Analysis for Steady Propagation of a Generic Ram Accelerator/ Oblique Detonation Wave Engine Configuration

Size: px
Start display at page:

Download "Analysis for Steady Propagation of a Generic Ram Accelerator/ Oblique Detonation Wave Engine Configuration"

Transcription

1 Analysis for Steady Propagation of a Generic Ram Accelerator/ Oblique Detonation Wave Engine Configuration J.M. Powers1, D.R. Fulton2, K.A. Gonthier3, and M.J. Grismer4 Department of Aerospace and Mechanical Engineering University of Notre Dame Notre Dame, ndiana prepared for the A/AA 31st Aerospace Sciences Meeting and Exhibit January 11-14, 1993 Reno, Nevada 1 Assistant Professor 2 Undergroduate Student 3 Graduate Assistant 4 Graduate Assistant

2 Support This study was supported by the ndiana Space Consortium sponsored by NASA Headquarters.

3 Objective of Study - Describe a methodology to determine a steady propagation speed of a projectile fired into a gaseous fuel and oxidizer mixture. - Perform a simple theoretical and numerical analyses to illustrate the methodology.

4 nert Oblique Shock ' ' M=8.4 P=16bar Projectile m=7g v = 2,475 m/s Reaction-inducing Oblique Shock,,' (Oblique Detonation) M>l P 6 bar s s s s ---- Accelerator Barrel 166mm Ram Accelerator, Hertzberg, et al., 1988, 1991 fuel oblique detonation inlet --- m1x1ng zone ;;;::::: - Oblique Detonation Wave Engine, Dunlap, et al., 1958

5 Selected Past Work 1. Theoretical: - Brackett and Bogdanoff, 1989, (steady speeds) - Cambier, Adelman, and Menees, 1989, 199, - Pratt, Humphrey, and Glenn, 1991, - Yungster and Bruckner, 1992, (steady speed) - Powers and Stewart, Powers and Gonthier, 1992a,b, (steady speeds) - Grismer and Powers, 1992, - Pepper and Brueckner, Experimental: - Hertzberg, Bruckner, and Knowlan, 1988, 1991.

6 Modeling Difficulties Multi - dimensional unsteady flow field Diffusive processes: - mass diffusion, - momentum diffusion, - energy diffusion. Complex chemistry: - multiple reactions, - multiple species, - complex chemical kinetics. Complex wave interactions:. - compression waves,. - expansion waves, - combustion waves.

7 Generic Configurations y upper cowl surface incon1ing... supersonic premixed --.. flow H L lower cowl surface axis of symmetry

8 Non-Dimensional Model Equations Continuity: Momentum: dp avi d +pa =O, t X. 1 Energy: dp P dp ( ) ( ) (- 8) dt - y p dt = y-1 p K q 1-A. exp T, Species: Caloric Equation of State: 1 p e= --Aq, y-1 p Thermal Equation of State: P=pT.

9 Non-Dimensional Variables - p - P =-=-::-, P=f T= R T ' - - ' Po Po Po/Po,...,,..., U= U V V,.; p Po ' =,.; p Po ' e - - e - ' Po/Po x= 'y=y L,_-: L ' Po/Po - L t = t. Non-Dimensional Parameters q = _ q_ 8 = E y = 1 +, Po/po ' Po/po ' Cv K=-L M _ Uo,.; Po!Po ' - 'Y Po/Po.

10 Reaction Model - Simple one-step, irreversible reaction: 'A A... B (exothermic reaction) A = reaction progress variable - Arrhenius kinetics: kinetic _rate oc exp( -Ea / RT) - high activation energy limit.

11 Thermal Explosion Theory Reduced Equations (assumed v. = ): = ( y-1) p K q ( 1-A) exp(- p), = K(l-A)exp(-p), Linearize the equations: where P(O) = P1, A(O) =. P = P1 + P', A= "A'. P' << 1, "A' << 1. Solve for the pressure perturbation P'.

12 Solution: P ' Pi Pi P 1 1 = - + n 2 ( ) 1 - ( y-1) q K exp p p t Solve for the thermal explosion time: (corresponds to the induction time) nduction distance: y 1 Lead Shock x

13 1 Lead Shock P1 Flame Sheet Calculation of Surface Forces 1. Wave Drag: 2. Net Thrust Force: Fnet = P3 (2 Lind cos 8-1) tan 8 + [P4 (2-2 Lind cos ) - P1] tan. 3. Combustion nduced Thrust: Fe = Fnet + Fv.

14 Jump Relations Across Lead Shock Pi= 1 + ym5 sin 2 +A -l ( y + 1) M5 sin 2 Ui =.JY Mo (ti sin 2 + cos 2 ) Vi=.JY"Mo cos sin ( 1 - ti) where A = ( 1 + y M5 sin 2 ) 2 - ( y + 1) y M5 sin 2 - x (2 + (y- 1 )M5 sin 2 )

15 Prandtl - Meyer Function: Flow Expansion Region v(m ) /Y+f -! y-1 ( 2 ) = "\/ y:1 tan y+ l M tan M 3-1 sentropic Relations: 1 _1 1 + y- Mi y-1 p Pl l + y;l M 1 _J_ 1 + y- Mi y-1 P P1 l + y-1 M 2 Velocity Components: U3 = M l.y3 f?3 yp;- cos e ' V3 = - M3 11. yp;- sine

16 Jump Relations Across Flame Sheet p4 _.1 + y M ±ill -i p3. (y+ l)m where B = (1 + ym) 2 -(y- l)m x ( 2 + ( y-1 ) M + 2 ( y-1 ) : Q)

17 Tail End Compression Region 1 + ym sin,a+e) ± {E - (y+ l)m sin,a+s) where C = (1 + ym sin,a+s))2-(y+ l)'ym sin,a+s) x (2 + (Y- 1) M sina+s))

18 Numerical Analysis RPLUS Code: - developed at NASA Lewis, - based on LU-SSOR numerical scheme. Computational Grid: x 99 fixed grid. Convergence: - 5 iterations,. - residual unsteady terms had scaled values -8 < 1. x 1. Computations: - run on BM RS/6 POWERstation 35 - run time about one hour.

