Heat Engines, Entropy, and the Second Law of Thermodynamics

Size: px
Start display at page:

Download "Heat Engines, Entropy, and the Second Law of Thermodynamics"

Transcription

1 Heat Engnes, Entropy, and te Seond Law o ermodynams HER OULINE.1 Heat Engnes and te Seond Law o ermodynams. Heat umps and Rergerators. Reversble and Irreversble roesses.4 e arnot Engne. Gasolne and esel Engnes.6 Entropy.7 Entropy anges n Irreversble roesses.8 Entropy on a Mrosop Sale NSERS O UESIONS.1 Frst, te eeny o te automoble ne annot exeed te arnot eeny: t s lmted by te temperature o burnng uel and te temperature o te envronment nto w te exaust s dumped. Seond, te ne blok annot be allowed to go over a ertan temperature. rd, any pratal ne as rton, nomplete burnng o uel, and lmts set by tmng and energy transer by eat. *. For any yl proess te total nput energy must be equal to te total output energy. s s a onsequene o te rst law o termodynams. It s satsed by proesses, v, v, v, v but not by proesses,, v. e seond law says tat a yl proess tat takes n energy by eat must put out some o te energy by eat. s s not satsed or proesses v, v, and v. us te answers are () b () a () b (v) a (v) (v) a (v) (v) d.. ger steam temperature means tat more energy an be extrated rom te steam. For a onstant temperature eat snk at, and steam at, te eeny o te power plant goes as 1 and s maxmzed or a g..4 No. e rst law o termodynams s a statement about energy onservaton, wle te seond s a statement about stable termal equlbrum. ey are by no means mutually exlusve. For te partular ase o a ylng eat ne, te rst law mples +, and te seond law mples > 0.. ake an automoble as an example. ordng to te rst law or te dea o energy onservaton, t must take n all te energy t puts out. Its energy soure s emal energy n gasolne. urng te ombuston proess, some o tat energy goes nto movng te pstons and eventually nto te meanal moton o te ar. e emal energy turnng nto nternal energy an be modeled as energy nput by eat. e seond law says tat not all o te energy nput an beome output meanal energy. Mu o te nput energy must and does beome energy output by eat, w, troug te oolng system, s dsspated nto te atmospere. Moreover, tere are numerous plaes were rton, bot meanal and lud, turns meanal energy nto eat. In even te most eent nternal ombuston ne ars, less tan 0% o te energy rom te uel atually goes nto movng te ar. e rest ends up as useless eat n te atmospere p ndd 71 1/8/07 7::4 M

2 7 apter *.6 nswer (b). In te reversble adabat expanson O, te gas does work aganst a pston, takes n no energy by eat, and so drops n nternal energy and n temperature. In te ree adabat expanson OB, tere s no pston, no work output, onstant nternal energy, and onstant temperature or te deal gas. e ponts O and B are on a yperbol soterm. e ponts O and are on an adabat, steeper tan an soterm by te ator..7 sle o ot pzza ools o. Road rton brngs a skddng ar to a stop. up alls to te loor and satters. Your at des. ny proess s rreversble t looks unny or rgtenng wen sown n a vdeotape runnng bakwards. e ree lgt o a projetle s nearly reversble..8 (a) en te two sdes o te semondutor are at derent temperatures, an eletr potental (voltage) s generated aross te materal, w an drve eletr urrent troug an external rut. e two ups at 0 ontan te same amount o nternal energy as te par o ot and old ups. But no energy lows by eat troug te onverter brdgng between tem and no voltage s generated aross te semondutors. (b) eat ne must put out exaust energy by eat. e old up provdes a snk to absorb output or wasted energy by eat, w as nowere to go between two ups o equally warm water. *.9 () nswer (a). e ar ondtoner operatng n a losed room takes n energy by eletr transmsson and turns t all nto energy put out by eat. at s ts wole net eet. () nswer (b). e rozen stu absorbs energy by eat rom te ar. But you ll te e trays wt tap water and put tem bak nto te reezer, te rergerator wll pump more eat nto te ar tan t extrats rom te water to make t reeze. *.10 () nswer (d). () nswer (d). e seond law says tat you must put n some work to pump eat rom a lower-temperature to a ger-temperature loaton. But t an be very lttle work te two temperatures are very nearly equal..11 One: Energy lows by eat rom a ot bowl o l nto te ooler surroundng ar. Heat lost by te ot stu s equal to eat ganed by te old stu, but te entropy derease o te ot stu s less tan te entropy nrease o te old stu. wo: s you nlate a sot ar tre at a serve staton, ar rom a tank at g pressure expands to ll a larger volume. at ar nreases n entropy and te surroundng atmospere undergoes no sgnant entropy ange. ree: e brakes o your ar get warm as you ome to a stop. e soes and drums nrease n entropy and notng loses energy by eat, so notng dereases n entropy..1 (a) For an expandng deal gas at onstant temperature, te nternal energy stays onstant. e gas must absorb by eat te same amount o energy tat t puts out by work. en ts V entropy ange s S nr ln V 1 (b) For a reversble adabat expanson 0, and S 0. n deal gas undergong an rreversble adabat expanson an ave any postve value or S up to te value gven n part (a). *.1 nswer (). e wole Unverse must ave an entropy ange o zero or more. e envronment around te system omprses te rest o te Unverse, and must ave an entropy ange o +8.0 J K, or more p ndd 7 1/8/07 7:: M

