Lecture 7 Detonation Waves

Size: px
Start display at page:

Download "Lecture 7 Detonation Waves"

Transcription

1 Lecture 7 etonation Waves p strong detonation weak detonation weak deflagration strong deflagration / 0 v =/ University of Illinois at Urbana- Champaign

2 eflagrations produce heat Thermal di usivity th 0 5 m 2 /s cold fresh mixture Chemical time t c s hot products l f S L Speed S L p th /t c S L 0 m/s Wave thickness l f p th t c l f 0 cm p /, T /T 0 6 propagation by di usion in the laboratory frame p, u = ( )S p T, Y L S L i u 0 =0 0, 0 T 0, burned gas cold, fresh gas l f Y i0 in the frame attached to the wave p, u = S L u 0 = S L, 0 T, Y i T 0, burned gas cold, fresh gas Y i0 fluid particle velocity u wave = u lab V wave V wave = S L University of Illinois at Urbana- Champaign 2

3 etonations rapid, violent, spectacular detonated products l R fresh mixture shock pressures up to 500,000 atm temperatures up to 5,500 K power density Watt/cm 2 shock followed by a fast flame propagation by shock compression in the laboratory frame p, u, 0 T, Y i u 0 =0 T 0, cold, fresh gas Y i0 in the frame attached to the wave p,, ( u) u 0 0 = T, Y i T 0, cold, fresh gas Y i0 fluid particle velocity u wave = u lab V wave V wave = University of Illinois at Urbana- Champaign 3

4 Governing Equations - Euler equations + r u =0 t u t = rp h t = p t Y i t =! i i usion e ects, all important in flames, are negligible in detonations because of their extremely high propagation velocity. Here u is the gas particle velocity, and v =/ will be used to denote the specific volume (volume per unit mass). These equations are supplemented with an equation of state, which for ideal gases is p = RT, and a caloric equation of state h = P N i= Y ih o i + R T c T o p dt where c p = P N i= Y ic pi is the mixture specific heat. Assuming equal specific heats, with c p independent of temperature, the enthalpy of the mixture is h = NX Y i h o i + c p (T T o ) i= The chemical reaction is assumed to be a one-step irreversible reaction R! P, and the reaction rate is described in terms of a single progress variable (for example, the mass fraction of the products P) such that = 0 corresponds to the unreacted material and = to completed reaction. The reaction rate is assumed of the form t =!! = k( ) e E/RT R h = Y R h o R + Y P h o P + c p (T T o )=( )h o R + h o P + ( ) T + const. R = (h o R h o P )+ T + const. = Q + pv + const. where use has been made of c p = R Caloric equation of state Equation of state h = pv = pv Q cp T Speed of sound c = p pv University of Illinois at Urbana- Champaign 4

5 laboratory frame wave-attached frame u u 0 =0 ( u) u0 = cold, fresh gas cold, fresh gas following flow u 0 = The following flow is determined by the rear boundary condition, and usually a rarefaction. u u 0 =0 ( u) For a steadily propagating detonation the shock velocity is constant and the flow in the reaction zone steady in a frame attached to the shock (the following rarefaction is necessarily unsteady). State ahead of the shock, v 0 (= 0 ), u 0, 0(= 0) State within the reaction zone p, v(= ), u, Steady, one dimensional conservation laws d ( u) =0 dx u du dx = dp dx u dh dx = u dp dx ) d ( u) =0 dx d dx p + u2 =0 d dx h + 2 u2 =0 in a frame attached to the wave 0 = ( u) = p + ( u) 2 h = h + 2 ( u)2 these relations connect the state at any point within the reaction zone to the state ahead of the shock ) p + p = m 2 (v v 0 ), m = 0 v = + v Q v 0 Rayleigh line and Hugoniot University of Illinois at Urbana- Champaign 5

6 S The Hugoniot is parametrized by, with = 0 corresponding to an inert shock and = to a completely reacted state. p W = v v 0 =0 The ZN structure Zel dovich, von Neueman, öring shock followed by a fast flame reaction zone fire T induction lead shock p Ahead of the wave, the gas is quiescent and there is insignificant reaction. Passage through the lead shock the gas is compressed, the pressure increases tremendously and its temperature rises thousands of degrees. The ensuing chemical reaction goes to completion very rapidly in a relatively thin reaction zone (or fire) behind the shock. University of Illinois at Urbana- Champaign 6

7 The two extreme Hugoniot curves correspond to = 0 and =. For a given shock velocity, all states within the reaction zone must lie on the corresponding Rayleigh line p = (v v 0 ) Since the Hugoniot reaction must also be satisfied, the portion of the Rayleigh line relevant to the ZN structure is that bounded by the two extreme Hugoniot curves (i.e., the solid portion NS). Starting with an initial state (,v 0 ), the state of a gas particle jumps to the point N along the shock-hugoniot (i.e., corresponding to = 0) upon passage through the lead shock. As the particle reacts, increases and the state of the particle slides down along the Rayleigh line towards the end point S crossing Hugoniot curves of increasing (i.e., corresponding to partial reaction Hugoniot curves). At the end of the reaction zone, the particle reaches the = Hugoniot at the final state S. The flow at the point S is subsonic. The lowest possible Rayleigh line is the one tangent to the complete-reaction Hugoniot (i.e., corresponding to = ). The final state in this case is the Chapman-Jouguet () state. The corresponding detonation speed,,isthe minimum speed consistent with the conservation laws. The flow at the point is sonic. N S N - von Neumann point S - strong detonation W - weak detonation - Chapman-Jouguet detonation p W = v v 0 = =0 University of Illinois at Urbana- Champaign 7

8 N S N - von Neumann point S - strong detonation W - weak detonation - Chapman-Jouguet detonation p N W = v v 0 = =0 The ZN structure is not possible for weak detonations. The ZN structure does not restrict the propagation speed for strong detonations. Therefore, wave speeds depend on the experimental configuration, or on the rear BCs. Strong detonations are therefore overdriven detonations, namely forced to run at velocity > by being pushed from behind by a piston, say. The question remains on how to determine. The detonation, is an unsupported detonation, namely one that is not pushed from behind, and travels at a speed determined by the conservation laws. University of Illinois at Urbana- Champaign 8

