1. A 500-kilogram car is driving at 15 meters/second. What's its kinetic energy? How much does the car weigh?

Size: px
Start display at page:

Download "1. A 500-kilogram car is driving at 15 meters/second. What's its kinetic energy? How much does the car weigh?"

Transcription

1 9. Solution Work & Energy Homework - KINETIC ENERGY. A 500-kilogram car i driing at 5 meter/econd. What' it kinetic energy? How much doe the car weigh? m= 500 kg 5 m/ Write Equation: Kinetic Energy = ½ m Plug in Value: K. E. = ½ m = ½ (500 kg) (5 m/) = 56,50 kg m / = 56,50Nm =56,50 J. A low moing car may hae more kinetic energy than a fat moing motorcycle. How i thi poible? Logic the low moing car ha a large ma, which contribute to it Kinetic Energy. The ma of the car can be great enough that it ha a greater Kinetic Energy than the lighter motorcycle. 3. The aircraft carrier Nimitz ha a fully loaded ma of kg. It trael a ditance of 08 kilometer in 3.5 hour. What i the kinetic energy (in Joule) of the Nimitz? We mut firt calculate the elocity of the hip from the definition of elocity. 08km,000m hr 6.5m / t 3.5hr km 3,600 m= kg 6.5 m/ Write Equation: Kinetic Energy = ½ m Plug in Value: K. E. = ½ m = ½ ( kg) (6.5 m/) = Nm = J 4. Let ay the Nimitz i traeling at a elocity of 5 m/ and it accelerate up to a elocity of 6 m/. (Ue the ma from aboe) a. What i the difference in Kinetic Energy of for the two elocitie? b. How much Energy mut be added in the form of work to accelerate the hip from 5 m/ to 6m/? m= kg 5 m/ 6 m/ Logic The work done on the car caue an increae in kinetic energy and therefore an increae in the kinetic energy. Thi mean that W = ΔKE. The change in elocity can be plugged into the Kinetic Energy Formula to calculate thi. W = ΔKE Write Equation: Change in Kinetic Energy = {KE KE }= m m = m

2 Plug in Value: m 7 m m = (8.350 kg ) 6 5 = J 5. What happen to the Kinetic Energy of a moing object if it ma i doubled? Logic here we need to aign ome ariable ince we hae no number. We know that the elocity doe not change, o it will be gien the ame ariable in both State and State. The ma i doubled, o in State m will be twice the ma in State. Lit of Variable: State State m = m m = m = = Write Equation: Kinetic Energy = ½ m A ratio will be et up to compare State and State KE KE / / m m cancel out like term / m / m Thi mean that the energy in tate i twice that of tate or there i twice a much energy for an object twice a maie with the ame elocity. 6. What happen to the Kinetic Energy of an object if it elocity i doubled? Logic here we need to aign ome ariable ince we hae no number. We know that the ma doe not change, o it will be gien the ame ariable in both tate and tate. The elocity i doubled, o in tate m will be twice the ma in tate. Lit of Variable: State State m = m m = m = = Write Equation: Kinetic Energy = ½ m A ratio will be et up to compare State and State / m KE / m 4 KE / m / m

3 cancel out like term / m4 4 / m 7. The dinoaur Tyrannoauru re i thought to hae had a ma of about 7000 kilogram. What i the dinoaur kinetic energy if it walk at 4 kilometer/hour. We mut firt calculate the elocity of the dinoaur by conerting to m/. 4km,000m hr.m / t hr km 3,600 m= 7,000 kg. m/ Write Equation: Kinetic Energy = ½ m Plug in Value: K. E. = ½ m = ½ (7,000 kg) (.m/) = 4,35 Nm = 4,35 J 8. An aerage peron ha a ma of 70 kilogram. How fat mut an aerage peron moe to hae the ame kinetic energy a the T. re? KE = 4,35 Joule m= 70 kg? m/ Write Equation: Kinetic Energy = ½ m Sole for Appropriate Variable: KE m Plug in Value to get : m/ (alue plugged in not hown, you mut how it) 9. A baeball leae a pitcher hand at a peed of 3 m/. The ma of the ball i.45 kg. How much work ha the pitcher done on the ball? Logic here we mut apply the LAW OF CONSERVATION OF ENERGY. The kinetic energy the ball ha when it i moing wa created by the work done on the ball by the pitcher. He had to apply a force oer a ditance to the ball. So if we know the Kinetic Energy of the ball it will be equal to the work done on the ball. Notice alo that we can aume the initial kinetic energy of the ball wa zero. Written out mathematically thi i: So E = W= ½ m E + W = E 0

4 m=.45 kg 3 m/ Plug in Value: K. E. = ½ m = ½ (.45 kg) (3m/) = 74. Nm = 74. J 0. A 4,000 kilogram car i traeling at a elocity of 30 meter/econd. It accelerate to 40 meter per econd. How much work mut the engine do to increae the elocity of the car from 30 meter/econd to 40 meter/econd? m= 4,000 kg 30 m/ 40 m/ Logic The work done on the car caue an increae in kinetic energy and therefore an increae in the kinetic energy. Thi mean that W = ΔKE. The change in elocity can be plugged into the Kinetic Energy Formula to calculate thi. W = ΔKE Write Equation: Kinetic Energy = ½ m Plug in Value: K. E. = ½ m = ½ (4,000 kg) (0m/) = 00,000 Nm = 00,000 J. A PRACTICAL PROBLEM - Let try a quetion imilar to number 3 & 0 with ome real number and compare the Energy required to accelerate a light car and heaier car the ame amount. An aerage car ha a ma of 00 kg (The Phyic Factbook). The car of the mallet ma hae a ma of 990 kilogram while the heaier car hae a ma around 000 kilogram. An aerage gallon of ga ha 5 million joule of Energy and cot about $.30 /gallon. A) How many Joule are required to accelerate each ehicle from 0 mph to 30 mph (3.4 m/) B) By what factor are thee alue different? C) How many gallon of ga doe each require? D) How many $ doe each require? The Kinetic Energy the car hae after accelerating originate in the gaoline. The Kinetic Energy can be calculated eaily: K. E. = ½ m K. E. = ½ m = ½ (990 kg) (3.4 m/) = 88,88 J = ½ (000 kg) (3.4 m/) = 79,560 J The factor between thee i the ratio of the mae. So the fuel conumption i directly related to the ma of the car. Conerion to Gallon 88,88J gallon Conerion to $.007 gallon =.007 gallon 79,560J 5,000,000 gallon =.04 gallon 5,000,000 $.30 =.06 $$.04 gallon $.30 =.03 $$ gallon gallon

