Workshop Paris, November 2006

Size: px
Start display at page:

Download "Workshop Paris, November 2006"

Transcription

1 SAFe and Efficient hydrocarbon oxidation processes by KINetics and Explosion expertise and development of computational process engineering tools Project No. EVG1-CT Workshop Paris, November 2006 Work Package 3: Modelling/ Prediction of Explosion Indices Sub Package 3.7: Modelling of explosion propagation Explosion propagation, Pmax, Model demonstration W. Glinka, G. Rarata 1

2 Introduction Goal: Evaluation of Explosion Hazard in Industrial Conditions by Simulation of an explosion in vessels of different shapes with obstacles and venting 2

3 Basic parameters of explosion The minimizing of the losses and minimizing of costs of the protection requires some knowledge about the explosion course. At the first step of estimating the potential danger we need to know only few basic parameters: flammability limits FL, maximum pressure of explosion P max maximum ratio of pressure rise (dp/dt) max. P max is the key factor which defines the possible losses and required structure strength. (dp/dt) max is the factor which describes the dynamics of the explosion. max, 3

4 Physics of explosion In adiabatic vessel theoretically the maximum pressure should depend only on properties of mixture. In real objects the P max depends on many complex factors. The most important are: kind and composition of mixture (heat of reaction, specific heat, l.b.v.), initial pressure, initial temperature, place of ignition, internal flow, gas velocity, initial turbulence, heat transfer, shape and size of the vessel, external conditions. CP Φ QR P T Pa Ta 4

5 Sources of explosion data Experimental Data reliable data but for limited number of flammable mixtures, initial conditions, shapes of vessels. The problem is how to use these data to real industrial conditions (big scale, wider range of reactants, elevated initial conditions). Numerical Modelling possibility of modelling wide range of situations but less accurately. Limited efficiency of computers and acceptable time of calculation force serious simplification in mathematical models. 5

6 Possible tools for P max and (dp/dt) dt) max estimation CFD-DNS DNS with full chemical kinetics - theoretically accurate but practically not available yet and ineffective simplified CFD (e.g. RANS, LES) ) and simplified chemical kinetics (e.g. one step reaction, flamelets,, CMC) - flexible and accurate but only for advanced users, time consuming phenomenological models based on experiments `` - limited range of applications but very effective and accurate for some cases simple zero-dimensional models based on thermodynamics - very simple, good for parametric analysis, for all users. `` 6

7 Program Explosion Pressure 7

8 Equilibrium explosion Pressure the simplest calculation Program Explosion Pressure calculates the maximum possible explosion pressure. It allows estimation of explosion pressure in seconds. It is a very convenient tool for simple parametric study. Assumptions: The explosion occurs in closed vessel. Combustion products are in thermo-chemical equilibrium. The products consist of limited list of most important species. There is no heat and mass exchange. Products of the explosion are semi-ideal ideal gas. These simplifications allow creating simple and universal mathematical atical model but they also lead to some inaccuracy of calculation. 8

9 Program Explosion Pressure 9

10 Comparison with experiment P [bar] Calculation Experiment: 1.2m3 vessel 1 4% 6% 8% 10% 12% 14% 16% mole fraction of CH4 10

11 Program FireBall 11

12 Main objectives of the FireBall program 1. Pressure history P = f(t) 2. Maximum pressure P max 3. Maximum pressure rise rate (dp/dt) max 12

13 Model ofo explosion propagation and (dp/dt) max - main assumptions 1. The model describes explosion of combustible mixture in closed and vented vessels. 2. The model takes into account influence of heat transfer, obstacles and varring position of ignition. 3. The model is zero-dimensional. Fresh and burnt mixtures are treated as homogeneous mixtures. 4. Flame is spherical. 5. The products of combustion are in thermochemical equilibrium. 6. Dynamics of the explosion is simulated by use of turbulent burning velocity. 7. The model is able to simulate explosion in vessels of certain shapes (spherical, cylindrical, cubic). 8. The combustion mode is deflagration. Flame front Obstacles Vent Ignition 13

14 Structure of the model initial conditions: fuel,ox., φ, p o, To,Eign initial (laminar) flame speed f( fuel,ox., φ, p o, T o,eign) laminar flame speed f( fuel,ox., φ, p, T,r fl) turbulent flame speed f(u, l u ) products composition model: stoichiometric or equlibrium heat transfer flame propagation, SCOPE model M b=f(u t, s, A), r t=f(u t) gas state, p, T, u T, b E, x... turbulence model u =f(v,l,r fl,u t,re) vents models velocity of gas, v=f(e,vents, obstacles?) obstacles model 14

15 Explosion modelling in Safekinex project Work Package 2: Experiments on explosion safety Sub Package 2.6: Experimental determination of the Pmax and (dp/dt)max as function of P,T, fuel type and Φ DATA Work Package 3: Modelling/Prediction of Explosion Indices Sub Package 3.1: Modelling of laminar burning velocity Work Package 3: Modelling/Prediction of Explosion Indices Sub Package 3.7: (experimental extension): Experiments on flame-obstacle interactions, venting, influence of ignition position SUBMODEL Sub Package 3.2: Maximum explosion pressure (equilibrium model) Literature review: Experimental determination of the Pmax and (dp/dt)max as function of P,T, fuel type and Φ,experiments on flame-obstacle interactions, venting, influence of ignition position Work Package 3: Modelling/Prediction of Explosion Indices Sub Package 3.7: Modelling of laminar burning velocity 15

16 Submodels Laminar burning velocity is calculated by use of following equation. Coefficients have been obtained by fitting numerical or experimental data (WP 3.1) Turbulent burning velocity is calculated by use of flame surface model where L f is an empirical coefficient which describes relation between radius of flame r fl and integral scale of turbulence L. The program can use two models of heat transfer: Forssling model and turbulent heat transfer model (recommended). The latter one uses one empirical coefficient HTC which connects the Nuselt number of the heat transfer and intensity of the turbulence in the products. The program includes a simple free convection model. This model uses one experimental coefficient C x which describes aerodynamic drag between fresh and burnt mixture. The obstacle model is based on assumption that every obstacle is a source of turbulent kinetic energy (k) generated in flow inducted by the propagating flame, where a obst is an experimental coefficient which indicates the strength of interaction. The model of vents describes only mass outflow from the vessel. The mass flow rate trough the vessel depends on flow coefficient k vent of the specific venting device. 2 τ η ξ( φ σ) T p γα φ 0 0 ( ) SL = (1 + ) W e 1 ff T p L = Lr f fl Nu = HTC u + u + F = g( ρ ρ ) V b a k = C BR u dm dt v u ' ( ' pr buoyancy) 1only conduction b b 2 2 D g = A k ρu v vent v F d x α = C π r ρ β ( u u ) 2 bb ub fl b