9 The rear BC can be thought to be a hypothetical piston following the wave. The question is how to determine for a given piston velocity u p (in a laboratoryfixed frame). We denote by u the particle speed at the end of the reaction zone and u corresponding value for the detonation. the u p >u u p reaction zone The detonation is overdriven. The detonation speed is chosen such that u p = u (), and the following flow is uniform. steady following flow u = u p u As u p is reduced towards u, the same qualitative picture remains, with the Neuman state N on the shock-hugoniot dropping lower and the final state S approaching the point. x As u p is reduced towards u, the final state S approaches the point and =. What happens when u p is reduced further? u p <u A further reduction in u p below u leaves the detonation speed and the reaction zone unchanged, since the final state has reached its lowest value on the fully-reacted Hugoniot. u p rarefaction reaction zone u The detonation wave (including the reaction zone) is now unsupported and continue to propagate at speed, una ected by the following flow. constant state x The following flow, however, must now be reduced to match the BC. And, unlike the previously uniform state, it is replaced by a (time-dependent) rarefaction wave, which could be followed by a constant state as necessary. The smaller u p, the larger the amplitude of the rarefaction. University of Illinois at Urbana- Champaign 9

10 The state of the gas immediately behind the shock is easily obtained from where m = 0. p + p = m 2 (v v 0 ) 2 v = +2 + v Q v 0 Using the first relation to eliminate v/v 0, one gets a quadratic equation for p, with two solutions ( p = + ( p0 2 2 ) /2 ) ± 2 Q The inert shock solution (denoted by subscript s) is found by setting = 0. One of the two solutions is the undisturbed state p =,v = v 0. The other is the state of an inert shock: p s = (M 2 0 ) 2(M0 2 ) v s = v 0 ( + )M0 2 v 0 u s = s where M 0 = /c 0 and c 2 0 = / 0 The spatial distribution behind the shock is determined from t =!! = k( ) e E/RT which in a frame attached to the shock is given by ( u) d dx = k( ) e R/RT which can be integrated to give Z x = 0 [ u( )] k( ) ee/rt d The end state is found when =. A natural length scale is the half-reaction length scale, obtained by setting =/2, namely Z /2 [ u( )] `/2 = k( ) ee/rt d 0 University of Illinois at Urbana- Champaign 0

11 Summer 203 Reaction zone structure of an unsupported detonation, with all variables plotted as a function of the distance from the lead shock, scaled with `/2. A prominent feature is the appearance of an induction zone, where there is only a small amount of reaction, followed by a rapid reaction zone that is well-separated from the shock.! istance from the shock Moshe Matalon u T p istance from the shock istance from the shock Moshe Matalon Moshe Matalon University of Illinois at Urbana- Champaign Ficke& & avis, 979

12 Curved detonations reacted products shock unreacted mixture n For weak curvature, in a frame attached to the ( (u )) + appleu =0 =! These equations are quasi-steady (and therefore independent of initial data) and quasi-planar (requiring only knowledge of the state of immediately behind the shock). A solution exists only if = (apple); i.e., and apple satisfy an eigenvalue relation that depends on the kinetics. etonation velocity vs curvature Bdzil & Stewart (2007) 9 n(mm/µsec) 8 High velocity branch 7 (Ignition) 6 ( n) 5 (Extinction) 4 ( n) 0 Low velocity branch x 3 c0 κ κ κ(mm) - For weak curvature apple, and for a rate law of the form! = k( following relations are obtained ) the apple for 0 < < appleln apple apple for = University of Illinois at Urbana- Champaign 2

13 The planar structure is highly unstable and is prone to result in transient threedimensional structures. Strehlow, 968 Cellular structure of a hydrogen-oxygen mixture University of Illinois at Urbana- Champaign 3

AA210A Fundamentals of Compressible Flow. Chapter 13 - Unsteady Waves in Compressible Flow

AA210A Fundamentals of Compressible Flow. Chapter 13 - Unsteady Waves in Compressible Flow AA210A Fundamentals of Compressible Flow Chapter 13 - Unsteady Waves in Compressible Flow The Shock Tube - Wave Diagram 13.1 Equations for irrotational, homentropic, unsteady flow ρ t + x k ρ U i t (

More information

IV. Compressible flow of inviscid fluids

IV. Compressible flow of inviscid fluids IV. Compressible flow of inviscid fluids Governing equations for n = 0, r const: + (u )=0 t u + ( u ) u= p t De e = + ( u ) e= p u+ ( k T ) Dt t p= p(, T ), e=e (,T ) Alternate forms of energy equation

More information

Detonation of Gas Particle Flow

Detonation of Gas Particle Flow 2 Detonation of Gas Particle Flow F. Zhang 2.1 Introduction Fine organic or metallic particles suspended in an oxidizing or combustible gas form a reactive particle gas mixture. Explosion pressures in

More information

Steady Deflagration Structure in Two-Phase Granular Propellants

Steady Deflagration Structure in Two-Phase Granular Propellants 12th ICDERS, Ann Arbor, Michigan July 23-28, 1989 Steady Deflagration Structure in Two-Phase Granular Propellants Joseph M. Powers 1, Mark E. Miller2, D. Scott Stewart3, and Herman Krier4 July 23-28, 1989

More information

AME 513. " Lecture 8 Premixed flames I: Propagation rates

AME 513.  Lecture 8 Premixed flames I: Propagation rates AME 53 Principles of Combustion " Lecture 8 Premixed flames I: Propagation rates Outline" Rankine-Hugoniot relations Hugoniot curves Rayleigh lines Families of solutions Detonations Chapman-Jouget Others

More information

Combustion Behind Shock Waves

Combustion Behind Shock Waves Paper 3F-29 Fall 23 Western States Section/Combustion Institute 1 Abstract Combustion Behind Shock Waves Sandeep Singh, Daniel Lieberman, and Joseph E. Shepherd 1 Graduate Aeronautical Laboratories, California

