New sequential combustion technologies for heavy-duty gas turbines

Size: px
Start display at page:

Download "New sequential combustion technologies for heavy-duty gas turbines"

Transcription

1 New sequential combustion technologies for heavy-duty gas turbines Conference on Combustion in Switzerland ETH Zurich Nicolas Noiray, Oliver Schulz CAPS Lab D-MAVT ETH Nicolas Noiray 07/09/17 1

2 Sequential combustors in modern gas turbines Ansaldo (formerly Alstom) General Electrics See ASME paper GT Adapted from US A1 See also ASME paper GT Sequential Combustion in H-Class gas turbines. More than 700 MW in combined cycle with approx. 62% plant efficiency Increased operational flexibility Increased fuel flexibility Lower emissions Higher CC efficiency Nicolas Noiray 07/09/17 2

3 Associated scientific challenges Technological characteristics Increased complexity of the combustors architecture and of the operating concept Auto-ignition plays a key role 1 st and 2 nd stage flames influence each others Corresponding scientific needs Adequate combustion models for accurate simulations Validation from experimental data Deep understanding of ignition, anchoring, blow-off physics Modeling and control of combustor dynamics Nicolas Noiray 07/09/17 3

4 Related research at CAPS Experiments: Generic sequential burner Nicolas Noiray 07/09/17 4

5 Related research at CAPS Experiments: 1 st stage 2 nd stage Nicolas Noiray 07/09/17 5

6 Related research at CAPS Compressible Reactive Large Eddy Simulations with autoignition chemistry Nicolas Noiray 07/09/17 6

7 Are these really autoignition fronts? Paper submitted to C&F: Combustion regimes in sequential combustors: autoignition and flame propagation at elevated temperature and pressure. O. Schulz, N. Noiray Nicolas Noiray 07/09/17 7

8 Different types of 1D flames Hot reactants propagating flame at stoichiometric condition Autoignition front Very lean condition: most reactive mixture fraction (shortest autoignition delay) Nicolas Noiray 07/09/17 8

9 From flame propagation to autoignition: residence time Critical paramters: Mixture fraction, Inlet velocity, Mixture residence time upfront of the flame Conclusions from idealized 1D perfectly premixed situations can be very informative for the practical configurations (3D partially premixed and turbulent) Nicolas Noiray 07/09/17 10

10 Sequential Combustor Configuration Operating pressure 1 and 10 bar Inlet temperature 1350 and 1450 K Nicolas Noiray 07/09/17 114

11 Numercial Methods LES with AVBP (Gicquel et al. Comptes Rendus Mec., 2011) 12 millions mesh cells Dynamic Thickened Flame (DTF) model (Colin et al. Phys. Fluids, 2000) Analytically Reduced Chemistry (ARC) scheme Wall heat loss (Schulz et al. Proc. Combust. Inst. 2016) (Jaravel et al. Proc. Combust. Inst. 2016) (Pepiot and Pitsch Combust. Flame, 2008) Nicolas Noiray 07/09/17 65

12 Autoignition versus propagation at 10 Bar 10 Bar hot inlet à Autoignition dominates 10 Bar cold inlet à Propagation dominates Nicolas Noiray 07/09/17 13

13 Ignition of sequential combustor Conditions Operating pressure 10bar Simulated time 43ms 1st stage power 300kW 2 nd stage power 300kW 2 nd stage global phi nd stage inlet T 1350K Nicolas Noiray 07/09/17 14

14 Ignition of sequential combustor Conditions Operating pressure 1bar Simulated time 90ms 1st stage power 30kW 2 nd stage power 30kW 2 nd stage global phi nd stage inlet T 1450K Autoignition driven transient evolving to propagating flame Nicolas Noiray 07/09/17 15

15 Flame stabilisation mechanism of a reactive jet in crossflow Paper submitted to C&F: Large eddy simulation of a reactive jet in hot vitiated crossflow: flame stabilisation mechanism. O. Schulz, E. Piccoli, A. Felden, G. Staffelbach, N. Noiray Nicolas Noiray 07/09/17 16

16 Premixed jet flame behavior in a hot vitiated crossflow of lean combustion products Wagner, Renfro, Cetegen, Combustion and Flame 176 (2017), Conclusions/Outlook - Windward flame anchoring closer to the crossflow suggests that auto-ignition was most likely the dominant mechanism - Further characterization of out-of- plane motion may be necessary to interpret principal strain rate behavior along the windward flame edge. Nicolas Noiray 07/09/17 17

17 Detailed experimental data available Velocity magnitude Vorticity PIV LIF CH 2 O LIF OH Heat release location deduced from LIF PLIF Nicolas Noiray 07/09/17 18

18 3-d large eddy simulation Nicolas Noiray 07/09/17 19

19 Comparison with experiments Nicolas Noiray 07/09/17 20

20 Comparison with experiments Nicolas Noiray 07/09/17 21

21 Instantaneous snapshot from LES Nicolas Noiray 07/09/17 22

22 Windward flame stabilisation due to autoignition 1. Autoignition at most reactive mixture fraction Z_mr 2. Heat transfer to higher Z Nicolas Noiray 07/09/17 23

23 3-D flame dynamics Nicolas Noiray 07/09/17 24

24 3-d flame vortex interaction Nicolas Noiray 07/09/17 25

25 Nonlinear response of auto-ignition flames to entropy waves Combustion & Flame paper under revision: O. Schulz, N. Noiray Nicolas Noiray 07/09/17 26

26 The sound of flames Power generation Aeronautics Dynamic pressure Pulsations-induced damages Aerospace Gas turbine combustors Resonant feedback loop Time Liquid Rocket Propellant Chamber acoustics u p Frequency Q Reactive flow dynamics Boilers, Industrial furnaces Aero-engine combustors Structural vibrations Solid Rocket Propellant Time Afterburners Frequency Nicolas Noiray 07/09/17 27

