine the biasing conditions needed to obtain a specific gain each stage must be considered. PHYSIS 56 Experiment 9: ommon Emitter Amplifier A. Introdution A ommon-emitter oltage amplifier will be tudied in thi experiment. You will inetigate the fator that ontrol the midfrequeny gain and the low-and

More information

THE SOLAR SYSTEM. We begin with an inertial system and locate the planet and the sun with respect to it. Then. F m. Then

THE SOLAR SYSTEM. We begin with an inertial system and locate the planet and the sun with respect to it. Then. F m. Then THE SOLAR SYSTEM We now want to apply what we have learned to the olar ytem. Hitorially thi wa the great teting ground for mehani and provided ome of it greatet triumph, uh a the diovery of the outer planet.

More information

If Y is normally Distributed, then and 2 Y Y 10. σ σ

If Y is normally Distributed, then and 2 Y Y 10. σ σ ull Hypothei Significance Teting V. APS 50 Lecture ote. B. Dudek. ot for General Ditribution. Cla Member Uage Only. Chi-Square and F-Ditribution, and Diperion Tet Recall from Chapter 4 material on: ( )

More information

6-1. Canonical Correlation Analysis

6-1. Canonical Correlation Analysis 6-1. Canonical Correlation Analysis Canonical Correlatin analysis focuses on the correlation between a linear combination of the variable in one set and a linear combination of the variables in another

More information

Confusion matrices. True / False positives / negatives. INF 4300 Classification III Anne Solberg The agenda today: E.g., testing for cancer

Confusion matrices. True / False positives / negatives. INF 4300 Classification III Anne Solberg The agenda today: E.g., testing for cancer INF 4300 Claification III Anne Solberg 29.10.14 The agenda today: More on etimating claifier accuracy Cure of dimenionality knn-claification K-mean clutering x i feature vector for pixel i i- The cla label

More information

Kalman Filter. Wim van Drongelen, Introduction

Kalman Filter. Wim van Drongelen, Introduction alman Filter Wim an Drongelen alman Filter Wim an Drongelen, 03. Introduction Getting to undertand a ytem can be quite a challenge. One approach i to create a model, an abtraction of the ytem. The idea

More information

THE UNIVERSITY OF CHICAGO Graduate School of Business Business 41912, Spring Quarter 2012, Mr. Ruey S. Tsay

THE UNIVERSITY OF CHICAGO Graduate School of Business Business 41912, Spring Quarter 2012, Mr. Ruey S. Tsay THE UNIVERSITY OF CHICAGO Graduate School of Business Business 41912, Spring Quarter 2012, Mr Ruey S Tsay Lecture 9: Discrimination and Classification 1 Basic concept Discrimination is concerned with separating

More information

Source slideplayer.com/fundamentals of Analytical Chemistry, F.J. Holler, S.R.Crouch. Chapter 6: Random Errors in Chemical Analysis

Source slideplayer.com/fundamentals of Analytical Chemistry, F.J. Holler, S.R.Crouch. Chapter 6: Random Errors in Chemical Analysis Source lideplayer.com/fundamental of Analytical Chemitry, F.J. Holler, S.R.Crouch Chapter 6: Random Error in Chemical Analyi Random error are preent in every meaurement no matter how careful the experimenter.

More information

DISCHARGE MEASUREMENT IN TRAPEZOIDAL LINED CANALS UTILIZING HORIZONTAL AND VERTICAL TRANSITIONS

DISCHARGE MEASUREMENT IN TRAPEZOIDAL LINED CANALS UTILIZING HORIZONTAL AND VERTICAL TRANSITIONS Ninth International Water Tehnology Conferene, IWTC9 005, Sharm El-Sheikh, Egypt 63 DISCHARGE MEASUREMENT IN TRAPEZOIDAL LINED CANALS UTILIZING HORIZONTAL AND VERTICAL TRANSITIONS Haan Ibrahim Mohamed

More information

Lecture 7: Testing Distributions

Lecture 7: Testing Distributions CSE 5: Sublinear (and Streaming) Algorithm Spring 014 Lecture 7: Teting Ditribution April 1, 014 Lecturer: Paul Beame Scribe: Paul Beame 1 Teting Uniformity of Ditribution We return today to property teting

More information

Einstein's Energy Formula Must Be Revised

Einstein's Energy Formula Must Be Revised Eintein' Energy Formula Mut Be Reied Le Van Cuong uong_le_an@yahoo.om Information from a iene journal how that the dilation of time in Eintein peial relatie theory wa proen by the experiment of ientit

More information

Comparing Means: t-tests for Two Independent Samples

Comparing Means: t-tests for Two Independent Samples Comparing ean: t-tet for Two Independent Sample Independent-eaure Deign t-tet for Two Independent Sample Allow reearcher to evaluate the mean difference between two population uing data from two eparate

More information

An iterative least-square method suitable for solving large sparse matrices

An iterative least-square method suitable for solving large sparse matrices An iteratie least-square method suitable for soling large sparse matries By I. M. Khabaza The purpose of this paper is to report on the results of numerial experiments with an iteratie least-square method