More information

n v molecules will pass per unit time through the area from left to

n v molecules will pass per unit time through the area from left to 3 iscosity and Heat Conduction in Gas Dynamics Equations of One-Dimensional Gas Flow The dissipative processes - viscosity (internal friction) and heat conduction - are connected with existence of molecular

More information

EQUATION OF STATE FOR MODELING THE DETONATION REACTION ZONE

EQUATION OF STATE FOR MODELING THE DETONATION REACTION ZONE EQUATION OF STATE FOR MODELING THE DETONATION REACTION ZONE D. Scott Stewart and Sunhee Yoo Department of Theoretical and Applied Mechanics University of Illinois, Urbana, IL 61801, USA William C. Davis

More information

An analytical model for direct initiation of gaseous detonations

An analytical model for direct initiation of gaseous detonations Issw21 An analytical model for direct initiation of gaseous detonations C.A. Eckett, J.J. Quirk, J.E. Shepherd Graduate Aeronautical Laboratories, California Institute of Technology, Pasadena CA 91125,

More information

THERMODYNAMIC ANALYSIS OF COMBUSTION PROCESSES FOR PROPULSION SYSTEMS

THERMODYNAMIC ANALYSIS OF COMBUSTION PROCESSES FOR PROPULSION SYSTEMS 2nd AIAA Aerospace Sciences Paper 2-33 Meeting and Exhibit January -8, 2, Reno, NV THERMODYNAMIC ANALYSIS OF COMBUSTION PROCESSES FOR PROPULSION SYSTEMS E. Wintenberger and J. E. Shepherd Graduate Aeronautical

More information

Application of a Laser Induced Fluorescence Model to the Numerical Simulation of Detonation Waves in Hydrogen-Oxygen-Diluent Mixtures

Application of a Laser Induced Fluorescence Model to the Numerical Simulation of Detonation Waves in Hydrogen-Oxygen-Diluent Mixtures Supplemental material for paper published in the International J of Hydrogen Energy, Vol. 30, 6044-6060, 2014. http://dx.doi.org/10.1016/j.ijhydene.2014.01.182 Application of a Laser Induced Fluorescence

More information

Lecture 2 Constitutive Relations

Lecture 2 Constitutive Relations Lecture 2 Constitutive Relations Conservation equations Dv = @ + r v =0 @t rp + r + g DY i + r ( Y iv i )= i i =1, 2,...,N { De = pr v + r q Dh + r q Z Y i p = R h = Y i h o i + c p d o W i We already

More information

Various lecture notes for

Various lecture notes for Various lecture notes for 18311. R. R. Rosales (MIT, Math. Dept., 2-337) April 12, 2013 Abstract Notes, both complete and/or incomplete, for MIT s 18.311 (Principles of Applied Mathematics). These notes

More information

The role of diffusion at shear layers in irregular detonations

The role of diffusion at shear layers in irregular detonations The role of diffusion at shear layers in irregular detonations Marco Arienti 1 Joseph E. Shepherd 2 1 United Technologies Research Center, 411 Silver Lane, East Hartford, CT 06108 2 California Institute

More information

Laminar Premixed Flames: Flame Structure

Laminar Premixed Flames: Flame Structure Laminar Premixed Flames: Flame Structure Combustion Summer School 2018 Prof. Dr.-Ing. Heinz Pitsch Course Overview Part I: Fundamentals and Laminar Flames Introduction Fundamentals and mass balances of

More information

Lecture 12. Droplet Combustion Spray Modeling. Moshe Matalon

Lecture 12. Droplet Combustion Spray Modeling. Moshe Matalon Lecture 12 Droplet Combustion Spray Modeling Spray combustion: Many practical applications liquid fuel is injected into the combustion chamber resulting in fuel spray. Spray combustion involves many physical

More information

Asymptotic theory of evolution and failure of self-sustained detonations

Asymptotic theory of evolution and failure of self-sustained detonations J. Fluid Mech. (5), vol. 55, pp. 161 19. c 5 Cambridge University Press DOI: 1.117/S114599 Printed in the United Kingdom 161 Asymptotic theory of evolution and failure of self-sustained detonations By

More information

UNIVERSITY OF CALGARY. Stability of Detonation Wave under Chain Branching Kinetics: Role of the Initiation Step. Michael Anthony Levy A THESIS

UNIVERSITY OF CALGARY. Stability of Detonation Wave under Chain Branching Kinetics: Role of the Initiation Step. Michael Anthony Levy A THESIS UNIVERSITY OF CALGARY Stability of Detonation Wave under Chain Branching Kinetics: Role of the Initiation Step by Michael Anthony Levy A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILLMENT

More information

The Importance of Curvature and Density Gradients for Nucleosynthesis by Detonations in Type Ia Supernovae

The Importance of Curvature and Density Gradients for Nucleosynthesis by Detonations in Type Ia Supernovae The Importance of Curvature and Density Gradients for Nucleosynthesis by Detonations in Type Ia Supernovae BROXTON MILES + DEAN TOWNSLEY FIFTY ONE ERGS 2017, CORVALLIS, OREGON JUNE 8, 2017 Requirements

More information

Detonation Structure

Detonation Structure Planar Detonations and Detonation Structure Jerry Seitzman. 5 Mole Fraction.5..5 CH4 HO HCO emerature Methane Flame...3 Distance (cm) 5 5 emerature (K) Detonations - Coyright 4-5 by Jerry M. Seitzman.