17 Assumed geometry of the flame and shape of vessels It is assumed that flame is spherical at any time. When flame touches the walls the flame surface lays on the part of the sphere which is inside the vessel. ut r ut Spherical vessel Cubic vessel Dimensions and coordinate systems for different vessels: a) sphere, b) horizontal cylinder, c) horizontal cylinder with domes, d) vertical cylinder, e) vertical cylinder with domes, f) cube. ut ut ut Elongated cylindrical vessel 17

18 Output information The program calculates following variables: maximum pressure P max, maximum pressure rise rate (dp/dt) max, history of evolution of main parameters: pressure, temperature of the fresh mixture, temperature of the burnt mixture, radius of flame, mass fraction of the burnt mixture, composition of the burnt mixture. The data are saved in a text file in format which can be easily handled by most of postprocessing software (Excel, Tecplot, etc). 18

19 Structure of the software The software contains two parts: Fireball.exe which actually is the numerical code, FireBallFace.exe which is an interface to the main program. The two parts communicate each other by files which store all information about performed tasks. Thanks to that structure, the simulation program Firebal.exe can be used as a separate tool, or even invoked by others applications. However the users are advised to use the graphical interface which is the simplest way of introducing necessary data. The software contains, apart from the executable files, set of data files: thermodynamic data (THERMO.DAT), transport properties (Transport.dat) properties of selected combustible mixtures (Mixtures.mix). The files are provided with the program, however users can use any file of appropriate format. This allows some flexibility and advanced users can create own data which fit better for their specific needs. 19

20 Presentation of the program 20

21 Example 1 This example presents simulation of explosion of methane-air mixture in spherical, closed tank (1.25 m 3 ) without any obstacles p [bar] p [bar] %CH %CH t [s] t [s] p [bar] 5 4 p [bar] experiment model (no convection) model (free convection) 9.5%CH %CH t [s] t [s] 21

22 Example 2 This example shows the case where use of the program is not recommended- for elongated vessels. The vessel, a pipe with mylar diaphragm, was filled with stoichiometric methane-air mixture. 22

23 Summary 1. Program Explosion Pressure is a convenient tool for quick and ease estimation of the maximum possible explosion pressure. 2. Program FireBall simulate course of explosion and provides: 1. pressure profile P = f(t) (and other variables T,r fl and composition as well), 2. maximum explosion pressure P max, 3. maximum pressure rise rate (dp/dt) max. 3. The model is based on five empirical coefficients : L f : depends on mixture kind HTC : depends on size and shape of the vessel C x : depends on size and shape of the vessel a obst : depends on obstacle shape k vent : depends on valve design 4. The coefficients has been estimated by fitting simulation data to experimental data for several typical situations (mixture, shape and size of vessel). 5. The program will be distributed with set input files with: thermodynamic data, transport data, mixture properties data (laminar burning velocity and L f ), guidelines/tables for setting up appropriate empirical coefficients. 23

24 Thank you 24

25 Appendix 25

26 Explosion model main equations Mass balance (including venting) Energy balance du dt u dm = dt fl u u dm dt uv h u + dmu dt dl dt dmufl dmuv dmuv = = Aflu fl ρu dt dt dt dqu du dm b fl dmbv dl dqb = uu hb dt dt dt dt dt dt Pressure equation V mb = ρb + dm ρ u fl dm ρ b bv Π p p + dp 1 γ b mu + ρu dm ρ u fl dm ρ u uv p p + dp 1 γ u Procedure of calculation of explosion propagation 26

27 Laminar burning velocity Laminar burning velocity is a function of equivalence ratio, diluent ratio, pressure and temperature. It is a specific property of the combustible mixture. 2 τ η ξ( φ σ) T p γα φ SL = (1 + ) W e 1 ff T p α 0 0 β ( ) Each mixture is defined by set of coefficients which can be obtained by numerical simulation (WP 3.1) or by fitting experimental data. Example: The coefficients for methane-air mixture Parameter Z Gülder [28] 1 Present work / γ / 1.8 U lo [m/s] Experiment Aproxim ation φ τ W (cm/s) η ξ σ /

28 Turbulent burning velocity In this model turbulent burning velocity depends on disturbed area of the flame A t, mean flame area A m and laminar burning velocity u l : u u t l = At A m One can derive following differential equations which describe development of the flame surface and turbulent burning velocity: dut 4h h dh h du = u l dt L L dt L dt dh h = 1 u ' dt L The turbulence may be induced by the flame propagation and intensified by other sources e.g. obstacles. Intensity of turbulence u is calculated by use of Karlovitz approach. L = L r f fl l L f is empirical coefficient which describes relation between radius of flame r fl and integral scale of turbulence L 1 u l u' fl = ut 1 3 ut 2 u ' = ( ) 2 n u' fl + i 1 vh p Lu t = k i 28

29 Heat Transfer Three sources of heat loses were considered: Radiation of the hot products of combustion (a few percent). Convective heat transfer between hot products and wall (when they are in contact) what is driven by two phenomena (main source of the heat loses) a) turbulence and movement of gaseous product caused by expansion of hot gases (internal movement), b) natural convection driven by buoyancy of hot products immersed in cold fresh mixture. Convective heat transfer between compressed fresh mixture (up to 500 K) and walls (meaningless). Two models are applied in the program: Frossling model, Turbulent heat transfer model (recomended). This model uses one empirical coefficient HTC which connects the Nuselt number of the heat transfer and intensity of turbulence in the products. The program includes a simple free convection model. This model uses one experimental coefficient C x between fresh and burnt mixture. which describes aerodynamic drag 29

30 Obstacles The model is able to simulate obstacles of simple geometry. The obstacles are described by: r obst size of obstacle d elem size of elements BR blockage ratio C D drag coefficient experimental coefficient a obst The influence of obstacle can be properly simulated when the obstacle is symmetrical in reference to the flame. The idea of the submodel is that every obstacle is a source of turbulent kinetic energy (k) generated by flow inducted by the propagating flame. where: u g A obs A 0 velocity of gas, a k = C BR u 2 2 D g total area occupied by the obstacle at given radius, BR = total cross-section of the channel or area of the flame. A obst A 0 30

31 Vents The model of vents describes only mass outflow from the vessel what results in smaller pressure increase. No influence on turbulence, flame area and turbulent burning velocity is taken into account. Two kinds of the venting device are distinguished: 1. diaphragm which is burst off when differential pressure crosses the opening pressure. 2. valve which is opened when differential pressure rises above opening pressure but the valve is closed when the differential pressure comes back to closing value which is lower than opening pressure. The vent is described by following information: Vent name Kind of vent Vent position Area of vent Flow coefficient Opening pressure Closing pressure Vent open time name of particular vent, kind of the vessel, place where the vent is installed (coordinates), area of the free flow trough the vent, (k vent ) flow coefficient of the device. opening differential pressure in bars. closing differential pressure in bars (only for type: valve). this parameter describes dynamic properties of the vents. It is time measured from the moment when the opening differential pressure is achieved to the moment of full opening of the vessel. 31