More information

Inverse Kinematics 1 1/21/2018

Inverse Kinematics 1 1/21/2018 Invere Kinemati 1 Invere Kinemati 2 given the poe of the end effetor, find the joint variable that produe the end effetor poe for a -joint robot, given find 1 o R T 3 2 1,,,,, q q q q q q RPP + Spherial

More information

A Simplified Steady-State Analysis of the PWM Zeta Converter

A Simplified Steady-State Analysis of the PWM Zeta Converter Proeeng of the 3th WSEAS International Conferene on CICUITS A Simplified Steady-State Analyi of the PW Zeta Conerter ELENA NICULESCU *, INA IAA-PUCAU *, AIUS-CISTIAN NICULESCU **, IN PUCAU *** AN AIAN

More information

Biplots. Some ecological data to illustrate regression biplots

Biplots. Some ecological data to illustrate regression biplots Biplot The biplot eten the iea of a imple atterplot of two variable to the ae of man variable, with the obetive of viualizing a maimum amount of information in the ata a poible. We firt look at how a regreion

More information

μ + = σ = D 4 σ = D 3 σ = σ = All units in parts (a) and (b) are in V. (1) x chart: Center = μ = 0.75 UCL =

μ + = σ = D 4 σ = D 3 σ = σ = All units in parts (a) and (b) are in V. (1) x chart: Center = μ = 0.75 UCL = Our online Tutor are available 4*7 to provide Help with Proce control ytem Homework/Aignment or a long term Graduate/Undergraduate Proce control ytem Project. Our Tutor being experienced and proficient

More information

Suggested Answers To Exercises. estimates variability in a sampling distribution of random means. About 68% of means fall

Suggested Answers To Exercises. estimates variability in a sampling distribution of random means. About 68% of means fall Beyond Significance Teting ( nd Edition), Rex B. Kline Suggeted Anwer To Exercie Chapter. The tatitic meaure variability among core at the cae level. In a normal ditribution, about 68% of the core fall

More information

ES 247 Fracture Mechanics Zhigang Suo. Applications of Fracture Mechanics

ES 247 Fracture Mechanics   Zhigang Suo. Applications of Fracture Mechanics Appliation of Frature Mehani Many appliation of frature mehani are baed on the equation σ a Γ = β. E Young modulu i uually known. Of the other four quantitie, if three are known, the equation predit the

More information

MINITAB Stat Lab 3

MINITAB Stat Lab 3 MINITAB Stat 20080 Lab 3. Statitical Inference In the previou lab we explained how to make prediction from a imple linear regreion model and alo examined the relationhip between the repone and predictor

More information

Constrained Single Period Stochastic Uniform Inventory Model With Continuous Distributions of Demand and Varying Holding Cost

Constrained Single Period Stochastic Uniform Inventory Model With Continuous Distributions of Demand and Varying Holding Cost Journal of Matemati and Statiti (1): 334-338, 6 ISSN 1549-3644 6 Siene Publiation Contrained Single Period Stoati Uniform Inventory Model Wit Continuou Ditribution of Demand and Varying Holding Cot 1 Hala,

More information

Administration, Department of Statistics and Econometrics, Sofia, 1113, bul. Tzarigradsko shose 125, bl.3, Bulgaria,

Administration, Department of Statistics and Econometrics, Sofia, 1113, bul. Tzarigradsko shose 125, bl.3, Bulgaria, Adanced Studie in Contemorary Mathematic, (006), No, 47-54 DISTRIBUTIONS OF JOINT SAMPLE CORRELATION COEFFICIENTS OF INDEPEENDENT NORMALLY DISTRIBUTED RANDOM VARIABLES Eelina I Velea, Tzetan G Ignato Roue

More information

Lecture 4 Topic 3: General linear models (GLMs), the fundamentals of the analysis of variance (ANOVA), and completely randomized designs (CRDs)

Lecture 4 Topic 3: General linear models (GLMs), the fundamentals of the analysis of variance (ANOVA), and completely randomized designs (CRDs) Lecture 4 Topic 3: General linear model (GLM), the fundamental of the analyi of variance (ANOVA), and completely randomized deign (CRD) The general linear model One population: An obervation i explained

More information

Boosted Partial Least-Squares. Regression

Boosted Partial Least-Squares. Regression Booted Partial Leat-Square Regreion Jean-Françoi Durand Montpellier II Unierity, Frane E-Mail: upport@jf-durand-pl.om Web ite: www.jf-durand-pl.om Booted PLS Regreion: Séminaire J.P. Fénelon 008- I. Introdution

More information

Chapter 4. Simulations. 4.1 Introduction

Chapter 4. Simulations. 4.1 Introduction Chapter 4 Simulation 4.1 Introdution In the previou hapter, a methodology ha been developed that will be ued to perform the ontrol needed for atuator haraterization. A tudy uing thi methodology allowed

More information

Econ 455 Answers - Problem Set 4. where. ch ch ch ch ch ch ( ) ( ) us us ch ch us ch. (world price). Combining the above two equations implies: 40P