More information

Answers to Problem Set Number 04 for MIT (Spring 2008)

Answers to Problem Set Number 04 for MIT (Spring 2008) Answers to Problem Set Number 04 for 18.311 MIT (Spring 008) Rodolfo R. Rosales (MIT, Math. Dept., room -337, Cambridge, MA 0139). March 17, 008. Course TA: Timothy Nguyen, MIT, Dept. of Mathematics, Cambridge,

More information

Physics of Explosions

Physics of Explosions Physics of Explosions Instructor: Dr. Henry Tan Pariser/B4 MACE - Explosion Engineering School of Mechanical, Aerospace and Civil Engineering The University of Manchester Introduction Equation of state

More information

Gravity Waves Gravity Waves

Gravity Waves Gravity Waves Gravity Waves Gravity Waves 1 Gravity Waves Gravity Waves Kayak Surfing on ocean gravity waves Oregon Coast Waves: sea & ocean waves 3 Sound Waves Sound Waves: 4 Sound Waves Sound Waves Linear Waves compression

More information

Shock and Expansion Waves

Shock and Expansion Waves Chapter For the solution of the Euler equations to represent adequately a given large-reynolds-number flow, we need to consider in general the existence of discontinuity surfaces, across which the fluid

More information

INFLUENCE OF INITIAL DENSITY ON THE REACTION ZONE FOR STEADY-STATE DETONATION OF HIGH EXPLOSIVES

INFLUENCE OF INITIAL DENSITY ON THE REACTION ZONE FOR STEADY-STATE DETONATION OF HIGH EXPLOSIVES INFLUENCE OF INITIAL DENSITY ON THE REACTION ZONE FOR STEADY-STATE DETONATION OF HIGH EXPLOSIVES Alexander V. Utkin, Sergey A. Kolesnikov, Sergey V. Pershin, and Vladimir E. Fortov Institute of Problems

More information

Steady waves in compressible flow

Steady waves in compressible flow Chapter Steady waves in compressible flow. Oblique shock waves Figure. shows an oblique shock wave produced when a supersonic flow is deflected by an angle. Figure.: Flow geometry near a plane oblique

More information

AAE THERMOCHEMISTRY BASICS

AAE THERMOCHEMISTRY BASICS 5.4 THERMOCHEMISTRY BASICS Ch5 23 Energies in Chemical Reactions Enthalpy of Combustion (Reactions): Q CV H in = H reactant H out = H product REACTANTS Stoichiometric fuel-oxidizer (air) mixture at standard

More information

FLUID MECHANICS 3 - LECTURE 4 ONE-DIMENSIONAL UNSTEADY GAS

FLUID MECHANICS 3 - LECTURE 4 ONE-DIMENSIONAL UNSTEADY GAS FLUID MECHANICS 3 - LECTURE 4 ONE-DIMENSIONAL UNSTEADY GAS Consider an unsteady 1-dimensional ideal gas flow. We assume that this flow is spatially continuous and thermally isolated, hence, it is isentropic.

More information

Lecture 7 Flame Extinction and Flamability Limits

Lecture 7 Flame Extinction and Flamability Limits Lecture 7 Flame Extinction and Flamability Limits 7.-1 Lean and rich flammability limits are a function of temperature and pressure of the original mixture. Flammability limits of methane and hydrogen

More information

Initiation of stabilized detonations by projectiles

Initiation of stabilized detonations by projectiles Initiation of stabilized detonations by projectiles P. Hung and J. E. Shepherd, Graduate Aeronautical Laboratory, California Institute of Technology, Pasadena, CA 91125 USA Abstract. A high-speed projectile

More information

Thin airfoil theory. Chapter Compressible potential flow The full potential equation

Thin airfoil theory. Chapter Compressible potential flow The full potential equation hapter 4 Thin airfoil theory 4. ompressible potential flow 4.. The full potential equation In compressible flow, both the lift and drag of a thin airfoil can be determined to a reasonable level of accuracy

More information

Detonation initiation by hypervelocity projectiles

Detonation initiation by hypervelocity projectiles Detonation initiation 1 Detonation initiation by hypervelocity projectiles J. Bélanger, M.Kaneshige,J.E.Shepherd California Institute of Technology Pasadena, CA 91125 USA Abstract: We report experimental

More information

Thermodynamics Qualifying Exam Study Material

Thermodynamics Qualifying Exam Study Material Thermodynamics Qualifying Exam Study Material The candidate is expected to have a thorough understanding of undergraduate engineering thermodynamics topics. These topics are listed below for clarification.

More information

CapSel Euler The Euler equations. conservation laws for 1D dynamics of compressible gas. = 0 m t + (m v + p) x

CapSel Euler The Euler equations. conservation laws for 1D dynamics of compressible gas. = 0 m t + (m v + p) x CapSel Euler - 01 The Euler equations keppens@rijnh.nl conservation laws for 1D dynamics of compressible gas ρ t + (ρ v) x = 0 m t + (m v + p) x = 0 e t + (e v + p v) x = 0 vector of conserved quantities

More information

Chapter 17. For the most part, we have limited our consideration so COMPRESSIBLE FLOW. Objectives

Chapter 17. For the most part, we have limited our consideration so COMPRESSIBLE FLOW. Objectives Chapter 17 COMPRESSIBLE FLOW For the most part, we have limited our consideration so far to flows for which density variations and thus compressibility effects are negligible. In this chapter we lift this

More information

THRUST CHAMBER DYNAMICS AND PROPULSIVE PERFORMANCE OF AIRBREATHING PULSE DETONATION ENGINES

THRUST CHAMBER DYNAMICS AND PROPULSIVE PERFORMANCE OF AIRBREATHING PULSE DETONATION ENGINES The Pennsylvania State University The Graduate School Department of Mechanical and Nuclear Engineering THRUST CHAMBER DYNAMICS AND PROPULSIVE PERFORMANCE OF AIRBREATHING PULSE DETONATION ENGINES A Thesis

More information

DETONATION HAZARD CLASSIFICATION BASED ON THE CRITICAL ORIFICE PLATE DIAMETER FOR DETONATION PROPAGATION

DETONATION HAZARD CLASSIFICATION BASED ON THE CRITICAL ORIFICE PLATE DIAMETER FOR DETONATION PROPAGATION DETONATION HAZARD CLASSIFICATION BASED ON THE CRITICAL ORIFICE PLATE DIAMETER FOR DETONATION PROPAGATION by Mitchell Cross A thesis submitted to the Department of Mechanical and Materials Engineering In

