Premixed, Nonpremixed and Partially Premixed Flames

Size: px
Start display at page:

Download "Premixed, Nonpremixed and Partially Premixed Flames"

Transcription

1 Premixed, Nonpremixed and Partially Premixed Flames Flame (Reaction Zone) Flame (Reaction Zone) Flame (Reaction Zone) Fuel Air Fuel + Air φ 1 Products Fuel + Air φ > 1 F + A Air (+ F?) NONPREMIXED PREMIXED PARTIALLY (Local Quenching) (Incomplete Mixing) PREMIXED

2 Diffusion Flames Video images of ethane jet diffusion flames in quiescent air in 1g and µg. Burner tube inside diameter= 2.87 mm; mean fuel jet velocity=7.5 cm/sec. Takahashi and Katta: Proc. Combust. Inst., Vol. 29, 2002, pp Computed Images (from 1 to 200 msec) in terms of temperature field (contours) of a propagating edge diffusion flame in an ethane jet in quasi-quiescent air in 0g. Burner tube diameter= 3 mm; mean fuel jet velocity=6.86 cm/sec.

3 Flame Images Propane torch Turbulent diffusion Flame

4 Premixed Flame Images Bunsen Burner Methane-Air Premixed Flame LPG (liquified petroleum gas)-air premixed flames for different φ and inlet velocity in a diverging channel Akram et al. Energy & Fuels, 2012, 26,

5 Propagating premixed flame in SI engine Flame Images

6 Partially Premixed Flame n-heptane PPF * Rich premixed zone Non-premixed zone Diesel Engine Combustion **. * P. Berta, S. Aggarwal, I. Puri. Combustion and Flame. 145 (2006) ** Quasi-steady Diesel combustion plume as presented by DEC (1997).

7 Flame Images: Partially Premixed (Double) Flames Partially Premixed Flames Established on a Slot Burner (Methane/Air) (Propane/Air) NP RP φ = 1.4 V in = 30cms -1 V out = 30cms -1 φ = 1.6 V in = 30cms -1 V out = 30cms -1 φ = 1.7 V in = 30cms -1 V out = 30cms -1 φ = 1.9 V in = 30cms -1 V out = 30cms -1 Le 1 Le<1

8 Nonpremixed and Partially Premixed (Double) Flames Flames Established in a Counterflow Burner strain rate 50 s -1 φ = 10 φ = 5 φ = 3.5 φ = 2.5 Image of syngas (50%H 2-50%CO) /air nonpremixed flame established at p=1atm, strain rate a s = 65s -1. N-Heptane PPFs showing the double flame structure: characteristic of non-premixed and premixed reaction zones. The fuel enters at the bottom and the oxidizer at the top.

9 A Schematic of Premixed Flame Structure Henry A. Becker, "Flame," in AccessScience, McGraw-Hill Companies, 2008,

10 Burner Stabilized Premixed H2-O2-N2 Flame Species profiles in a burner-stabilized flame of a mixture with H2 = 18.8%, O2 = 4.6%, and N2 = 76.6% at 1 atm. Symbols represent experimental data from Dixon- Lewis et al., solid lines: present model; dashed lines: model of Li et al. Burke et al. Int. J. Chemical Kinetics (2011)

11 Counterflow N-heptane-air Premixed Flame Temperature and velocity Stagnation plane T (K) v (cm) T(K) V(cm/s) Distance from the nozzle (cm) -300 Φ=0.8, inlet velocity v=70cm/s, inlet temperature T 0 =400K, distance between the two nozzles d=1cm. Stretched flame speed=62 cm/s Flame thickness=0.8 mm

12 Counterflow N-heptane-air Premixed Flame 0.25 Fuel, oxidizer, and products 0.2 Mole fraction O2 CO2 H2O n-heptane * 10 O2 CO H2 * 10 H2O 0.05 H2 CO Distance from the nozzle (cm) Φ=0.8, inlet velocity v=70cm/s, inlet temperature T 0 =400K, distance between the two nozzles d=1cm.

13 Laminar Premixed Flames Refs: Turns (Chapter 8), Law (Chapter 7), Kuo (Chapter 5) Introduction Scale analysis for laminar flame speed and flame thickness Simplified analysis due to Spalding Detailed analysis; numerical solution Effects of important parameters on the flame speed and thickness Counterflow flames Partially Premixed Flames

14 Laminar Premixed Flames Introduction Ø In premixed flames, the reaction zone separates the reactants (i.e. a mixture of fuel and oxidizer that are mixed at the molecular level) and products. Ø Safety is a major concern for premixed flames. Consequently, such flames are not as common as the nonpremixed and partially premixed flames. Nevertheless, they are still very important in numerous combustion systems. Examples include: Gas turbine combustors using lean premixed combustion Spark ignition engines Fires in coal mines Numerous other systems, such as residential burners, furnaces, diesel engines, rocket engines in which the combustion is characterized by a partially premixed flame containing multiple reaction zones Ø A premixed flame is characterized by the propagation of a wave. Broadly speaking, there are two types of combustion waves; detonation waves and deflagration waves. A detonation wave is a shock wave, which propagates at a supersonic speed, accompanied by combustion. A deflagration wave or a laminar flame on the other hand is a relatively low-speed wave, and pressure change across it is negligible.

15 Laminar Premixed Flames Ø A laminar flame is of fundamental importance in most practical systems. Even in systems that involve nonpremixed flames, the laminar flame speed is important with regards to flame liftoff and stabilization. Ø Commonly used premixed flame configurations for fundamental studies include: Bunsen burner flame Flame stabilized on a flat flame burner Propagating flame in a tube Spherical flames Counterflow premixed flame Flame stabilized on a rod Ø This chapter deals with the fundamental aspects of laminar premixed flames. In particular, we will discuss: Laminar flame speed and flame thickness Flame structure Fundamental analysis of a laminar premixed flame Effects of important parameters Flame stretch and flame stability (advanced topic, not covered)

16 Laminar Premixed Flames Laminar flame speed represents a fundamental property of fuel-oxidizer mixtures. It is defined as the mixture velocity normal to the flame surface. It provides the mixture burning rate in the flame. Scale Analysis: Laminar Flame Speed and Thickness In a 1-D, steady, laminar flame, there is a balance between convection, diffusion and reaction processes. Then a simple scale (dimensional) analysis can be used to obtain approx. expressions for laminar flame speed (S L ) and thickness (δ). Conservation of mass: Equating thermal diffusion time to reaction time: ( ) 1/2 S L = ( ωα / ρ u ) 1/2 = ( ωdl e / ρ u ) 1/2 = (1/ ρ u ) ωλ / c p ( ) 1/ 2 δ = α /S L = λ /(c p ω ) ρ u S L = ω δ Also equating convection and reaction times δ 2 /α ρ u / ω Laminar premixed flame speed and structure are governed by both the chemical kinetics and transport. The laminar flame speed is fundamental to the flame shape and stabilization, including flashback and flame blowout. Laminar flames are also of fundamental importance to turbulent premixed flames.

17 Laminar Premixed Flames Bunsen Burner Methane-Air Premixed Flame S L = v u,n = v u sinα It is important to know the laminar flame speed for any given fuel for a range of equivalence ratios, temperatures, pressures, etc.