Econ 455 Answers - Problem Set 4. where. ch ch ch ch ch ch ( ) ( ) us us ch ch us ch. (world price). Combining the above two equations implies: 40P Fall 011 Eon 455 Harvey Lapan Eon 455 Anwer - roblem et 4 1. Conider the ae of two large ountrie: U: emand = 300 4 upply = 6 where h China: emand = 300 10 ; upply = 0 h where (a) Find autarky prie: U:

More information

Adaptive Sampling Algorithms for Minimizing the Variance of Parameter Estimates in the Bidirectional Surface Reflectance Model

Adaptive Sampling Algorithms for Minimizing the Variance of Parameter Estimates in the Bidirectional Surface Reflectance Model Adaptie Sampling Algorithm for Minimizing the Variance of Parameter Etimate in the Bidirectional Surface Reflectance Model Or Intelligent Intrument on Robotic Helicopter A Technical Report Preented to

More information

Chapter 12 Simple Linear Regression

Chapter 12 Simple Linear Regression Chapter 1 Simple Linear Regreion Introduction Exam Score v. Hour Studied Scenario Regreion Analyi ued to quantify the relation between (or more) variable o you can predict the value of one variable baed

More information

Why ANOVA? Analysis of Variance (ANOVA) One-Way ANOVA F-Test. One-Way ANOVA F-Test. One-Way ANOVA F-Test. Completely Randomized Design

Why ANOVA? Analysis of Variance (ANOVA) One-Way ANOVA F-Test. One-Way ANOVA F-Test. One-Way ANOVA F-Test. Completely Randomized Design Why? () Eample: Heart performance core for 3 group of ubject, Non-moer, Moderate moer, 3Heavy moer 3 Comparing More Than Mean.90..0.9.0.00.89.0.99.9.9.98.88.0.0 Average.90.0.00 When comparing three independent

More information

Suggestions - Problem Set (a) Show the discriminant condition (1) takes the form. ln ln, # # R R

Suggestions - Problem Set (a) Show the discriminant condition (1) takes the form. ln ln, # # R R Suggetion - Problem Set 3 4.2 (a) Show the dicriminant condition (1) take the form x D Ð.. Ñ. D.. D. ln ln, a deired. We then replace the quantitie. 3ß D3 by their etimate to get the proper form for thi

More information

Lecture 5: Classification

Lecture 5: Classification Lecture 5: Classification Advanced Applied Multivariate Analysis STAT 2221, Spring 2015 Sungkyu Jung Department of Statistics, University of Pittsburgh Xingye Qiao Department of Mathematical Sciences Binghamton

More information

Model-based mixture discriminant analysis an experimental study

Model-based mixture discriminant analysis an experimental study Model-based mixture disriminant analysis an experimental study Zohar Halbe and Mayer Aladjem Department of Eletrial and Computer Engineering, Ben-Gurion University of the Negev P.O.Box 653, Beer-Sheva,

More information

Social Studies 201 Notes for March 18, 2005

Social Studies 201 Notes for March 18, 2005 1 Social Studie 201 Note for March 18, 2005 Etimation of a mean, mall ample ize Section 8.4, p. 501. When a reearcher ha only a mall ample ize available, the central limit theorem doe not apply to the

More information

EC381/MN308 Probability and Some Statistics. Lecture 7 - Outline. Chapter Cumulative Distribution Function (CDF) Continuous Random Variables

EC381/MN308 Probability and Some Statistics. Lecture 7 - Outline. Chapter Cumulative Distribution Function (CDF) Continuous Random Variables EC38/MN38 Probability and Some Statitic Yanni Pachalidi yannip@bu.edu, http://ionia.bu.edu/ Lecture 7 - Outline. Continuou Random Variable Dept. of Manufacturing Engineering Dept. of Electrical and Computer

More information

Intuitionistic Fuzzy WI-Ideals of Lattice Wajsberg Algebras

Intuitionistic Fuzzy WI-Ideals of Lattice Wajsberg Algebras Intern J Fuzzy Mathematial Arhive Vol 15, No 1, 2018, 7-17 ISSN: 2320 3242 (P), 2320 3250 (online) Publihed on 8 January 2018 wwwreearhmathiorg DOI: http://dxdoiorg/1022457/ijfmav15n1a2 International Journal

More information

S Mobile Communications Services and Systems

S Mobile Communications Services and Systems S-7.60 Mobile ommuniation Serie and Sytem Tutorial, Noember 9, 004. One a pyiit obert Wood did not top i ar beind te red trai ligt. He exue imel by uing oppler eet. Beaue o oppler it te red ligt ad turned

More information

Where Standard Physics Runs into Infinite Challenges, Atomism Predicts Exact Limits

Where Standard Physics Runs into Infinite Challenges, Atomism Predicts Exact Limits Where Standard Phyi Run into Infinite Challenge, Atomim Predit Exat Limit Epen Gaarder Haug Norwegian Univerity of Life Siene Deember, 07 Abtrat Where tandard phyi run into infinite hallenge, atomim predit