27 Flame Response to Temperature Fluctuations 1350 K 1450 K Gain 1.7 Gain 3.4 Nicolas Noiray 07/09/17 28

28 Flame Response to Temperature Fluctuations Nicolas Noiray 07/09/17 29

29 Decrease of inlet temperature 1450 K 1350 K Nicolas Noiray 07/09/17 30

30 0-D Autoignition Delays (CANTERA) 1350 K 1450 K Nicolas Noiray 07/09/17 31

31 Non-linear flame response to T fluctuations Nicolas Noiray 07/09/17 32

32 Conclusions and Outlook Significant progress over the last years in terms of simulations and modeling capabilities Research effort to be pursued in topics like Auto-ignition in turbulent environment at relevant conditions, Analytically Reduced Chemistry, Combustion modelling for partially premixed flames, Combustor dynamics associated with entropy waves Passive and active control of combustor dynamics Strong need for experimental data to develop and validate these combustion models Nicolas Noiray 07/09/17 33

33 Acknowledgement Nicolas Noiray 07/09/17 34

arxiv: v1 [physics.flu-dyn] 25 Nov 2018

arxiv: v1 [physics.flu-dyn] 25 Nov 2018 Combustion regimes in sequential combustors: Flame propagation and autoignition at elevated temperature and pressure O. Schulz,a, N. Noiray,a a CAPS Laboratory, Department of Mechanical and Process Engineering,

More information

XXXVIII Meeting of the Italian Section of the Combustion Institute

XXXVIII Meeting of the Italian Section of the Combustion Institute Coupling a Helmholtz solver with a Distributed Flame Transfer Function (DFTF) to study combustion instability of a longitudinal combustor equipped with a full-scale burner D. Laera*, S.M. Camporeale* davide.laera@poliba.it

More information

S. Kadowaki, S.H. Kim AND H. Pitsch. 1. Motivation and objectives

S. Kadowaki, S.H. Kim AND H. Pitsch. 1. Motivation and objectives Center for Turbulence Research Annual Research Briefs 2005 325 The dynamics of premixed flames propagating in non-uniform velocity fields: Assessment of the significance of intrinsic instabilities in turbulent

More information

Thermoacoustic Instabilities Research

Thermoacoustic Instabilities Research Chapter 3 Thermoacoustic Instabilities Research In this chapter, relevant literature survey of thermoacoustic instabilities research is included. An introduction to the phenomena of thermoacoustic instability

More information

Flame shape transition in an impinging jet burner over triangular shape Bluff body

Flame shape transition in an impinging jet burner over triangular shape Bluff body Flame shape transition in an impinging jet burner over triangular shape Bluff body 1 N Moharana, 2 T M Muruganandam 1 M-Tech Scholar, IIT Madras, Chennai-600 036, India 2 Associate Professor, IIT Madras,

More information

Numerical study of the ignition behavior of a post-discharge kernel in a turbulent stratified crossflow

Numerical study of the ignition behavior of a post-discharge kernel in a turbulent stratified crossflow Center for Turbulence Research Annual Research Briefs 217 63 Numerical study of the ignition behavior of a post-discharge kernel in a turbulent stratified crossflow By T. Jaravel, J. Labahn, B. Sforzo,

More information

Experimental analysis and large eddy simulation to determine the response of non premixed flame submitted to acoustic forcing

Experimental analysis and large eddy simulation to determine the response of non premixed flame submitted to acoustic forcing Experimental analysis and large eddy simulation to determine the response of non premixed flame submitted to acoustic forcing B. Varoquié, J.P. Légier, F. Lacas, D. Veynante and T. Poinsot Laboratoire

More information

Dynamics of Lean Premixed Systems: Measurements for Large Eddy Simulation

Dynamics of Lean Premixed Systems: Measurements for Large Eddy Simulation Dynamics of Lean Premixed Systems: Measurements for Large Eddy Simulation D. Galley 1,2, A. Pubill Melsió 2, S. Ducruix 2, F. Lacas 2 and D. Veynante 2 Y. Sommerer 3 and T. Poinsot 3 1 SNECMA Moteurs,

More information

Best Practice Guidelines for Combustion Modeling. Raphael David A. Bacchi, ESSS

Best Practice Guidelines for Combustion Modeling. Raphael David A. Bacchi, ESSS Best Practice Guidelines for Combustion Modeling Raphael David A. Bacchi, ESSS PRESENTATION TOPICS Introduction; Combustion Phenomenology; Combustion Modeling; Reaction Mechanism; Radiation; Case Studies;

More information

Tackling Combustor Design Problems with Large Eddy Simulation of Reacting Flows

Tackling Combustor Design Problems with Large Eddy Simulation of Reacting Flows MUSAF II Colloquium Sep. 18-20, 2013, CERFACS, Toulouse Tackling Combustor Design Problems with Large Eddy Simulation of Reacting Flows Wolfgang Polifke Fachgebiet für Thermodynamik Acknowledgements: Joao

More information

Large Eddy Simulations for the Flame Describing Function of a premixed turbulent swirling flame

Large Eddy Simulations for the Flame Describing Function of a premixed turbulent swirling flame Large Eddy Simulations for the Flame Describing Function of a premixed turbulent swirling flame Davide LAERA, and Aimee S. MORGANS Department of Mechanical Engineering, Imperial College London, London,

More information

Flame / wall interaction and maximum wall heat fluxes in diffusion burners

Flame / wall interaction and maximum wall heat fluxes in diffusion burners Flame / wall interaction and maximum wall heat fluxes in diffusion burners de Lataillade A. 1, Dabireau F. 1, Cuenot B. 1 and Poinsot T. 1 2 June 5, 2002 1 CERFACS 42 Avenue Coriolis 31057 TOULOUSE CEDEX

More information

ANSYS Advanced Solutions for Gas Turbine Combustion. Gilles Eggenspieler 2011 ANSYS, Inc.