19 Parameters Geometric: 8 = 5, L =.1 m. Kinetic: k = 1. x 1 7 /sec, E = 1.19 x 1 6 J/kg, x 1 6 J/kg < q < 1.74 x 1 7 J/kg. Atmospheric free-stream conditions: Po= x 1 5 Pa, p = kg/m 3 Thermodynamic constants: 7 Y= 5, R = 287 J/(kg K), cv = J/(kg/K).

20 Velocity (m/s) Net Thrust, Numerical _.._..._._ M, Mach Number 1-2 ca,,-.-, c... (/.) Q c z "-"'... (/.)... z Velocity (m/s) Net Thrust, Rankine Hugoniot -e- q = 18.13, q = 1.5x16 J/kg -A- q = 16.32, q = 1.35x16 J/kg q = 14.51, <= 1.2x16 J/kg :::s'"j... z -1 ooo a "-"' -. 2 '--'---'--'---'---l...-..j'--'---'--.., , -'-= M, Mach Number

21 ,.-... ].- CZl 15 1 Q.) s.- Q z "-" Pressure on Wedge Surf ace. M = (stable) M = 13.4 (unstable) x (m).5.1 q = q = 1.5 x 1 6 J/kg 15 _..._ x (Non-Dimensional) - rise on forebody due to shock and reaction - drop on aftbody due to rarefaction - lack of crisp shock indicates more resolution necessary - propagation speed sensitive to local pressure - trends plausible

22 Pressure traces on wedge surface. k=1x1a7 Ea= , -ro a.. -(l) '- :J en en (l) '- a o o Mach 13.4 nert lil - - Mach 13.4 Q = 1.5x1 OA6 -- <: Mach nert *-- Mach Q = 1.5x1 OA6.:::.,--,.,----- eft= er--1):. L-----L l.-----l-----' x {m).15.2

23 1 q, Heat of Reaction (J/kg) 1.3X X X X1 6 "8 z.c (') Rankine- (")... Hugoniot '<,,--.. Analysis 25 '-' 6.._.._._._._._..._._._...l J._._._...._.._._._._._...._._._._.._._.._._ J'--'--'-... _._ q, Heat of Reaction (Non-Dimensional) 2 q, Heat of Reaction (J/kg) 1.4x x1o 6 1.6x x1 6 lo-c C1) "8 z..c:: u c;rj 18 quasi-stable 1 6 Numerical Analysis 6 14 c;) '-' '<,, q, Heat of Reaction (Non-Dimensional)

24 ..4 x (m) Quasi-Stable Configuration -.. ca... rl:l 5. Q 6 :> M = 17.53, u = 5,965 mis q = 18.13, q = 1.5 x 1 6 J/kg Reactant mass fraction (1-A.) contours "<l.2 s '-" ==j,.l..---' x (Non-Dimensional)..4 x (m) Unstable Configuration -.. ca... rl:l Q 6 :> M = 13.4, u = 4,56 m/s q = 18.13, q = 1.5 x 1 6 J/kg "<i.2 s '-". L..dSsmRSl- ===--'-----'---.L.-..J x (Non-Dimensional)

25 -.3 s:: x (m) Quasi-Stable Configuration M = 17.53, u = 5,965 mis q = 1.5 x 1 6 J/kg - q = 18.13, C'J 5 - '-<: t s a s '-"' 6 Pressure (P) contours e >-..1 ====""'"""',,,._L-----L-.., x (Non-Dimensional) -..- ro.3 x (m) Unstable Configuration M = 13.4, u = 4,56 mis - en q=l8.13, q = 1.5 x 1 6 Jlkg - <!) '-<: i s.2 a.2 3 '-"' z _... >-.. 1 Pressure (P) contours. loii.:c=== l......l...j x (Non-Dimensional)

26 Conclusions 1. The interaction of kinetic length scales with geometric length scales are important for determining steady propagation speeds. 2. Bifurcation phenomena observed for equilibrium Mach numbers: - high Mach number solutions stable to quasistatic perturbations. - low Mach number solutions, unstable. 3. Near the bifurcation point, increasing heat release increases steady propagation speed 4. Qualitative agreement exists between theoretical and numerical results. 5. Higher resolution required for quantitative accuracy.

PROPAGATION SPEED CALCULATIONS FOR A MODEL RAM ACCELERATOR

PROPAGATION SPEED CALCULATIONS FOR A MODEL RAM ACCELERATOR PROPAGATON SPEED CALCULATONS FOR A MODEL RAM ACCELERATOR Joseph M. Powers* and Matthew J. Grismer? Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, ndiana 46556-5637.

More information

OBLIQUE DETONATIONS: THEORY AND PROPULSION APPLICATIONS. Joseph M. Powers 1 University of Notre Dame Notre Dame, Indiana

OBLIQUE DETONATIONS: THEORY AND PROPULSION APPLICATIONS. Joseph M. Powers 1 University of Notre Dame Notre Dame, Indiana OBLIQUE DETONATIONS: THEORY AND PROPULSION APPLICATIONS Joseph M. Powers 1 University of Notre Dame Notre Dame, Indiana 46556-5637 ABSTRACT The oblique detonation, a combustion process initiated by an

More information

DESIGN AND NUMERICAL ANALYSIS OF ASYMMETRIC NOZZLE OF SHCRAMJET ENGINE

DESIGN AND NUMERICAL ANALYSIS OF ASYMMETRIC NOZZLE OF SHCRAMJET ENGINE ISSN (O): 393-869 DESIGN AND NUMERICAL ANALYSIS OF ASYMMETRIC NOZZLE OF SHCRAMJET ENGINE Lokesh Silwal lokusilwal@gmail.com Sajan Sharma thesajansharma@gm ail.com Nitish Acharya nitishacharya1818@g mail.com

More information

One-Dimensional Modeling of Thermally Choked Ram Accelerator Based on CFD Simulations

One-Dimensional Modeling of Thermally Choked Ram Accelerator Based on CFD Simulations 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition 09-12 January 2012, Nashville, Tennessee AIAA 2012-0982 One-Dimensional Modeling of Thermally Choked Ram Accelerator

More information

Steady waves in compressible flow

Steady waves in compressible flow Chapter Steady waves in compressible flow. Oblique shock waves Figure. shows an oblique shock wave produced when a supersonic flow is deflected by an angle. Figure.: Flow geometry near a plane oblique