More information

1. The F-test for Equality of Two Variances

1. The F-test for Equality of Two Variances . The F-tet for Equality of Two Variance Previouly we've learned how to tet whether two population mean are equal, uing data from two independent ample. We can alo tet whether two population variance are

More information

Advanced Digital Signal Processing. Stationary/nonstationary signals. Time-Frequency Analysis... Some nonstationary signals. Time-Frequency Analysis

Advanced Digital Signal Processing. Stationary/nonstationary signals. Time-Frequency Analysis... Some nonstationary signals. Time-Frequency Analysis Advanced Digital ignal Proceing Prof. Nizamettin AYDIN naydin@yildiz.edu.tr Time-Frequency Analyi http://www.yildiz.edu.tr/~naydin 2 tationary/nontationary ignal Time-Frequency Analyi Fourier Tranform

More information

Alternate Dispersion Measures in Replicated Factorial Experiments

Alternate Dispersion Measures in Replicated Factorial Experiments Alternate Diperion Meaure in Replicated Factorial Experiment Neal A. Mackertich The Raytheon Company, Sudbury MA 02421 Jame C. Benneyan Northeatern Univerity, Boton MA 02115 Peter D. Krau The Raytheon

More information

UVa Course on Physics of Particle Accelerators

UVa Course on Physics of Particle Accelerators UVa Coure on Phyi of Partile Aelerator B. Norum Univerity of Virginia G. A. Krafft Jefferon Lab 3/7/6 Leture x dx d () () Peudoharmoni Solution = give β β β () ( o µ + α in µ ) β () () β x dx ( + α() α

More information

Acceptance sampling uses sampling procedure to determine whether to

Acceptance sampling uses sampling procedure to determine whether to DOI: 0.545/mji.203.20 Bayeian Repetitive Deferred Sampling Plan Indexed Through Relative Slope K.K. Sureh, S. Umamahewari and K. Pradeepa Veerakumari Department of Statitic, Bharathiar Univerity, Coimbatore,

More information

By Xiaoquan Wen and Matthew Stephens University of Michigan and University of Chicago

By Xiaoquan Wen and Matthew Stephens University of Michigan and University of Chicago Submitted to the Annal of Applied Statitic SUPPLEMENTARY APPENDIX TO BAYESIAN METHODS FOR GENETIC ASSOCIATION ANALYSIS WITH HETEROGENEOUS SUBGROUPS: FROM META-ANALYSES TO GENE-ENVIRONMENT INTERACTIONS

More information

SF2935: MODERN METHODS OF STATISTICAL LECTURE 3 SUPERVISED CLASSIFICATION, LINEAR DISCRIMINANT ANALYSIS LEARNING. Tatjana Pavlenko.

SF2935: MODERN METHODS OF STATISTICAL LECTURE 3 SUPERVISED CLASSIFICATION, LINEAR DISCRIMINANT ANALYSIS LEARNING. Tatjana Pavlenko. SF2935: MODERN METHODS OF STATISTICAL LEARNING LECTURE 3 SUPERVISED CLASSIFICATION, LINEAR DISCRIMINANT ANALYSIS Tatjana Pavlenko 5 November 2015 SUPERVISED LEARNING (REP.) Starting point: we have an outcome

More information

Social Studies 201 Notes for November 14, 2003

Social Studies 201 Notes for November 14, 2003 1 Social Studie 201 Note for November 14, 2003 Etimation of a mean, mall ample ize Section 8.4, p. 501. When a reearcher ha only a mall ample ize available, the central limit theorem doe not apply to the

More information

Notes on Implementation of Colloid Transport and Colloid-Facilitated Solute Transport into HYDRUS-1D

Notes on Implementation of Colloid Transport and Colloid-Facilitated Solute Transport into HYDRUS-1D Note on Implementation of Colloid Tranport and Colloid-Failitated Solute Tranport into HYDRUS-1D (a text implified from van Genuhten and Šimůnek (24) and Šimůnek et al. (26)) Jirka Šimůnek Department of

More information

A tutorial on conformal prediction

A tutorial on conformal prediction A tutorial on conformal prediction Glenn Shafer and Vladimir Vovk praktiqekie vyvody teorii vero tnote mogut bytь obonovany v kaqetve ledtvi gipotez o predelьno pri dannyh ograniqeni h loжnoti izuqaemyh

More information

Week 3 Statistics for bioinformatics and escience

Week 3 Statistics for bioinformatics and escience Week 3 Statitic for bioinformatic and escience Line Skotte 28. november 2008 2.9.3-4) In thi eercie we conider microrna data from Human and Moue. The data et repreent 685 independent realiation of the

More information

A Full-Newton Step Primal-Dual Interior Point Algorithm for Linear Complementarity Problems *

A Full-Newton Step Primal-Dual Interior Point Algorithm for Linear Complementarity Problems * ISSN 76-7659, England, UK Journal of Information and Computing Science Vol 5, No,, pp 35-33 A Full-Newton Step Primal-Dual Interior Point Algorithm for Linear Complementarity Problem * Lipu Zhang and Yinghong