3 Heat Engnes, Entropy, and te Seond Law o ermodynams 7 *.14 () () onsder te area tat ts under ea o te arrows, between ts lne segment and te orzontal axs. ount t as postve or arrows to te rgt, zero or vertal arrows, and negatve or arrows tendng let. en E > F > G > H > > B >. e tn blue yperbol lnes are soterms. Ea s a set o ponts representng states wt te same nternal energy or te deal gas smple. n arrow tendng arter rom te orgn tan te BE yperbola represents a proess or w nternal energy nreases. So we ave E > > B F > G > H. () e arrows and G are along an adabat. Vsualze or sket n a set o tese urves, unormly steeper tan te blue soterms. e energy nput by eat s determned by ow ar above te startng adabat te proess arrow ends. e ave E > > F > G > B > H >. *.1 roesses and G are adabat. ey an be arred out reversbly. long tese arrows entropy does not ange. Vsualze or sket n a set o tese adabat urves, unormly steeper tan te blue soterms. e entropy ange s determned by ow ar above te startng adabat te proess arrow ends. e ave E > > F > G > B > H >. *.16 (a) e redued low rate o oolng water redues te amount o eat exaust tat te plant an put out ea seond. Even wt onstant eeny, te rate at w te turbnes an take n eat s redued and so s te rate at w tey an put out work to te generators. I anytng, te eeny wll drop, beause te smaller amount o water arryng te eat exaust wll tend to run otter. e steam gong troug te turbnes wll undergo a smaller temperature ange. us tere are two reasons or te work output to drop. (b) e neer s verson o events, as seen rom nsde te plant, s omplete and orret. Hot steam puses ard on te ront o a turbne blade. Stll-warm steam puses less ard on te bak o te blade, w turns n response to te pressure derene. Hger temperature at te eat exaust port n te lake works ts way bak to a orrespondng ger temperature o te steam leavng a turbne blade, a smaller temperature drop aross te blade, and a lower work output. *.17 nswer (d). Heat nput wll not neessarly produe an entropy nrease, beause a eat nput ould go on smultaneously wt a larger work output, to arry te gas to a lower-temperature, lower-entropy nal state. ork nput wll not neessarly produe an entropy nrease, beause work nput ould go on smultaneously wt eat output to arry te gas to a lower-volume, lower-entropy nal state. Eter temperature nrease at onstant volume, or volume nrease at onstant temperature, or smultaneous nreases n bot temperature and volume, wll neessarly end n a more dsordered, ger-entropy nal state..18 n analogy used by arnot s nstrutve: waterall ontnuously onverts meanal energy nto nternal energy. It ontnuously reates entropy as te organzed moton o te allng water turns nto dsorganzed moleular moton. e umans put turbnes nto te waterall, dvertng some o te energy stream to our use. ater lows spontaneously rom g to low elevaton and energy spontaneously lows by eat rom g to low temperature. Into te great low o solar radaton rom Sun to Eart, lvng tngs put temselves. ey lve on energy low, more tan just on energy. baskng snake dverts energy rom a g-temperature soure (te Sun) troug tsel temporarly, beore te energy nevtably s radated rom te body o te snake to a lowtemperature snk (outer spae). tree bulds organzed ellulose moleules and we buld lbrares and babes wo look lke ter grandmoters, all out o a tn dverted stream n te unversal low o energy rasng down to dsorder. e do not volate te seond law, or we buld loal redutons n te entropy o one tng wtn te nexorable nrease n te total entropy o te Unverse. Your roommate s exerse puts energy nto te room by eat p ndd 7 1/8/07 7::6 M