18 Laminar Premixed Flames Simplified Analysis (Due to Spalding) ρ t = (ρv x) x = 0 ρ u S L = ρ b U b ρ u S L δ ρ b U b ρ i = ( m % i) + m % i % = 0 t x m " i = m " Y i ρd i ( Y i / x) dp dx = 0 Using energy equation as derived in the Shvab Zeldovich Formulation dt m!! c p dx d T (λ dx T 0 dx ) = h f,i!!! m i Two extra boundary conditions for δ and S L dt dx δ d δ r T(x ) = T u T(x ) = T b (x ) = dt dx x (x + ) = 0

19 Simplified Analysis: Thermal Theory of Spalding 1. A planar steady, one-dimensional, adiabatic flame, which is either stationary or propagating at a fixed speed of S L. 2. p=constant 3. Constant transport properties. Also constant and equal specific heats, and Le=1. 4. Three species with a single global reaction. The Spalding analysis provides the following results: m!! c p (T b T u ) = δδh c m!!! F Δh c = (ν +1)c p (T b T u ) δ = 2α /S L S L = ( (υ +1)2α. m % F % /ρ u ) 1/ 2 m!!! F = average fuel consumption rate / volume Here ν is the stoichiometric air-fuel ratio by mass, α is thermal diffusivity,. These equations can be used to examine qualitatively the effects of various parameters, such as pressure, equivalence ratio, fuel type, temperature, diluent, etc. See Turns: An Introduction to Combustion (pp ) Kuo: Principles of Combustion ( )

20 Laminar Premixed Flames Detailed Analysis and Numerical Solution Detailed analysis of one-dimensional premixed flames: see Kuo, p Freely propagating premixed flames using Chemkin and Premix: See Kuo, p Counterflow premixed flames using Chemkin and Oppdif. Flame Stretch and Flame Speed (More advanced course) Introduction to flame stretch Derivation of flame stretch and flame speed in curvilinear coordinated for this flame. Effect of stretch and Lewis number on flame speed and extinction Effect of stretch and Lewis number on flame stability.

21 Detailed Analysis:1-D Equations Used in CHEMKIN d m " i dx = m " " i dm " dx = 0 dt m!!! c p dx d # % dx λ dt $ dx Boundary conditions: " " m = ρv = C m " dy i dx + d ( dx ρyv i d,i) = ω i M i dp dx = 0 & dt (+ ρy i V di c pi ' dx = T(x ) = T u and Y i (x ) = Y i,o Unknowns: ρ, v, Y i, T, S L or m!! = ρ u S L h0 fi! ω i M i dt dx (x ) = dy i dx (x ) = 0 Equations for reaction rates using a detailed kinetic mechanism Equations for diffusion velocities, mass diffusivities, specific heats, thermal conductivity S L. Ideal gas equation to compute density Mass flux or flame speed is an eigenvalue; it is determined as part of the solution.

22 Laminar Flame Speed and Structure Propane-air Φ=1

23 Laminar Premixed Flames Effects of Various Parameters on Flame Speed and Thickness Considering global 1-step reaction Fuel +υ.ox (1+υ).Pr S L = ( (υ +1)2α. m % F % /ρ u ) 1/ 2 δ = 2α /S L ω F = m # F # = Ae (E / R u T ) [ F] a [ O x ] b M X F [ ] = ρy / M ρ pm /T ω F ρ u T u e (E / R ut ) p n 1 ρc p T b n (Y F )a (Y Ox ) b α = k S L (T ) c / 2 T u (T b ) n / 2 e (E / 2R u T b ) p (n 2)/ 2 T u p (T )c δ (T ) c / 2 (T b ) n / 2 e (E / 2R ut ) p n / 2

24 Effect of Various Parameters S L (T ) c / 2 T u (T b ) n / 2 e (E / 2R u T b ) p (n 2)/ 2 δ (T ) c / 2 (T b ) n / 2 e (E / 2R u T ) p n / 2 Global reaction order (n) is often assumed as 2, which implies that S L is independent of p, and δ decreases with p. Note that the reaction rate increases with pressure, but the mixture also becomes denser, such that S L is nearly independent of p. Reaction rate p 2, ==> S L p 0 α 1/p and ρ p, ==> δ 1/p Effect of p on δ is mainly due to the fact p increases the reaction rate Actual data indicates that n has a complex variation with p Reaction order varies with pressure due to chemistry effects; for example diffusion to wall becomes important at low pressures, and 3-body reactions (H +O 2 + M==>HO 2 + M) become important at high pressure. Flame temperature may also vary somewhat with pressure due to dissociation effects Both T u and T b have strong influence on S L ; S L increases with T u since T b T u + Δh c /c p Effect of T b occurs mainly through the exponential term, as the activation energy is relatively high.

25 Effects of Various Parameters S L = ( (υ +1)2α. m % F % /ρ u ) 1/ 2 δ = 2α /S L The effect of equivalence ratio (φ) on flame speed and thickness appears mainly through its effect on T b, and also through its effect on Y F and Y o. Thus flame speed and thickness are, respectively maximum and minimum near φ =1 for hydrocarbon flames. Effect of molecular weight of reactant (M): α 1/M and ρ M, ==> S L 1/M Shifts the peak in S L to richer mixture (φ >1) for lighter fuels, such as H 2 Flame speed can also be modified by using diluents, which mainly affect the specific heat and thereby the flame temperature in the order: Cp CO2 >Cp N2 >Cp Ar ( Cp He ) Some diluents such as He can also modify the transport property (thermal conductivity or diffusivity), and molecular weight

26 Methane-Air Flames Effect of pressure on the predicted and measured laminar flame speed and overall reaction order Som and Aggarwal, CST, Vol. 179 (2007)

27 N-Heptane-Air Flames Good agreement between the predicted and measured laminar flame speeds Xue and Aggarwal, AIAA Journal, Vol. 40 (2002)

28 Premixed Flame Speed for Hydrogen-Air Mixture Computed Using Different Mechanisms H2/air flames at 1 atm H2/O2/He flames O2/(O2+He) = at 5 atm O2/(O2 +He) = at 15 atm Briones et al., C&F, Vol. 140 (2005)

29 Laminar Flame Thickness and Quenching Distance for Methane-Air Flames Turns-An Introduction to Combustion

30 Syngas-Air Flames: Fuel Effect Measured and predicted laminar burning velocities for syngas-air mixtures Laminar Burning Velocity [cm/s] a) McLean et al. [1994] Mueller et al. Mechanism Davis et al. Mechanism GRI-3.0 mechanism Flame A: 50%CO - 50%H 2 30 Flame B: 95%CO - 5%H Equivalence Ratio Flame A: 50% CO- 50% H 2 Flame B: 95% CO- 5% H 2 Variation of laminar burning velocity with volume percent of CO in syngas at φ = 2.0 Som et al., Fuel (2008)

31 Syngas Flames: Effect of Pressure Measured and predicted laminar burning velocities for CO-H 2 -O 2 -He mixture Curran et al., C&F Vol. 160 (2013) 95% CO + 5% H 2 in (O He) mixture, T u = 298 K

32 Premixed NG Flames: Effect of Hydrogen Laminar Flame Speed: S L ~ (D ω i ) Flame Thickness: δ D =D/ S L Flame speed increases while flame thickness decreases with H2 addition Peak in burning velocity occurs at richer conditions Huang et al., Combust Flame, 2006, Vol. 146

33 Hydrogen-Air Flames: Effect of Diluents Measured and predicted laminar burning velocities for H 2 -O 2 -Diluent mixtures He: λ = 0.25 W/m/K Ar: λ = λ S L Diluents modify mainly the specific heat and thereby the flame temperature in the order: Cp CO2 >Cp N2 >Cp Ar ( Cp He ) Qiao et al., C&F Vol. 143 (2005)

34 Limit Combustion Phenomena Ignition and flame extinction represent limit combustion phenomenon and involve transient processes. Ignition can be defined as the initiation of rapid exothermic reactions leading to the appearance of a flame in a combustible mixture; it may be caused with an external source such as an electric spark, or without any external source such as autoignition in a compression ignition engine. It is of practical interest in numerous applications, including the need to prevent fires and unwanted explosions, and to initiate controlled combustion in furnaces and engines. Extinction of flames may be achieved in various ways, including the addition of a flame suppressants (inert or chemical), passing the flame through tubes of small diameter (basis for flame arrestor design), or blowing the flame away using high gas velocity. It is of interest from the considerations of fire suppression, and controlling combustion processes in various propulsion and power generation systems. Flammability limits are generally expressed in terms of mixture compositions (equivalence ratio or fuel concentration by volume), for fixed temperature and pressure, beyond which a fuel-air mixture cannot be made to burn. Most of these phenomena are inherently transient. However, we will analyze them from energy considerations (i.e., heat loss), and discuss the limit behavior, i.e., conditions under which a flame will extinguish or not, or ignition will occur or not. Turns, Law, Williams