DETAILED PROJECT PLAN

DETAILED PROJECT PLAN Proposal No. EVG1-2001-00098 SAFEKINEX 1 PROGRAMME ENERGY, ENVIRONMENT AND SUSTAINABLE DEVELOPMENT Call identifier: EESD-ESD-3 (JO 2000/C 324/09) Project No. EVG1-2001-00098 - SAFEKINEX DETAILED PROJECT

More information

Laminar Premixed Flames: Flame Structure

Laminar Premixed Flames: Flame Structure Laminar Premixed Flames: Flame Structure Combustion Summer School 2018 Prof. Dr.-Ing. Heinz Pitsch Course Overview Part I: Fundamentals and Laminar Flames Introduction Fundamentals and mass balances of

More information

Deflagration Parameters of Stoichiometric Propane-air Mixture During the Initial Stage of Gaseous Explosions in Closed Vessels

Deflagration Parameters of Stoichiometric Propane-air Mixture During the Initial Stage of Gaseous Explosions in Closed Vessels Deflagration Parameters of Stoichiometric Propane-air Mixture During the Initial Stage of Gaseous Explosions in Closed Vessels VENERA BRINZEA 1, MARIA MITU 1, CODINA MOVILEANU 1, DOMNINA RAZUS 1 *, DUMITRU

More information

Simulation of dust explosions in spray dryers

Simulation of dust explosions in spray dryers Simulation of dust explosions in spray dryers Dr.-Ing. K. van Wingerden, Dipl. Ing. T. Skjold, Dipl. Ing. O. R. Hansen, GexCon AS, Bergen (N) and Dipl. Ing. R. Siwek, FireEx Consultant GmbH, Giebenach

More information

Ignition. Jerry Seitzman. Temperature (K) School of Aerospace Engineering Review. stable/steady self-sustained propagation of premixed flames

Ignition. Jerry Seitzman. Temperature (K) School of Aerospace Engineering Review. stable/steady self-sustained propagation of premixed flames Mole Fraction Temperature (K) Ignition Jerry Seitzman 0. 500 0.5 000 0. 0.05 0 CH4 HO HCO x 000 Temperature Methane Flame 0 0. 0. 0. Distance (cm) 500 000 500 0 Ignition - Review So far, examined stable/steady

More information

TOPICAL PROBLEMS OF FLUID MECHANICS 97

TOPICAL PROBLEMS OF FLUID MECHANICS 97 TOPICAL PROBLEMS OF FLUID MECHANICS 97 DOI: http://dx.doi.org/10.14311/tpfm.2016.014 DESIGN OF COMBUSTION CHAMBER FOR FLAME FRONT VISUALISATION AND FIRST NUMERICAL SIMULATION J. Kouba, J. Novotný, J. Nožička

More information

AME 513. " Lecture 8 Premixed flames I: Propagation rates

AME 513.  Lecture 8 Premixed flames I: Propagation rates AME 53 Principles of Combustion " Lecture 8 Premixed flames I: Propagation rates Outline" Rankine-Hugoniot relations Hugoniot curves Rayleigh lines Families of solutions Detonations Chapman-Jouget Others

More information

CFD Analysis of Vented Lean Hydrogen Deflagrations in an ISO Container

CFD Analysis of Vented Lean Hydrogen Deflagrations in an ISO Container 35 th UKELG Meeting, Spadeadam, 10-12 Oct. 2017 CFD Analysis of Vented Lean Hydrogen Deflagrations in an ISO Container Vendra C. Madhav Rao & Jennifer X. Wen Warwick FIRE, School of Engineering University

More information

Well Stirred Reactor Stabilization of flames

Well Stirred Reactor Stabilization of flames Well Stirred Reactor Stabilization of flames Well Stirred Reactor (see books on Combustion ) Stabilization of flames in high speed flows (see books on Combustion ) Stabilization of flames Although the

More information

UNIVERSITY OF BUCHAREST FACULTY OF CHEMISTRY DOCTORAL SCHOOL IN CHEMISTRY. PhD THESIS SUMMARY

UNIVERSITY OF BUCHAREST FACULTY OF CHEMISTRY DOCTORAL SCHOOL IN CHEMISTRY. PhD THESIS SUMMARY UNIVERSITY OF BUCHAREST FACULTY OF CHEMISTRY DOCTORAL SCHOOL IN CHEMISTRY PhD THESIS SUMMARY CHARACTERISTIC PARAMETERS OF FUEL AIR EXPLOSIONS INITIATIONS PhD Student: Maria Prodan PhD Supervisor: Prof.

More information

Experimental study on the explosion characteristics of methane-hydrogen/air mixtures

Experimental study on the explosion characteristics of methane-hydrogen/air mixtures 26 th ICDERS July 3 th August 4 th, 217 Boston, MA, USA Experimental study on the explosion characteristics of methane-hydrogen/air mixtures Xiaobo Shen, Guangli Xiu * East China University of Science

More information

Development of One-Step Chemistry Models for Flame and Ignition Simulation

Development of One-Step Chemistry Models for Flame and Ignition Simulation Development of One-Step Chemistry Models for Flame and Ignition Simulation S.P.M. Bane, J.L. Ziegler, and J.E. Shepherd Graduate Aerospace Laboratories California Institute of Technology Pasadena, CA 91125

More information

Combustion Theory and Applications in CFD

Combustion Theory and Applications in CFD Combustion Theory and Applications in CFD Princeton Combustion Summer School 2018 Prof. Dr.-Ing. Heinz Pitsch Copyright 201 8 by Heinz Pitsch. This material is not to be sold, reproduced or distributed

More information

AAE COMBUSTION AND THERMOCHEMISTRY

AAE COMBUSTION AND THERMOCHEMISTRY 5. COMBUSTIO AD THERMOCHEMISTRY Ch5 1 Overview Definition & mathematical determination of chemical equilibrium, Definition/determination of adiabatic flame temperature, Prediction of composition and temperature

More information

A first investigation on using a species reaction mechanism for flame propagation and soot emissions in CFD of SI engines

A first investigation on using a species reaction mechanism for flame propagation and soot emissions in CFD of SI engines A first investigation on using a 1000+ species reaction mechanism for flame propagation and soot emissions in CFD of SI engines F.A. Tap *, D. Goryntsev, C. Meijer, A. Starikov Dacolt International BV