5 KINETICE ENERGY QUESTIONS. The pring contant for a particular pring i 0 N/m. How much energy i tored in the pring if it tretched. meter? k= 0 N/m =. meter =? Write Equation: k Plug in Value: k = ½ ( 0 N/m) (.m) =. Joule 3. If a pring i tretched twice a much will it contain twice a much Spring Energy? If not, by what factor doe the Energy increae? Lit of Variable: State State = = Write Equation: k A ratio will be et up to compare State and State / k / k 4 / k / k cancel out like term / / k 4 4 k 4. If you want to increae the elatic potential energy of a pring by a factor of, by what factor mut you increae the tretch of the pring? Lit of Variable: State State = E = E Write Equation: k A ratio will be et up to compare State and State

6 Sole for f / k / k / k / k f f f f f 5. If you want to increae the elatic potential energy of a pring by a factor of 3, by what factor mut you increae the tretch of the pring? By the ame logic preented in # 4, the factor will be 3

7 GRAVITATIONAL POTENTIAL ENERGY QUESTIONS 6. An object with a ma of 0 kilogram i 5 meter aboe the ground. How much GPE doe it hae? m= 0 kg g 0m h = 5 m Write Equation: GPE = mgh Plug in Value: GPE = mgh = ( 0 kg) ( 0m ) ( 5 m) = 500 Joule. A refrigerator (00 kg) i lifted from the 30 th floor to the 34 th floor of a building (each floor i 3 meter). a. What i the increae in GPE of the refrigerator? b. How much work mut be done on the refrigerator to lift it thi far? m= 00 kg g 0m h = m Logic The ditance the object i lifted i h which repreent the change in the height. Write Equation: GPE = mgh Plug in Value: GPE = mgh = ( 00 kg) ( 0m ) ( m) =,000 Joule. How much work mut be done to moe the refrigerator from the 4 th floor to the 8 th floor? Logic Since the change in eleation and ma are the ame, the energy change i alo the ame a the preiou quetion.

9.2 Work & Energy Homework - KINETIC, GRAVITATIONAL & SPRING ENERGY

9.2 Work & Energy Homework - KINETIC, GRAVITATIONAL & SPRING ENERGY 9. Work & Energy Homework - KINETIC, GRAVITATIONAL & SPRING ENERGY KINETIC ENERGY QUESTIONS 9.H Energy.doc 1. A 500 kilogram car is driving at 15 meters/second. Calculate its kinetic energy? How much does

More information

SKAA 1213 Engineering Mechanics

SKAA 1213 Engineering Mechanics SKAA 113 Engineering Mechanic TOPIC 8 KINEMATIC OF PARTICLES Lecturer: Roli Anang Dr. Mohd Yunu Ihak Dr. Tan Cher Siang Outline Introduction Rectilinear Motion Curilinear Motion Problem Introduction General

More information

Momentum. Momentum and Energy. Momentum and Impulse. Momentum. Impulse. Impulse Increasing Momentum

Momentum. Momentum and Energy. Momentum and Impulse. Momentum. Impulse. Impulse Increasing Momentum Momentum and Energy Chapter 3, page 59-80 Review quetion: 1,3,4,7, 8, 11, 1, 14-17, 0, 1 Momentum Momentum i inertia in motion Ma x velocity Ha both magnitude and direction Large ma or high peed can give

More information

Linear Motion, Speed & Velocity

Linear Motion, Speed & Velocity Add Important Linear Motion, Speed & Velocity Page: 136 Linear Motion, Speed & Velocity NGSS Standard: N/A MA Curriculum Framework (006): 1.1, 1. AP Phyic 1 Learning Objective: 3.A.1.1, 3.A.1.3 Knowledge/Undertanding

More information

3pt3pt 3pt3pt0pt 1.5pt3pt3pt Honors Physics Impulse-Momentum Theorem. Name: Answer Key Mr. Leonard

3pt3pt 3pt3pt0pt 1.5pt3pt3pt Honors Physics Impulse-Momentum Theorem. Name: Answer Key Mr. Leonard 3pt3pt 3pt3pt0pt 1.5pt3pt3pt Honor Phyic Impule-Momentum Theorem Spring, 2017 Intruction: Complete the following workheet. Show all of you work. Name: Anwer Key Mr. Leonard 1. A 0.500 kg ball i dropped

More information

1.1 Speed and Velocity in One and Two Dimensions

1.1 Speed and Velocity in One and Two Dimensions 1.1 Speed and Velocity in One and Two Dienion The tudy of otion i called kineatic. Phyic Tool box Scalar quantity ha agnitude but no direction,. Vector ha both agnitude and direction,. Aerage peed i total

More information

Assessment Schedule 2017 Scholarship Physics (93103)

Assessment Schedule 2017 Scholarship Physics (93103) Scholarhip Phyic (93103) 201 page 1 of 5 Aement Schedule 201 Scholarhip Phyic (93103) Evidence Statement Q Evidence 1-4 mark 5-6 mark -8 mark ONE (a)(i) Due to the motion of the ource, there are compreion