35 Minimum Quenching Distance Consider a flame propagating in a tube. If the tube diameter is sufficiently small, it will cause flame to extinguish. This quenching diameter can be experimentally determined by observing whether a flame stabilized above the tube does or does not flashback when the reactant flow is suddenly shutoff. Here we determine a quenching distance (d) by considering a long slot burner of a given width (L), and using the criterion that rate of heat generation due to chemical reactions is balanced by the rate of heat loss to by thermal conduction. #!QV =!m F Δh c V = λa% dt $ dx & ( ' wall δ Here V=dδL is the gas volume, A=2δL! # " Approximating dt dx $ & % wall = T w T b d / b This leads to: with b>2 d 2 = 2λb(T b T w )!m F Δh c q cond V d Schematic of flame quenching between two parallel walls q cond

36 Minimum Quenching Distance Using equations for fuel consumption rate and heat of combustion derived earlier, assuming Le-1, and T w T u, the above equation becomes: d = 2α b / S L δ = 2α /S L d = b.δ These equations provide results that are qualitatively in agreement with experimental data, such as shown in Fig (Turns), indicating quenching distance to be greater than flame thickness. See data in Table. Note X values are in percentage.

37 Flammability Limits Flammability limits are generally expressed in terms of mixture compositions (equivalence ratio or fuel fraction by volume), for fixed temperature and pressure, beyond which a fuel-air mixture cannot be made to burn. These limits can be determined experimentally by igniting a fuel-air mixture at one end of a long tube. If the mixture is within flammability limit, the ignition leads to a flame propagating in the tube. However, there are equivalence ratios (outside the flammability limits) that will not lead to propagating flame after the ignition source is removed. Using a large-diameter tube provides more consistent results. Table shows flammability limits for some fuels, expressed in terms of lean and rich equivalence ratios (or fuel mole fractions for lean and rich mixtures). These limits are strongly influenced by temperature, pressure, and other conditions, such as oxygen fraction, and gravity for upward/downward propagating flames. Figure depicts the effect of gravity on the lower flammability limit. Note that the fuel-air mixture gets preheated due to hot buoyant gases in case of upward propagating flame.

38 Flammability Limits Turns 760 torrs=1 atm

39 Flame Stability (Advanced Topic) Flashback When the flame enters and propagates upstream in the burner tube without quenching Serious safety hazard; flame arresters (such as wire mesh) are designed to quench flame Liftoff and Blowout For low velocities, the flame is attached, or the flame edge is close to burner lip. As V is increased, the flame lift off and its liftoff height increases until the flame blows out (or extinguished). Flame response to stretch Premixed flames characteristics (speed, structure, emission, instability, etc.) are also strongly influenced by aerodynamic effects, such as aerodynamic straining, flame curvature and unsteadiness. (1) Turns, (2) Lewis and Von Elbe

40 Flame Stability: Flashback Flame stabilized on a vertical tube Flame flashback is a serious safety hazard. It refers to the situation when the flame enters and propagates upstream in the burner tube without quenching. It occurs as the mixture flow is reduced or turned off. In a gas appliance, it can potentially ignite a large volume of gas in the mixture, leading to explosion. A flame arrester (such as wire mesh) is designed to quench flame propagation by absorbing heat from the flame, and reducing the temperature below the ignition temperature. Conditions in terms of safe mixture speed for a range of equivalence ratios (φ) for a given flame can be estimated from the plot of laminar flame speed versus φ. Important parameters for flashback to be essentially the same as those affecting quenching, e.g., φ, fuel type, mixture velocity, and burner geometry. For example, slightly rich mixtures provide the highest propensity for flashback, and flashback stability for CH4 is much greater than that of H2-rich fuels. Textbooks by (1) Turns, (2) Glassman

41 Flame Stability: Liftoff and Blowout Flame Stabilized on a vertical tube Flame liftoff generally involves uncontrolled and unsteady combustion, and can lead to blowout. It is also a safety hazard. It depends strongly on flame and flow properties near the edge of the burner. For low mixture velocities (V), the conical flame is attached, as the flame edge lies close to burner lip. As V is increased, the flame cone angle decreases, and the flame edge moves slightly downstream. As V is increased further, the flame jumps to a downstream location at a critical V, With further increase in V, the liftoff height increases until the flame blowout. When the flame is attached near the burner rim, the flow velocity in the stabilization region is relatively low. However, the flame speed (S L ) in this region is also low due to the diffusion of heat and radical species to the rim. As V is increased, the flame edge moves downstream, which increases S L, since the loss of heat and radical species is reduced. Thus the flame remains close to the burner. However with further increase in V causes dilution of the mixture with ambient fluid, which compensates for the decrease in heat and radical species loss. (1) Turns, (2) Lewis and Von Elbe

42 Turns Flashback and Liftoff

43 Thermo-Diffusive Instability Lean hydrogen flames: Le<1 Flame speed increases with stretch Lean propane flames: Le>1 Flame speed decreases with stretch Law & Sung, Prog. Energy Combus. Sci. 26, 2000

44 Partially Premixed (Double) Flames on a Slot Burner NP (Methane/Air) (Propane/Air) RP φ = 1.4 V in = 30cms -1 V out = 30cms -1 Le 1 φ = 1.6 V in = 30cms -1 V out = 30cms -1 φ = 1.7 V in = 30cms -1 V out = 30cms -1 Le<1 φ = 1.9 V in = 30cms -1 V out = 30cms -1 Flame tip is negatively stretched, and L b is positive for rich propane flames Burning rate decreases with stretch

45 Thermal-Diffusive Instability: H 2 -C 3 H 8 Blend Hydrogen (Le<1) Propane (Le>1) Spherically expanding premixed flames Law et al., 30th Int Combust Sym, 2005

46 Flame Liftoff and Blowout Blowout of methane jet flame using CO2 dilution Aggarwal, Prog. Energy Combust Sci., 35, , 2009

Laminar Premixed Flames: Flame Structure

Laminar Premixed Flames: Flame Structure Laminar Premixed Flames: Flame Structure Combustion Summer School 2018 Prof. Dr.-Ing. Heinz Pitsch Course Overview Part I: Fundamentals and Laminar Flames Introduction Fundamentals and mass balances of

More information

Lecture 8 Laminar Diffusion Flames: Diffusion Flamelet Theory

Lecture 8 Laminar Diffusion Flames: Diffusion Flamelet Theory Lecture 8 Laminar Diffusion Flames: Diffusion Flamelet Theory 8.-1 Systems, where fuel and oxidizer enter separately into the combustion chamber. Mixing takes place by convection and diffusion. Only where

More information

Effects of radiative heat loss on the extinction of counterflow premixed H 2 air flames

Effects of radiative heat loss on the extinction of counterflow premixed H 2 air flames Combust. Theory Modelling 4 (2000) 459 475. Printed in the UK PII: S1364-7830(00)09647-9 Effects of radiative heat loss on the extinction of counterflow premixed H 2 air flames Hongsheng Guo, Yiguang Ju

More information

Effect of multistage combustion on NO x emissions in methane air flames

Effect of multistage combustion on NO x emissions in methane air flames Combustion and Flame 149 (2007) 448 462 www.elsevier.com/locate/combustflame Effect of multistage combustion on NO x emissions in methane air flames Alejandro M. Briones, Sibendu Som, Suresh Aggarwal Department

More information

The Effect of Mixture Fraction on Edge Flame Propagation Speed

The Effect of Mixture Fraction on Edge Flame Propagation Speed 8 th U. S. National Combustion Meeting Organized by the Western States Section of the Combustion Institute and hosted by the University of Utah May 19-22, 213 The Effect of Mixture Fraction on Edge Flame