More information

arxiv: v2 [math.nt] 30 Apr 2015

arxiv: v2 [math.nt] 30 Apr 2015 A THEOREM FOR DISTINCT ZEROS OF L-FUNCTIONS École Normale Supérieure arxiv:54.6556v [math.nt] 3 Apr 5 943 Cachan November 9, 7 Abtract In thi paper, we etablih a imple criterion for two L-function L and

More information

Critical Percolation Probabilities for the Next-Nearest-Neighboring Site Problems on Sierpinski Carpets

Critical Percolation Probabilities for the Next-Nearest-Neighboring Site Problems on Sierpinski Carpets Critial Perolation Probabilitie for the Next-Nearet-Neighboring Site Problem on Sierpinki Carpet H. B. Nie, B. M. Yu Department of Phyi, Huazhong Univerity of Siene and Tehnology, Wuhan 430074, China K.

More information

INDIVIDUAL OVERTOPPING EVENTS AT DIKES

INDIVIDUAL OVERTOPPING EVENTS AT DIKES INDIVIDUAL OVEOPPING EVENS A DIKES Gij Boman 1, Jentje van der Meer 2, Gij offman 3, olger Shüttrumpf 4 and enk Jan Verhagen 5 eently, formulae have been derived for maximum flow depth and veloitie on

More information

MULTIVARIATE HOMEWORK #5

MULTIVARIATE HOMEWORK #5 MULTIVARIATE HOMEWORK #5 Fisher s dataset on differentiating species of Iris based on measurements on four morphological characters (i.e. sepal length, sepal width, petal length, and petal width) was subjected

More information

Introduction to Normal Distribution

Introduction to Normal Distribution Introduction to Normal Distribution Nathaniel E. Helwig Assistant Professor of Psychology and Statistics University of Minnesota (Twin Cities) Updated 17-Jan-2017 Nathaniel E. Helwig (U of Minnesota) Introduction

More information

q-expansions of vector-valued modular forms of negative weight

q-expansions of vector-valued modular forms of negative weight Ramanujan J 2012 27:1 13 DOI 101007/11139-011-9299-9 q-expanion of vetor-valued modular form of negative weight Joe Gimenez Wiam Raji Reeived: 19 July 2010 / Aepted: 2 February 2011 / Publihed online:

More information

Design Manual to EC2. LinkStudPSR. Version 3.1 BS EN : Specialists in Punching Shear Reinforcement.

Design Manual to EC2. LinkStudPSR. Version 3.1 BS EN : Specialists in Punching Shear Reinforcement. LinkStudPSR Speialit in Punhing Shear Reinforement Deign Manual to EC BS EN 199-1-1:004 Verion 3.1 January 018 LinkStud PSR Limited /o Brook Forging Ltd Doulton Road Cradley Heath Wet Midland B64 5QJ Tel:

More information

On the Robustness of the Characteristics Related to (M\M\1) ( \FCFS) Queue System Model

On the Robustness of the Characteristics Related to (M\M\1) ( \FCFS) Queue System Model www.ijemr.net ISSN (ONINE): 5-758, ISSN (PRINT): 394-696 Volume-5, Iue-3, June 5 International Journal of Engineering and Management Reearch Page Number: 839-847 On the Robutne of the haracteritic Related

More information

A FUNCTIONAL BAYESIAN METHOD FOR THE SOLUTION OF INVERSE PROBLEMS WITH SPATIO-TEMPORAL PARAMETERS AUTHORS: CORRESPONDENCE: ABSTRACT

A FUNCTIONAL BAYESIAN METHOD FOR THE SOLUTION OF INVERSE PROBLEMS WITH SPATIO-TEMPORAL PARAMETERS AUTHORS: CORRESPONDENCE: ABSTRACT A FUNCTIONAL BAYESIAN METHOD FOR THE SOLUTION OF INVERSE PROBLEMS WITH SPATIO-TEMPORAL PARAMETERS AUTHORS: Zenon Medina-Cetina International Centre for Geohazard / Norwegian Geotechnical Intitute Roger

More information

SIMPLE LINEAR REGRESSION

SIMPLE LINEAR REGRESSION SIMPLE LINEAR REGRESSION In linear regreion, we conider the frequency ditribution of one variable (Y) at each of everal level of a econd variable (). Y i known a the dependent variable. The variable for

More information

ON THE APPROXIMATION ERROR IN HIGH DIMENSIONAL MODEL REPRESENTATION. Xiaoqun Wang

ON THE APPROXIMATION ERROR IN HIGH DIMENSIONAL MODEL REPRESENTATION. Xiaoqun Wang Proceeding of the 2008 Winter Simulation Conference S. J. Maon, R. R. Hill, L. Mönch, O. Roe, T. Jefferon, J. W. Fowler ed. ON THE APPROXIMATION ERROR IN HIGH DIMENSIONAL MODEL REPRESENTATION Xiaoqun Wang