More information

Practice Midterm #1 Solutions. Physics 6A

Practice Midterm #1 Solutions. Physics 6A Practice Midter # Solution Phyic 6A . You drie your car at a peed of 4 k/ for hour, then low down to k/ for the next k. How far did you drie, and what wa your aerage peed? We can draw a iple diagra with

More information

Unit 2 Linear Motion

Unit 2 Linear Motion Unit Linear Motion Linear Motion Key Term - How to calculate Speed & Ditance 1) Motion Term: a. Symbol for time = (t) b. Diplacement (X) How far omething travel in a given direction. c. Rate How much omething

More information

Uniform Acceleration Problems Chapter 2: Linear Motion

Uniform Acceleration Problems Chapter 2: Linear Motion Name Date Period Uniform Acceleration Problem Chapter 2: Linear Motion INSTRUCTIONS: For thi homework, you will be drawing a coordinate axi (in math lingo: an x-y board ) to olve kinematic (motion) problem.

More information

Name: Answer Key Date: Regents Physics. Energy

Name: Answer Key Date: Regents Physics. Energy Nae: Anwer Key Date: Regent Phyic Tet # 9 Review Energy 1. Ue GUESS ethod and indicate all vector direction.. Ter to know: work, power, energy, conervation of energy, work-energy theore, elatic potential

More information

EF 151 Final Exam, Spring, 2009 Page 2 of 10. EF 151 Final Exam, Spring, 2009 Page 1 of 10. Name: Section: sina ( ) ( )( ) 2. a b c = = cosc.

EF 151 Final Exam, Spring, 2009 Page 2 of 10. EF 151 Final Exam, Spring, 2009 Page 1 of 10. Name: Section: sina ( ) ( )( ) 2. a b c = = cosc. EF 5 Final Exam, Spring, 9 Page of EF 5 Final Exam, Spring, 9 Page of Name: Section: Guideline: Aume 3 ignificant figure for all given number unle otherwie tated Show all of your work no work, no credit

More information

AP Physics Momentum AP Wrapup

AP Physics Momentum AP Wrapup AP Phyic Moentu AP Wrapup There are two, and only two, equation that you get to play with: p Thi i the equation or oentu. J Ft p Thi i the equation or ipule. The equation heet ue, or oe reaon, the ybol

More information

Physics 11 HW #9 Solutions

Physics 11 HW #9 Solutions Phyic HW #9 Solution Chapter 6: ocu On Concept: 3, 8 Problem: 3,, 5, 86, 9 Chapter 7: ocu On Concept: 8, Problem:,, 33, 53, 6 ocu On Concept 6-3 (d) The amplitude peciie the maximum excurion o the pot

More information

Work. Kinetic and Potential Energy. Work. Transference of Energy Work = Force x distance. Supplemental Text Material Pages

Work. Kinetic and Potential Energy. Work. Transference of Energy Work = Force x distance. Supplemental Text Material Pages Kinetic and Potential Energy Supplemental Text Material Page 36-333 Tranference of Energy = Force x ditance Lifting load againt the force of the weight of the object Twice the ditance reult in twice the

More information

Unit I Review Worksheet Key

Unit I Review Worksheet Key Unit I Review Workheet Key 1. Which of the following tatement about vector and calar are TRUE? Anwer: CD a. Fale - Thi would never be the cae. Vector imply are direction-conciou, path-independent quantitie

More information

Physics 20 Lesson 28 Simple Harmonic Motion Dynamics & Energy

Physics 20 Lesson 28 Simple Harmonic Motion Dynamics & Energy Phyic 0 Leon 8 Siple Haronic Motion Dynaic & Energy Now that we hae learned about work and the Law of Coneration of Energy, we are able to look at how thee can be applied to the ae phenoena. In general,

More information

two equations that govern the motion of the fluid through some medium, like a pipe. These two equations are the

two equations that govern the motion of the fluid through some medium, like a pipe. These two equations are the Fluid and Fluid Mechanic Fluid in motion Dynamic Equation of Continuity After having worked on fluid at ret we turn to a moving fluid To decribe a moving fluid we develop two equation that govern the motion

More information

4 Conservation of Momentum

4 Conservation of Momentum hapter 4 oneration of oentu 4 oneration of oentu A coon itake inoling coneration of oentu crop up in the cae of totally inelatic colliion of two object, the kind of colliion in which the two colliding

More information

v 24 m a = 5.33 Δd = 100 m[e] m[e] m[e] Δd = 550 m[e] BLM 2-6: Chapter 2 Test/Assessment Δd = + 10 s [E] uuv a = (10 0) s uuv a = (20 0)s

v 24 m a = 5.33 Δd = 100 m[e] m[e] m[e] Δd = 550 m[e] BLM 2-6: Chapter 2 Test/Assessment Δd = + 10 s [E] uuv a = (10 0) s uuv a = (20 0)s BLM -6: Chapter Tet/Aeent. (a) D (b) Δd (0 ) ( 0 [E]) + 0 ( 0 [E]) ( 30 + 0) + 0 [E] Δd 00 [E] + 00 [E] + 50 [E] Δd 550 [E] (c) Refer to the calculation below. A) B) uu (0 0) [E] a [E] (0 0) uu (0 0) [E]

More information

Conservation of Energy

Conservation of Energy Add Iportant Conervation of Energy Page: 340 Note/Cue Here NGSS Standard: HS-PS3- Conervation of Energy MA Curriculu Fraework (006):.,.,.3 AP Phyic Learning Objective: 3.E.., 3.E.., 3.E..3, 3.E..4, 4.C..,

More information

a = f s,max /m = s g. 4. We first analyze the forces on the pig of mass m. The incline angle is.