More information

Astrophysical Combustion: From a Laboratory Flame to a Thermonuclear Supernova

Astrophysical Combustion: From a Laboratory Flame to a Thermonuclear Supernova 25 th ICDERS August 2 7, 2015 Leeds, UK : From a Laboratory Flame to a Thermonuclear Supernova Alexei Y. Poludnenko Naval Research Laboratory Washington, D.C., USA 1 Introduction Exothermic processes associated

More information

Fundamentals of Rotating Detonation. Toshi Fujiwara (Nagoya University)

Fundamentals of Rotating Detonation. Toshi Fujiwara (Nagoya University) Fundamentals of Rotating Detonation Toshi Fujiwara (Nagoya University) New experimental results Cylindical channel D=140/150mm Hydrogen air; p o =1.0bar Professor Piotr Wolanski P [bar] 10 9 8 7 6 5 4

More information

Radiative & Magnetohydrodynamic Shocks

Radiative & Magnetohydrodynamic Shocks Chapter 4 Radiative & Magnetohydrodynamic Shocks I have been dealing, so far, with non-radiative shocks. Since, as we have seen, a shock raises the density and temperature of the gas, it is quite likely,

More information

THERORY OF DETONATION WAVES 1 By J. VON NEUMANN

THERORY OF DETONATION WAVES 1 By J. VON NEUMANN THERORY OF DETONATION WAVES 1 By J. VON NEUMANN Summary - The mechanism by which a stationary detonation wave maintains itself and progresses through the explosive is investigated. Reasons are found which

More information

arxiv: v1 [physics.flu-dyn] 7 Dec 2015

arxiv: v1 [physics.flu-dyn] 7 Dec 2015 Chapman-Jouguet deflagrations and their transition to detonation Mohamed Saif a, Wentian Wang a, Andrzej Pekalski b, Marc Levin c, Matei I. Radulescu a a Department of Mechanical Engineering, University

More information

Chemical inhibiting of hydrogen-air detonations Sergey M. Frolov

Chemical inhibiting of hydrogen-air detonations Sergey M. Frolov Chemical inhibiting of hydrogen-air detonations Sergey M. Frolov Semenov Institute of Chemical Physics Moscow, Russia Outline Introduction Theoretical studies Classical 1D approach (ZND-model) Detailed

More information

Presentation Start. Zero Carbon Energy Solutions 4/06/06 10/3/2013:; 1

Presentation Start. Zero Carbon Energy Solutions 4/06/06 10/3/2013:; 1 Presentation Start 10/3/2013:; 1 4/06/06 What is an Explosion? Keller, J.O. President and CEO,, ISO TC 197, Technical Program Director for the Built Environment and Safety; Gresho, M. President, FP2FIRE,

More information

Numerical and Analytical Studies of the Dynamics of Gaseous Detonations

Numerical and Analytical Studies of the Dynamics of Gaseous Detonations Numerical and Analytical Studies of the Dynamics of Gaseous Detonations Thesis by Christopher A. Eckett In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy I A I N S T I T

More information

Lecture 8 Laminar Diffusion Flames: Diffusion Flamelet Theory

Lecture 8 Laminar Diffusion Flames: Diffusion Flamelet Theory Lecture 8 Laminar Diffusion Flames: Diffusion Flamelet Theory 8.-1 Systems, where fuel and oxidizer enter separately into the combustion chamber. Mixing takes place by convection and diffusion. Only where

More information

Application of Steady and Unsteady Detonation Waves to Propulsion

Application of Steady and Unsteady Detonation Waves to Propulsion Application of Steady and Unsteady Detonation Waves to Propulsion Thesis by Eric Wintenberger In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy California Institute of Technology

More information

Lecture 5.7 Compressible Euler Equations

Lecture 5.7 Compressible Euler Equations Lecture 5.7 Compressible Euler Equations Nomenclature Density u, v, w Velocity components p E t H u, v, w e S=c v ln p - c M Pressure Total energy/unit volume Total enthalpy Conserved variables Internal

More information

Analysis for Steady Propagation of a Generic Ram Accelerator/ Oblique Detonation Wave Engine Configuration

Analysis for Steady Propagation of a Generic Ram Accelerator/ Oblique Detonation Wave Engine Configuration Analysis for Steady Propagation of a Generic Ram Accelerator/ Oblique Detonation Wave Engine Configuration J.M. Powers1, D.R. Fulton2, K.A. Gonthier3, and M.J. Grismer4 Department of Aerospace and Mechanical

More information

INVESTIGATION OF INSTABILITIES AFFECTING DETONATIONS: IMPROVING THE RESOLUTION USING BLOCK-STRUCTURED ADAPTIVE MESH REFINEMENT PRASHAANTH RAVINDRAN

INVESTIGATION OF INSTABILITIES AFFECTING DETONATIONS: IMPROVING THE RESOLUTION USING BLOCK-STRUCTURED ADAPTIVE MESH REFINEMENT PRASHAANTH RAVINDRAN INVESTIGATION OF INSTABILITIES AFFECTING DETONATIONS: IMPROVING THE RESOLUTION USING BLOCK-STRUCTURED ADAPTIVE MESH REFINEMENT by PRASHAANTH RAVINDRAN Presented to the Faculty of the Graduate School of

More information

On thermodynamic cycles for detonation engines

On thermodynamic cycles for detonation engines On thermodynamic cycles for detonation engines R. Vutthivithayarak, E.M. Braun, and F.K. Lu 1 Introduction Detonation engines are considered to potentially yield better performance than existing turbo-engines

More information

Detonations and explosions

Detonations and explosions 7. Detonations and explosions 7.. Introduction From an operative point of view, we can define an explosion as a release of energy into the atmosphere in a small enough volume and in a short enough time

More information

Sound Waves Sound Waves:

Sound Waves Sound Waves: Sound Waves Sound Waves: 1 Sound Waves Sound Waves Linear Waves compression rarefaction 2 H H L L L Gravity Waves 3 Gravity Waves Gravity Waves 4 Gravity Waves Kayak Surfing on ocean gravity waves Oregon