More information

Steady Deflagration Structure in Two-Phase Granular Propellants

Steady Deflagration Structure in Two-Phase Granular Propellants 12th ICDERS, Ann Arbor, Michigan July 23-28, 1989 Steady Deflagration Structure in Two-Phase Granular Propellants Joseph M. Powers 1, Mark E. Miller2, D. Scott Stewart3, and Herman Krier4 July 23-28, 1989

More information

Initiation of stabilized detonations by projectiles

Initiation of stabilized detonations by projectiles Initiation of stabilized detonations by projectiles P. Hung and J. E. Shepherd, Graduate Aeronautical Laboratory, California Institute of Technology, Pasadena, CA 91125 USA Abstract. A high-speed projectile

More information

IX. COMPRESSIBLE FLOW. ρ = P

IX. COMPRESSIBLE FLOW. ρ = P IX. COMPRESSIBLE FLOW Compressible flow is the study of fluids flowing at speeds comparable to the local speed of sound. This occurs when fluid speeds are about 30% or more of the local acoustic velocity.

More information

MONTANA STATE UNIVERSITY DEPARTMENT OF MECHANICAL ENGINEERING. EMEC 426 Thermodynamics of Propulsion Systems. Spring 2018

MONTANA STATE UNIVERSITY DEPARTMENT OF MECHANICAL ENGINEERING. EMEC 426 Thermodynamics of Propulsion Systems. Spring 2018 MONTANA STATE UNIVERSITY DEPARTMENT OF MECHANICAL ENGINEERING EMEC 426 Thermodynamics of Propulsion Systems Spring 2018 Instructor: Dr. Alan H. George Office: Roberts 119 Office Hours: to be announced

More information

MONTANA STATE UNIVERSITY DEPARTMENT OF MECHANICAL ENGINEERING. EMEC 426 Thermodynamics of Propulsion Systems. Spring 2017

MONTANA STATE UNIVERSITY DEPARTMENT OF MECHANICAL ENGINEERING. EMEC 426 Thermodynamics of Propulsion Systems. Spring 2017 MONTANA STATE UNIVERSITY DEPARTMENT OF MECHANICAL ENGINEERING EMEC 426 Thermodynamics of Propulsion Systems Spring 2017 Instructor: Dr. Alan H. George Office: Roberts 119 Office Hours: to be announced

More information

Effect Of Inlet Performance And Starting Mach Number On The Design Of A Scramjet Engine

Effect Of Inlet Performance And Starting Mach Number On The Design Of A Scramjet Engine Effect Of Inlet Performance And Starting Mach Number On The Design Of A Scramjet Engine P. Karthikeyan 1, B. Prakash 3 2, S. R. Balakrishnan 3 PG scholar 1, Professor 2, Director/H.O.D 3 1,2,3 Department

More information

Numerical simulations of steady and unsteady oblique detonation phenomena with application to propulsion. Grismer, Matthew John, Ph.D.

Numerical simulations of steady and unsteady oblique detonation phenomena with application to propulsion. Grismer, Matthew John, Ph.D. Order Number 9516632 Numerical simulations of steady and unsteady oblique detonation phenomena with application to propulsion Grismer, Matthew John, Ph.D. University of Notre Dame, 1994 V M I 300 N. Zeeb

More information

AA210A Fundamentals of Compressible Flow. Chapter 13 - Unsteady Waves in Compressible Flow

AA210A Fundamentals of Compressible Flow. Chapter 13 - Unsteady Waves in Compressible Flow AA210A Fundamentals of Compressible Flow Chapter 13 - Unsteady Waves in Compressible Flow The Shock Tube - Wave Diagram 13.1 Equations for irrotational, homentropic, unsteady flow ρ t + x k ρ U i t (

More information

Lecture 7 Detonation Waves

Lecture 7 Detonation Waves Lecture 7 etonation Waves p strong detonation weak detonation weak deflagration strong deflagration / 0 v =/ University of Illinois at Urbana- Champaign eflagrations produce heat Thermal di usivity th

More information

Unsteady Propagation Process of Oblique Detonation Waves Initiated by Hypersonic Spherical Projectiles

Unsteady Propagation Process of Oblique Detonation Waves Initiated by Hypersonic Spherical Projectiles Trans. JSASS Aerospace Tech. Japan Vol. 10, No. ists28, pp. Pe_1-Pe_6, 2012 Original Paper Unsteady Propagation Process of Oblique Detonation Waves Initiated by Hypersonic Spherical Projectiles By Shinichi

More information

THERMODYNAMIC ANALYSIS OF COMBUSTION PROCESSES FOR PROPULSION SYSTEMS

THERMODYNAMIC ANALYSIS OF COMBUSTION PROCESSES FOR PROPULSION SYSTEMS 2nd AIAA Aerospace Sciences Paper 2-33 Meeting and Exhibit January -8, 2, Reno, NV THERMODYNAMIC ANALYSIS OF COMBUSTION PROCESSES FOR PROPULSION SYSTEMS E. Wintenberger and J. E. Shepherd Graduate Aeronautical

More information

Carbon Science and Technology

Carbon Science and Technology ASI RESEARCH ARTICLE Carbon Science and Technology Received:10/03/2016, Accepted:15/04/2016 ------------------------------------------------------------------------------------------------------------------------------

More information

30th A~rospace Sciences Meeting & Exhibit January 6-9, 1992 I Reno, NV

30th A~rospace Sciences Meeting & Exhibit January 6-9, 1992 I Reno, NV AIAA 920347 Reaction Zone st ructure of Weak Underdriven Oblique Detonations J. M. Powers and K. A. Gonthier Department of Aerospace and Mechanical Engineering University of Notre Dame Notre Dame, Indiana

More information

Gravity Waves Gravity Waves

Gravity Waves Gravity Waves Gravity Waves Gravity Waves 1 Gravity Waves Gravity Waves Kayak Surfing on ocean gravity waves Oregon Coast Waves: sea & ocean waves 3 Sound Waves Sound Waves: 4 Sound Waves Sound Waves Linear Waves compression

More information

EQUATION OF STATE FOR MODELING THE DETONATION REACTION ZONE

EQUATION OF STATE FOR MODELING THE DETONATION REACTION ZONE EQUATION OF STATE FOR MODELING THE DETONATION REACTION ZONE D. Scott Stewart and Sunhee Yoo Department of Theoretical and Applied Mechanics University of Illinois, Urbana, IL 61801, USA William C. Davis

More information

Department of Mechanical Engineering BM 7103 FUELS AND COMBUSTION QUESTION BANK UNIT-1-FUELS

Department of Mechanical Engineering BM 7103 FUELS AND COMBUSTION QUESTION BANK UNIT-1-FUELS Department of Mechanical Engineering BM 7103 FUELS AND COMBUSTION QUESTION BANK UNIT-1-FUELS 1. Define the term fuels. 2. What are fossil fuels? Give examples. 3. Define primary fuels. Give examples. 4.