ANSYS Advanced Solutions for Gas Turbine Combustion. Gilles Eggenspieler 2011 ANSYS, Inc. ANSYS Advanced Solutions for Gas Turbine Combustion Gilles Eggenspieler ANSYS, Inc. 1 Agenda Steady State: New and Existing Capabilities Reduced Order Combustion Models Finite-Rate Chemistry Models Chemistry

More information

Spontaneous Oscillations in LNGT Combustors: CFD Simulation

Spontaneous Oscillations in LNGT Combustors: CFD Simulation Spontaneous Oscillations in LNGT Combustors: CFD Simulation V. Di Sarli, A. Di Benedetto and F. S. Marra Istituto di Ricerche sulla Combustione - C.N.R., Naples - ITALY INTRODUCTION The development of

More information

Combustion. Indian Institute of Science Bangalore

Combustion. Indian Institute of Science Bangalore Combustion Indian Institute of Science Bangalore Combustion Applies to a large variety of natural and artificial processes Source of energy for most of the applications today Involves exothermic chemical

More information

COMBUSTION DYNAMICS IN A RIJKE TUBE (PULSED COMBUSTOR) Learning Objectives

COMBUSTION DYNAMICS IN A RIJKE TUBE (PULSED COMBUSTOR) Learning Objectives COMBUSTION DYNAMICS IN A RIJKE TUBE (PULSED COMBUSTOR) Rijke Tube Lab - 1 Learning Objectives 1. Familiarization with the characteristics of resonant systems, frequencies and mode shapes 2. Introduction

More information

Large-eddy simulation of an industrial furnace with a cross-flow-jet combustion system

Large-eddy simulation of an industrial furnace with a cross-flow-jet combustion system Center for Turbulence Research Annual Research Briefs 2007 231 Large-eddy simulation of an industrial furnace with a cross-flow-jet combustion system By L. Wang AND H. Pitsch 1. Motivation and objectives

More information

Towards regime identification and appropriate chemistry tabulation for computation of autoigniting turbulent reacting flows

Towards regime identification and appropriate chemistry tabulation for computation of autoigniting turbulent reacting flows Center for Turbulence Research Annual Research Briefs 009 199 Towards regime identification and appropriate chemistry tabulation for computation of autoigniting turbulent reacting flows By M. Kostka, E.

More information

Topics in Other Lectures Droplet Groups and Array Instability of Injected Liquid Liquid Fuel-Films

Topics in Other Lectures Droplet Groups and Array Instability of Injected Liquid Liquid Fuel-Films Lecture Topics Transient Droplet Vaporization Convective Vaporization Liquid Circulation Transcritical Thermodynamics Droplet Drag and Motion Spray Computations Turbulence Effects Topics in Other Lectures

More information

Large Eddy Simulation of Flame Flashback by Combustion Induced Vortex Breakdown

Large Eddy Simulation of Flame Flashback by Combustion Induced Vortex Breakdown June 30 - July 3, 2015 Melbourne, Australia 9 1C-5 Large Eddy Simulation of Flame Flashback by Combustion Induced Vortex Breakdown Eike Tangermann Institut für Mathematik und Rechneranwendung Universität

More information

Large Eddy Simulation of Piloted Turbulent Premixed Flame

Large Eddy Simulation of Piloted Turbulent Premixed Flame Large Eddy Simulation of Piloted Turbulent Premixed Flame Veeraraghava Raju Hasti, Robert P Lucht and Jay P Gore Maurice J. Zucrow Laboratories School of Mechanical Engineering Purdue University West Lafayette,

More information

Ignition delay-time study of fuel-rich CH 4 /air and CH 4 /additive/air mixtures over a wide temperature range at high pressure

Ignition delay-time study of fuel-rich CH 4 /air and CH 4 /additive/air mixtures over a wide temperature range at high pressure 25 th ICDERS August 2 7, 2015 Leeds, UK Ignition delay-time study of fuel-rich CH 4 /air and CH 4 /additive/air mixtures over a wide temperature range at high pressure Jürgen Herzler, Mustapha Fikri, Oliver

More information

TURBINE BURNERS: Engine Performance Improvements; Mixing, Ignition, and Flame-Holding in High Acceleration Flows

TURBINE BURNERS: Engine Performance Improvements; Mixing, Ignition, and Flame-Holding in High Acceleration Flows TURBINE BURNERS: Engine Performance Improvements; Mixing, Ignition, and Flame-Holding in High Acceleration Flows Presented by William A. Sirignano Mechanical and Aerospace Engineering University of California

More information

TOPICAL PROBLEMS OF FLUID MECHANICS 97

TOPICAL PROBLEMS OF FLUID MECHANICS 97 TOPICAL PROBLEMS OF FLUID MECHANICS 97 DOI: http://dx.doi.org/10.14311/tpfm.2016.014 DESIGN OF COMBUSTION CHAMBER FOR FLAME FRONT VISUALISATION AND FIRST NUMERICAL SIMULATION J. Kouba, J. Novotný, J. Nožička

More information

A validation study of the flamelet approach s ability to predict flame structure when fluid mechanics are fully resolved

A validation study of the flamelet approach s ability to predict flame structure when fluid mechanics are fully resolved Center for Turbulence Research Annual Research Briefs 2009 185 A validation study of the flamelet approach s ability to predict flame structure when fluid mechanics are fully resolved By E. Knudsen AND

More information

Analysis of Interaction between Acoustic Waves and CH 4 /Air Laminar Partially Premixed Flames by means of OH-PLIF

Analysis of Interaction between Acoustic Waves and CH 4 /Air Laminar Partially Premixed Flames by means of OH-PLIF Analysis of Interaction between Acoustic Waves and CH 4 /Air Laminar Partially Premixed Flames by means of OH-PLIF T. Pagliaroli *, R. Bruschi, E. Giacomazzi, M. Marrocco, C. Stringola, E. Giulietti ENEA,

More information

FLAME WRINKLING FACTOR DYNAMIC MODELING FOR LARGE EDDY SIMULATIONS OF TURBULENT PREMIXED COMBUSTION

FLAME WRINKLING FACTOR DYNAMIC MODELING FOR LARGE EDDY SIMULATIONS OF TURBULENT PREMIXED COMBUSTION August 8 -, Poitiers, France FLAME WRINKLING FACTOR DYNAMIC MODELING FOR LARGE EDDY SIMULATIONS OF TURBULENT PREMIXED COMBUSTION Thomas Schmitt, Matthieu Boileau, Denis Veynante Laboratoire EMC CNRS -