More information

Phenomena in the Vicinity of Detonation Fonnation in a Gas

Phenomena in the Vicinity of Detonation Fonnation in a Gas 296 G. A. ZATSEV theory of relativity. But, it is necessary to keep in mind that for elementary particles the concrete character of the connection between the mass and the properties of space does not

More information

Introduction to Chemical Engineering Thermodynamics. Chapter 7. KFUPM Housam Binous CHE 303

Introduction to Chemical Engineering Thermodynamics. Chapter 7. KFUPM Housam Binous CHE 303 Introduction to Chemical Engineering Thermodynamics Chapter 7 1 Thermodynamics of flow is based on mass, energy and entropy balances Fluid mechanics encompasses the above balances and conservation of momentum

More information

he science of high explosives is basically a coupling of chemistry and fluid mechanics. While each of these fields is in itself quite welldeveloped

he science of high explosives is basically a coupling of chemistry and fluid mechanics. While each of these fields is in itself quite welldeveloped C. Davis Although explosives have been known for over a thousand years, the science of explosives is still very young. We are only beginning to understand the nonlinear interaction between chemistry and

More information

Shock Waves. 1 Steepening of sound waves. We have the result that the velocity of a sound wave in an arbitrary reference frame is given by: kˆ.

Shock Waves. 1 Steepening of sound waves. We have the result that the velocity of a sound wave in an arbitrary reference frame is given by: kˆ. Shock Waves Steepening of sound waves We have the result that the velocity of a sound wave in an arbitrary reference frame is given by: v u kˆ c s kˆ where u is the velocity of the fluid and k is the wave

More information

AAE COMBUSTION AND THERMOCHEMISTRY

AAE COMBUSTION AND THERMOCHEMISTRY 5. COMBUSTIO AD THERMOCHEMISTRY Ch5 1 Overview Definition & mathematical determination of chemical equilibrium, Definition/determination of adiabatic flame temperature, Prediction of composition and temperature

More information

Applying the Staggered Mesh Godunov (SMG) Method to Reactive Flows

Applying the Staggered Mesh Godunov (SMG) Method to Reactive Flows New Models and Hydrocodes, Lisbon, Portugal,19-23 May 2008 Applying the Staggered Mesh Godunov (SMG) Method to Reactive Flows Gabi Luttwak 1 and Joseph Falcovitz 2 1 Rafael, P.O. Box 2250, Haifa 31021,

More information

Presented at the 2000 RGD Conference, Sydney Australia. The Simulation of Detonations Using a Monte Carlo Method

Presented at the 2000 RGD Conference, Sydney Australia. The Simulation of Detonations Using a Monte Carlo Method ABSTRACT Presented at the RGD Conference, Sydney Australia The Simulation of Detonations Using a Monte Carlo Method Lyle N. Long + and James B. Anderson The Pennsylvania State University University Park,

More information

Rayleigh processes in single-phase fluids

Rayleigh processes in single-phase fluids Rayleigh processes in single-phase fluids M. S. Cramer Citation: Physics of Fluids (1994-present) 18, 016101 (2006); doi: 10.1063/1.2166627 View online: http://dx.doi.org/10.1063/1.2166627 View Table of

More information

Influence of the Reaction Heat on the Linear Stability Spectra of Steady Detonation in the Kinetic Frame

Influence of the Reaction Heat on the Linear Stability Spectra of Steady Detonation in the Kinetic Frame Influence of the Reaction Heat on the Linear Stability Spectra of Steady Detonation in the Kinetic Frame Filipe Carvalho and Ana Jacinta Soares Departamento de Ciências Eactas, Viana do Castelo, Portugal

More information

Hot Spot Ignition in White Dwarfs One-zone Ignition Times

Hot Spot Ignition in White Dwarfs One-zone Ignition Times Hot Spot Ignition in White Dwarfs One-zone Ignition Times L. Jonathan Dursi CITA, University of Toronto, Toronto, ON, M5S 3H8, Canada Frank X. Timmes Theoretical Astrophysics Group, Los Alamos National

More information

Numerical Analysis of the Deflagration to Detonation Transition in Primary Explosives

Numerical Analysis of the Deflagration to Detonation Transition in Primary Explosives Numerical Analysis of the Deflagration to Detonation Transition in Primary Explosives 7 Central European Journal of Energetic Materials,, 9(), 7-38 ISSN 733-778 Numerical Analysis of the Deflagration to

More information

Reaction Rate Closure for Turbulent Detonation Propagation through CLEM-LES

Reaction Rate Closure for Turbulent Detonation Propagation through CLEM-LES 5 th ICDERS August 7, 05 Leeds, UK through CLEM-LES Brian Maxwell, Matei Radulescu Department of Mechanical Engineering, University of Ottawa 6 Louis Pasteur, Ottawa, KN 6N5, Canada Sam Falle School of

More information

THEORY OF DETONATION STRUCTURE FOR TWO-PHASE MATERIALS JOSEPH MICHAEL POWERS. B.S., University of Illinois, 1983 M. S., University of Illinois, 1985

THEORY OF DETONATION STRUCTURE FOR TWO-PHASE MATERIALS JOSEPH MICHAEL POWERS. B.S., University of Illinois, 1983 M. S., University of Illinois, 1985 THEORY OF DETONATION STRUCTURE FOR TWO-PHASE MATERIALS BY JOSEPH MICHAEL POWERS B.S., University of Illinois, 1983 M. S., University of Illinois, 1985 THESIS Submitted in partial fulfillment of the requirements

More information

Higher Order DSD Calibration of Ammonium Nitrate/Fuel Oil

Higher Order DSD Calibration of Ammonium Nitrate/Fuel Oil 25 th ICDERS August 2 7, 2015 Leeds, UK Higher Order DSD Calibration of Ammonium Nitrate/Fuel Oil Carlos Chiquete, Mark Short, Scott I. Jackson and John B. Bdzil Shock and Detonation Physics Group Los