a = f s,max /m = s g. 4. We first analyze the forces on the pig of mass m. The incline angle is. Chapter 6 1. The greatet deceleration (of magnitude a) i provided by the maximum friction force (Eq. 6-1, with = mg in thi cae). Uing ewton econd law, we find a = f,max /m = g. Eq. -16 then give the hortet

More information

Highway Capacity Manual 2010

Highway Capacity Manual 2010 RR = minimum number of lane change that mut be made by one ramp-toramp ehicle to execute the deired maneuer uccefully. MIN for two-ided weaing egment i gien by Equation 12-3: MIN RR For two-ided weaing

More information

Elastic Collisions Definition Examples Work and Energy Definition of work Examples. Physics 201: Lecture 10, Pg 1

Elastic Collisions Definition Examples Work and Energy Definition of work Examples. Physics 201: Lecture 10, Pg 1 Phyic 131: Lecture Today Agenda Elatic Colliion Definition i i Example Work and Energy Definition of work Example Phyic 201: Lecture 10, Pg 1 Elatic Colliion During an inelatic colliion of two object,

More information

Physics 111. Help sessions meet Sunday, 6:30-7:30 pm in CLIR Wednesday, 8-9 pm in NSC 098/099

Physics 111. Help sessions meet Sunday, 6:30-7:30 pm in CLIR Wednesday, 8-9 pm in NSC 098/099 ics Announcements day, ember 7, 2007 Ch 2: graphing - elocity s time graphs - acceleration s time graphs motion diagrams - acceleration Free Fall Kinematic Equations Structured Approach to Problem Soling

More information

phy 3.1.notebook September 19, 2017 Everything Moves

phy 3.1.notebook September 19, 2017 Everything Moves Eerything Moes 1 2 \ Diagrams: Motion 1) Motion (picture) no reference! time lapsed photo Type Motion? 3 origin Diagrams: reference pt. Motion reference! 1) Motion (picture) diagram time lapsed photo by

More information

Physics 4A Solutions to Chapter 4 Homework

Physics 4A Solutions to Chapter 4 Homework Physics 4A Solutions to Chapter 4 Homework Chapter 4 Questions: 4, 1, 1 Exercises & Problems: 5, 11, 3, 7, 8, 58, 67, 77, 87, 11 Answers to Questions: Q 4-4 (a) all tie (b) 1 and tie (the rocket is shot

More information

Midterm Review - Part 1

Midterm Review - Part 1 Honor Phyic Fall, 2016 Midterm Review - Part 1 Name: Mr. Leonard Intruction: Complete the following workheet. SHOW ALL OF YOUR WORK. 1. Determine whether each tatement i True or Fale. If the tatement i

More information

HW9.2: SHM-Springs and Pendulums

HW9.2: SHM-Springs and Pendulums HW9.: SHM-Sprin and Pendulum T S m T P Show your wor clearly on a eparate pae. Mae a etch o the problem. Start each olution with a undamental concept equation written in ymbolic ariable. Sole or the unnown

More information

Chapter 13. Root Locus Introduction

Chapter 13. Root Locus Introduction Chapter 13 Root Locu 13.1 Introduction In the previou chapter we had a glimpe of controller deign iue through ome imple example. Obviouly when we have higher order ytem, uch imple deign technique will

More information

PHYSICSBOWL APRIL 1 APRIL 15, 2010

PHYSICSBOWL APRIL 1 APRIL 15, 2010 PHYSICSBOWL APRIL 1 APRIL 15, 010 40 QUESTIONS 45 MINUTES The ponor of the 010 PhyicBowl, including the American Aociation of Phyic Teacher and Texa Intrument, are proiding ome of the prize to recognize

More information

1. Intensity of Periodic Sound Waves 2. The Doppler Effect

1. Intensity of Periodic Sound Waves 2. The Doppler Effect 1. Intenity o Periodic Sound Wae. The Doppler Eect 1-4-018 1 Objectie: The tudent will be able to Deine the intenity o the ound wae. Deine the Doppler Eect. Undertand ome application on ound 1-4-018 3.3

More information

Potential energy of a spring

Potential energy of a spring PHYS 7: Modern Mechanic Spring 0 Homework: It i expected that a tudent work on a a homework #x hortly after lecture #x, ince HWx i on material of LECx. While the due date for HW are typically et to about

More information

Physics 107 HOMEWORK ASSIGNMENT #9b

Physics 107 HOMEWORK ASSIGNMENT #9b Physics 07 HOMEWORK SSIGNMENT #9b Cutnell & Johnson, 7 th edition Chapter : Problems 5, 58, 66, 67, 00 5 Concept Simulation. reiews the concept that plays the central role in this problem. (a) The olume

More information

On my honor, I have neither given nor received unauthorized aid on this examination.

On my honor, I have neither given nor received unauthorized aid on this examination. Instructor(s): Field/Furic PHYSICS DEPARTENT PHY 2053 Exam 1 October 5, 2011 Name (print, last first): Signature: On my honor, I hae neither gien nor receied unauthorized aid on this examination. YOUR

More information

Kinetic energy. Objectives. Equations. Energy of motion 6/3/14. Kinetic energy is energy due to motion. kinetic energy kinetic en

Kinetic energy. Objectives. Equations. Energy of motion 6/3/14. Kinetic energy is energy due to motion. kinetic energy kinetic en Objectives Investigate examples of kinetic energy. Calculate the kinetic energy, mass, or velocity of an object using the kinetic energy equation. Employ proportional reasoning to predict the effect of

More information

Impulse and Momentum

Impulse and Momentum Impule and Momentum 1. A ca poee 20,000 unit of momentum. What would be the ca' new momentum if... A. it elocity wee doubled. B. it elocity wee tipled. C. it ma wee doubled (by adding moe paenge and a