More information

Lecture 16. Kinetics and Mass Transfer in Crystallization

Lecture 16. Kinetics and Mass Transfer in Crystallization Leture 16. Kineti and Ma Tranfer in Crytallization Crytallization Kineti Superaturation Nuleation - Primary nuleation - Seondary nuleation Crytal Growth - Diffuion-reation theory - Srew-diloation theory

More information

PhysicsAndMathsTutor.com

PhysicsAndMathsTutor.com 1. A teacher wihe to tet whether playing background muic enable tudent to complete a tak more quickly. The ame tak wa completed by 15 tudent, divided at random into two group. The firt group had background

More information

OLIGONUCLEOTIDE microarrays are widely used

OLIGONUCLEOTIDE microarrays are widely used Evolution Strategy with Greedy Probe Seletion Heuriti for the Non-Unique Oligonuleotide Probe Seletion Problem Lili Wang, Alioune Ngom, Robin Gra and Lui Rueda Abtrat In order to aurately meaure the gene

More information

An Unbiased Estimator For Population Mean Using An Attribute And An Auxiliary Variable

An Unbiased Estimator For Population Mean Using An Attribute And An Auxiliary Variable Advance in Dynamical Sytem and Application. ISS 0973-53, Volume, umber, (07 pp. 9-39 Reearch India Publication http://www.ripublication.com An Unbiaed Etimator For Population Mean Uing An Attribute And

More information

An exact method to quantify the information transmitted by different mechanisms of correlational coding

An exact method to quantify the information transmitted by different mechanisms of correlational coding INSTITUTE OF PHYSICSPUBLISHING Network: Comput. Neural Syt. 14 (23) 35 6 NETWORK: COMPUTATION IN NEURAL SYSTEMS PII: S954-898X(3)55354-4 An exat method to quantify the information tranmitted by different

More information

Lecture 21. The Lovasz splitting-off lemma Topics in Combinatorial Optimization April 29th, 2004

Lecture 21. The Lovasz splitting-off lemma Topics in Combinatorial Optimization April 29th, 2004 18.997 Topic in Combinatorial Optimization April 29th, 2004 Lecture 21 Lecturer: Michel X. Goeman Scribe: Mohammad Mahdian 1 The Lovaz plitting-off lemma Lovaz plitting-off lemma tate the following. Theorem

More information

Principal Components Analysis

Principal Components Analysis Principal Components Analysis Nathaniel E. Helwig Assistant Professor of Psychology and Statistics University of Minnesota (Twin Cities) Updated 16-Mar-2017 Nathaniel E. Helwig (U of Minnesota) Principal

More information

Detection and Estimation Theory

Detection and Estimation Theory ESE 524 Detection and Etimation Theory Joeph A. O Sullivan Samuel C. Sach Profeor Electronic Sytem and Signal Reearch Laboratory Electrical l and Sytem Engineering Wahington Univerity 2 Urbauer Hall 34-935-473

More information

Supervised Learning. Regression Example: Boston Housing. Regression Example: Boston Housing

Supervised Learning. Regression Example: Boston Housing. Regression Example: Boston Housing Supervised Learning Unsupervised learning: To extract structure and postulate hypotheses about data generating process from observations x 1,...,x n. Visualize, summarize and compress data. We have seen

More information

Beta Burr XII OR Five Parameter Beta Lomax Distribution: Remarks and Characterizations

Beta Burr XII OR Five Parameter Beta Lomax Distribution: Remarks and Characterizations Marquette Univerity e-publication@marquette Mathematic, Statitic and Computer Science Faculty Reearch and Publication Mathematic, Statitic and Computer Science, Department of 6-1-2014 Beta Burr XII OR

More information

Closed-looping a P300 BCI using the ErrP

Closed-looping a P300 BCI using the ErrP loed-looping a P300 B uing the ErrP Sandra Roueau, hritian Jutten, Maro ongedo To ite thi verion: Sandra Roueau, hritian Jutten, Maro ongedo. loed-looping a P300 B uing the ErrP. 5th International onferene

More information

SCOUR HOLE CHARACTERISTICS AROUND A VERTICAL PIER UNDER CLEARWATER SCOUR CONDITIONS

SCOUR HOLE CHARACTERISTICS AROUND A VERTICAL PIER UNDER CLEARWATER SCOUR CONDITIONS ARPN Journal of Engineering and Applied Siene 2006-2012 Aian Reearh Publihing Network (ARPN). All right reerved. www.arpnjournal.om SCOUR HOLE CHARACTERISTICS AROUND A VERTICAL PIER UNDER CLEARWATER SCOUR

More information

Statistical Analysis Using Combined Data Sources Ray Chambers Centre for Statistical and Survey Methodology University of Wollongong

Statistical Analysis Using Combined Data Sources Ray Chambers Centre for Statistical and Survey Methodology University of Wollongong Statitical Analyi Uing Combined Data Source Ray Chamber Centre for Statitical and Survey Methodology Univerity of Wollongong JPSM Preentation, Univerity of Maryland, April 7, 2011 1 What Are The Data?