More information

Plasma-Assisted Combustion Studies at AFRL

Plasma-Assisted Combustion Studies at AFRL Plasma-Assisted Combustion Studies at AFRL MURI Kickoff Meeting 4 November 2009 Cam Carter, Tim Ombrello & Mike Brown* Aerospace Propulsion Division Propulsion Directorate Air Force Research Laboratory

More information

A Novel FEM Method for Predicting Thermoacoustic Combustion Instability

A Novel FEM Method for Predicting Thermoacoustic Combustion Instability Excerpt from the Proceedings of the COMSOL Conference 009 Milan A Novel FEM Method for Predicting Thermoacoustic Combustion Instability G. Campa *, S.M. Camporeale Politecnico di Bari * campa@imedado.poliba.it,

More information

Impact of numerical method on auto-ignition in a temporally evolving mixing layer at various initial conditions

Impact of numerical method on auto-ignition in a temporally evolving mixing layer at various initial conditions Journal of Physics: Conference Series PAPER OPEN ACCESS Impact of numerical method on auto-ignition in a temporally evolving mixing layer at various initial conditions To cite this article: A Rosiak and

More information

Numerical Simulations of Hydrogen Auto-ignition in a Turbulent Co-flow of Heated Air with a Conditional Moment Closure

Numerical Simulations of Hydrogen Auto-ignition in a Turbulent Co-flow of Heated Air with a Conditional Moment Closure Numerical Simulations of Hydrogen Auto-ignition in a Turbulent Co-flow of Heated Air with a Conditional Moment Closure I. Stanković*, 1, A. Triantafyllidis, E. Mastorakos, C. Lacor 3 and B. Merci 1, 4

More information

Analysis of dynamic models for turbulent premixed combustion

Analysis of dynamic models for turbulent premixed combustion Center for Turbulence Research Proceedings of the Summer Program 2012 387 Analysis of dynamic models for turbulent premixed combustion By D. Veynante, T. Schmitt, M. Boileau AND V. Moureau Very few attempts

More information

Overview of Turbulent Reacting Flows

Overview of Turbulent Reacting Flows Overview of Turbulent Reacting Flows Outline Various Applications Overview of available reacting flow models LES Latest additions Example Cases Summary Reacting Flows Applications in STAR-CCM+ Ever-Expanding

More information

Modeling and Simulation of Plasma-Assisted Ignition and Combustion

Modeling and Simulation of Plasma-Assisted Ignition and Combustion Modeling and Simulation of Plasma-Assisted Ignition and Combustion Vigor Yang and Sharath Nagaraja Georgia Institute of Technology Atlanta, GA AFOSR MURI Fundamental Mechanisms, Predictive Modeling, and

More information

Isaac Boxx 1*, Campbell Carter 2, Michael Stöhr 1, Wolfgang Meier 1

Isaac Boxx 1*, Campbell Carter 2, Michael Stöhr 1, Wolfgang Meier 1 Experimental Study of Auto-Ignition Phenomena in Swirl-Stabilized LPP Flames in Gas Turbine Model Combustors using khz Framerate OH-PLIF and Stereo-PIV Isaac Boxx 1*, Campbell Carter 2, Michael Stöhr 1,

More information

Cellular structure of detonation wave in hydrogen-methane-air mixtures

Cellular structure of detonation wave in hydrogen-methane-air mixtures Open Access Journal Journal of Power Technologies 91 (3) (2011) 130 135 journal homepage:papers.itc.pw.edu.pl Cellular structure of detonation wave in hydrogen-methane-air mixtures Rafał Porowski, Andrzej

More information

Combustion Instability Modelling Using Different Flame Models

Combustion Instability Modelling Using Different Flame Models Combustion Instability Modelling Using Different Flame Models Somayeh Nosrati Shoar, Abbas Fakhrtabatabaei MAPNA Turbine Engineering and Manufacturing Company (TUGA MAPNA Building, No., Mirdamad Ave, Tehran,

More information

Erratum to: High speed mixture fraction and temperature imaging of pulsed, turbulent fuel jets auto igniting in high temperature, vitiated co flows

Erratum to: High speed mixture fraction and temperature imaging of pulsed, turbulent fuel jets auto igniting in high temperature, vitiated co flows DOI 10.1007/s00348-015-2101-9 ERRATUM Erratum to: High speed mixture fraction and temperature imaging of pulsed, turbulent fuel jets auto igniting in high temperature, vitiated co flows Michael J. Papageorge

More information

Large eddy simulation of hydrogen-air propagating flames

Large eddy simulation of hydrogen-air propagating flames Loughborough University Institutional Repository Large eddy simulation of hydrogen-air propagating flames This item was submitted to Loughborough University's Institutional Repository by the/an author.

More information

Analytical and Numerical Analysis of Micro Combustor for Gas Turbine Engine

Analytical and Numerical Analysis of Micro Combustor for Gas Turbine Engine Indian Journal of Science and Technology, Vol 9(48), DOI: 10.17485/ijst/2016/v9i48/89137, December 2016 ISSN (Print) : 0974-6846 ISSN (Online) : 0974-5645 Analytical and Numerical Analysis of Micro Combustor

More information

The original publication is available at

The original publication is available at M. Stöhr, Z. Yin and W. Meier, Interaction between velocity fluctuations and equivalence ratio fluctuations during thermoacoustic oscillations in a partially premixed swirl combustor, Proceedings of the

More information

Identification of azimuthal modes in annular combustion chambers

Identification of azimuthal modes in annular combustion chambers Center for Turbulence Research Annual Research Briefs 2011 249 Identification of azimuthal modes in annular combustion chambers By T. Poinsot, P. Wolf, G. Staffelbach, L. Y. M. Gicquel AND J. D. Muller

More information

LES/RANS Modeling of Turbulent Mixing in a Jet in Crossflow at Low Velocity Ratios

LES/RANS Modeling of Turbulent Mixing in a Jet in Crossflow at Low Velocity Ratios LES/RANS Modeling of Turbulent Mixing in a Jet in Crossflow at Low Velocity Ratios Juliane Prause, Yeshaswini Emmi, Berthold Noll and Manfred Aigner German Aerospace Center (DLR), Stuttgart, Germany Turbulent