More information

VENTED HYDROGEN-AIR DEFLAGRATION IN A SMALL ENCLOSED VOLUME

VENTED HYDROGEN-AIR DEFLAGRATION IN A SMALL ENCLOSED VOLUME VENTED HYDROGEN-AIR DEFLAGRATION IN A SMALL ENCLOSED VOLUME Rocourt, X. 1, Awamat, S. 1, Sochet, I. 1, Jallais, S. 2 1 Laboratoire PRISME, ENSI de Bourges, Univ. Orleans, UPRES EA 4229, 88 bd Lahitolle,

More information

WP5 Combustion. Paris, October 16-18, Pre-normative REsearch for Safe use of Liquid HYdrogen

WP5 Combustion. Paris, October 16-18, Pre-normative REsearch for Safe use of Liquid HYdrogen WP5 Combustion Paris, October 16-18, 2018 Pre-normative REsearch for Safe use of Liquid HYdrogen 1 Work package 5: Combustion Work package number 5 Start Date or Starting Event Month 10 Work package title

More information

Chemical reactors. H has thermal contribution, pressure contribution (often negligible) and reaction contribution ( source - like)

Chemical reactors. H has thermal contribution, pressure contribution (often negligible) and reaction contribution ( source - like) Chemical reactors - chemical transformation of reactants into products Classification: a) according to the type of equipment o batch stirred tanks small-scale production, mostly liquids o continuous stirred

More information

Cellular structure of detonation wave in hydrogen-methane-air mixtures

Cellular structure of detonation wave in hydrogen-methane-air mixtures Open Access Journal Journal of Power Technologies 91 (3) (2011) 130 135 journal homepage:papers.itc.pw.edu.pl Cellular structure of detonation wave in hydrogen-methane-air mixtures Rafał Porowski, Andrzej

More information

CFD study of gas mixing efficiency and comparisons with experimental data

CFD study of gas mixing efficiency and comparisons with experimental data 17 th European Symposium on Computer Aided Process Engineering ESCAPE17 V. Plesu and P.S. Agachi (Editors) 2007 Elsevier B.V. All rights reserved. 1 CFD study of gas mixing efficiency and comparisons with

More information

Influence of a Dispersed Ignition in the Explosion of Two-Phase Mixtures

Influence of a Dispersed Ignition in the Explosion of Two-Phase Mixtures 25 th ICDERS August 2 7, 2015 Leeds, UK in the Explosion of Two-Phase Mixtures J.M. Pascaud Université d Orléans Laboratoire Prisme 63, avenue de Lattre de Tassigny 18020 BOURGES Cedex, France 1 Introduction

More information

SAFEKINEX: Detailed report, related to overall project duration

SAFEKINEX: Detailed report, related to overall project duration Project SAFEKINEX, contract No. EVG1-CT-22-72 1 SAFEKINEX: Detailed report, related to overall project duration Background (description of the problems to be solved) Partial oxidation processes, carried

More information

Lecture 8 Laminar Diffusion Flames: Diffusion Flamelet Theory

Lecture 8 Laminar Diffusion Flames: Diffusion Flamelet Theory Lecture 8 Laminar Diffusion Flames: Diffusion Flamelet Theory 8.-1 Systems, where fuel and oxidizer enter separately into the combustion chamber. Mixing takes place by convection and diffusion. Only where

More information

LOW TEMPERATURE MODEL FOR PREMIXED METHANE FLAME COMBUSTION

LOW TEMPERATURE MODEL FOR PREMIXED METHANE FLAME COMBUSTION ISTP-16, 2005, PRAGUE 16TH INTERNATIONAL SYMPOSIUM ON TRANSPORT PHENOMENA LOW TEMPERATURE MODEL FOR PREMIXED METHANE FLAME MBUSTION M. Forman, J.B.W.Kok,M. Jicha Department of Thermodynamics and Environmental

More information

Effect of orientation on the ignition of stoichiometric ethylene mixtures by stationary hot surfaces

Effect of orientation on the ignition of stoichiometric ethylene mixtures by stationary hot surfaces Josue Melguizo-Gavilanes and Joseph E.Shepherd. Effect of orientation on the ignition of stoichiometric ethylene mixtures by stationary hot surfaces. Paper No. 981, 26th International Colloquium on the

More information

APPENDIX A: LAMINAR AND TURBULENT FLAME PROPAGATION IN HYDROGEN AIR STEAM MIXTURES*

APPENDIX A: LAMINAR AND TURBULENT FLAME PROPAGATION IN HYDROGEN AIR STEAM MIXTURES* APPENDIX A: LAMINAR AND TURBULENT FLAME PROPAGATION IN HYDROGEN AIR STEAM MIXTURES* A.1 Laminar Burning Velocities of Hydrogen-Air and Hydrogen-Air-Steam Mixtures A.1.1 Background Methods of measuring

More information

Lecture 7 Flame Extinction and Flamability Limits

Lecture 7 Flame Extinction and Flamability Limits Lecture 7 Flame Extinction and Flamability Limits 7.-1 Lean and rich flammability limits are a function of temperature and pressure of the original mixture. Flammability limits of methane and hydrogen

More information

Asymptotic Structure of Rich Methane-Air Flames

Asymptotic Structure of Rich Methane-Air Flames Asymptotic Structure of Rich Methane-Air Flames K. SESHADRI* Center for Energy and Combustion Research, Department of Mechanical and Aerospace Engineering, University of California at San Diego, La Jolla,

More information

Modelling of transient stretched laminar flame speed of hydrogen-air mixtures using combustion kinetics

Modelling of transient stretched laminar flame speed of hydrogen-air mixtures using combustion kinetics Loughborough University Institutional Repository Modelling of transient stretched laminar flame speed of hydrogen-air mixtures using combustion kinetics This item was submitted to Loughborough University's

More information

Use of the graphical analytic methods of studying the combustion processes in the internal combustion

Use of the graphical analytic methods of studying the combustion processes in the internal combustion Use of the graphical analytic methods of studying the combustion processes in the internal combustion engine combustion chamber on the basis of similarity criterion S. V. Krasheninnikov Samara State Aerospace

More information

DARS overview, IISc Bangalore 18/03/2014

DARS overview, IISc Bangalore 18/03/2014 www.cd-adapco.com CH2O Temperatur e Air C2H4 Air DARS overview, IISc Bangalore 18/03/2014 Outline Introduction Modeling reactions in CFD CFD to DARS Introduction to DARS DARS capabilities and applications

More information

Flame / wall interaction and maximum wall heat fluxes in diffusion burners

Flame / wall interaction and maximum wall heat fluxes in diffusion burners Flame / wall interaction and maximum wall heat fluxes in diffusion burners de Lataillade A. 1, Dabireau F. 1, Cuenot B. 1 and Poinsot T. 1 2 June 5, 2002 1 CERFACS 42 Avenue Coriolis 31057 TOULOUSE CEDEX

More information

7. Turbulent Premixed Flames

7. Turbulent Premixed Flames 7. Turbulent Premixed Flames Background: - Structure of turbulent premixed flames; 7. Turbulent Premixed Flames 1 AER 1304 ÖLG - Instantaneous flame fronts (left) and turbulent flame brush envelope (right).