More information

Unified Quiz: Thermodynamics

Unified Quiz: Thermodynamics Fall 004 Unified Quiz: Thermodynamics November 1, 004 Calculators allowed. No books allowed. A list of equations is provided. Put your name on each page of the exam. Read all questions carefully. Do all

More information

Thermoacoustic Instabilities Research

Thermoacoustic Instabilities Research Chapter 3 Thermoacoustic Instabilities Research In this chapter, relevant literature survey of thermoacoustic instabilities research is included. An introduction to the phenomena of thermoacoustic instability

More information

CHAPTER 5 MASS AND ENERGY ANALYSIS OF CONTROL VOLUMES

CHAPTER 5 MASS AND ENERGY ANALYSIS OF CONTROL VOLUMES Thermodynamics: An Engineering Approach 8th Edition in SI Units Yunus A. Çengel, Michael A. Boles McGraw-Hill, 2015 CHAPTER 5 MASS AND ENERGY ANALYSIS OF CONTROL VOLUMES Lecture slides by Dr. Fawzi Elfghi

More information

Computations of non-reacting and reacting two-fluid interfaces

Computations of non-reacting and reacting two-fluid interfaces Computations of non-reacting and reacting two-fluid interfaces Kunkun Tang Alberto Beccantini Christophe Corre Lab. of Thermal Hydraulics & Fluid Mechanics (LATF), CEA Saclay Lab. of Geophysical & Industrial

More information

Introduction to Gas Dynamics All Lecture Slides

Introduction to Gas Dynamics All Lecture Slides Introduction to Gas Dynamics All Lecture Slides Teknillinen Korkeakoulu / Helsinki University of Technology Autumn 009 1 Compressible flow Zeroth law of thermodynamics 3 First law of thermodynamics 4 Equation

More information

Direct Simulation of Ultrafast Detonations in Mixtures

Direct Simulation of Ultrafast Detonations in Mixtures Direct Simulation of Ultrafast Detonations in Mixtures Patrick D. O Connor *, Lyle N. Long * and James B. Anderson * Department of Aerospace Engineering, The Pennsylvania State University, University Park,

More information

Theory and Detonation Products Equations of State for a New Generation of Combined Effects Explosives. Dr. Ernest L. Baker

Theory and Detonation Products Equations of State for a New Generation of Combined Effects Explosives. Dr. Ernest L. Baker Theory and Detonation Products Equations of State for a New Generation of Combined Effects Explosives Dr. Ernest L. Baker W. Balas, L.I. Stiel, C. Capellos and J. Pincay 16 OCT 2007 Outline Combined Effects

More information

Section 2: Lecture 1 Integral Form of the Conservation Equations for Compressible Flow

Section 2: Lecture 1 Integral Form of the Conservation Equations for Compressible Flow Section 2: Lecture 1 Integral Form of the Conservation Equations for Compressible Flow Anderson: Chapter 2 pp. 41-54 1 Equation of State: Section 1 Review p = R g T " > R g = R u M w - R u = 8314.4126

More information

Lecture 6 Asymptotic Structure for Four-Step Premixed Stoichiometric Methane Flames

Lecture 6 Asymptotic Structure for Four-Step Premixed Stoichiometric Methane Flames Lecture 6 Asymptotic Structure for Four-Step Premixed Stoichiometric Methane Flames 6.-1 Previous lecture: Asymptotic description of premixed flames based on an assumed one-step reaction. basic understanding

More information

Some properties of the Helmholtz free energy

Some properties of the Helmholtz free energy Some properties of the Helmholtz free energy Energy slope is T U(S, ) From the properties of U vs S, it is clear that the Helmholtz free energy is always algebraically less than the internal energy U.

More information

Lecture 15. The Turbulent Burning Velocity

Lecture 15. The Turbulent Burning Velocity Lecture 15 The Turbulent Burning Velocity 1 The turbulent burning velocity is defined as the average rate of propagation of the flame through the turbulent premixed gas mixture. In the laminar case, solutions

More information

PROBLEM SET. Heliophysics Summer School. July, 2013

PROBLEM SET. Heliophysics Summer School. July, 2013 PROBLEM SET Heliophysics Summer School July, 2013 Problem Set for Shocks and Particle Acceleration There is probably only time to attempt one or two of these questions. In the tutorial session discussion

More information

Please welcome for any correction or misprint in the entire manuscript and your valuable suggestions kindly mail us

Please welcome for any correction or misprint in the entire manuscript and your valuable suggestions kindly mail us Problems of Practices Of Fluid Mechanics Compressible Fluid Flow Prepared By Brij Bhooshan Asst. Professor B. S. A. College of Engg. And Technology Mathura, Uttar Pradesh, (India) Supported By: Purvi Bhooshan

More information

Rocket Propulsion Prof. K. Ramamurthi Department of Mechanical Engineering Indian Institute of Technology, Madras

Rocket Propulsion Prof. K. Ramamurthi Department of Mechanical Engineering Indian Institute of Technology, Madras Rocket Propulsion Prof. K. Ramamurthi Department of Mechanical Engineering Indian Institute of Technology, Madras Lecture 11 Area Ratio of Nozzles: Under Expansion and Over Expansion (Refer Slide Time:

More information

Detonation Diffraction

Detonation Diffraction Detonation Diffraction E. Schultz, J. Shepherd Detonation Physics Laboratory Pasadena, CA 91125 MURI Mid-Year Pulse Detonation Engine Review Meeting February 10-11, 2000 Super-critical Detonation Diffraction

More information

Flame Propagation in Poiseuille Flow under Adiabatic Conditions

Flame Propagation in Poiseuille Flow under Adiabatic Conditions Flame Propagation in Poiseuille Flow under Adiabatic Conditions J. DAOU and M. MATALON* Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, IL 60208-3125, USA

More information

A Study of Detonation Evolution and Structure for a Model of Compressible Two-Phase Reactive Flow