More information

EXPERIMENTAL AND NUMERICAL INVESTIGATION OF LAMINAR FLAME SPEEDS OF H 2 /CO/CO 2 /N 2 MIXTURES

EXPERIMENTAL AND NUMERICAL INVESTIGATION OF LAMINAR FLAME SPEEDS OF H 2 /CO/CO 2 /N 2 MIXTURES EXPERIMENTAL AND NUMERICAL INVESTIGATION OF LAMINAR FLAME SPEEDS OF H 2 /CO/CO 2 /N 2 MIXTURES A Dissertation Presented to The Academic Faculty by Jayaprakash Natarajan In Partial Fulfillment of the Requirements

More information

Lecture 6 Asymptotic Structure for Four-Step Premixed Stoichiometric Methane Flames

Lecture 6 Asymptotic Structure for Four-Step Premixed Stoichiometric Methane Flames Lecture 6 Asymptotic Structure for Four-Step Premixed Stoichiometric Methane Flames 6.-1 Previous lecture: Asymptotic description of premixed flames based on an assumed one-step reaction. basic understanding

More information

Lecture 9 Laminar Diffusion Flame Configurations

Lecture 9 Laminar Diffusion Flame Configurations Lecture 9 Laminar Diffusion Flame Configurations 9.-1 Different Flame Geometries and Single Droplet Burning Solutions for the velocities and the mixture fraction fields for some typical laminar flame configurations.

More information

Lecture 7 Flame Extinction and Flamability Limits

Lecture 7 Flame Extinction and Flamability Limits Lecture 7 Flame Extinction and Flamability Limits 7.-1 Lean and rich flammability limits are a function of temperature and pressure of the original mixture. Flammability limits of methane and hydrogen

More information

EFFECT OF CARBON DIOXIDE, ARGON AND HYDROCARBON FUELS ON THE STABILITY OF HYDROGEN JET FLAMES

EFFECT OF CARBON DIOXIDE, ARGON AND HYDROCARBON FUELS ON THE STABILITY OF HYDROGEN JET FLAMES EFFECT OF CARBON DIOXIDE, ARGON AND HYDROCARBON FUELS ON THE STABILITY OF HYDROGEN JET FLAMES Wu, Y 1, Al-Rahbi, I. S. 1, Lu, Y 1. and Kalghatgi, G. T. 2 1 Department of Chemical and Process Engineering,

More information

Supersonic Combustion Simulation of Cavity-Stabilized Hydrocarbon Flames using Ethylene Reduced Kinetic Mechanism

Supersonic Combustion Simulation of Cavity-Stabilized Hydrocarbon Flames using Ethylene Reduced Kinetic Mechanism 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit 9-12 July 2006, Sacramento, California AIAA 2006-5092 Supersonic Combustion Simulation of Cavity-Stabilized Hydrocarbon Flames using Ethylene

More information

S. Kadowaki, S.H. Kim AND H. Pitsch. 1. Motivation and objectives

S. Kadowaki, S.H. Kim AND H. Pitsch. 1. Motivation and objectives Center for Turbulence Research Annual Research Briefs 2005 325 The dynamics of premixed flames propagating in non-uniform velocity fields: Assessment of the significance of intrinsic instabilities in turbulent

More information

HOT PARTICLE IGNITION OF METHANE FLAMES

HOT PARTICLE IGNITION OF METHANE FLAMES Proceedings of the Combustion Institute, Volume 29, 2002/pp. 1605 1612 HOT PARTICLE IGNITION OF METHANE FLAMES FOKION N. EGOLFOPOULOS, CHARLES S. CAMPBELL and M. GURHAN ANDAC Department of Aerospace and

More information

Extinction Limits of Premixed Combustion Assisted by Catalytic Reaction in a Stagnation-Point Flow

Extinction Limits of Premixed Combustion Assisted by Catalytic Reaction in a Stagnation-Point Flow 44th AIAA Aerospace Sciences Meeting and Exhibit 9-12 January 2006, Reno, Nevada AIAA 2006-164 Extinction Limits of Premixed Combustion Assisted by Catalytic Reaction in a Stagnation-Point Flow Jingjing

More information

Combustion. Indian Institute of Science Bangalore

Combustion. Indian Institute of Science Bangalore Combustion Indian Institute of Science Bangalore Combustion Applies to a large variety of natural and artificial processes Source of energy for most of the applications today Involves exothermic chemical

More information

A numerical and experimental investigation of inverse triple flames

A numerical and experimental investigation of inverse triple flames PHYSICS OF FLUIDS VOLUME 13, NUMBER 1 JANUARY 2001 A numerical and experimental investigation of inverse triple flames Suresh K. Aggarwal, a) Ishwar K. Puri, and Xiao Qin Department of Mechanical Engineering

More information

Pressure and preheat dependence of laminar flame speeds of H 2 /CO/CO 2 /O 2 /He mixtures

Pressure and preheat dependence of laminar flame speeds of H 2 /CO/CO 2 /O 2 /He mixtures Available online at www.sciencedirect.com Proceedings of the Combustion Institute 32 (2009) 1261 1268 Proceedings of the Combustion Institute www.elsevier.com/locate/proci Pressure and preheat dependence

More information

Laminar Flame Speeds and Strain Sensitivities of Mixtures of H 2 with CO, CO 2 and N 2 at Elevated Temperatures

Laminar Flame Speeds and Strain Sensitivities of Mixtures of H 2 with CO, CO 2 and N 2 at Elevated Temperatures Proceedings of GT2007 ASME Turbo Expo 2007: Power for Land, Sea and Air May 14-17, 2007, Montreal, Canada GT2007-27967 Laminar Flame Speeds and Strain Sensitivities of Mixtures of H 2 with CO, CO 2 and

More information

Large-eddy simulation of an industrial furnace with a cross-flow-jet combustion system

Large-eddy simulation of an industrial furnace with a cross-flow-jet combustion system Center for Turbulence Research Annual Research Briefs 2007 231 Large-eddy simulation of an industrial furnace with a cross-flow-jet combustion system By L. Wang AND H. Pitsch 1. Motivation and objectives

More information

Numerical evaluation of NO x mechanisms in methane-air counterflow premixed flames

Numerical evaluation of NO x mechanisms in methane-air counterflow premixed flames Journal of Mechanical Science and Technology 3 (009) 659~666 Journal of Mechanical Science and Technology www.springerlin.com/content/1738-494x DOI 10.1007/s106-008-1-y Numerical evaluation of NO x mechanisms

More information

Triple flame: Inherent asymmetries and pentasectional character

Triple flame: Inherent asymmetries and pentasectional character Combustion Theory and Modelling, 2014 Vol. 18, No. 3, 454 473, http://dx.doi.org/10.1080/13647830.2014.923116 Triple flame: Inherent asymmetries and pentasectional character Albert Jordà Juanós and William

More information

APPENDIX A: LAMINAR AND TURBULENT FLAME PROPAGATION IN HYDROGEN AIR STEAM MIXTURES*

APPENDIX A: LAMINAR AND TURBULENT FLAME PROPAGATION IN HYDROGEN AIR STEAM MIXTURES* APPENDIX A: LAMINAR AND TURBULENT FLAME PROPAGATION IN HYDROGEN AIR STEAM MIXTURES* A.1 Laminar Burning Velocities of Hydrogen-Air and Hydrogen-Air-Steam Mixtures A.1.1 Background Methods of measuring

More information

CFD SIMULATION OF HYDROGEN RELEASE, DISPERSION AND AUTO-IGNITION IN ENCLOSURES

CFD SIMULATION OF HYDROGEN RELEASE, DISPERSION AND AUTO-IGNITION IN ENCLOSURES MCS 7 Chia Laguna, Cagliari, Sardinia, Italy, September 11-15, 2011 CFD SIMULATION OF HYDROGEN RELEASE, DISPERSION AND AUTO-IGNITION IN ENCLOSURES T. Bar-Kohany * and K. Dahan * kahany@bgu.ac.il *Mechanical