More information

TankExampleNov2016. Table of contents. Layout

TankExampleNov2016. Table of contents. Layout Table of contents Task... 2 Calculation of heat loss of storage tanks... 3 Properties ambient air Properties of air... 7 Heat transfer outside, roof Heat transfer in flow past a plane wall... 8 Properties

More information

Section 14.1: Description of the Equilibrium Mixture Fraction/PDF Model. Section 14.2: Modeling Approaches for Non-Premixed Equilibrium Chemistry

Section 14.1: Description of the Equilibrium Mixture Fraction/PDF Model. Section 14.2: Modeling Approaches for Non-Premixed Equilibrium Chemistry Chapter 14. Combustion Modeling Non-Premixed In non-premixed combustion, fuel and oxidizer enter the reaction zone in distinct streams. This is in contrast to premixed systems, in which reactants are mixed

More information

Peak pressure in flats due to gas explosions

Peak pressure in flats due to gas explosions COST C26 Working Group 3: Impact and Explosion Resistance COST Action C26 Urban habitat constructions under Catastrophic events Prague (CZECH Republic) 30-31 March 2007 Chairmen: M. Byfield, G. De Matteis

More information

Best Practice Guidelines for Combustion Modeling. Raphael David A. Bacchi, ESSS

Best Practice Guidelines for Combustion Modeling. Raphael David A. Bacchi, ESSS Best Practice Guidelines for Combustion Modeling Raphael David A. Bacchi, ESSS PRESENTATION TOPICS Introduction; Combustion Phenomenology; Combustion Modeling; Reaction Mechanism; Radiation; Case Studies;

More information

Presentation Start. Zero Carbon Energy Solutions 4/06/06 10/3/2013:; 1

Presentation Start. Zero Carbon Energy Solutions 4/06/06 10/3/2013:; 1 Presentation Start 10/3/2013:; 1 4/06/06 What is an Explosion? Keller, J.O. President and CEO,, ISO TC 197, Technical Program Director for the Built Environment and Safety; Gresho, M. President, FP2FIRE,

More information

The Effect of Initial Pressure on Explosions of Hydrogen- Enriched Methane/Air Mixtures

The Effect of Initial Pressure on Explosions of Hydrogen- Enriched Methane/Air Mixtures The Effect of Initial Pressure on Explosions of Hydrogen- Enriched Methane/Air Mixtures Cammarota F. 1, Di Benedetto A. 1, Di Sarli V. 1, Salzano E. 1, Russo G. 2 1 Istituto di Ricerche sulla Combustione,

More information

TRANSITION TO DETONATION IN NON-UNIFORM H2-AIR: CHEMICAL KINETICS OF SHOCK-INDUCED STRONG IGNITION

TRANSITION TO DETONATION IN NON-UNIFORM H2-AIR: CHEMICAL KINETICS OF SHOCK-INDUCED STRONG IGNITION TRANSITION TO DETONATION IN NON-UNIFORM H2-AIR: CHEMICAL KINETICS OF SHOCK-INDUCED STRONG IGNITION L.R. BOECK*, J. HASSLBERGER AND T. SATTELMAYER INSTITUTE OF THERMODYNAMICS, TU MUNICH *BOECK@TD.MW.TUM.DE

More information

TURBINE BURNERS: Engine Performance Improvements; Mixing, Ignition, and Flame-Holding in High Acceleration Flows

TURBINE BURNERS: Engine Performance Improvements; Mixing, Ignition, and Flame-Holding in High Acceleration Flows TURBINE BURNERS: Engine Performance Improvements; Mixing, Ignition, and Flame-Holding in High Acceleration Flows Presented by William A. Sirignano Mechanical and Aerospace Engineering University of California

More information

Lecture 9 Laminar Diffusion Flame Configurations

Lecture 9 Laminar Diffusion Flame Configurations Lecture 9 Laminar Diffusion Flame Configurations 9.-1 Different Flame Geometries and Single Droplet Burning Solutions for the velocities and the mixture fraction fields for some typical laminar flame configurations.

More information

Stoichiometry, Chemical Equilibrium

Stoichiometry, Chemical Equilibrium Lecture 3 Stoichiometry, Chemical Equilibrium http://en.wiipedia.org/wii/category:physical_chemistry http://en.wiipedia.org/wii/category:thermodynamics Stoichiometry = Constraints for Kinetics Q?: for

More information

Detonations and explosions

Detonations and explosions 7. Detonations and explosions 7.. Introduction From an operative point of view, we can define an explosion as a release of energy into the atmosphere in a small enough volume and in a short enough time

More information

SAFEKINEX BL

SAFEKINEX BL SAFEKINEX project Delft University of Technology Julianalaan 136 2628 BL Delft The Netherlands Tel: +31 15 278 43 92 Fax: +31 15 278 44 52 E-mail: Pekalski@tnw.tudelft.nl http://www.dct.tudelft.nl/part/explosion/

More information

Numerical Simulation of Hydrogen Gas Turbines using Flamelet Generated Manifolds technique on Open FOAM

Numerical Simulation of Hydrogen Gas Turbines using Flamelet Generated Manifolds technique on Open FOAM Numerical Simulation of Hydrogen Gas Turbines using Flamelet Generated Manifolds technique on Open FOAM Alessio Fancello (M.Sc.) Department of Mechanical Engineering Combustion Technology Technische Universiteit

More information

Cornstarch explosion experiments and modeling in vessels ranged by height/diameter ratios

Cornstarch explosion experiments and modeling in vessels ranged by height/diameter ratios Journal of Loss Prevention in the Process Industries 14 (2001) 495 502 www.elsevier.com/locate/jlp Cornstarch explosion experiments and modeling in vessels ranged by height/diameter ratios S. Radandt a,*,

More information

EXPERIMENTS WITH RELEASE AND IGNITION OF HYDROGEN GAS IN A 3 M LONG CHANNEL

EXPERIMENTS WITH RELEASE AND IGNITION OF HYDROGEN GAS IN A 3 M LONG CHANNEL EXPERIMENTS WITH RELEASE AND IGNITION OF HYDROGEN GAS IN A 3 M LONG CHANNEL Sommersel, O. K. 1, Bjerketvedt, D. 1, Vaagsaether, K. 1, and Fannelop, T.K. 1, 2 1 Department of Technology, Telemark University