More information

LES of an auto-igniting C 2 H 4 flame DNS

LES of an auto-igniting C 2 H 4 flame DNS Center for Turbulence Research Annual Research Briefs 2011 237 LES of an auto-igniting C 2 H 4 flame DNS By E. Knudsen, E. S. Richardson, J. H. Chen AND H. Pitsch 1. Motivation and objectives Large eddy

More information

Fundamentals Of Combustion (Part 1) Dr. D.P. Mishra Department of Aerospace Engineering Indian Institute of Technology, Kanpur

Fundamentals Of Combustion (Part 1) Dr. D.P. Mishra Department of Aerospace Engineering Indian Institute of Technology, Kanpur Fundamentals Of Combustion (Part 1) Dr. D.P. Mishra Department of Aerospace Engineering Indian Institute of Technology, Kanpur Lecture 10 Mixture fraction calculation for diffusion flames Let us start

More information

High-pressure shock-tube study of the ignition of fuel-rich CH 4 /air and CH 4 /additive/air mixtures over a wide temperature range

High-pressure shock-tube study of the ignition of fuel-rich CH 4 /air and CH 4 /additive/air mixtures over a wide temperature range High-pressure shock-tube study of the ignition of fuel-rich CH 4 /air and CH 4 /additive/air mixtures over a wide temperature range J. Herzler, M. Fikri, O. Welz, C. Schulz Institute for Combustion and

More information

Università degli Studi di Firenze Dipartimento di Energetica Sergio Stecco

Università degli Studi di Firenze Dipartimento di Energetica Sergio Stecco Università degli Studi di Firenze Dipartimento di Energetica Sergio Stecco Thermo-Acoustic Analysis of an Advanced Lean Injection System in a Tubular Combustor Configuration A. Andreini 1, B. Facchini

More information

Numerical Simulation of Hydrogen Gas Turbines using Flamelet Generated Manifolds technique on Open FOAM

Numerical Simulation of Hydrogen Gas Turbines using Flamelet Generated Manifolds technique on Open FOAM Numerical Simulation of Hydrogen Gas Turbines using Flamelet Generated Manifolds technique on Open FOAM Alessio Fancello (M.Sc.) Department of Mechanical Engineering Combustion Technology Technische Universiteit

More information

A Priori Model for the Effective Lewis Numbers in Premixed Turbulent Flames

A Priori Model for the Effective Lewis Numbers in Premixed Turbulent Flames Paper # 070LT-0267 Topic: Turbulent Flames 8 th US National Combustion Meeting Organized by the Western States Section of the Combustion Institute and hosted by the University of Utah May 19-22, 2013.

More information

Advanced Turbulence Models for Emission Modeling in Gas Combustion

Advanced Turbulence Models for Emission Modeling in Gas Combustion 1 Advanced Turbulence Models for Emission Modeling in Gas Combustion Ville Tossavainen, Satu Palonen & Antti Oksanen Tampere University of Technology Funding: Tekes, Metso Power Oy, Andritz Oy, Vattenfall

More information

Turbulent Premixed Combustion

Turbulent Premixed Combustion Turbulent Premixed Combustion Combustion Summer School 2018 Prof. Dr.-Ing. Heinz Pitsch Example: LES of a stationary gas turbine velocity field flame 2 Course Overview Part II: Turbulent Combustion Turbulence

More information

PIV measurements of cold flow field in a partially premixed bluff body burner M. Dutka, 1, M. Ditaranto 2, T. Løvås 1

PIV measurements of cold flow field in a partially premixed bluff body burner M. Dutka, 1, M. Ditaranto 2, T. Løvås 1 PIV measurements of cold flow field in a partially premixed bluff body burner M. Dutka, 1, M. Ditaranto 2, T. Løvås 1 1 Department of Energy and Process Engineering, Norwegian University of Science and

More information

DNS and LES of Turbulent Combustion

DNS and LES of Turbulent Combustion Computational Fluid Dynamics In Chemical Reaction Engineering IV June 19-24, 2005 Barga, Italy DNS and LES of Turbulent Combustion Luc Vervisch INSA de Rouen, IUF, CORIA-CNRS Pascale Domingo, Julien Réveillon

More information

Numerical Investigation of Ignition Delay in Methane-Air Mixtures using Conditional Moment Closure

Numerical Investigation of Ignition Delay in Methane-Air Mixtures using Conditional Moment Closure 21 st ICDERS July 23-27, 27 Poitiers, France Numerical Investigation of Ignition Delay in Methane-Air Mixtures using Conditional Moment Closure Ahmad S. El Sayed, Cécile B. Devaud Department of Mechanical

More information

NUMERICAL ANALYSIS OF TURBULENT FLAME IN AN ENCLOSED CHAMBER

NUMERICAL ANALYSIS OF TURBULENT FLAME IN AN ENCLOSED CHAMBER NUMERICAL ANALYSIS OF TURBULENT FLAME IN AN ENCLOSED CHAMBER Naveen Kumar D 1*, Pradeep R 2 and Bhaktavatsala H R 3 1 Assistant Professor Department of Mechanical Engineering, M S Engineering College,

More information

Heat release rate measurement in turbulent flames

Heat release rate measurement in turbulent flames Heat release rate measurement in turbulent flames BO Ayoola, R Balachandran, E Mastorakos, CF Kaminski Department of Chemical Engineering & Department of Engineering, University of Cambridge, Pembroke

More information

Reactive Flows using TransAT. June 2013 Jan van Rickenbach, Daniel Rakotonirina ASCOMP

Reactive Flows using TransAT. June 2013 Jan van Rickenbach, Daniel Rakotonirina ASCOMP Reactive Flows using TransAT June 2013 Jan van Rickenbach, Daniel Rakotonirina ASCOMP www.ascomp.ch jan@ascomp.ch Model portfolio Reactive flows Infinitely Fast Chemistry (non-premixed) EDC EDC-SDT (Scalar

More information

An Unsteady/Flamelet Progress Variable Method for LES of Nonpremixed Turbulent Combustion

An Unsteady/Flamelet Progress Variable Method for LES of Nonpremixed Turbulent Combustion 43rd AIAA Aerospace Sciences Meeting and Exhibit, -3 Jan 25, Reno, NV An Unsteady/Flamelet Progress Variable Method for LES of Nonpremixed Turbulent Combustion Heinz Pitsch and Matthias Ihme Stanford University,