More information

Yiguang Ju, Hongsheng Guo, Kaoru Maruta and Takashi Niioka. Institute of Fluid Science, Tohoku University, ABSTRACT

Yiguang Ju, Hongsheng Guo, Kaoru Maruta and Takashi Niioka. Institute of Fluid Science, Tohoku University, ABSTRACT 1 Structure and Extinction Limit for Nonadiabatic Methane/Air Premixed Flame Yiguang Ju, Hongsheng Guo, Kaoru Maruta and Takashi Niioka Institute of Fluid Science, Tohoku University, Katahira 2-1-1, Sendai

More information

Kinetic study of combustion behavior in a gas turbine -Influence from varying natural gas composition

Kinetic study of combustion behavior in a gas turbine -Influence from varying natural gas composition Kinetic study of combustion behavior in a gas turbine -Influence from varying natural gas composition Catharina Tillmark April 18, 2006 Lund University Dept. of Energy Sciences P.O.Box 118, SE-221 00 Lund

More information

Development of One-Step Chemistry Models for Flame and Ignition Simulation

Development of One-Step Chemistry Models for Flame and Ignition Simulation Development of One-Step Chemistry Models for Flame and Ignition Simulation S.P.M. Bane, J.L. Ziegler, and J.E. Shepherd Graduate Aerospace Laboratories California Institute of Technology Pasadena, CA 91125

More information

AME 513. " Lecture 8 Premixed flames I: Propagation rates

AME 513.  Lecture 8 Premixed flames I: Propagation rates AME 53 Principles of Combustion " Lecture 8 Premixed flames I: Propagation rates Outline" Rankine-Hugoniot relations Hugoniot curves Rayleigh lines Families of solutions Detonations Chapman-Jouget Others

More information

Flame Propagation in Poiseuille Flow under Adiabatic Conditions

Flame Propagation in Poiseuille Flow under Adiabatic Conditions Flame Propagation in Poiseuille Flow under Adiabatic Conditions J. DAOU and M. MATALON* Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, IL 60208-3125, USA

More information

Combustion Behind Shock Waves

Combustion Behind Shock Waves Paper 3F-29 Fall 23 Western States Section/Combustion Institute 1 Abstract Combustion Behind Shock Waves Sandeep Singh, Daniel Lieberman, and Joseph E. Shepherd 1 Graduate Aeronautical Laboratories, California

More information

Experimental study of the combustion properties of methane/hydrogen mixtures Gersen, Sander

Experimental study of the combustion properties of methane/hydrogen mixtures Gersen, Sander University of Groningen Experimental study of the combustion properties of methane/hydrogen mixtures Gersen, Sander IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF)

More information

- A Numerical Chemical Kinetic Study at Gas Turbine Conditions

- A Numerical Chemical Kinetic Study at Gas Turbine Conditions Combustion Characteristics of MCV/LCV Fuels - A Numerical Chemical Kinetic Study at Gas Turbine Conditions Daniel Jarnekrans Division of Fluid Dynamics Department of Energy Sciences Lund Institute of Technology

More information

Cellular structure of detonation wave in hydrogen-methane-air mixtures

Cellular structure of detonation wave in hydrogen-methane-air mixtures Open Access Journal Journal of Power Technologies 91 (3) (2011) 130 135 journal homepage:papers.itc.pw.edu.pl Cellular structure of detonation wave in hydrogen-methane-air mixtures Rafał Porowski, Andrzej

More information

Flame / wall interaction and maximum wall heat fluxes in diffusion burners

Flame / wall interaction and maximum wall heat fluxes in diffusion burners Flame / wall interaction and maximum wall heat fluxes in diffusion burners de Lataillade A. 1, Dabireau F. 1, Cuenot B. 1 and Poinsot T. 1 2 June 5, 2002 1 CERFACS 42 Avenue Coriolis 31057 TOULOUSE CEDEX

More information

Combustion Theory and Applications in CFD

Combustion Theory and Applications in CFD Combustion Theory and Applications in CFD Princeton Combustion Summer School 2018 Prof. Dr.-Ing. Heinz Pitsch Copyright 201 8 by Heinz Pitsch. This material is not to be sold, reproduced or distributed

More information

Ignition. Jerry Seitzman. Temperature (K) School of Aerospace Engineering Review. stable/steady self-sustained propagation of premixed flames

Ignition. Jerry Seitzman. Temperature (K) School of Aerospace Engineering Review. stable/steady self-sustained propagation of premixed flames Mole Fraction Temperature (K) Ignition Jerry Seitzman 0. 500 0.5 000 0. 0.05 0 CH4 HO HCO x 000 Temperature Methane Flame 0 0. 0. 0. Distance (cm) 500 000 500 0 Ignition - Review So far, examined stable/steady

More information

Lecture 4. Laminar Premixed Flame Configura6on 4.- 1

Lecture 4. Laminar Premixed Flame Configura6on 4.- 1 Lecture 4 Laminar Premixed Flame Configura6on 4.- 1 Bunsen Burner Classical device to generate a laminar premixed flame Gaseous fuel enters into the mixing chamber, into which air is entrained Velocity

More information

A computational study of two dimensional laminar premixed combustion of methane and some biofuels

A computational study of two dimensional laminar premixed combustion of methane and some biofuels University of Iowa Iowa Research Online Theses and Dissertations Fall 2010 A computational study of two dimensional laminar premixed combustion of methane and some biofuels Kevin Langan University of Iowa

More information

Experimental study on the explosion characteristics of methane-hydrogen/air mixtures

Experimental study on the explosion characteristics of methane-hydrogen/air mixtures 26 th ICDERS July 3 th August 4 th, 217 Boston, MA, USA Experimental study on the explosion characteristics of methane-hydrogen/air mixtures Xiaobo Shen, Guangli Xiu * East China University of Science

More information

Best Practice Guidelines for Combustion Modeling. Raphael David A. Bacchi, ESSS

Best Practice Guidelines for Combustion Modeling. Raphael David A. Bacchi, ESSS Best Practice Guidelines for Combustion Modeling Raphael David A. Bacchi, ESSS PRESENTATION TOPICS Introduction; Combustion Phenomenology; Combustion Modeling; Reaction Mechanism; Radiation; Case Studies;

More information

Department of Mechanical Engineering BM 7103 FUELS AND COMBUSTION QUESTION BANK UNIT-1-FUELS

Department of Mechanical Engineering BM 7103 FUELS AND COMBUSTION QUESTION BANK UNIT-1-FUELS Department of Mechanical Engineering BM 7103 FUELS AND COMBUSTION QUESTION BANK UNIT-1-FUELS 1. Define the term fuels. 2. What are fossil fuels? Give examples. 3. Define primary fuels. Give examples. 4.

More information

Asymptotic Structure of Rich Methane-Air Flames

Asymptotic Structure of Rich Methane-Air Flames Asymptotic Structure of Rich Methane-Air Flames K. SESHADRI* Center for Energy and Combustion Research, Department of Mechanical and Aerospace Engineering, University of California at San Diego, La Jolla,

More information

Towards regime identification and appropriate chemistry tabulation for computation of autoigniting turbulent reacting flows

Towards regime identification and appropriate chemistry tabulation for computation of autoigniting turbulent reacting flows Center for Turbulence Research Annual Research Briefs 009 199 Towards regime identification and appropriate chemistry tabulation for computation of autoigniting turbulent reacting flows By M. Kostka, E.