More information

PROPULSION LAB MANUAL

PROPULSION LAB MANUAL PROPULSION LAB MANUAL Measurement of Calorific Value of a Solid Fuel Sample using a Bomb Calorimeter DEPARTMENT OF AEROSPACE ENGINEERING Indian Institute of Technology Kharagpur CONTENTS 1. Introduction

More information

Thermoacoustic Instabilities Research

Thermoacoustic Instabilities Research Chapter 3 Thermoacoustic Instabilities Research In this chapter, relevant literature survey of thermoacoustic instabilities research is included. An introduction to the phenomena of thermoacoustic instability

More information

Combustion of Kerosene-Air Mixtures in a Closed Vessel

Combustion of Kerosene-Air Mixtures in a Closed Vessel Excerpt from the Proceedings of the COMSOL Conference 010 Paris Combustion of Kerosene-Air Mixtures in a Closed Vessel C. Strozzi *, J-M Pascaud, P. Gillard Institut PRISME, Université d Orléans. *Corresponding

More information

The modelling of premixed laminar combustion in a closed vessel

The modelling of premixed laminar combustion in a closed vessel INSTITUTE OF PHYSICS PUBLISHING Combust. Theory Modelling 8 (2004) 721 743 COMBUSTION THEORY AND MODELLING PII: S1364-7830(04)69216-3 The modelling of premixed laminar combustion in a closed vessel Khizer

More information

Exercises in Combustion Technology

Exercises in Combustion Technology Exercises in Combustion Technology Exercise 4: Turbulent Premixed Flames Turbulent Flow: Task 1: Estimation of Turbulence Quantities Borghi-Peters diagram for premixed combustion Task 2: Derivation of

More information

Combustion. Indian Institute of Science Bangalore

Combustion. Indian Institute of Science Bangalore Combustion Indian Institute of Science Bangalore Combustion Applies to a large variety of natural and artificial processes Source of energy for most of the applications today Involves exothermic chemical

More information

Combustion: Flame Theory and Heat Produced. Arthur Anconetani Oscar Castillo Everett Henderson

Combustion: Flame Theory and Heat Produced. Arthur Anconetani Oscar Castillo Everett Henderson Combustion: Flame Theory and Heat Produced Arthur Anconetani Oscar Castillo Everett Henderson What is a Flame?! Reaction Zone! Thermo/Chemical characteristics Types of Flame! Premixed! Diffusion! Both

More information

Lectures on Applied Reactor Technology and Nuclear Power Safety. Lecture No 6

Lectures on Applied Reactor Technology and Nuclear Power Safety. Lecture No 6 Lectures on Nuclear Power Safety Lecture No 6 Title: Introduction to Thermal-Hydraulic Analysis of Nuclear Reactor Cores Department of Energy Technology KTH Spring 2005 Slide No 1 Outline of the Lecture

More information

Faculty of Engineering. Contents. Introduction

Faculty of Engineering. Contents. Introduction Faculty of Engineering Contents Lean Premixed Turbulent Flames vs. Hydrogen Explosion: A Short Survey on Experimental, Theoretical and Analytical Studies Dr.-Ing. Siva P R Muppala Lecturer Prof. Jennifer

More information

A Project for Thermodynamics II. Entitled

A Project for Thermodynamics II. Entitled A Project for Thermodynamics II Entitled Determination of the Effect of Equivalence Ratio and Pressure on the Adiabatic Flame Temperature and Reaction "Completeness" during 75% Propane and 25% Methane

More information

Lecture 6 Asymptotic Structure for Four-Step Premixed Stoichiometric Methane Flames

Lecture 6 Asymptotic Structure for Four-Step Premixed Stoichiometric Methane Flames Lecture 6 Asymptotic Structure for Four-Step Premixed Stoichiometric Methane Flames 6.-1 Previous lecture: Asymptotic description of premixed flames based on an assumed one-step reaction. basic understanding

More information

ANSYS Advanced Solutions for Gas Turbine Combustion. Gilles Eggenspieler 2011 ANSYS, Inc.

ANSYS Advanced Solutions for Gas Turbine Combustion. Gilles Eggenspieler 2011 ANSYS, Inc. ANSYS Advanced Solutions for Gas Turbine Combustion Gilles Eggenspieler ANSYS, Inc. 1 Agenda Steady State: New and Existing Capabilities Reduced Order Combustion Models Finite-Rate Chemistry Models Chemistry

More information

Combustion basics... We are discussing gaseous combustion in a mixture of perfect gases containing N species indexed with k=1 to N:

Combustion basics... We are discussing gaseous combustion in a mixture of perfect gases containing N species indexed with k=1 to N: Combustion basics... T. Poinsot poinsot@imft.fr Only the things you should know to understand the following courses Mainly elements of laminar flame theory for premixed and diffusion flames 1 Copyright

More information

CFD SIMULATION OF HYDROGEN RELEASE, DISPERSION AND AUTO-IGNITION IN ENCLOSURES

CFD SIMULATION OF HYDROGEN RELEASE, DISPERSION AND AUTO-IGNITION IN ENCLOSURES MCS 7 Chia Laguna, Cagliari, Sardinia, Italy, September 11-15, 2011 CFD SIMULATION OF HYDROGEN RELEASE, DISPERSION AND AUTO-IGNITION IN ENCLOSURES T. Bar-Kohany * and K. Dahan * kahany@bgu.ac.il *Mechanical

More information

Soot formation in turbulent non premixed flames

Soot formation in turbulent non premixed flames Soot formation in turbulent non premixed flames A. Cuoci 1, A. Frassoldati 1, D. Patriarca 1, T. Faravelli 1, E. Ranzi 1, H. Bockhorn 2 1 Dipartimento di Chimica, Materiali e Ing. Chimica, Politecnico

More information

University of Rome Tor Vergata

University of Rome Tor Vergata University of Rome Tor Vergata Faculty of Engineering Department of Industrial Engineering THERMODYNAMIC AND HEAT TRANSFER HEAT TRANSFER dr. G. Bovesecchi gianluigi.bovesecchi@gmail.com 06-7259-727 (7249)

More information

Predicting NO Formation with Flamelet Generated Manifolds

Predicting NO Formation with Flamelet Generated Manifolds Predicting NO Formation with Flamelet Generated Manifolds J. A. van Oijen and L. P. H. de Goey Dept. Mechanical Engineering, Technische Universiteit Eindhoven P.O. Box, 6 MB Eindhoven, The Netherlands

More information

Premixed, Nonpremixed and Partially Premixed Flames

Premixed, Nonpremixed and Partially Premixed Flames Premixed, Nonpremixed and Partially Premixed Flames Flame (Reaction Zone) Flame (Reaction Zone) Flame (Reaction Zone) Fuel Air Fuel + Air φ 1 Products Fuel + Air φ > 1 F + A Air (+ F?) NONPREMIXED PREMIXED