A Study of Detonation Evolution and Structure for a Model of Compressible Two-Phase Reactive Flow A Study of Detonation Evolution and Structure for a Model of Compressible Two-Phase Reactive Flow D. W. Schwendeman, C. W. Wahle and A. K. Kapila Department of Mathematical Sciences, Rensselaer Polytechnic

More information

Recently, a novel concept of a multi-mode pulse detonation wave based propulsion system for hypersonic

Recently, a novel concept of a multi-mode pulse detonation wave based propulsion system for hypersonic Detonation Wave Propagation in an Ejector-Augmented Pulse Detonation Rocket Tae-Hyeong Yi, Donald R. Wilson and Frank K. Lu Aerodynamics Research Center, University of Texas at Arlington, Arlington, TX

More information

Chapter 5: The First Law of Thermodynamics: Closed Systems

Chapter 5: The First Law of Thermodynamics: Closed Systems Chapter 5: The First Law of Thermodynamics: Closed Systems The first law of thermodynamics can be simply stated as follows: during an interaction between a system and its surroundings, the amount of energy

More information

Chapter 15. Supernovae Classification of Supernovae

Chapter 15. Supernovae Classification of Supernovae Chapter 15 Supernovae Supernovae represent the catastrophic death of certain stars. They are among the most violent events in the Universe, typically producing about 10 53 erg, with a large fraction of

More information

MACH REFLECTION INDUCED DETONATION IN A REACTIVE FLOW. Supervising Professor Name Frank Lu. Donald Wilson. Albert Tong

MACH REFLECTION INDUCED DETONATION IN A REACTIVE FLOW. Supervising Professor Name Frank Lu. Donald Wilson. Albert Tong MACH REFLECTION INDUCED DETONATION IN A REACTIVE FLOW The members of the Committee approve the master s thesis of Walid Cederbond Supervising Professor Name Frank Lu Donald Wilson Albert Tong Copyright

More information

SoundWaves. Lecture (2) Special topics Dr.khitam Y, Elwasife

SoundWaves. Lecture (2) Special topics Dr.khitam Y, Elwasife SoundWaves Lecture (2) Special topics Dr.khitam Y, Elwasife VGTU EF ESK stanislovas.staras@el.vgtu.lt 2 Mode Shapes and Boundary Conditions, VGTU EF ESK stanislovas.staras@el.vgtu.lt ELEKTRONIKOS ĮTAISAI

More information

CapSel Roe Roe solver.

CapSel Roe Roe solver. CapSel Roe - 01 Roe solver keppens@rijnh.nl modern high resolution, shock-capturing schemes for Euler capitalize on known solution of the Riemann problem originally developed by Godunov always use conservative

More information

PHYS 643 Week 4: Compressible fluids Sound waves and shocks

PHYS 643 Week 4: Compressible fluids Sound waves and shocks PHYS 643 Week 4: Compressible fluids Sound waves and shocks Sound waves Compressions in a gas propagate as sound waves. The simplest case to consider is a gas at uniform density and at rest. Small perturbations

More information

Physics Nov Cooling by Expansion

Physics Nov Cooling by Expansion Physics 301 19-Nov-2004 25-1 Cooling by Expansion Now we re going to change the subject and consider the techniques used to get really cold temperatures. Of course, the best way to learn about these techniques

More information

Longitudinal Waves. waves in which the particle or oscillator motion is in the same direction as the wave propagation

Longitudinal Waves. waves in which the particle or oscillator motion is in the same direction as the wave propagation Longitudinal Waves waves in which the particle or oscillator motion is in the same direction as the wave propagation Longitudinal waves propagate as sound waves in all phases of matter, plasmas, gases,

More information

Severe, unconfined petrol vapour explosions

Severe, unconfined petrol vapour explosions Severe, unconfined petrol vapour explosions Graham Atkinson Health and Safety Laboratory Fire and Process Safety Unit Buncefield - Lessons for whom? Plant managers Safety managers Risk assessors Explosion

More information

EVALUATION OF HYDROGEN, PROPANE AND METHANE-AIR DETONATIONS INSTABILITY AND DETONABILITY

EVALUATION OF HYDROGEN, PROPANE AND METHANE-AIR DETONATIONS INSTABILITY AND DETONABILITY EVALUATION OF HYDROGEN, PROPANE AND METHANE-AIR DETONATIONS INSTABILITY AND DETONABILITY Borzou, B. 1 and Radulescu, M.I. 2 1 Mechanical Engineering Department, University of Ottawa, 161 Louis Pasteur,

More information

II/IV B.Tech (Regular) DEGREE EXAMINATION. (1X12 = 12 Marks) Answer ONE question from each unit.

II/IV B.Tech (Regular) DEGREE EXAMINATION. (1X12 = 12 Marks) Answer ONE question from each unit. Page 1 of 8 Hall Ticket Number: 14CH 404 II/IV B.Tech (Regular) DEGREE EXAMINATION June, 2016 Chemical Engineering Fourth Semester Engineering Thermodynamics Time: Three Hours Maximum : 60 Marks Answer

More information

More Thermodynamics. Specific Specific Heats of a Gas Equipartition of Energy Reversible and Irreversible Processes

More Thermodynamics. Specific Specific Heats of a Gas Equipartition of Energy Reversible and Irreversible Processes More Thermodynamics Specific Specific Heats of a Gas Equipartition of Energy Reversible and Irreversible Processes Carnot Cycle Efficiency of Engines Entropy More Thermodynamics 1 Specific Heat of Gases

More information

Computational Analysis of an Imploding Gas:

Computational Analysis of an Imploding Gas: 1/ 31 Direct Numerical Simulation of Navier-Stokes Equations Stephen Voelkel University of Notre Dame October 19, 2011 2/ 31 Acknowledges Christopher M. Romick, Ph.D. Student, U. Notre Dame Dr. Joseph

More information

A numerical study of detonation diffraction

A numerical study of detonation diffraction J. Fluid Mech., 529:117-146, 2005. (Preprint - see journal for final version http://dx.doi.org/10.1017/s0022112005003319). Under consideration for publication in J. Fluid Mech. 1 A numerical study of detonation

More information