More information

Shock and Expansion Waves

Shock and Expansion Waves Chapter For the solution of the Euler equations to represent adequately a given large-reynolds-number flow, we need to consider in general the existence of discontinuity surfaces, across which the fluid

More information

IV. Compressible flow of inviscid fluids

IV. Compressible flow of inviscid fluids IV. Compressible flow of inviscid fluids Governing equations for n = 0, r const: + (u )=0 t u + ( u ) u= p t De e = + ( u ) e= p u+ ( k T ) Dt t p= p(, T ), e=e (,T ) Alternate forms of energy equation

More information

GAS DYNAMICS. M. Halük Aksel. O. Cahit Eralp. and. Middle East Technical University Ankara, Turkey

GAS DYNAMICS. M. Halük Aksel. O. Cahit Eralp. and. Middle East Technical University Ankara, Turkey GAS DYNAMICS M. Halük Aksel and O. Cahit Eralp Middle East Technical University Ankara, Turkey PRENTICE HALL f r \ New York London Toronto Sydney Tokyo Singapore; \ Contents Preface xi Nomenclature xiii

More information

Development of One-Step Chemistry Models for Flame and Ignition Simulation

Development of One-Step Chemistry Models for Flame and Ignition Simulation Development of One-Step Chemistry Models for Flame and Ignition Simulation S.P.M. Bane, J.L. Ziegler, and J.E. Shepherd Graduate Aerospace Laboratories California Institute of Technology Pasadena, CA 91125

More information

Oblique Detonation Wave Engine: Preliminary Design and Performance Prediction

Oblique Detonation Wave Engine: Preliminary Design and Performance Prediction Oblique Detonation Wave Engine: Preliminary Design and Performance Prediction A project present to The Faculty of the Department of Aerospace Engineering San Jose State University in partial fulfillment

More information

Shape Optimisation of Axisymmetric Scramjets

Shape Optimisation of Axisymmetric Scramjets Shape Optimisation of Axisymmetric Scramjets Hideaki Ogawa 11 th International Workshop on Shock Tube Technology Australian Hypersonics Workshop 2011 University of Queensland, Brisbane 23 rd March 2011

More information

Introduction to Fluid Mechanics. Chapter 13 Compressible Flow. Fox, Pritchard, & McDonald

Introduction to Fluid Mechanics. Chapter 13 Compressible Flow. Fox, Pritchard, & McDonald Introduction to Fluid Mechanics Chapter 13 Compressible Flow Main Topics Basic Equations for One-Dimensional Compressible Flow Isentropic Flow of an Ideal Gas Area Variation Flow in a Constant Area Duct

More information

Evaluation of the Equations of State for the 1-D Modelling of the Thermally Choked Ram Accelerator

Evaluation of the Equations of State for the 1-D Modelling of the Thermally Choked Ram Accelerator Evaluation of the Equations of State for the 1-D Modelling of the Thermally Choked Ram Accelerator Tarek Bengherbia 1 and Yufeng Yao Kingston University, London SW15 3DW, UK Pascal Bauer 3 Laboratoire

More information

Rocket Thermodynamics

Rocket Thermodynamics Rocket Thermodynamics PROFESSOR CHRIS CHATWIN LECTURE FOR SATELLITE AND SPACE SYSTEMS MSC UNIVERSITY OF SUSSEX SCHOOL OF ENGINEERING & INFORMATICS 25 TH APRIL 2017 Thermodynamics of Chemical Rockets ΣForce

More information

Fundamentals of Rotating Detonation. Toshi Fujiwara (Nagoya University)

Fundamentals of Rotating Detonation. Toshi Fujiwara (Nagoya University) Fundamentals of Rotating Detonation Toshi Fujiwara (Nagoya University) New experimental results Cylindical channel D=140/150mm Hydrogen air; p o =1.0bar Professor Piotr Wolanski P [bar] 10 9 8 7 6 5 4

More information

6.1 According to Handbook of Chemistry and Physics the composition of air is

6.1 According to Handbook of Chemistry and Physics the composition of air is 6. Compressible flow 6.1 According to Handbook of Chemistry and Physics the composition of air is From this, compute the gas constant R for air. 6. The figure shows a, Pitot-static tube used for velocity

More information

AME 513. " Lecture 8 Premixed flames I: Propagation rates

AME 513.  Lecture 8 Premixed flames I: Propagation rates AME 53 Principles of Combustion " Lecture 8 Premixed flames I: Propagation rates Outline" Rankine-Hugoniot relations Hugoniot curves Rayleigh lines Families of solutions Detonations Chapman-Jouget Others

More information

Flame Propagation in the Channel and Flammability Limits

Flame Propagation in the Channel and Flammability Limits Flame Propagation in the Channel and Flammability Limits G. M. MAKHVILADZE, V. I. MELIKHOV and V. A. RABINKOV Institute for Problems in Mechanics of the USSR Academy of Sciences Prosp. Vernadskogo 101,

More information

Computational Analysis of Scramjet Inlet

Computational Analysis of Scramjet Inlet ISSN (Online) : 2319-8753 ISSN (Print) : 2347-6710 International Journal of Innovative Research in Science, Engineering and Technology Volume 3, Special Issue 3, March 2014 2014 IEEE International Conference

More information

Application of a Laser Induced Fluorescence Model to the Numerical Simulation of Detonation Waves in Hydrogen-Oxygen-Diluent Mixtures