More information

Principles of Food and Bioprocess Engineering (FS 231) Problems on Heat Transfer

Principles of Food and Bioprocess Engineering (FS 231) Problems on Heat Transfer Principles of Food and Bioprocess Engineering (FS 1) Problems on Heat Transfer 1. What is the thermal conductivity of a material 8 cm thick if the temperature at one end of the product is 0 C and the temperature

More information

Fluid Dynamics and Balance Equations for Reacting Flows

Fluid Dynamics and Balance Equations for Reacting Flows Fluid Dynamics and Balance Equations for Reacting Flows Combustion Summer School 2018 Prof. Dr.-Ing. Heinz Pitsch Balance Equations Basics: equations of continuum mechanics balance equations for mass and

More information

Application of FGM to DNS of premixed turbulent spherical flames

Application of FGM to DNS of premixed turbulent spherical flames Application of FGM to DNS of premixed turbulent spherical flames R.J.M. Bastiaans, G.R.A Groot, J.A. van Oijen and L.P.H. de Goey, Section Combustion Technology, Department of Mechanical Engineering, Eindhoven

More information

INSTRUCTOR: PM DR MAZLAN ABDUL WAHID

INSTRUCTOR: PM DR MAZLAN ABDUL WAHID SMJ 4463: HEAT TRANSFER INSTRUCTOR: PM ABDUL WAHID http://www.fkm.utm.my/~mazlan TEXT: Introduction to Heat Transfer by Incropera, DeWitt, Bergman, Lavine 6 th Edition, John Wiley and Sons Chapter 7 External

More information

Flamelet Analysis of Turbulent Combustion

Flamelet Analysis of Turbulent Combustion Flamelet Analysis of Turbulent Combustion R.J.M. Bastiaans,2, S.M. Martin, H. Pitsch,J.A.vanOijen 2, and L.P.H. de Goey 2 Center for Turbulence Research, Stanford University, CA 9435, USA 2 Eindhoven University

More information

Hydrogen vented explosion : experiments, engineering methods and CFD

Hydrogen vented explosion : experiments, engineering methods and CFD ICHS5 September, Brussels, Belgium Hydrogen vented explosion : experiments, engineering methods and CFD S. Jallais Thanks to M. Kuznetsov, S. Kudriakov, E. Studer, V. Molkov, C. Proust, J. Daubech, P.

More information

Lecture 14. Turbulent Combustion. We know what a turbulent flow is, when we see it! it is characterized by disorder, vorticity and mixing.

Lecture 14. Turbulent Combustion. We know what a turbulent flow is, when we see it! it is characterized by disorder, vorticity and mixing. Lecture 14 Turbulent Combustion 1 We know what a turbulent flow is, when we see it! it is characterized by disorder, vorticity and mixing. In a fluid flow, turbulence is characterized by fluctuations of

More information

Carbon Science and Technology

Carbon Science and Technology ASI RESEARCH ARTICLE Carbon Science and Technology Received:10/03/2016, Accepted:15/04/2016 ------------------------------------------------------------------------------------------------------------------------------

More information

Fundamentals Of Combustion (Part 1) Dr. D.P. Mishra Department of Aerospace Engineering Indian Institute of Technology, Kanpur

Fundamentals Of Combustion (Part 1) Dr. D.P. Mishra Department of Aerospace Engineering Indian Institute of Technology, Kanpur Fundamentals Of Combustion (Part 1) Dr. D.P. Mishra Department of Aerospace Engineering Indian Institute of Technology, Kanpur Lecture 09 Stoichiometric calculations for air-gas mixture Let us start this

More information

Model Simulation of High Power Diesel Engine Exhaust Gas Pollutants

Model Simulation of High Power Diesel Engine Exhaust Gas Pollutants Model Simulation of High Power Diesel Engine Exhaust Gas Pollutants NICOLAE BUZBUCHI, LIVIU CONSTANTIN STAN Department OF Marine Engineering Constanta Maritime University 104 Mircea cel Batran Str., 900663

More information

arxiv: v1 [physics.chem-ph] 6 Oct 2011

arxiv: v1 [physics.chem-ph] 6 Oct 2011 Calculation of the Minimum Ignition Energy based on the ignition delay time arxiv:1110.1163v1 [physics.chem-ph] 6 Oct 2011 Jens Tarjei Jensen a, Nils Erland L. Haugen b, Natalia Babkovskaia c a Department

More information

Simulation of Hydrogen Deflagration Experiment Benchmark Exercise with Lumped-Parameter Codes

Simulation of Hydrogen Deflagration Experiment Benchmark Exercise with Lumped-Parameter Codes Simulation of Hydrogen Deflagration Experiment Benchmark Exercise with Lumped-Parameter Codes Ivo Kljenak Jožef Stefan Institute Jamova cesta 39 1000 Ljubljana, Slovenia ivo.kljenak@ijs.si Mikhail Kuznetsov

More information

MOLECULAR TRANSPORT EFFECTS OF HYDROCARBON ADDITION ON TURBULENT HYDROGEN FLAME PROPAGATION

MOLECULAR TRANSPORT EFFECTS OF HYDROCARBON ADDITION ON TURBULENT HYDROGEN FLAME PROPAGATION MOLECULAR TRANSPORT EFFECTS OF HYDROCARBON ADDITION ON TURBULENT HYDROGEN FLAME PROPAGATION S. Muppala $,, J.X. Wen, N.K. Aluri, and F. Dinkelacker 3 Faculty of Engineering, Kingston University, Roehampton

More information

Chapter: Heat and States

Chapter: Heat and States Table of Contents Chapter: Heat and States of Matter Section 1: Temperature and Thermal Energy Section 2: States of Matter Section 3: Transferring Thermal Energy Section 4: Using Thermal Energy 1 Temperature

More information

Florida Institute of Technology College of Engineering Department of Chemical Engineering

Florida Institute of Technology College of Engineering Department of Chemical Engineering Florida Institute of Technology College of Engineering Department of Chemical Engineering CHE 4115 ChE Process Laboratory II Team Report # 1 Experiment # 3 Experimental Design - Heat Transfer by Convection

More information

Chapter 5 Test. Directions: Write the correct letter on the blank before each question.

Chapter 5 Test. Directions: Write the correct letter on the blank before each question. Chapter 5 Test Name: Date: Directions: Write the correct letter on the blank before each question. Objective 1: Explain the science of fire as it relates to energy, forms of ignition, and modes of combustion.