More information

3. THE SOLUTION OF TRANSFORMATION PARAMETERS

3. THE SOLUTION OF TRANSFORMATION PARAMETERS Deartment of Geosatial Siene. HE SOLUION OF RANSFORMAION PARAMEERS Coordinate transformations, as used in ratie, are models desribing the assumed mathematial relationshis between oints in two retangular

More information

Unified Correlation between SPT-N and Shear Wave Velocity for all Soil Types

Unified Correlation between SPT-N and Shear Wave Velocity for all Soil Types 6 th International Conference on Earthquake Geotechnical Engineering 1-4 ovember 15 Chritchurch, ew Zealand Unified Correlation between SPT- and Shear Wave Velocity for all Soil Type C.-C. Tai 1 and T.

More information

A MATHEMATICAL MODEL FOR TWO DIMENSIONAL LOADING PROBLEM IN CROSS-DOCKING NETWORK DESIGN. İlker Küçükoğlu, Aslı Aksoy, Seval Ene and Nursel Öztürk

A MATHEMATICAL MODEL FOR TWO DIMENSIONAL LOADING PROBLEM IN CROSS-DOCKING NETWORK DESIGN. İlker Küçükoğlu, Aslı Aksoy, Seval Ene and Nursel Öztürk Mathematial and Computational Appliation Vol. 18 No. 3 pp. 273-282 2013 A MATHEMATICAL MODEL FOR TWO DIMENSIONAL LOADING PROBLEM IN CROSS-DOCKING NETWORK DESIGN İlker Küçükoğlu Alı Akoy Seval Ene and Nurel

More information

Dyadic Green s Function

Dyadic Green s Function EECS 730 Winter 2009 c K. Sarabandi Dyadic Green Function A mentioned earlier the application of dyadic analyi facilitate imple manipulation of field ector calculation. The ource of electromagnetic field

More information

Standard normal distribution. t-distribution, (df=5) t-distribution, (df=2) PDF created with pdffactory Pro trial version

Standard normal distribution. t-distribution, (df=5) t-distribution, (df=2) PDF created with pdffactory Pro trial version t-ditribution In biological reearch the population variance i uually unknown and an unbiaed etimate,, obtained from the ample data, ha to be ued in place of σ. The propertie of t- ditribution are: -It

More information

Convex transformations: A new approach to skewness and kurtosis )

Convex transformations: A new approach to skewness and kurtosis ) MATHEMATISCHE SECTIE Convex tranformation: A new approah to kewne and kurtoi ) by W. R. von Zwet ) UDC 519.2 Samenvatting In dit artikel worden een tweetal orde-relatie voor waarhijnlijkheidverdelingen

More information

1. A 500-kilogram car is driving at 15 meters/second. What's its kinetic energy? How much does the car weigh?

1. A 500-kilogram car is driving at 15 meters/second. What's its kinetic energy? How much does the car weigh? 9. Solution Work & Energy Homework - KINETIC ENERGY. A 500-kilogram car i driing at 5 meter/econd. What' it kinetic energy? How much doe the car weigh? m= 500 kg 5 m/ Write Equation: Kinetic Energy = ½

More information

Lecture 8: Classification

Lecture 8: Classification 1/26 Lecture 8: Classification Måns Eriksson Department of Mathematics, Uppsala University eriksson@math.uu.se Multivariate Methods 19/5 2010 Classification: introductory examples Goal: Classify an observation

More information

Lecture 9: Shor s Algorithm

Lecture 9: Shor s Algorithm Quantum Computation (CMU 8-859BB, Fall 05) Lecture 9: Shor Algorithm October 7, 05 Lecturer: Ryan O Donnell Scribe: Sidhanth Mohanty Overview Let u recall the period finding problem that wa et up a a function

More information

Thermochemistry and Calorimetry

Thermochemistry and Calorimetry WHY? ACTIVITY 06-1 Thermohemitry and Calorimetry Chemial reation releae or tore energy, uually in the form of thermal energy. Thermal energy i the kineti energy of motion of the atom and moleule ompriing

More information

Highway Capacity Manual 2010

Highway Capacity Manual 2010 RR = minimum number of lane change that mut be made by one ramp-toramp ehicle to execute the deired maneuer uccefully. MIN for two-ided weaing egment i gien by Equation 12-3: MIN RR For two-ided weaing

More information

Sidelobe-Suppression Technique Applied To Binary Phase Barker Codes

Sidelobe-Suppression Technique Applied To Binary Phase Barker Codes Journal of Engineering and Development, Vol. 16, No.4, De. 01 ISSN 1813-78 Sidelobe-Suppreion Tehnique Applied To Binary Phae Barker Code Aitant Profeor Dr. Imail M. Jaber Al-Mutaniriya Univerity College

More information

Application of Fuzzy C-Means Clustering in Power System Model Reduction for Controller Design

Application of Fuzzy C-Means Clustering in Power System Model Reduction for Controller Design Proeeding of the 5th WSEAS Int. Conf. on COMPUAIONAL INELLIGENCE, MAN-MACHINE SYSEMS AND CYBERNEICS, Venie, Italy, November 20-22, 2006 223 Appliation of Fuzzy C-Mean Clutering in Power Sytem Model Redution