More information

5.4 Conservation of Momentum in Two Dimensions

5.4 Conservation of Momentum in Two Dimensions Phyic Tool bo 5.4 Coneration of Moentu in Two Dienion Law of coneration of Moentu The total oentu before a colliion i equal to the total oentu after a colliion. Thi i written a Tinitial Tfinal If the net

More information

s much time does it take for the dog to run a distance of 10.0m

s much time does it take for the dog to run a distance of 10.0m ATTENTION: All Diviion I tudent, START HERE. All Diviion II tudent kip the firt 0 quetion, begin on #.. Of the following, which quantity i a vector? Energy (B) Ma Average peed (D) Temperature (E) Linear

More information

TAP 518-7: Fields in nature and in particle accelerators

TAP 518-7: Fields in nature and in particle accelerators TAP - : Field in nature and in particle accelerator Intruction and inforation Write your anwer in the pace proided The following data will be needed when anwering thee quetion: electronic charge 9 C a

More information

Physics 218: Exam 1. Class of 2:20pm. February 14th, You have the full class period to complete the exam.

Physics 218: Exam 1. Class of 2:20pm. February 14th, You have the full class period to complete the exam. Phyic 218: Exam 1 Cla of 2:20pm February 14th, 2012. Rule of the exam: 1. You have the full cla period to complete the exam. 2. Formulae are provided on the lat page. You may NOT ue any other formula heet.

More information

MICRO-HYDRO INSTALLATION SIZING CALCULATIONS Jacques Chaurette eng. January 17, 2008

MICRO-HYDRO INSTALLATION SIZING CALCULATIONS Jacques Chaurette eng. January 17, 2008 MICRO-HYDRO INSTALLATION SIZING CALCULATIONS Jacque Chaurette eng. January 7, 008 Calculation for micro-hydro ine jet impact elocity are baed on the ame ort of calculation done for pump ytem, except there

More information

Physics Exam 3 Formulas

Physics Exam 3 Formulas Phyic 10411 Exam III November 20, 2009 INSTRUCTIONS: Write your NAME on the front of the blue exam booklet. The exam i cloed book, and you may have only pen/pencil and a calculator (no tored equation or

More information

Name 09-MAR-04. Work Power and Energy

Name 09-MAR-04. Work Power and Energy Page 1 of 16 Work Power and Energy Name 09-MAR-04 1. A spring has a spring constant of 120 newtons/meter. How much potential energy is stored in the spring as it is stretched 0.20 meter? 1. 2.4 J 3. 12

More information

Halliday/Resnick/Walker 7e Chapter 6

Halliday/Resnick/Walker 7e Chapter 6 HRW 7e Chapter 6 Page of Halliday/Renick/Walker 7e Chapter 6 3. We do not conider the poibility that the bureau might tip, and treat thi a a purely horizontal motion problem (with the peron puh F in the

More information

PROBLEMS ON WORK AND ENERGY PRINCIPLE

PROBLEMS ON WORK AND ENERGY PRINCIPLE PROLEMS ON WORK ND ENERGY PRINCIPLE PROLEMS. he.8 kg collar lide with negligible friction on the fixed rod in the vertical plane. If the collar tart from ret at under the action of the contant 8-N horizontal

More information

AP Physics Charge Wrap up

AP Physics Charge Wrap up AP Phyic Charge Wrap up Quite a few complicated euation for you to play with in thi unit. Here them babie i: F 1 4 0 1 r Thi i good old Coulomb law. You ue it to calculate the force exerted 1 by two charge

More information

Second Law of Motion. Force mass. Increasing mass. (Neglect air resistance in this example)

Second Law of Motion. Force mass. Increasing mass. (Neglect air resistance in this example) Newton Law of Motion Moentu and Energy Chapter -3 Second Law of Motion The acceleration of an object i directly proportional to the net force acting on the object, i in the direction of the net force,

More information

1 1. A spring has a spring constant of 120 newtons/meter. How much potential energy is stored in the spring as it is stretched 0.20 meter?

1 1. A spring has a spring constant of 120 newtons/meter. How much potential energy is stored in the spring as it is stretched 0.20 meter? Page of 3 Work Power And Energy TEACHER ANSWER KEY March 09, 200. A spring has a spring constant of 20 newtons/meter. How much potential energy is stored in the spring as it is stretched 0.20 meter?. 2.

More information

NCAAPMT Calculus Challenge Challenge #3 Due: October 26, 2011

NCAAPMT Calculus Challenge Challenge #3 Due: October 26, 2011 NCAAPMT Calculu Challenge 011 01 Challenge #3 Due: October 6, 011 A Model of Traffic Flow Everyone ha at ome time been on a multi-lane highway and encountered road contruction that required the traffic

More information

5.3: Calculate kinetic energy, gravitational potential energy, and elastic potential energy. Do Now: 1. Hand in your Forms of Energy Wheel

5.3: Calculate kinetic energy, gravitational potential energy, and elastic potential energy. Do Now: 1. Hand in your Forms of Energy Wheel Do Now: 1. Hand in your Forms of Energy Wheel 2. Identify the following forms of energy: a. A hiker at the top of a mountain b. A dog chasing a cat c. A rubber band being stretched Agenda: How can we calculate

More information

Chapter 9 Review. Block: Date:

Chapter 9 Review. Block: Date: Science 10 Chapter 9 Review Name: KEY Block: Date: 1. A change in velocity occur when the peed o an object change, or it direction o motion change, or both. Thee change in velocity can either be poitive

More information

MCAT Physics - Problem Drill 06: Translational Motion

MCAT Physics - Problem Drill 06: Translational Motion MCAT Physics - Problem Drill 06: Translational Motion Question No. 1 of 10 Instructions: (1) Read the problem and answer choices carefully () Work the problems on paper as 1. An object falls from rest

More information

Discover the answer to this question in this chapter.