More information

A mixed acoustic-entropy combustion instability in a realistic gas turbine

A mixed acoustic-entropy combustion instability in a realistic gas turbine Center for Turbulence Research Proceedings of the Summer Program 2012 449 A mixed acoustic-entropy combustion instability in a realistic gas turbine By E. otheau, L. Selle, Y. ery, T. Poinsot AND F. Nicoud

More information

Modelling thermo-acoustic instabilities in an oxy-fuel premixed burner

Modelling thermo-acoustic instabilities in an oxy-fuel premixed burner Modelling thermo-acoustic instabilities in an oy-fuel premied burner Nils Erland L. Haugen Øyvind Langørgen Sigurd Sannan Acknowledgements This presentation forms a part of the BIGCO project, performed

More information

HELMHOLTZ RESONATORS FOR DAMPING COMBUSTOR THERMOACOUSTICS

HELMHOLTZ RESONATORS FOR DAMPING COMBUSTOR THERMOACOUSTICS HELMHOLTZ RESONATORS FOR DAMPING COMBUSTOR THERMOACOUSTICS Dong Yang and Aimee S. Morgans Department of Aeronautics, Imperial College London, London, UK, SW7 AZ email: d.yang13@imperial.ac.uk Helmholtz

More information

Supersonic Combustion Simulation of Cavity-Stabilized Hydrocarbon Flames using Ethylene Reduced Kinetic Mechanism

Supersonic Combustion Simulation of Cavity-Stabilized Hydrocarbon Flames using Ethylene Reduced Kinetic Mechanism 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit 9-12 July 2006, Sacramento, California AIAA 2006-5092 Supersonic Combustion Simulation of Cavity-Stabilized Hydrocarbon Flames using Ethylene

More information

Air Force Research Laboratory

Air Force Research Laboratory Air Force Research Laboratory Air Force Research Laboratory Plasma Excited Oxygen Effects on Combustion and Perspectives on Applications to High-Speed Propulsion Date: 10 November 2011 Integrity Service

More information

Carbon Science and Technology

Carbon Science and Technology ASI RESEARCH ARTICLE Carbon Science and Technology Received:10/03/2016, Accepted:15/04/2016 ------------------------------------------------------------------------------------------------------------------------------

More information

A comparison between two different Flamelet reduced order manifolds for non-premixed turbulent flames

A comparison between two different Flamelet reduced order manifolds for non-premixed turbulent flames 8 th U. S. National Combustion Meeting Organized by the Western States Section of the Combustion Institute and hosted by the University of Utah May 19-22, 2013 A comparison between two different Flamelet

More information

Experimental investigation of combustion instabilities in lean swirl-stabilized partially-premixed flames in single- and multiple-burner setup

Experimental investigation of combustion instabilities in lean swirl-stabilized partially-premixed flames in single- and multiple-burner setup Original Research Article Experimental investigation of combustion instabilities in lean swirl-stabilized partially-premixed flames in single- and multiple-burner setup International Journal of Spray and

More information

Rouen LBV 2012 ACCURACY OF TWO METHODS TO MEASURE LAMINAR FLAME SPEEDS: (1) STEADY BUNSEN BURNER FLAMES AND (2) SPHERICAL FLAMES IN BOMBS.

Rouen LBV 2012 ACCURACY OF TWO METHODS TO MEASURE LAMINAR FLAME SPEEDS: (1) STEADY BUNSEN BURNER FLAMES AND (2) SPHERICAL FLAMES IN BOMBS. Rouen LBV 2012 ACCURACY OF TWO METHODS TO MEASURE LAMINAR FLAME SPEEDS: (1) STEADY BUNSEN BURNER FLAMES AND (2) SPHERICAL FLAMES IN BOMBS. A. Bonhomme, T. Boushaki*, L. Selle, B. Ferret and T. Poinsot

More information

Compressible Large Eddy Simulation of turbulent combustion in complex geometry on unstructured meshes

Compressible Large Eddy Simulation of turbulent combustion in complex geometry on unstructured meshes Compressible Large Eddy Simulation of turbulent combustion in complex geometry on unstructured meshes L. Selle a, G. Lartigue a, T. Poinsot b, R. Koch c, K.-U. Schildmacher c, W. Krebs d, P. Kaufmann d

More information

AAE COMBUSTION AND THERMOCHEMISTRY

AAE COMBUSTION AND THERMOCHEMISTRY 5. COMBUSTIO AD THERMOCHEMISTRY Ch5 1 Overview Definition & mathematical determination of chemical equilibrium, Definition/determination of adiabatic flame temperature, Prediction of composition and temperature

More information

HIGH PRESSURE METHANE-OXYGEN COMBUSTION KINETIC ANALYSIS

HIGH PRESSURE METHANE-OXYGEN COMBUSTION KINETIC ANALYSIS HIGH PRESSURE METHANE-OXYGEN COMBUSTION KINETIC ANALYSIS G. Saccone*, P. Natale*, F. Battista* g.saccone@cira.it p.natale@cira.it f.battista@cira.it *CIRA Italian Aerospace Research Centre, Capua Italy,

More information

CONTROL OF INSTABILITIES IN REACTIVE AND NON-REACTIVE FLOWS

CONTROL OF INSTABILITIES IN REACTIVE AND NON-REACTIVE FLOWS CONTROL OF INSTABILITIES IN REACTIVE AND NON-REACTIVE FLOWS Ann R. Karagozian Department of Mechanical and Aerospace Engineering University of California Los Angeles Propulsion Applications of EPRL Experimental

More information

WILLKOMMEN WELCOME VÄLKOMMEN BENVIDO BIENVENIDO VELKOMMEN DOBRO DOSLI KARIBU WELKOM BENVENUTO SELAMAT DATANG BIENVENUE CROESO SOO DHAWOW NAMASTE