Application of a Laser Induced Fluorescence Model to the Numerical Simulation of Detonation Waves in Hydrogen-Oxygen-Diluent Mixtures Supplemental material for paper published in the International J of Hydrogen Energy, Vol. 30, 6044-6060, 2014. http://dx.doi.org/10.1016/j.ijhydene.2014.01.182 Application of a Laser Induced Fluorescence

More information

Sound Waves Sound Waves:

Sound Waves Sound Waves: Sound Waves Sound Waves: 1 Sound Waves Sound Waves Linear Waves compression rarefaction 2 H H L L L Gravity Waves 3 Gravity Waves Gravity Waves 4 Gravity Waves Kayak Surfing on ocean gravity waves Oregon

More information

CapSel Euler The Euler equations. conservation laws for 1D dynamics of compressible gas. = 0 m t + (m v + p) x

CapSel Euler The Euler equations. conservation laws for 1D dynamics of compressible gas. = 0 m t + (m v + p) x CapSel Euler - 01 The Euler equations keppens@rijnh.nl conservation laws for 1D dynamics of compressible gas ρ t + (ρ v) x = 0 m t + (m v + p) x = 0 e t + (e v + p v) x = 0 vector of conserved quantities

More information

Aerothermodynamics of high speed flows

Aerothermodynamics of high speed flows Aerothermodynamics of high speed flows AERO 0033 1 Lecture 6: D potential flow, method of characteristics Thierry Magin, Greg Dimitriadis, and Johan Boutet Thierry.Magin@vki.ac.be Aeronautics and Aerospace

More information

Please welcome for any correction or misprint in the entire manuscript and your valuable suggestions kindly mail us

Please welcome for any correction or misprint in the entire manuscript and your valuable suggestions kindly mail us Problems of Practices Of Fluid Mechanics Compressible Fluid Flow Prepared By Brij Bhooshan Asst. Professor B. S. A. College of Engg. And Technology Mathura, Uttar Pradesh, (India) Supported By: Purvi Bhooshan

More information

Laminar Premixed Flames: Flame Structure

Laminar Premixed Flames: Flame Structure Laminar Premixed Flames: Flame Structure Combustion Summer School 2018 Prof. Dr.-Ing. Heinz Pitsch Course Overview Part I: Fundamentals and Laminar Flames Introduction Fundamentals and mass balances of

More information

Detonation of Gas Particle Flow

Detonation of Gas Particle Flow 2 Detonation of Gas Particle Flow F. Zhang 2.1 Introduction Fine organic or metallic particles suspended in an oxidizing or combustible gas form a reactive particle gas mixture. Explosion pressures in

More information

Detonation Diffraction

Detonation Diffraction Detonation Diffraction E. Schultz, J. Shepherd Detonation Physics Laboratory Pasadena, CA 91125 MURI Mid-Year Pulse Detonation Engine Review Meeting February 10-11, 2000 Super-critical Detonation Diffraction

More information

Aerothermodynamics of high speed flows

Aerothermodynamics of high speed flows Aerothermodynamics of high speed flows AERO 0033 1 Lecture 4: Flow with discontinuities, oblique shocks Thierry Magin, Greg Dimitriadis, and Johan Boutet Thierry.Magin@vki.ac.be Aeronautics and Aerospace

More information

AME 513. " Lecture 7 Conservation equations

AME 513.  Lecture 7 Conservation equations AME 51 Principles of Combustion Lecture 7 Conservation equations Outline Conservation equations Mass Energy Chemical species Momentum 1 Conservation of mass Cubic control volume with sides dx, dy, dz u,

More information

ONE DIMENSIONAL ANALYSIS PROGRAM FOR SCRAMJET AND RAMJET FLOWPATHS

ONE DIMENSIONAL ANALYSIS PROGRAM FOR SCRAMJET AND RAMJET FLOWPATHS ONE DIMENSIONAL ANALYSIS PROGRAM FOR SCRAMJET AND RAMJET FLOWPATHS Kathleen Tran and Walter F. O'Brien, Jr Center for Turbomachinery and Propulsion Research Virginia Polytechnic Institute and State University

More information

International Journal of Scientific & Engineering Research, Volume 5, Issue 7, July-2014 ISSN

International Journal of Scientific & Engineering Research, Volume 5, Issue 7, July-2014 ISSN ISSN 2229-5518 815 Effectof Radiation on the Performance ofa SupersonicCombustor Goutham S M R Rajkumar Department M of Tech, Mechanical Mechanical Engineering Engineering Department Department of Mechanical

More information

AA214B: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS

AA214B: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS AA214B: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS 1 / 29 AA214B: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS Hierarchy of Mathematical Models 1 / 29 AA214B: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS 2 / 29

More information

DEVELOPMENT OF A ONE DIMENSIONAL ANALYSIS PROGRAM FOR SCRAMJET AND RAMJET FLOWPATHS

DEVELOPMENT OF A ONE DIMENSIONAL ANALYSIS PROGRAM FOR SCRAMJET AND RAMJET FLOWPATHS DEVELOPMENT OF A ONE DIMENSIONAL ANALYSIS PROGRAM FOR SCRAMJET AND RAMJET FLOWPATHS Kathleen Tran and Walter F. O'Brien, Jr Center for Turbomachinery and Propulsion Research Virginia Polytechnic Institute

More information

High Speed Aerodynamics. Copyright 2009 Narayanan Komerath

High Speed Aerodynamics. Copyright 2009 Narayanan Komerath Welcome to High Speed Aerodynamics 1 Lift, drag and pitching moment? Linearized Potential Flow Transformations Compressible Boundary Layer WHAT IS HIGH SPEED AERODYNAMICS? Airfoil section? Thin airfoil

More information

43rd AIAA Aerospace Sciences Meeting and Exhibit, January 2005, Reno, Nevada

43rd AIAA Aerospace Sciences Meeting and Exhibit, January 2005, Reno, Nevada 43rd AIAA Aerospace Sciences Meeting and Exhibit, 0-3 January 2005, Reno, Nevada Exact Solutions for Two-Dimensional Reactive Flow for Verification of Numerical Algorithms Joseph M. Powers University of

More information

Multistage Rocket Performance Project Two

Multistage Rocket Performance Project Two 41 Multistage Rocket Performance Project Two Charles R. O Neill School of Mechanical and Aerospace Engineering Oklahoma State University Stillwater, OK 74078 Project Two in MAE 3293 Compressible Flow December