Discover the answer to this question in this chapter. Erwan, whoe ma i 65 kg, goe Bungee jumping. He ha been in free-fall for 0 m when the bungee rope begin to tretch. hat will the maximum tretching of the rope be if the rope act like a pring with a 100 N/m

More information

Chapter 1: Kinematics of Particles

Chapter 1: Kinematics of Particles Chapter 1: Kinematics of Particles 1.1 INTRODUCTION Mechanics the state of rest of motion of bodies subjected to the action of forces Static equilibrium of a body that is either at rest or moes with constant

More information

Work and Energy Problems

Work and Energy Problems 06-08- orce F o trength 0N act on an object o a 3kg a it ove a ditance o 4. I F i perpendicular to the 4 diplaceent, the work done i equal to: Work and Energy Proble a) 0J b) 60J c) 80J d) 600J e) 400J

More information

1. Linear Motion. Table of Contents. 1.1 Linear Motion: Velocity Time Graphs (Multi Stage) 1.2 Linear Motion: Velocity Time Graphs (Up and Down)

1. Linear Motion. Table of Contents. 1.1 Linear Motion: Velocity Time Graphs (Multi Stage) 1.2 Linear Motion: Velocity Time Graphs (Up and Down) . LINEAR MOTION www.mathspoints.ie. Linear Motion Table of Contents. Linear Motion: Velocity Time Graphs (Multi Stage). Linear Motion: Velocity Time Graphs (Up and Down).3 Linear Motion: Common Initial

More information

PSCI 1055 Test #2 (Form A) Spring 2008 Buckley

PSCI 1055 Test #2 (Form A) Spring 2008 Buckley Name PSI 1055 Tet #2 (Form A) Spring 200 Buckley 1. (10 point) Since we deal a lot with unit, let ee how well you can match up the quantitie on the left with the lettered choice of unit on the right. The

More information

Department of Mechanical Engineering Massachusetts Institute of Technology Modeling, Dynamics and Control III Spring 2002

Department of Mechanical Engineering Massachusetts Institute of Technology Modeling, Dynamics and Control III Spring 2002 Department of Mechanical Engineering Maachuett Intitute of Technology 2.010 Modeling, Dynamic and Control III Spring 2002 SOLUTIONS: Problem Set # 10 Problem 1 Etimating tranfer function from Bode Plot.

More information

PHYSICS 211 MIDTERM II 12 May 2004

PHYSICS 211 MIDTERM II 12 May 2004 PHYSIS IDTER II ay 004 Exa i cloed boo, cloed note. Ue only your forula heet. Write all wor and anwer in exa boolet. The bac of page will not be graded unle you o requet on the front of the page. Show

More information

UNDERSTAND MOTION IN ONE AND TWO DIMENSIONS

UNDERSTAND MOTION IN ONE AND TWO DIMENSIONS SUBAREA I. COMPETENCY 1.0 UNDERSTAND MOTION IN ONE AND TWO DIMENSIONS MECHANICS Skill 1.1 Calculating displacement, aerage elocity, instantaneous elocity, and acceleration in a gien frame of reference

More information

Math 273 Solutions to Review Problems for Exam 1

Math 273 Solutions to Review Problems for Exam 1 Math 7 Solution to Review Problem for Exam True or Fale? Circle ONE anwer for each Hint: For effective tudy, explain why if true and give a counterexample if fale (a) T or F : If a b and b c, then a c

More information

Physics 6A. Practice Midterm #2 solutions

Physics 6A. Practice Midterm #2 solutions Phyic 6A Practice Midter # olution 1. A locootive engine of a M i attached to 5 train car, each of a M. The engine produce a contant force that ove the train forward at acceleration a. If 3 of the car

More information

3. In an interaction between two objects, each object exerts a force on the other. These forces are equal in magnitude and opposite in direction.

3. In an interaction between two objects, each object exerts a force on the other. These forces are equal in magnitude and opposite in direction. Lecture quiz toda. Small change to webite. Problem 4.30 the peed o the elevator i poitive even though it i decending. The WebAign anwer i wrong. ewton Law o Motion (page 9-99) 1. An object velocit vector

More information

A. unchanged increased B. unchanged unchanged C. increased increased D. increased unchanged

A. unchanged increased B. unchanged unchanged C. increased increased D. increased unchanged IB PHYSICS Name: DEVIL PHYSICS Period: Date: BADDEST CLASS ON CAMPUS CHAPTER B TEST REVIEW. A rocket is fired ertically. At its highest point, it explodes. Which one of the following describes what happens

More information

DYNAMICS OF ROTATIONAL MOTION

DYNAMICS OF ROTATIONAL MOTION DYNAMICS OF ROTATIONAL MOTION 10 10.9. IDENTIFY: Apply I. rad/rev SET UP: 0 0. (400 rev/min) 419 rad/ 60 /min EXECUTE: 0 419 rad/ I I (0 kg m ) 11 N m. t 800 EVALUATE: In I, mut be in rad/. 10.. IDENTIFY:

More information

Lesson 2: Kinematics (Sections ) Chapter 2 Motion Along a Line

Lesson 2: Kinematics (Sections ) Chapter 2 Motion Along a Line Lesson : Kinematics (Sections.-.5) Chapter Motion Along a Line In order to specify a position, it is necessary to choose an origin. We talk about the football field is 00 yards from goal line to goal line,

More information

Dynamics ( 동역학 ) Ch.2 Motion of Translating Bodies (2.1 & 2.2)

Dynamics ( 동역학 ) Ch.2 Motion of Translating Bodies (2.1 & 2.2) Dynamics ( 동역학 ) Ch. Motion of Translating Bodies (. &.) Motion of Translating Bodies This chapter is usually referred to as Kinematics of Particles. Particles: In dynamics, a particle is a body without