More information

EXPLOSION DEVELOPMENT IN A SPHERICAL VESSEL

EXPLOSION DEVELOPMENT IN A SPHERICAL VESSEL EXPLOSION DEVELOPMENT IN A SPHERICAL VESSEL By John Nagy, John W. Conn, and Harry C. Verakis * * * report of investigations 7279 UNITED STATES DEPARTMENT OF THE INTERIOR Walter J. Hickel, Secretary BUREAU

More information

Enthalpy and Adiabatic Changes

Enthalpy and Adiabatic Changes Enthalpy and Adiabatic Changes Chapter 2 of Atkins: The First Law: Concepts Sections 2.5-2.6 of Atkins (7th & 8th editions) Enthalpy Definition of Enthalpy Measurement of Enthalpy Variation of Enthalpy

More information

Kinetic study of combustion behavior in a gas turbine -Influence from varying natural gas composition

Kinetic study of combustion behavior in a gas turbine -Influence from varying natural gas composition Kinetic study of combustion behavior in a gas turbine -Influence from varying natural gas composition Catharina Tillmark April 18, 2006 Lund University Dept. of Energy Sciences P.O.Box 118, SE-221 00 Lund

More information

Chapter 5: The First Law of Thermodynamics: Closed Systems

Chapter 5: The First Law of Thermodynamics: Closed Systems Chapter 5: The First Law of Thermodynamics: Closed Systems The first law of thermodynamics can be simply stated as follows: during an interaction between a system and its surroundings, the amount of energy

More information

Creating Phase and Interface Models

Creating Phase and Interface Models Creating Phase and Interface Models D. G. Goodwin Division of Engineering and Applied Science California Institute of Technology Cantera Workshop July 25, 2004 Every Cantera simulation involves one or

More information

EXPLOSION PRESSURES OF CONFINED DEFLAGRATIONS PROPAGATING IN STOICHIOMETRIC GASEOUS MIXTURES OF LOWER ALKANES WITH AIR

EXPLOSION PRESSURES OF CONFINED DEFLAGRATIONS PROPAGATING IN STOICHIOMETRIC GASEOUS MIXTURES OF LOWER ALKANES WITH AIR Department of Physical Chemistry 4-12 Regina Elisabeta Blvd, District 3, Bucharest phone: +40-21-3143508; fax: +40-21-3159249 ISSN: 1844-0401 ARS DOCENDI PUBLISHING HOUSE Sos. Panduri 90, District 5 Bucharest

More information

The Reaction module. Table of Contents

The Reaction module. Table of Contents Table of contents The module calculates the thermochemical properties of a species, a mixture of species or a chemical reaction. accesses only compound databases. assumes all gases are ideal and ignores

More information

piston control surface

piston control surface Lecture Thermodynamics 4 Enthalpy Consider a quasistatic hydrostatic constant pressure (isobaric) process weights piston, p gas Q control surface fi, p gas U -U 1 = Q +W = Q - Ú pdv = Q - p + p fi (U +

More information

Model, software for calculation of AIT and its validation

Model, software for calculation of AIT and its validation Programme Energy, Environment and Sustainable Development Project SAFEKINEX: SAFe and Efficient hydrocarbon oxidation processes by KINetics and Explosion expertise Contract No. EVG1-CT-22-72 Model, software

More information

Chapter 6 Problems: 9, 19, 24, 25, 26, 27, 31-33, 37, 39, 43, 45, 47, 48, 53, 55, 57, 59, 65, 67, 73, 78-82, 85, 89, 93

Chapter 6 Problems: 9, 19, 24, 25, 26, 27, 31-33, 37, 39, 43, 45, 47, 48, 53, 55, 57, 59, 65, 67, 73, 78-82, 85, 89, 93 Chapter 6 Problems: 9, 19, 24, 25, 26, 27, 31-33, 37, 39, 43, 45, 47, 48, 53, 55, 57, 59, 65, 67, 73, 78-82, 85, 89, 93 Chapter 6 Thermochemistry The study of chemical reactions and the energy changes

More information

Interactions between oxygen permeation and homogeneous-phase fuel conversion on the sweep side of an ion transport membrane

Interactions between oxygen permeation and homogeneous-phase fuel conversion on the sweep side of an ion transport membrane Interactions between oxygen permeation and homogeneous-phase fuel conversion on the sweep side of an ion transport membrane The MIT Faculty has made this article openly available. Please share how this

More information

Physics 5D PRACTICE FINAL EXAM Fall 2013

Physics 5D PRACTICE FINAL EXAM Fall 2013 Print your name: Physics 5D PRACTICE FINAL EXAM Fall 2013 Real Exam is Wednesday December 11 Thimann Lecture 3 4:00-7:00 pm Closed book exam two 8.5x11 sheets of notes ok Note: Avogadro s number N A =

More information

Modeling and Analysis of Dynamic Systems

Modeling and Analysis of Dynamic Systems Modeling and Analysis of Dynamic Systems Dr. Guillaume Ducard Fall 2017 Institute for Dynamic Systems and Control ETH Zurich, Switzerland G. Ducard c 1 / 34 Outline 1 Lecture 7: Recall on Thermodynamics

More information

Improvements in the Modeling of the Self-ignition of Tetrafluoroethylene

Improvements in the Modeling of the Self-ignition of Tetrafluoroethylene Presented at the COMSOL Conference 2010 Paris Improvements in the Modeling of the Self-ignition of Tetrafluoroethylene M. Beckmann-Kluge 1, F. Ferrero 1, V. Schröder 1, A. Acikalin 2 and J. Steinbach 2,

More information

Hydrogen addition to the Andrussow process for HCN synthesis

Hydrogen addition to the Andrussow process for HCN synthesis Applied Catalysis A: General 201 (2000) 13 22 Hydrogen addition to the Andrussow process for HCN synthesis A.S. Bodke, D.A. Olschki, L.D. Schmidt Department of Chemical Engineering and Materials Science,

More information

A REDUCED-ORDER METHANE-AIR COMBUSTION MECHANISM THAT SATISFIES THE DIFFERENTIAL ENTROPY INEQUALITY

A REDUCED-ORDER METHANE-AIR COMBUSTION MECHANISM THAT SATISFIES THE DIFFERENTIAL ENTROPY INEQUALITY THE PUBLISHING HOUSE PROCEEDINGS OF THE ROMANIAN ACADEMY, Series A, OF THE ROMANIAN ACADEMY Special Issue/2018, pp. 285 290 A REDUCED-ORDER METHANE-AIR COMBUSTION MECHANISM THAT SATISFIES THE DIFFERENTIAL

More information

Convective Heat and Mass Transfer Prof. A.W. Date Department of Mechanical Engineering Indian Institute of Technology, Bombay

Convective Heat and Mass Transfer Prof. A.W. Date Department of Mechanical Engineering Indian Institute of Technology, Bombay Convective Heat and Mass Transfer Prof. A.W. Date Department of Mechanical Engineering Indian Institute of Technology, Bombay Module No. # 01 Lecture No. # 32 Stefan Flow Model We are now familiar with

More information