More information

EFFECTS OF INERT DUST CLOUDS ON THE EXTINCTION OF STRAINED, LAMINAR FLAMES AT NORMAL- AND MICRO-GRAVITY

EFFECTS OF INERT DUST CLOUDS ON THE EXTINCTION OF STRAINED, LAMINAR FLAMES AT NORMAL- AND MICRO-GRAVITY Proceedings of the Combustion Institute, Volume 28, 2000/pp. 2921 2929 EFFECTS OF INERT DUST CLOUDS ON THE EXTINCTION OF STRAINED, LAMINAR FLAMES AT NORMAL- AND MICRO-GRAVITY M. GURHAN ANDAC, FOKION N.

More information

Interactions between oxygen permeation and homogeneous-phase fuel conversion on the sweep side of an ion transport membrane

Interactions between oxygen permeation and homogeneous-phase fuel conversion on the sweep side of an ion transport membrane Interactions between oxygen permeation and homogeneous-phase fuel conversion on the sweep side of an ion transport membrane The MIT Faculty has made this article openly available. Please share how this

More information

TOPICAL PROBLEMS OF FLUID MECHANICS 97

TOPICAL PROBLEMS OF FLUID MECHANICS 97 TOPICAL PROBLEMS OF FLUID MECHANICS 97 DOI: http://dx.doi.org/10.14311/tpfm.2016.014 DESIGN OF COMBUSTION CHAMBER FOR FLAME FRONT VISUALISATION AND FIRST NUMERICAL SIMULATION J. Kouba, J. Novotný, J. Nožička

More information

Hydrogen addition to the Andrussow process for HCN synthesis

Hydrogen addition to the Andrussow process for HCN synthesis Applied Catalysis A: General 201 (2000) 13 22 Hydrogen addition to the Andrussow process for HCN synthesis A.S. Bodke, D.A. Olschki, L.D. Schmidt Department of Chemical Engineering and Materials Science,

More information

Mild Ignition Phenomena in Rapid Compression Machines

Mild Ignition Phenomena in Rapid Compression Machines 25 th ICDERS August 2 7, 2015 Leeds, UK Kevin P. Grogan a, S. Scott Goldsborough b, Matthias Ihme a a Stanford University, Stanford, CA 94305 b Argonne National Laboratory, Argonne, IL 60439 1 Introduction

More information

Effects of Damköhler number on flame extinction and reignition in turbulent nonpremixed flames using DNS

Effects of Damköhler number on flame extinction and reignition in turbulent nonpremixed flames using DNS Effects of Damköhler number on flame extinction and reignition in turbulent nonpremixed flames using DNS David O. Lignell a,, Jacqueline H. Chen b, Hans A. Schmutz a a Chemical Engineering Department,

More information

Analysis of lift-off height and structure of n-heptane tribrachial flames in laminar jet configuration

Analysis of lift-off height and structure of n-heptane tribrachial flames in laminar jet configuration Analysis of lift-off height and structure of n-heptane tribrachial flames in laminar jet configuration Stefano Luca*, Fabrizio Bisetti Clean Combustion Research Center, King Abdullah University of Science

More information

Presentation Start. Zero Carbon Energy Solutions 4/06/06 10/3/2013:; 1

Presentation Start. Zero Carbon Energy Solutions 4/06/06 10/3/2013:; 1 Presentation Start 10/3/2013:; 1 4/06/06 What is an Explosion? Keller, J.O. President and CEO,, ISO TC 197, Technical Program Director for the Built Environment and Safety; Gresho, M. President, FP2FIRE,

More information

CALCULATION OF THE UPPER EXPLOSION LIMIT OF METHANE-AIR MIXTURES AT ELEVATED PRESSURES AND TEMPERATURES

CALCULATION OF THE UPPER EXPLOSION LIMIT OF METHANE-AIR MIXTURES AT ELEVATED PRESSURES AND TEMPERATURES CALCULATION OF THE UPPER EXPLOSION LIMIT OF METHANE-AIR MIXTURES AT ELEVATED PRESSURES AND TEMPERATURES F. Van den Schoor 1, F. Verplaetsen 2 and J. Berghmans 1 1 Katholieke Universiteit Leuven, Department

More information

NUMERICAL ANALYSIS OF TURBULENT FLAME IN AN ENCLOSED CHAMBER

NUMERICAL ANALYSIS OF TURBULENT FLAME IN AN ENCLOSED CHAMBER NUMERICAL ANALYSIS OF TURBULENT FLAME IN AN ENCLOSED CHAMBER Naveen Kumar D 1*, Pradeep R 2 and Bhaktavatsala H R 3 1 Assistant Professor Department of Mechanical Engineering, M S Engineering College,

More information

REDIM reduced modeling of quenching at a cold inert wall with detailed transport and different mechanisms

REDIM reduced modeling of quenching at a cold inert wall with detailed transport and different mechanisms 26 th ICDERS July 3 th August 4 th, 217 Boston, MA, USA REDIM reduced modeling of quenching at a cold inert wall with detailed transport and different mechanisms Christina Strassacker, Viatcheslav Bykov,

More information

Modeling instabilities in lean premixed turbulent combustors using detailed chemical kinetics

Modeling instabilities in lean premixed turbulent combustors using detailed chemical kinetics Accepted for publication in Combustion Science and Technology Modeling instabilities in lean premixed turbulent combustors using detailed chemical kinetics Bjørn Lilleberg, Ivar S. Ertesvåg and Kjell Erik

More information

THERMODYNAMIC ANALYSIS OF COMBUSTION PROCESSES FOR PROPULSION SYSTEMS

THERMODYNAMIC ANALYSIS OF COMBUSTION PROCESSES FOR PROPULSION SYSTEMS 2nd AIAA Aerospace Sciences Paper 2-33 Meeting and Exhibit January -8, 2, Reno, NV THERMODYNAMIC ANALYSIS OF COMBUSTION PROCESSES FOR PROPULSION SYSTEMS E. Wintenberger and J. E. Shepherd Graduate Aeronautical

More information

A comparison between two different Flamelet reduced order manifolds for non-premixed turbulent flames

A comparison between two different Flamelet reduced order manifolds for non-premixed turbulent flames 8 th U. S. National Combustion Meeting Organized by the Western States Section of the Combustion Institute and hosted by the University of Utah May 19-22, 2013 A comparison between two different Flamelet

More information

Hierarchical approach

Hierarchical approach Chemical mechanisms Examine (i) ways in which mechanisms are constructed, (ii)their dependence on rate and thermodynamic data and (iii) their evaluation using experimental targets Copyright 2011 by Michael

More information

Rouen LBV 2012 ACCURACY OF TWO METHODS TO MEASURE LAMINAR FLAME SPEEDS: (1) STEADY BUNSEN BURNER FLAMES AND (2) SPHERICAL FLAMES IN BOMBS.

Rouen LBV 2012 ACCURACY OF TWO METHODS TO MEASURE LAMINAR FLAME SPEEDS: (1) STEADY BUNSEN BURNER FLAMES AND (2) SPHERICAL FLAMES IN BOMBS. Rouen LBV 2012 ACCURACY OF TWO METHODS TO MEASURE LAMINAR FLAME SPEEDS: (1) STEADY BUNSEN BURNER FLAMES AND (2) SPHERICAL FLAMES IN BOMBS. A. Bonhomme, T. Boushaki*, L. Selle, B. Ferret and T. Poinsot

More information

Modeling and Simulation of Plasma-Assisted Ignition and Combustion

Modeling and Simulation of Plasma-Assisted Ignition and Combustion Modeling and Simulation of Plasma-Assisted Ignition and Combustion Vigor Yang and Sharath Nagaraja Georgia Institute of Technology Atlanta, GA AFOSR MURI Fundamental Mechanisms, Predictive Modeling, and

More information

Lecture 7 Detonation Waves

Lecture 7 Detonation Waves Lecture 7 etonation Waves p strong detonation weak detonation weak deflagration strong deflagration / 0 v =/ University of Illinois at Urbana- Champaign eflagrations produce heat Thermal di usivity th

More information

Fuel 93 (2012) Contents lists available at SciVerse ScienceDirect. Fuel. journal homepage:

Fuel 93 (2012) Contents lists available at SciVerse ScienceDirect. Fuel. journal homepage: Fuel 93 (2012) 339 350 Contents lists available at SciVerse ScienceDirect Fuel journal homepage: www.elsevier.com/locate/fuel Evaluation of chemical-kinetics models for n-heptane combustion using a multidimensional

More information

Well Stirred Reactor Stabilization of flames

Well Stirred Reactor Stabilization of flames Well Stirred Reactor Stabilization of flames Well Stirred Reactor (see books on Combustion ) Stabilization of flames in high speed flows (see books on Combustion ) Stabilization of flames Although the

More information

4. Combustion mechanism of fuel gases. 4.1 Reaction sequence Reaction mechanism. Reactions like (4-1) (4-2)

4. Combustion mechanism of fuel gases. 4.1 Reaction sequence Reaction mechanism. Reactions like (4-1) (4-2) 4. Combustion mechanism of fuel gases 4.1 Reaction sequence 4.1.1 Reaction mechanism Reactions like or CH 4 + O CO + H O (4-1) CO + 1 O CO (4-) do not actually take place. These equations are the summarizing

More information

Combustion Chemistry

Combustion Chemistry Combustion Chemistry Hai Wang Stanford University 2015 Princeton-CEFRC Summer School On Combustion Course Length: 3 hrs June 22 26, 2015 Copyright 2015 by Hai Wang This material is not to be sold, reproduced

More information

Simulation of Turbulent Lifted Flames and their Transient Propagation

Simulation of Turbulent Lifted Flames and their Transient Propagation 25 th ICDERS August 2-7th, 2015 Leeds, UK Simulation of Turbulent Lifted Flames and their Transient Propagation S. Ruan, Z. Chen, N. Swaminathan University of Cambridge Cambridge, UK 1 Introduction Turbulent

More information

AAE COMBUSTION AND THERMOCHEMISTRY

AAE COMBUSTION AND THERMOCHEMISTRY 5. COMBUSTIO AD THERMOCHEMISTRY Ch5 1 Overview Definition & mathematical determination of chemical equilibrium, Definition/determination of adiabatic flame temperature, Prediction of composition and temperature

More information

a 16 It involves a change of laminar burning velocity, widening or narrowing combustion limits for

a 16 It involves a change of laminar burning velocity, widening or narrowing combustion limits for Peculiarities of filtration combustion of hydrogen-, propane- and methane-air mixtures in inert porous media. Kakutkina N.A., Korzhavin A.A., Mbarawa M. * Institute of chemical kinetics and combustion

More information

Numerical investigation of flame propagation in small thermally-participating, adiabatic tubes

Numerical investigation of flame propagation in small thermally-participating, adiabatic tubes Paper # 7MI-181 Topic: Microcombustion and New Combustion Devices 8 th US National Combustion Meeting Organized by the Western States Section of the Combustion Institute and hosted by the University of

More information

Development of Reduced Mechanisms for Numerical Modelling of Turbulent Combustion

Development of Reduced Mechanisms for Numerical Modelling of Turbulent Combustion Worshop on Numerical Aspects of Reduction in Chemical Kinetics CERMICS-ENPC Cite Descartes - Champus sur Marne, France, September 2nd, 1997 Abstract Development of Reduced Mechanisms for Numerical Modelling

More information

Numerical Simulation of Hydrogen Gas Turbines using Flamelet Generated Manifolds technique on Open FOAM

Numerical Simulation of Hydrogen Gas Turbines using Flamelet Generated Manifolds technique on Open FOAM Numerical Simulation of Hydrogen Gas Turbines using Flamelet Generated Manifolds technique on Open FOAM Alessio Fancello (M.Sc.) Department of Mechanical Engineering Combustion Technology Technische Universiteit

More information

LAMINAR FLAME PROPAGATION IN MIXTURES WITH COMPOSITIONAL STRATIFICATION AT SMALL LENGTH SCALES DAVID P. SCHMIDT THESIS

LAMINAR FLAME PROPAGATION IN MIXTURES WITH COMPOSITIONAL STRATIFICATION AT SMALL LENGTH SCALES DAVID P. SCHMIDT THESIS LAMINAR FLAME PROPAGATION IN MIXTURES WITH COMPOSITIONAL STRATIFICATION AT SMALL LENGTH SCALES BY DAVID P. SCHMIDT THESIS Submitted in partial fulfillment of the requirements for the degree of Master of

More information

MUSCLES. Presented by: Frank Wetze University of Karlsruhe (TH) - EBI / VB month review, 21 September 2004, Karlsruhe

MUSCLES. Presented by: Frank Wetze University of Karlsruhe (TH) - EBI / VB month review, 21 September 2004, Karlsruhe MUSCLES Modelling of UnSteady Combustion in Low Emission Systems G4RD-CT-2002-00644 R&T project within the 5 th Framework program of the European Union: 1 Numerical computations of reacting flow field

More information

TURBINE BURNERS: Engine Performance Improvements; Mixing, Ignition, and Flame-Holding in High Acceleration Flows

TURBINE BURNERS: Engine Performance Improvements; Mixing, Ignition, and Flame-Holding in High Acceleration Flows TURBINE BURNERS: Engine Performance Improvements; Mixing, Ignition, and Flame-Holding in High Acceleration Flows Presented by William A. Sirignano Mechanical and Aerospace Engineering University of California

More information

Reacting Gas Mixtures

Reacting Gas Mixtures Reacting Gas Mixtures Reading Problems 15-1 15-7 15-21, 15-32, 15-51, 15-61, 15-74 15-83, 15-91, 15-93, 15-98 Introduction thermodynamic analysis of reactive mixtures is primarily an extension of the principles

More information

Interaction of Lewis number and heat loss effects for a laminar premixed flame propagating in a channel

Interaction of Lewis number and heat loss effects for a laminar premixed flame propagating in a channel International Journal of Thermal Sciences 47 (2008) 84 92 www.elsevier.com/locate/ijts Interaction of Lewis number and heat loss effects for a laminar premixed flame propagating in a channel Subhadeep

More information

arxiv: v1 [physics.flu-dyn] 25 Nov 2018

arxiv: v1 [physics.flu-dyn] 25 Nov 2018 Combustion regimes in sequential combustors: Flame propagation and autoignition at elevated temperature and pressure O. Schulz,a, N. Noiray,a a CAPS Laboratory, Department of Mechanical and Process Engineering,

More information

A validation study of the flamelet approach s ability to predict flame structure when fluid mechanics are fully resolved

A validation study of the flamelet approach s ability to predict flame structure when fluid mechanics are fully resolved Center for Turbulence Research Annual Research Briefs 2009 185 A validation study of the flamelet approach s ability to predict flame structure when fluid mechanics are fully resolved By E. Knudsen AND

More information

Laminar flame speed (burning velocity) reactants. propagating flame front. products. reactants

Laminar flame speed (burning velocity) reactants. propagating flame front. products. reactants Laminar flame speed (burning velocity) Introduction One of the most important parameters, influencing both, the combustion system design and combustion process control, is the flame speed. The flame speed

More information

Super-adiabatic flame temperatures in premixed methane-oxygen flames

Super-adiabatic flame temperatures in premixed methane-oxygen flames Super-adiabatic flame temperatures in premixed methane-oxygen flames Björn Stelzner, Christof Weis, Peter Habisreuther, Nikolaos Zarzalis, Dimosthenis Trimis Karlsruhe Institute of Technology, Engler-Bunte-Institute,

More information

New sequential combustion technologies for heavy-duty gas turbines

New sequential combustion technologies for heavy-duty gas turbines New sequential combustion technologies for heavy-duty gas turbines Conference on Combustion in Switzerland 07.09.2017 ETH Zurich Nicolas Noiray, Oliver Schulz CAPS Lab D-MAVT ETH Nicolas Noiray 07/09/17