More information

Physics 6A. Practice Midterm #2 solutions. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB

Physics 6A. Practice Midterm #2 solutions. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB Phyic 6A Practice Midter # olution or apu Learning Aitance Service at USB . A locootive engine of a M i attached to 5 train car, each of a M. The engine produce a contant force that ove the train forward

More information

Time [seconds]

Time [seconds] .003 Fall 1999 Solution of Homework Aignment 4 1. Due to the application of a 1.0 Newton tep-force, the ytem ocillate at it damped natural frequency! d about the new equilibrium poition y k =. From the

More information

Chapter 4. The Laplace Transform Method

Chapter 4. The Laplace Transform Method Chapter 4. The Laplace Tranform Method The Laplace Tranform i a tranformation, meaning that it change a function into a new function. Actually, it i a linear tranformation, becaue it convert a linear combination

More information

AP Physics Multiple Choice Practice Gravitation

AP Physics Multiple Choice Practice Gravitation AP Physics Multiple Choice Practice Graitation. Each of fie satellites makes a circular orbit about an object that is much more massie than any of the satellites. The mass and orbital radius of each satellite

More information

Sample Question Solutions for the Chemistry of Environment Topic Exam

Sample Question Solutions for the Chemistry of Environment Topic Exam Name (Lat, Firt): ID Number: Sample Quetion Solution for the Chemitry of Environment Topic Exam 1. The earth tratophere contain a region of high ozone (O3) concentration called the ozone layer. The ozone

More information

(a) During the first part of the motion, the displacement is x 1 = 40 km and the time interval is t 1 (30 km / h) (80 km) 40 km/h. t. (2.

(a) During the first part of the motion, the displacement is x 1 = 40 km and the time interval is t 1 (30 km / h) (80 km) 40 km/h. t. (2. Chapter 3. Since the trip consists of two parts, let the displacements during first and second parts of the motion be x and x, and the corresponding time interals be t and t, respectiely. Now, because

More information

time? How will changes in vertical drop of the course affect race time? How will changes in the distance between turns affect race time?

time? How will changes in vertical drop of the course affect race time? How will changes in the distance between turns affect race time? Unit 1 Leon 1 Invetigation 1 Think About Thi Situation Name: Conider variou port that involve downhill racing. Think about the factor that decreae or increae the time it take to travel from top to bottom.

More information

Physics 111. Exam #3. March 4, 2011

Physics 111. Exam #3. March 4, 2011 Phyic Exam #3 March 4, 20 Name Multiple Choice /6 Problem # /2 Problem #2 /2 Problem #3 /2 Problem #4 /2 Total /00 PartI:Multiple Choice:Circlethebetanwertoeachquetion.Anyothermark willnotbegivencredit.eachmultiple

More information

Physics 2A Chapter 3 - Motion in Two Dimensions Fall 2017

Physics 2A Chapter 3 - Motion in Two Dimensions Fall 2017 These notes are seen pages. A quick summary: Projectile motion is simply horizontal motion at constant elocity with ertical motion at constant acceleration. An object moing in a circular path experiences

More information

Gravitational Energy using Gizmos

Gravitational Energy using Gizmos Name: Date: Gravitational Energy using Gizmos Using your Gizmo app, open the Potential energy on shelves Gizmo Vocabulary: gravitational energy, Prior Knowledge Questions (Do these BEFORE using the Gizmo.)

More information

TP A.30 The effect of cue tip offset, cue weight, and cue speed on cue ball speed and spin

TP A.30 The effect of cue tip offset, cue weight, and cue speed on cue ball speed and spin technical proof TP A.30 The effect of cue tip offet, cue weight, and cue peed on cue all peed and pin technical proof upporting: The Illutrated Principle of Pool and Billiard http://illiard.colotate.edu

More information

7.1 Stanford Notes Energy Name

7.1 Stanford Notes Energy Name 7.1 Stanford Notes Energy Name MAIN POINTS: Write a summary of the main point of each paragraph. Page 164 Questions: Questions you should be able to answer after reading. Energy can cause what? The unit

More information

Momentum. Impulse = F t. Impulse Changes Momentum

Momentum. Impulse = F t. Impulse Changes Momentum Momentum and Energy Chapter 3 Momentum Momentum is inertia in motion Mass x velocity Has both magnitude and direction Large mass or high speed can give object great amount of momentum Momentum = m v Change

More information

The Electric Potential Energy

The Electric Potential Energy Lecture 6 Chapter 28 Phyic II The Electric Potential Energy Coure webite: http://aculty.uml.edu/andriy_danylov/teaching/phyicii New Idea So ar, we ued vector quantitie: 1. Electric Force (F) Depreed! 2.

More information

s s 1 s = m s 2 = 0; Δt = 1.75s; a =? mi hr

s s 1 s = m s 2 = 0; Δt = 1.75s; a =? mi hr Flipping Phyic Lecture Note: Introduction to Acceleration with Priu Brake Slaing Exaple Proble a Δv a Δv v f v i & a t f t i Acceleration: & flip the guy and ultiply! Acceleration, jut like Diplaceent

More information

1 inhibit5.mcd. Product Inhibition. Instructor: Nam Sun Wang

1 inhibit5.mcd. Product Inhibition. Instructor: Nam Sun Wang Product Inhibition. Intructor: Nam Sun Wang inhibit5.mcd Mechanim. nzyme combine with a ubtrate molecule for form a complex, which lead to product. The product can alo combine with an enzyme in a reerible

More information

Momentum. Momentum. Impulse. Impulse Momentum Theorem. Deriving Impulse. v a t. Momentum and Impulse. Impulse. v t

Momentum. Momentum. Impulse. Impulse Momentum Theorem. Deriving Impulse. v a t. Momentum and Impulse. Impulse. v t Moentu and Iule Moentu Moentu i what Newton called the quantity of otion of an object. lo called Ma in otion The unit for oentu are: = oentu = a = elocity kg Moentu Moentu i affected by a and elocity eeding

More information

Last Time: Start Rotational Motion (now thru mid Nov) Basics: Angular Speed, Angular Acceleration

Last Time: Start Rotational Motion (now thru mid Nov) Basics: Angular Speed, Angular Acceleration Last Time: Start Rotational Motion (now thru mid No) Basics: Angular Speed, Angular Acceleration Today: Reiew, Centripetal Acceleration, Newtonian Graitation i HW #6 due Tuesday, Oct 19, 11:59 p.m. Exam

More information

Understand how units behave and combine algebraically. Know the 4 common prefixes and their numeric meanings.