More information

Fluid Mechanics - Course 123 COMPRESSIBLE FLOW

Fluid Mechanics - Course 123 COMPRESSIBLE FLOW Fluid Mechanics - Course 123 COMPRESSIBLE FLOW Flow of compressible fluids in a p~pe involves not only change of pressure in the downstream direction but also a change of both density of the fluid and

More information

AOE 3114 Compressible Aerodynamics

AOE 3114 Compressible Aerodynamics AOE 114 Compressible Aerodynamics Primary Learning Objectives The student will be able to: 1. Identify common situations in which compressibility becomes important in internal and external aerodynamics

More information

Section 4.1: Introduction to Jet Propulsion. MAE Propulsion Systems II

Section 4.1: Introduction to Jet Propulsion. MAE Propulsion Systems II Section 4.1: Introduction to Jet Propulsion Jet Propulsion Basics Squeeze Bang Blow Suck Credit: USAF Test Pilot School 2 Basic Types of Jet Engines Ramjet High Speed, Supersonic Propulsion, Passive Compression/Expansion

More information

Ms. Sally Richards, Co-op Program Manager Embry-Riddle Aeronautical University, Daytona Beach, Florida

Ms. Sally Richards, Co-op Program Manager Embry-Riddle Aeronautical University, Daytona Beach, Florida To: From: Ms. Sally Richards, Co-op Program Manager Embry-Riddle Aeronautical University, Daytona Beach, Florida 32114-3900 Gianluca Puliti, Research Assistant - Aerospace and Mechanical Engineering University

More information

Application of Computational Fluid Dynamics in Discontinuous Unsteady Flow with Large Amplitude Changes; the Shock Tube Problem

Application of Computational Fluid Dynamics in Discontinuous Unsteady Flow with Large Amplitude Changes; the Shock Tube Problem Application of Computational Fluid Dynamics in Discontinuous Unsteady Flow with Large Amplitude Changes; the Shock Tube Problem KHALED ALHUSSAN Research Assistant Professor, Space Research Institute, King

More information

Fluid Dynamics and Balance Equations for Reacting Flows

Fluid Dynamics and Balance Equations for Reacting Flows Fluid Dynamics and Balance Equations for Reacting Flows Combustion Summer School 2018 Prof. Dr.-Ing. Heinz Pitsch Balance Equations Basics: equations of continuum mechanics balance equations for mass and

More information

A second order scheme on staggered grids for detonation in gases

A second order scheme on staggered grids for detonation in gases A second order scheme on staggered grids for detonation in gases Chady Zaza IRSN PSN-RES/SA2I/LIE August 1, 2016 HYP 2016, RWTH Aachen Joint work with Raphaèle Herbin, Jean-Claude Latché and Nicolas Therme

More information

ANALYSIS OF THE PREDICTION ABILITY OF REACTION MECHANISMS FOR CFD MODELING OF THE COMBUSTION IN HIGH VELOCITY ENGINES

ANALYSIS OF THE PREDICTION ABILITY OF REACTION MECHANISMS FOR CFD MODELING OF THE COMBUSTION IN HIGH VELOCITY ENGINES ANALYSIS OF THE PREDICTION ABILITY OF REACTION MECHANISMS FOR CFD MODELING OF THE COMBUSTION IN HIGH VELOCITY ENGINES V. Kopchenov*, S. Batura*, L. Bezgin*, N. Titova*, A. Starik* *CIAM, Russia Keywords:

More information

Reaction Rate Closure for Turbulent Detonation Propagation through CLEM-LES

Reaction Rate Closure for Turbulent Detonation Propagation through CLEM-LES 5 th ICDERS August 7, 05 Leeds, UK through CLEM-LES Brian Maxwell, Matei Radulescu Department of Mechanical Engineering, University of Ottawa 6 Louis Pasteur, Ottawa, KN 6N5, Canada Sam Falle School of

More information

Jennifer Wen 1 & Changjian Wang 2,3. Warwick Fire, School of Engineering, University of Warwick

Jennifer Wen 1 & Changjian Wang 2,3. Warwick Fire, School of Engineering, University of Warwick A new single-step reaction mechanism for propane explosions covering the entire spectrum of flame acceleration, transition to detonation and detonation Jennifer Wen 1 & Changian Wang 2,3 1 Warwick Fire,

More information

GAS DYNAMICS AND JET PROPULSION

GAS DYNAMICS AND JET PROPULSION GAS DYNAMICS AND JE PROPULSION 1. What is the basic difference between compressible and incompressible fluid flow? Compressible Incompressible 1. Fluid velocities are appreciable 1. Fluid velocities are

More information

Gas Dynamics and Jet Propulsion

Gas Dynamics and Jet Propulsion Gas Dynamics and Jet Propulsion (For B.E. Mechanical Engineering Students) (As per Anna University and Leading Universities New Revised Syllabus) Prof. K. Pandian Dr. A.Anderson, M.E., Ph.D., Professor

More information

AAE COMBUSTION AND THERMOCHEMISTRY

AAE COMBUSTION AND THERMOCHEMISTRY 5. COMBUSTIO AD THERMOCHEMISTRY Ch5 1 Overview Definition & mathematical determination of chemical equilibrium, Definition/determination of adiabatic flame temperature, Prediction of composition and temperature

More information

Verified Calculation of Nonlinear Dynamics of Viscous Detonation

Verified Calculation of Nonlinear Dynamics of Viscous Detonation Verified Calculation of Nonlinear Dynamics of Viscous Detonation Christopher M. Romick, University of Notre Dame, Notre Dame, IN Tariq D. Aslam, Los Alamos National Laboratory, Los Alamos, NM and Joseph

More information

The Dynamics of Detonation with WENO and Navier-Stokes Shock-Capturing

The Dynamics of Detonation with WENO and Navier-Stokes Shock-Capturing The Dynamics of Detonation with WENO and Navier-Stokes Shock-Capturing Christopher M. Romick, University of Notre Dame, Notre Dame, IN Tariq D. Aslam, Los Alamos National Laboratory, Los Alamos, NM and

More information

Numerical Investigation of Shock wave Turbulent Boundary Layer Interaction over a 2D Compression Ramp