More information

Asymptotic Analysis of the Structure of Moderately Rich Methane-Air Flames

Asymptotic Analysis of the Structure of Moderately Rich Methane-Air Flames Asymptotic Analysis of the Structure of Moderately Rich Methane-Air Flames K. SESHADRI,* X. S. BAI,** H. PITSCH, and N. PETERS Institut für Technische Mechanik, RWTH Aachen, D-52056 Aachen, Federal Republic

More information

Numerical Investigation of Ignition Delay in Methane-Air Mixtures using Conditional Moment Closure

Numerical Investigation of Ignition Delay in Methane-Air Mixtures using Conditional Moment Closure 21 st ICDERS July 23-27, 27 Poitiers, France Numerical Investigation of Ignition Delay in Methane-Air Mixtures using Conditional Moment Closure Ahmad S. El Sayed, Cécile B. Devaud Department of Mechanical

More information

DARS overview, IISc Bangalore 18/03/2014

DARS overview, IISc Bangalore 18/03/2014 www.cd-adapco.com CH2O Temperatur e Air C2H4 Air DARS overview, IISc Bangalore 18/03/2014 Outline Introduction Modeling reactions in CFD CFD to DARS Introduction to DARS DARS capabilities and applications

More information

LES Approaches to Combustion

LES Approaches to Combustion LES Approaches to combustion LES Approaches to combustion LES Approaches to Combustion W P Jones Department of Mechanical Engineering Imperial College London Exhibition Road London SW7 2AZ SIG on Combustion

More information

An Unsteady/Flamelet Progress Variable Method for LES of Nonpremixed Turbulent Combustion

An Unsteady/Flamelet Progress Variable Method for LES of Nonpremixed Turbulent Combustion 43rd AIAA Aerospace Sciences Meeting and Exhibit, -3 Jan 25, Reno, NV An Unsteady/Flamelet Progress Variable Method for LES of Nonpremixed Turbulent Combustion Heinz Pitsch and Matthias Ihme Stanford University,

More information

Analytical and Numerical Analysis of Micro Combustor for Gas Turbine Engine

Analytical and Numerical Analysis of Micro Combustor for Gas Turbine Engine Indian Journal of Science and Technology, Vol 9(48), DOI: 10.17485/ijst/2016/v9i48/89137, December 2016 ISSN (Print) : 0974-6846 ISSN (Online) : 0974-5645 Analytical and Numerical Analysis of Micro Combustor

More information

Combustion basics... We are discussing gaseous combustion in a mixture of perfect gases containing N species indexed with k=1 to N:

Combustion basics... We are discussing gaseous combustion in a mixture of perfect gases containing N species indexed with k=1 to N: Combustion basics... T. Poinsot poinsot@imft.fr Only the things you should know to understand the following courses Mainly elements of laminar flame theory for premixed and diffusion flames 1 Copyright

More information

NUMERICAL INVESTIGATION OF IGNITION DELAY TIMES IN A PSR OF GASOLINE FUEL

NUMERICAL INVESTIGATION OF IGNITION DELAY TIMES IN A PSR OF GASOLINE FUEL NUMERICAL INVESTIGATION OF IGNITION DELAY TIMES IN A PSR OF GASOLINE FUEL F. S. Marra*, L. Acampora**, E. Martelli*** marra@irc.cnr.it *Istituto di Ricerche sulla Combustione CNR, Napoli, ITALY *Università

More information

Flame shape transition in an impinging jet burner over triangular shape Bluff body

Flame shape transition in an impinging jet burner over triangular shape Bluff body Flame shape transition in an impinging jet burner over triangular shape Bluff body 1 N Moharana, 2 T M Muruganandam 1 M-Tech Scholar, IIT Madras, Chennai-600 036, India 2 Associate Professor, IIT Madras,

More information

Chemical Kinetics: NOx Mechanisms

Chemical Kinetics: NOx Mechanisms Mole Fraction Temperature (K) Chemical Kinetics: Nx Mechanisms Jerry Seitzman. 5.15.1.5 CH4 H HC x 1 Temperature Methane Flame.1..3 Distance (cm) 15 1 5 KineticsNx -1 Nx Formation Already pointed out that

More information

of Plasma Assisted Combustion

of Plasma Assisted Combustion Fundamental Mechanisms, Predictive Modeling, and Novel Aerospace Applications of Plasma Assisted Combustion Overview of OSU research plan Walter Lempert, Igor Adamovich, J. William Rich, and Jeffrey Sutton

More information

Carbon Science and Technology

Carbon Science and Technology ASI RESEARCH ARTICLE Carbon Science and Technology Received:10/03/2016, Accepted:15/04/2016 ------------------------------------------------------------------------------------------------------------------------------

More information

MOLECULAR TRANSPORT EFFECTS OF HYDROCARBON ADDITION ON TURBULENT HYDROGEN FLAME PROPAGATION

MOLECULAR TRANSPORT EFFECTS OF HYDROCARBON ADDITION ON TURBULENT HYDROGEN FLAME PROPAGATION MOLECULAR TRANSPORT EFFECTS OF HYDROCARBON ADDITION ON TURBULENT HYDROGEN FLAME PROPAGATION S. Muppala $,, J.X. Wen, N.K. Aluri, and F. Dinkelacker 3 Faculty of Engineering, Kingston University, Roehampton

More information

Budget analysis and model-assessment of the flamelet-formulation: Application to a reacting jet-in-cross-flow

Budget analysis and model-assessment of the flamelet-formulation: Application to a reacting jet-in-cross-flow Center for Turbulence Research Proceedings of the Summer Program 212 397 Budget analysis and model-assessment of the flamelet-formulation: Application to a reacting jet-in-cross-flow By W. L. Chan, Y.

More information

Effect of Varying Composition on Temperature Reconstructions Obtained from Refractive Index Measurements in Flames

Effect of Varying Composition on Temperature Reconstructions Obtained from Refractive Index Measurements in Flames Effect of Varying Composition on Temperature Reconstructions Obtained from Refractive Index Measurements in Flames XIAO QIN, XUDONG XIAO, ISHWAR K. PURI,* and SURESH K. AGGARWAL Department of Mechanical

More information

Investigation of ignition dynamics in a H2/air mixing layer with an embedded vortex

Investigation of ignition dynamics in a H2/air mixing layer with an embedded vortex Paper # 070LT-0211 The 8th US National Meeting of the Combustion Institute, Park City, UT, May 19-22, 2013 Investigation of ignition dynamics in a H2/air mixing layer with an embedded vortex S.K. Menon

More information

A Comprehensive Modeling Study of Hydrogen Oxidation

A Comprehensive Modeling Study of Hydrogen Oxidation A Comprehensive Modeling Study of Hydrogen Oxidation MARCUS Ó CONAIRE, 1 HENRY J. CURRAN, 2 JOHN M. SIMMIE, 1 WILLIAM J. PITZ, 3 CHARLES K. WESTBROOK 3 1 National University of Ireland, Galway, Ireland

More information

Lower limit of weak flame in a heated channel

Lower limit of weak flame in a heated channel Lower limit of weak flame in a heated channel Yosuke Tsuboi, Takeshi Yokomori*, Kaoru Maruta IFS, Tohoku University * Keio University Background No.2 For highly efficient combustion, HiCOT, HCCI, etc -

More information

EXPERIMENTAL AND NUMERICAL STUDIES FOR FLAME SPREAD OVER A FINITE-LENGTH PMMA WITH RADIATION EFFECT

EXPERIMENTAL AND NUMERICAL STUDIES FOR FLAME SPREAD OVER A FINITE-LENGTH PMMA WITH RADIATION EFFECT ISTP-16, 2005, PRAGUE 16 TH INTERNATIONAL SYMPOSIUM ON TRANSPORT PHENOMENA EXPERIMENTAL AND NUMERICAL STUDIES FOR FLAME SPREAD OVER A FINITE-LENGTH PMMA WITH RADIATION EFFECT Wen-Kuei Chang and Chiun-Hsun

More information