Understand how units behave and combine algebraically. Know the 4 common prefixes and their numeric meanings. Add Important The Metric Sytem Page: 91 NGSS Standard: N/A The Metric Sytem MA Curriculum Framework (006): N/A AP Phyic 1 Learning Objective: N/A Knowledge/Undertanding: Skill: Undertand how unit behave

More information

Physics 6A. Angular Momentum. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB

Physics 6A. Angular Momentum. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB Phyic 6A Angular Momentum For Campu earning Angular Momentum Thi i the rotational equivalent of linear momentum. t quantifie the momentum of a rotating object, or ytem of object. f we imply tranlate the

More information

Physics 161: Problem Set 2 - SOLUTIONS

Physics 161: Problem Set 2 - SOLUTIONS Phyic 161: Problem Set 2 - SOLUTIONS April 7, 2010 1 (1 pt. each). Scientific notation and calculation (a) (4 10 3 ) (2 10 5 ) = 8 10 8 (b) (4 10 3 ) (2 10 5 ) = 2 10 2 = 0.02 (c) (5 10 3 ) (4 10 5 ) (0.3)

More information

Momentum and Energy. Chapter 3

Momentum and Energy. Chapter 3 Momentum and Energy Chapter 3 Momentum Momentum is inertia in motion Mass x velocity Has both magnitude and direction Large mass or high speed can give object great amount of momentum Momentum = m v Change

More information

Comparing Means: t-tests for Two Independent Samples

Comparing Means: t-tests for Two Independent Samples Comparing ean: t-tet for Two Independent Sample Independent-eaure Deign t-tet for Two Independent Sample Allow reearcher to evaluate the mean difference between two population uing data from two eparate

More information

3. What is the minimum work needed to push a 950-kg car 310 m up along a 9.0 incline? Ignore friction. Make sure you draw a free body diagram!

3. What is the minimum work needed to push a 950-kg car 310 m up along a 9.0 incline? Ignore friction. Make sure you draw a free body diagram! Wor Problems Wor and Energy HW#. How much wor is done by the graitational force when a 280-g pile drier falls 2.80 m? W G = G d cos θ W = (mg)d cos θ W = (280)(9.8)(2.80) cos(0) W = 7683.2 W 7.7 0 3 Mr.

More information

Cumulative Review of Calculus

Cumulative Review of Calculus Cumulative Review of Calculu. Uing the limit definition of the lope of a tangent, determine the lope of the tangent to each curve at the given point. a. f 5,, 5 f,, f, f 5,,,. The poition, in metre, of

More information

Physics. Chapter 7 Energy

Physics. Chapter 7 Energy Physics Chapter 7 Energy Work How long does a force act? Last week, we meant time as in impulse (Ft) This week, we will take how long to mean distance Force x distance (Fd) is what we call WORK W = Fd

More information

Social Studies 201 Notes for March 18, 2005

Social Studies 201 Notes for March 18, 2005 1 Social Studie 201 Note for March 18, 2005 Etimation of a mean, mall ample ize Section 8.4, p. 501. When a reearcher ha only a mall ample ize available, the central limit theorem doe not apply to the

More information

(a) Taking the derivative of the position vector with respect to time, we have, in SI units (m/s),

(a) Taking the derivative of the position vector with respect to time, we have, in SI units (m/s), Chapter 4 Student Solutions Manual. We apply Eq. 4- and Eq. 4-6. (a) Taking the deriatie of the position ector with respect to time, we hae, in SI units (m/s), d ˆ = (i + 4t ˆj + tk) ˆ = 8tˆj + k ˆ. dt

More information

Note: the net distance along the path is a scalar quantity its direction is not important so the average speed is also a scalar.

Note: the net distance along the path is a scalar quantity its direction is not important so the average speed is also a scalar. PHY 309 K. Solutions for the first mid-term test /13/014). Problem #1: By definition, aerage speed net distance along the path of motion time. 1) ote: the net distance along the path is a scalar quantity

More information

Chapter (3) Motion. in One. Dimension

Chapter (3) Motion. in One. Dimension Chapter (3) Motion in One Dimension Pro. Mohammad Abu Abdeen Dr. Galal Ramzy Chapter (3) Motion in one Dimension We begin our study o mechanics by studying the motion o an object (which is assumed to be

More information

PHYS 110B - HW #2 Spring 2004, Solutions by David Pace Any referenced equations are from Griffiths Problem statements are paraphrased

PHYS 110B - HW #2 Spring 2004, Solutions by David Pace Any referenced equations are from Griffiths Problem statements are paraphrased PHYS 11B - HW # Spring 4, Solution by David Pace Any referenced equation are from Griffith Problem tatement are paraphraed [1.] Problem 7. from Griffith A capacitor capacitance, C i charged to potential

More information

Purpose of the experiment

Purpose of the experiment Impulse and Momentum PES 116 Adanced Physics Lab I Purpose of the experiment Measure a cart s momentum change and compare to the impulse it receies. Compare aerage and peak forces in impulses. To put the

More information