WILLKOMMEN WELCOME VÄLKOMMEN BENVIDO BIENVENIDO VELKOMMEN DOBRO DOSLI KARIBU WELKOM BENVENUTO SELAMAT DATANG BIENVENUE CROESO SOO DHAWOW NAMASTE WELCOME VÄLKOMMEN BIENVENIDO DOBRO DOSLI WELKOM SELAMAT DATANG CROESO NAMASTE WILLKOMMEN BENVIDO VELKOMMEN KARIBU BENVENUTO BIENVENUE SOO DHAWOW 2016 Convergent Science. All Rights Reserved Combustion

More information

The Effect of Mixture Fraction on Edge Flame Propagation Speed

The Effect of Mixture Fraction on Edge Flame Propagation Speed 8 th U. S. National Combustion Meeting Organized by the Western States Section of the Combustion Institute and hosted by the University of Utah May 19-22, 213 The Effect of Mixture Fraction on Edge Flame

More information

HOT PARTICLE IGNITION OF METHANE FLAMES

HOT PARTICLE IGNITION OF METHANE FLAMES Proceedings of the Combustion Institute, Volume 29, 2002/pp. 1605 1612 HOT PARTICLE IGNITION OF METHANE FLAMES FOKION N. EGOLFOPOULOS, CHARLES S. CAMPBELL and M. GURHAN ANDAC Department of Aerospace and

More information

A Ghost-fluid method for large-eddy simulations of premixed combustion in complex geometries

A Ghost-fluid method for large-eddy simulations of premixed combustion in complex geometries Center for Turbulence Research Annual Research Briefs 2005 269 A Ghost-fluid method for large-eddy simulations of premixed combustion in complex geometries By V. Moureau, P. Minot, C. Bérat AND H. Pitsch

More information

HIGH-FIDELITY MODELS FOR COAL COMBUSTION: TOWARD HIGH-TEMPERATURE OXY-COAL FOR DIRECT POWER EXTRACTION

HIGH-FIDELITY MODELS FOR COAL COMBUSTION: TOWARD HIGH-TEMPERATURE OXY-COAL FOR DIRECT POWER EXTRACTION 1 HIGH-FIDELITY MODELS FOR COAL COMBUSTION: TOWARD HIGH-TEMPERATURE OXY-COAL FOR DIRECT POWER EXTRACTION XINYU ZHAO UNIVERSITY OF CONNECTICUT DANIEL C. HAWORTH 1, MICHAEL F. MODEST 2, JIAN CAI 3 1 THE

More information

DARS overview, IISc Bangalore 18/03/2014

DARS overview, IISc Bangalore 18/03/2014 www.cd-adapco.com CH2O Temperatur e Air C2H4 Air DARS overview, IISc Bangalore 18/03/2014 Outline Introduction Modeling reactions in CFD CFD to DARS Introduction to DARS DARS capabilities and applications

More information

Numerical prediction of interaction between combustion, acoustics and vibration in gas turbines

Numerical prediction of interaction between combustion, acoustics and vibration in gas turbines Numerical prediction of interaction between combustion, acoustics and vibration in gas turbines A. Pozarlik and J. B. W. Kok University of Twente, P.O. Box 217, 7500 AE Enschede, Netherlands a.k.pozarlik@utwente.nl

More information

Experimental Study on the Non-reacting Flowfield of a Low Swirl Burner

Experimental Study on the Non-reacting Flowfield of a Low Swirl Burner Experimental Study on the Non-reacting Flowfield of a Low Swirl Burner Hang Yin & Ren Dai School of Energy and Powering Engineering, University of Shanghai for Science and Technology Box 25, 516# Jungong

More information

Results of turbulent flame speed for H 2 -rich and syngas fuel mixtures measured

Results of turbulent flame speed for H 2 -rich and syngas fuel mixtures measured Results of turbulent flame speed for H 2 -rich and syngas fuel mixtures measured Deliverable 1.1.4 SEVENTH FRAMEWORK PROGRAMME FP7-ENERGY-2008-TREN-1 ENERGY-2008-6-CLEAN COAL TECHNOLOGIES Project Acronym:

More information

Dr.-Ing. Frank Beyrau Content of Lecture

Dr.-Ing. Frank Beyrau Content of Lecture Content of Lecture 1. Phenomenology of Combustion 2. Thermodynamic Fundamentals 3. Chemical Reaction Kinetics 4. Ignition and Ignition Limits 5. Laminar Flame Theory 6. Turbulent Combustion 7. Pollutants

More information

OpenFOAM for LES of premixed combustion and mixing processes. Hannes Kröger, Steffen Jahnke, Nikolai Kornev, Egon Hassel

OpenFOAM for LES of premixed combustion and mixing processes. Hannes Kröger, Steffen Jahnke, Nikolai Kornev, Egon Hassel OpenFOAM for LES of premixed combustion and mixing processes Hannes Kröger, Steffen Jahnke, Nikolai Kornev, Egon Hassel 1 Introduction LTT Rostock: OpenFOAM is used for LES in different projects LES of

More information

DEVELOPMENT OF CFD MODEL FOR A SWIRL STABILIZED SPRAY COMBUSTOR

DEVELOPMENT OF CFD MODEL FOR A SWIRL STABILIZED SPRAY COMBUSTOR DRAFT Proceedings of ASME IMECE: International Mechanical Engineering Conference & Exposition Chicago, Illinois Nov. 5-10, 2006 IMECE2006-14867 DEVELOPMENT OF CFD MODEL FOR A SWIRL STABILIZED SPRAY COMBUSTOR

More information

Towards the prediction of soot in aero-engine combustors with large eddy simulation

Towards the prediction of soot in aero-engine combustors with large eddy simulation Center for Turbulence Research Proceedings of the Summer Program 2014 117 Towards the prediction of soot in aero-engine combustors with large eddy simulation By B. Cuenot, E. Riber AND B. Franzelli A simplified

More information

Experimental Investigations of Partially Premixed. Hydrogen Combustion in Gas Turbine Environments. Andrew Jon North

Experimental Investigations of Partially Premixed. Hydrogen Combustion in Gas Turbine Environments. Andrew Jon North Experimental Investigations of Partially Premixed Hydrogen Combustion in Gas Turbine Environments By Andrew Jon North A dissertation submitted in partial satisfaction of the requirements for the degree

More information

Department of Mechanical Engineering BM 7103 FUELS AND COMBUSTION QUESTION BANK UNIT-1-FUELS

Department of Mechanical Engineering BM 7103 FUELS AND COMBUSTION QUESTION BANK UNIT-1-FUELS Department of Mechanical Engineering BM 7103 FUELS AND COMBUSTION QUESTION BANK UNIT-1-FUELS 1. Define the term fuels. 2. What are fossil fuels? Give examples. 3. Define primary fuels. Give examples. 4.