Numerical Investigation of Shock wave Turbulent Boundary Layer Interaction over a 2D Compression Ramp Advances in Aerospace Science and Applications. ISSN 2277-3223 Volume 4, Number 1 (2014), pp. 25-32 Research India Publications http://www.ripublication.com/aasa.htm Numerical Investigation of Shock wave

More information

Applied Gas Dynamics Flow With Friction and Heat Transfer

Applied Gas Dynamics Flow With Friction and Heat Transfer Applied Gas Dynamics Flow With Friction and Heat Transfer Ethirajan Rathakrishnan Applied Gas Dynamics, John Wiley & Sons (Asia) Pte Ltd c 2010 Ethirajan Rathakrishnan 1 / 121 Introduction So far, we have

More information

Numerical Simulation and Modeling of Combustion in Scramjets

Numerical Simulation and Modeling of Combustion in Scramjets Western Michigan University ScholarWorks at WMU Dissertations Graduate College 12-2015 Numerical Simulation and Modeling of Combustion in Scramjets Ryan James Clark Western Michigan University, clark_r@icloud.com

More information

Compressible Fluid Flow

Compressible Fluid Flow Compressible Fluid Flow For B.E/B.Tech Engineering Students As Per Revised Syllabus of Leading Universities in India Including Dr. APJ Abdul Kalam Technological University, Kerala Dr. S. Ramachandran,

More information

ADVANCES in NATURAL and APPLIED SCIENCES

ADVANCES in NATURAL and APPLIED SCIENCES ADVANCES in NATURAL and APPLIED SCIENCES ISSN: 1995-0772 Published BY AENSI Publication EISSN: 1998-1090 http://www.aensiweb.com/anas 2016 Special 10(6): pages 79-88 Open Access Journal Effect of Variable

More information

Simulation of Condensing Compressible Flows

Simulation of Condensing Compressible Flows Simulation of Condensing Compressible Flows Maximilian Wendenburg Outline Physical Aspects Transonic Flows and Experiments Condensation Fundamentals Practical Effects Modeling and Simulation Equations,

More information

Theoretical Developments in Group Combustion of Droplets and Sprays

Theoretical Developments in Group Combustion of Droplets and Sprays Theoretical Developments in Group Combustion of Droplets and Sprays William A. Sirignano University of California, Irvine Collaborations: Guang Wu, current student; Randall Imaoka, former student, US Navy;

More information

On thermodynamic cycles for detonation engines

On thermodynamic cycles for detonation engines On thermodynamic cycles for detonation engines R. Vutthivithayarak, E.M. Braun, and F.K. Lu 1 Introduction Detonation engines are considered to potentially yield better performance than existing turbo-engines

More information

Mechanical Engineering Department Third year class Gas Dynamics Tables Lecturer: Dr.Naseer Al-Janabi

Mechanical Engineering Department Third year class Gas Dynamics Tables Lecturer: Dr.Naseer Al-Janabi Mechanical Engineering Department Third year class Gas Dynamics Tables Lecturer: Dr.Naseer Al-Janabi Ref. Fundamentals of Gas Dynamics, 2e - R. Zucker, O. Biblarz Appendixes A. B. C. D. E. F. G. H. I.

More information

Presentation Start. Zero Carbon Energy Solutions 4/06/06 10/3/2013:; 1

Presentation Start. Zero Carbon Energy Solutions 4/06/06 10/3/2013:; 1 Presentation Start 10/3/2013:; 1 4/06/06 What is an Explosion? Keller, J.O. President and CEO,, ISO TC 197, Technical Program Director for the Built Environment and Safety; Gresho, M. President, FP2FIRE,

More information

First Law of Thermodynamics

First Law of Thermodynamics CH2303 Chemical Engineering Thermodynamics I Unit II First Law of Thermodynamics Dr. M. Subramanian 07-July-2011 Associate Professor Department of Chemical Engineering Sri Sivasubramaniya Nadar College

More information

CONTENTS Real chemistry e ects Scramjet operating envelope Problems

CONTENTS Real chemistry e ects Scramjet operating envelope Problems Contents 1 Propulsion Thermodynamics 1-1 1.1 Introduction.................................... 1-1 1.2 Thermodynamic cycles.............................. 1-8 1.2.1 The Carnot cycle.............................

More information

Physics of Explosions

Physics of Explosions Physics of Explosions Instructor: Dr. Henry Tan Pariser/B4 MACE - Explosion Engineering School of Mechanical, Aerospace and Civil Engineering The University of Manchester Introduction Equation of state

More information

Use of the graphical analytic methods of studying the combustion processes in the internal combustion

Use of the graphical analytic methods of studying the combustion processes in the internal combustion Use of the graphical analytic methods of studying the combustion processes in the internal combustion engine combustion chamber on the basis of similarity criterion S. V. Krasheninnikov Samara State Aerospace

More information

Procedural Fluid Modeling of Explosion Phenomena Based on Physical Properties

Procedural Fluid Modeling of Explosion Phenomena Based on Physical Properties Procedural Fluid Modeling of Explosion Phenomena Based on Physical Properties SCA 2011 G. Kawada & T. Kanai Presented by Tae-hyeong Kim 2012. 10. 12 Copyright of figures and other materials in the paper

More information

S. Kadowaki, S.H. Kim AND H. Pitsch. 1. Motivation and objectives

S. Kadowaki, S.H. Kim AND H. Pitsch. 1. Motivation and objectives Center for Turbulence Research Annual Research Briefs 2005 325 The dynamics of premixed flames propagating in non-uniform velocity fields: Assessment of the significance of intrinsic instabilities in turbulent

More information

Multiphase CFD Model of Wildland Fire Initiation and Spread

Multiphase CFD Model of Wildland Fire Initiation and Spread The 5th International Fire Behavior and Fuels Conference April 11-15, 2016, Portland, Oregon, USA Multiphase CFD Model of Wildland Fire Initiation and Spread 1 Vladimir Agranat, Ph.D. President & Senior

More information

URANS Computations of Cavitating Flow around a 2-D Wedge by Compressible Two-Phase Flow Solver