More information

Cogging torque reduction of Interior Permanent Magnet Synchronous Motor (IPMSM)

Cogging torque reduction of Interior Permanent Magnet Synchronous Motor (IPMSM) Cogging torque redution of Interior Permanent Magnet Synhronou Motor (IPMSM) Mehdi Arehpanahi* and Hamed Kahefi Department of Eletrial Engineering, Tafreh Univerity, Tafreh, Iran, P.O. 3958 796,, Email:

More information

LINEAR ALGEBRA METHOD IN COMBINATORICS. Theorem 1.1 (Oddtown theorem). In a town of n citizens, no more than n clubs can be formed under the rules

LINEAR ALGEBRA METHOD IN COMBINATORICS. Theorem 1.1 (Oddtown theorem). In a town of n citizens, no more than n clubs can be formed under the rules LINEAR ALGEBRA METHOD IN COMBINATORICS 1 Warming-up example Theorem 11 (Oddtown theorem) In a town of n citizen, no more tha club can be formed under the rule each club have an odd number of member each

More information

RELIABILITY OF REPAIRABLE k out of n: F SYSTEM HAVING DISCRETE REPAIR AND FAILURE TIMES DISTRIBUTIONS

RELIABILITY OF REPAIRABLE k out of n: F SYSTEM HAVING DISCRETE REPAIR AND FAILURE TIMES DISTRIBUTIONS www.arpapre.com/volume/vol29iue1/ijrras_29_1_01.pdf RELIABILITY OF REPAIRABLE k out of n: F SYSTEM HAVING DISCRETE REPAIR AND FAILURE TIMES DISTRIBUTIONS Sevcan Demir Atalay 1,* & Özge Elmataş Gültekin

More information

A Queueing Model for Call Blending in Call Centers

A Queueing Model for Call Blending in Call Centers 434 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 48, NO. 8, AUGUST 2003 A Queueing Model for Call Blending in Call Center Sandjai Bhulai and Ger Koole Abtrat Call enter that apply all blending obtain high-produtivity

More information

Optimal Coordination of Samples in Business Surveys

Optimal Coordination of Samples in Business Surveys Paper preented at the ICES-III, June 8-, 007, Montreal, Quebec, Canada Optimal Coordination of Sample in Buine Survey enka Mach, Ioana Şchiopu-Kratina, Philip T Rei, Jean-Marc Fillion Statitic Canada New

More information

Preemptive scheduling on a small number of hierarchical machines

Preemptive scheduling on a small number of hierarchical machines Available online at www.ciencedirect.com Information and Computation 06 (008) 60 619 www.elevier.com/locate/ic Preemptive cheduling on a mall number of hierarchical machine György Dóa a, Leah Eptein b,

More information

Chapter 6 Control Systems Design by Root-Locus Method. Lag-Lead Compensation. Lag lead Compensation Techniques Based on the Root-Locus Approach.

Chapter 6 Control Systems Design by Root-Locus Method. Lag-Lead Compensation. Lag lead Compensation Techniques Based on the Root-Locus Approach. hapter 6 ontrol Sytem Deign by Root-Lou Method Lag-Lead ompenation Lag lead ompenation ehnique Baed on the Root-Lou Approah. γ β K, ( γ >, β > ) In deigning lag lead ompenator, we onider two ae where γ

More information

Clustering Methods without Given Number of Clusters

Clustering Methods without Given Number of Clusters Clutering Method without Given Number of Cluter Peng Xu, Fei Liu Introduction A we now, mean method i a very effective algorithm of clutering. It mot powerful feature i the calability and implicity. However,

More information

S_LOOP: SINGLE-LOOP FEEDBACK CONTROL SYSTEM ANALYSIS

S_LOOP: SINGLE-LOOP FEEDBACK CONTROL SYSTEM ANALYSIS S_LOOP: SINGLE-LOOP FEEDBACK CONTROL SYSTEM ANALYSIS by Michelle Gretzinger, Daniel Zyngier and Thoma Marlin INTRODUCTION One of the challenge to the engineer learning proce control i relating theoretical

More information

Integration of Streaming and Elastic Traffic in a Single UMTS Cell: Modeling and Performance Analysis

Integration of Streaming and Elastic Traffic in a Single UMTS Cell: Modeling and Performance Analysis Integration of Streaming and Elati Traffi in a Single UMTS Cell: Modeling and Performane Analyi Onno J. Boxma,,, Adriana F. Gabor,, Rudeindo Núñez-Queija, and Hwee Pink Tan Department of Mathemati and

More information

Data Mining with R. Linear Classifiers and the Perceptron Algorithm. Hugh Murrell

Data Mining with R. Linear Classifiers and the Perceptron Algorithm. Hugh Murrell Data Mining with R Linear Classifiers and the Perceptron Algorithm Hugh Murrell references These slides are based on a notes by Cosma Shalizi and an essay by Charles Elkan, but are self contained and access

More information