More information

Detection of Local Extinction and Re-ignition in Non-premixed Ethylene-air Flames Using Chemical Explosive Mode Analysis

Detection of Local Extinction and Re-ignition in Non-premixed Ethylene-air Flames Using Chemical Explosive Mode Analysis University of Connecticut DigitalCommons@UConn Master's Theses University of Connecticut Graduate School 5-9-2015 Detection of Local Extinction and Re-ignition in Non-premixed Ethylene-air Flames Using

More information

Thermoacoustic Instabilities in a Gas Turbine Combustor

Thermoacoustic Instabilities in a Gas Turbine Combustor Thermoacoustic Instabilities in a Gas Turbine Combustor The Royal Institute of Technology School of Technological Sciences Department of Vehicle and Aeronautical Engineering The Marcus Wallenberg Laboratory

More information

Proceedings of Meetings on Acoustics

Proceedings of Meetings on Acoustics Proceedings of Meetings on Acoustics Volume 19, 2013 http://acousticalsociety.org/ ICA 2013 Montreal Montreal, Canada 2-7 June 2013 Engineering Acoustics Session 1pEAa: Active and Passive Control of Fan

More information

Exercises in Combustion Technology

Exercises in Combustion Technology Exercises in Combustion Technology Exercise 4: Turbulent Premixed Flames Turbulent Flow: Task 1: Estimation of Turbulence Quantities Borghi-Peters diagram for premixed combustion Task 2: Derivation of

More information

Simulation of Nitrogen Emissions in a Low Swirl Burner

Simulation of Nitrogen Emissions in a Low Swirl Burner Simulation of Nitrogen Emissions in a Low Swirl Burner J. B. Bell, M. S. Day, X. Gao, M. J. Lijewski Center for Computational Science and Engineering Lawrence Berkeley National Laboratory November 6, 21

More information

LARGE-EDDY SIMULATION OF PARTIALLY PREMIXED TURBULENT COMBUSTION

LARGE-EDDY SIMULATION OF PARTIALLY PREMIXED TURBULENT COMBUSTION LARGE-EDDY SIMULATION OF PARTIALLY PREMIXED TURBULENT COMBUSTION Heinz Pitsch Mechanical Engineering Department Stanford University Stanford, CA 94305, USA h.pitsch@stanford.edu ABSTRACT The development

More information

The original publication is available at

The original publication is available at C.M. Arndt, M.J. Papageorge, F. Fuest, J.A. Sutton, W. Meier, M. Aigner, The role of temperature, mixture fraction, and scalar dissipation rate on transient methane injection and auto-ignition in a jet

More information

Premixed, Nonpremixed and Partially Premixed Flames

Premixed, Nonpremixed and Partially Premixed Flames Premixed, Nonpremixed and Partially Premixed Flames Flame (Reaction Zone) Flame (Reaction Zone) Flame (Reaction Zone) Fuel Air Fuel + Air φ 1 Products Fuel + Air φ > 1 F + A Air (+ F?) NONPREMIXED PREMIXED

More information

COMBUSTION DYNAMICS LINKED TO FLAME BEHAVIOUR IN A PARTIALLY PREMIXED SWIRLED INDUSTRIAL BURNER

COMBUSTION DYNAMICS LINKED TO FLAME BEHAVIOUR IN A PARTIALLY PREMIXED SWIRLED INDUSTRIAL BURNER MCS 5 Monastir, Tunisia, September 9-13 27 COMBUSTION DYNAMICS LINKED TO FLAME BEHAVIOUR IN A PARTIALLY PREMIXED SWIRLED INDUSTRIAL BURNER Fernando Biagioli 1, Felix Güthe and Bruno Schuermans ALSTOM (Switzerland),

More information

The influence of C ϕ is examined by performing calculations with the values C ϕ =1.2, 1.5, 2.0 and 3.0 for different chemistry mechanisms.

The influence of C ϕ is examined by performing calculations with the values C ϕ =1.2, 1.5, 2.0 and 3.0 for different chemistry mechanisms. The Influence of Chemical Mechanisms on PDF Calculations of Nonpremixed Piloted Jet Flames Renfeng Cao and Stephen B. Pope Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca,

More information

This paper is part of the following report: UNCLASSIFIED

This paper is part of the following report: UNCLASSIFIED UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADP023643 TITLE: Turbulent Mixing and Combustion for High-Speed, Air-Breathing Propulsion Applications DISTRIBUTION: Approved for

More information

Budget analysis and model-assessment of the flamelet-formulation: Application to a reacting jet-in-cross-flow

Budget analysis and model-assessment of the flamelet-formulation: Application to a reacting jet-in-cross-flow Center for Turbulence Research Proceedings of the Summer Program 212 397 Budget analysis and model-assessment of the flamelet-formulation: Application to a reacting jet-in-cross-flow By W. L. Chan, Y.

More information

LES-PDF SIMULATION OF A HIGHLY SHEARED TURBULENT PILOTED PREMIXED FLAME

LES-PDF SIMULATION OF A HIGHLY SHEARED TURBULENT PILOTED PREMIXED FLAME LES-PDF SIMULATION OF A HIGHLY SHEARED TURBULENT PILOTED PREMIXED FLAME Abstract V. N. Prasad, K. H. Luo and W. P. Jones k.h.luo@soton.ac.uk School of Engineering Sciences, University of Southampton, Southampton

More information

Gas Turbine Seminar -17 Lund University

Gas Turbine Seminar -17 Lund University Gas Turbine Seminar -17 Lund University Farligaste djuret? Lund University / LTH / Energy Sciences / TPE / Magnus Genrup / 2017-10-03 Page 2 Farligaste djuret? Lund University / LTH / Energy Sciences /

More information