URANS Computations of Cavitating Flow around a 2-D Wedge by Compressible Two-Phase Flow Solver URANS Computations of Cavitating Flow around a 2-D Wedge by Compressible Two-Phase Flow Solver *Yohan Choe 1), Hyeongjun Kim 1), Chongam Kim 2) 1), 2) Department of Aerospace Engineering, Seoul National

More information

Sandwich Propellant Combustion

Sandwich Propellant Combustion Sandwich Propellant Combustion P. A. Ramakrishna, P. J. Paul and H. S. Mukunda Combustion Gasification and Propulsion Laboratory Department of Aerospace Engineering Indian Institute of Science Bangalore

More information

PHYS 643 Week 4: Compressible fluids Sound waves and shocks

PHYS 643 Week 4: Compressible fluids Sound waves and shocks PHYS 643 Week 4: Compressible fluids Sound waves and shocks Sound waves Compressions in a gas propagate as sound waves. The simplest case to consider is a gas at uniform density and at rest. Small perturbations

More information

THRUST CHAMBER DYNAMICS AND PROPULSIVE PERFORMANCE OF AIRBREATHING PULSE DETONATION ENGINES

THRUST CHAMBER DYNAMICS AND PROPULSIVE PERFORMANCE OF AIRBREATHING PULSE DETONATION ENGINES The Pennsylvania State University The Graduate School Department of Mechanical and Nuclear Engineering THRUST CHAMBER DYNAMICS AND PROPULSIVE PERFORMANCE OF AIRBREATHING PULSE DETONATION ENGINES A Thesis

More information

Computations of non-reacting and reacting two-fluid interfaces

Computations of non-reacting and reacting two-fluid interfaces Computations of non-reacting and reacting two-fluid interfaces Kunkun Tang Alberto Beccantini Christophe Corre Lab. of Thermal Hydraulics & Fluid Mechanics (LATF), CEA Saclay Lab. of Geophysical & Industrial

More information

TURBINE BURNERS: Engine Performance Improvements; Mixing, Ignition, and Flame-Holding in High Acceleration Flows

TURBINE BURNERS: Engine Performance Improvements; Mixing, Ignition, and Flame-Holding in High Acceleration Flows TURBINE BURNERS: Engine Performance Improvements; Mixing, Ignition, and Flame-Holding in High Acceleration Flows Presented by William A. Sirignano Mechanical and Aerospace Engineering University of California

More information

AERODYNAMIC SHAPING OF PAYLOAD FAIRING FOR A LAUNCH VEHICLE Irish Angelin S* 1, Senthilkumar S 2

AERODYNAMIC SHAPING OF PAYLOAD FAIRING FOR A LAUNCH VEHICLE Irish Angelin S* 1, Senthilkumar S 2 e-issn 2277-2685, p-issn 2320-976 IJESR/May 2014/ Vol-4/Issue-5/295-299 Irish Angelin S et al./ International Journal of Engineering & Science Research AERODYNAMIC SHAPING OF PAYLOAD FAIRING FOR A LAUNCH

More information

Comparison of drag measurements of two axisymmetric scramjet models at Mach 6

Comparison of drag measurements of two axisymmetric scramjet models at Mach 6 16th Australasian Fluid Mechanics Conference Crown Plaza, Gold Coast, Australia 2-7 December 27 Comparison of drag measurements of two axisymmetric scramjet models at Mach 6 Katsuyoshi Tanimizu, D. J.

More information

Air Breathing Processes in a Repetitively Pulsed Microwave Rocket

Air Breathing Processes in a Repetitively Pulsed Microwave Rocket 46th AIAA Aerospace Sciences Meeting and Exhibit 7 - January 8, Reno, Nevada AIAA 8-85 Air Breathing Processes in a Repetitively Pulsed Microwave Rocket Yuya SHIRAISHI, Yasuhisa ODA, Teppei SHIBATA 3 and

More information

AME 436. Energy and Propulsion. Lecture 11 Propulsion 1: Thrust and aircraft range

AME 436. Energy and Propulsion. Lecture 11 Propulsion 1: Thrust and aircraft range AME 436 Energy and Propulsion Lecture 11 Propulsion 1: Thrust and aircraft range Outline!!!!! Why gas turbines? Computation of thrust Propulsive, thermal and overall efficiency Specific thrust, thrust

More information

Chapter 1 Introduction and Basic Concepts

Chapter 1 Introduction and Basic Concepts Chapter 1 Introduction and Basic Concepts 1-1 Thermodynamics and Energy Application Areas of Thermodynamics 1-2 Importance of Dimensions and Units Some SI and English Units Dimensional Homogeneity Unity

More information

Rocket Dynamics. Forces on the Rocket

Rocket Dynamics. Forces on the Rocket Rocket Dynamics Forces on the Rockets - Drag Rocket Stability Rocket Equation Specific Impulse Rocket otors F Thrust Forces on the Rocket Equation of otion: Need to minimize total mass to maximize acceleration

More information

Higher Order DSD Calibration of Ammonium Nitrate/Fuel Oil

Higher Order DSD Calibration of Ammonium Nitrate/Fuel Oil 25 th ICDERS August 2 7, 2015 Leeds, UK Higher Order DSD Calibration of Ammonium Nitrate/Fuel Oil Carlos Chiquete, Mark Short, Scott I. Jackson and John B. Bdzil Shock and Detonation Physics Group Los

More information

Simulation of unsteady muzzle flow of a small-caliber gun

Simulation of unsteady muzzle flow of a small-caliber gun Advances in Fluid Mechanics VI 165 Simulation of unsteady muzzle flow of a small-caliber gun Y. Dayan & D. Touati Department of Computational Mechanics & Ballistics, IMI, Ammunition Group, Israel Abstract

More information

Combustion Behind Shock Waves

Combustion Behind Shock Waves Paper 3F-29 Fall 23 Western States Section/Combustion Institute 1 Abstract Combustion Behind Shock Waves Sandeep Singh, Daniel Lieberman, and Joseph E. Shepherd 1 Graduate Aeronautical Laboratories, California

More information

Chemistry Higher level Paper 1

Chemistry Higher level Paper 1 N15/4/EMI/PM/ENG/TZ0/XX hemistry igher level Paper 1 Friday 13 November 2015 (afternoon) 1 hour Instructions to candidates Do not open this examination paper until instructed to do so. Answer all the questions.

More information