4 74 apter.19 Eter statement an be onsdered an nstrutve analogy. e oose to take te rst vew. ll proesses requre energy, eter as energy ontent or as energy nput. e knet energy w t possessed at ts ormaton ontnues to make te Eart go around. Energy released by nulear reatons n te ore o te Sun drves weater on te Eart and essentally all proesses n te bospere. e energy ntensty o sunlgt ontrols ow lus a orest or jungle an be and ow warm a planet s. ontnuous energy nput s not requred or te moton o te planet. ontnuous energy nput s requred or le beause energy tends to be ontnuously degraded, as eat lows nto lower-temperature snks. e ontnuously nreasng entropy o te Unverse s te ndex to energy-transers ompleted. rnold Sommereld suggested te dea or ts queston..0 Sakng opens up spaes between jellybeans. e smaller ones more oten an all down nto spaes below tem. e aumulaton o larger andes on top and smaller ones on te bottom mples a small nrease n order, a small derease n one ontrbuton to te total entropy, but te seond law s not volated. e total entropy nreases as te system warms up, ts nrease n nternal energy omng rom te work put nto sakng te box and also rom a bt o gravtatonal energy loss as te beans settle ompatly togeter. SOLUIONS O ROBLEMS Seton.1 Heat Engnes and te Seond Law o ermodynams. 0 J.1 (a) e 60 J or 694. % (b) 60 J. 0 J J *. e ne s output work we denty wt te knet energy o te bullet: e energy exaust s 1 1 K mv kg( 0 m s) 1 J e J J e (a) e ave e J 1 J J m J kg 1. 7 m 1.80 kg 448 J wt J, we ave kj (b) 667 J and rom t, we ave 667 J 000 J s 0. s 1794 p ndd 74 1/8/07 7::7 M

5 Heat Engnes, Entropy, and te Seond Law o ermodynams 7.4 (a) e nput energy ea our s 60 mn ( J revoluton)( 00 rev mn) J mplyng uel nput ( L ) J L 7 (b) +. For a ontnuous-transer proess we may dvde by tme to ave + Useul power output () (d) J J 00rev1mn revoluton revoluton mn 60 s p. 18 p 746 τω τ ω Js 1 rev 00 rev 60 s π rad ( ) t J 00 rev revoluton 60 s N m. e eat to melt 1.0 g o Hg s ml 1 10 kg J kg 177 J e energy absorbed to reeze 1.00 g o alumnum s ( )( ) ml ( 10 kg) J/ kg 97 J ( ) and te work output s 0 J e teoretal (arnot) eeny s 0 J e 0. 4, or.% 4 97 J 9 K 4.1 K % 9 K Seton. Heat umps and Rergerators.6 O ( rergerator) (a) I 10 J and O 00,. ten 4. 0 J (b) Heat expelled Heat removed + ork done J+ 4 J 144 J 1794 p ndd 7 1/8/07 7::7 M

6 76 apter.7 O 00.. ereore,. 00. e eat removed ea mnute s ( kg)( J kg )(. 0 ) + ( kg ). 10 J kg t kg 090 J kg ( 0.0 ) J mn +( )( ) ( ) or, J s t us, te work done per seond s Js (a) Btu 10 J 1 1 1Btu 600 s 1 Js 9. (b) e energy extrated by eat rom te old sde dvded by requred work nput s by denton te oeent o perormane or a rergerator: ( O) rergerator Btu Btu Btu () t EER, : k Btu Energy purased s ( 00. k)( 100 ) k ( )( ) ost k $ k $ t EER 10, 10 Btu Btu Btu : k 10 Btu Energy purased s (. )( ). ost k $ k $ 10 ( )( ) 1 00 k k us, te ost or ar ondtonng s al as mu or an ar ondtoner wt EER 10 ompared wt an ar ondtoner wt EER. Seton. Seton.4 Reversble and Irreversble roesses e arnot Engne.9 70 K 14 K (a) e % (b) J, s 4 J 8. 8 k 1794 p ndd 76 1/8/07 7::8 M

7 Heat Engnes, Entropy, and te Seond Law o ermodynams en e e, 1 (a) 1 ( ) ( ) and J 870 MJ t 1 ( )( 600 s) (b) t 8 8 t ( )( 600) J 0 MJ *.11 e use amounts o energy to nd te atual eeny. + 0 kj + 1. kj 1. kj e 1. kj 1. kj e use temperatures to nd te arnot eeny o a reversble ne e K 4 K e atual eeny o s less tan our-tents o te arnot eeny o *.1 (a) e (b) In e 1 we derentate to nd de d 0 ( 1) s s te nrease o eeny per degree o nrease n te temperature o te ot reservor. () In e 1 we derentate to nd de d en de ( d ) s s te nrease o eeny per degree o derease n te temperature o te old reservor. Note tat t s a better deal to ool te exaust tan to superarge te rebox..1 Isotermal expanson at K Isotermal ompresson at K Gas absorbs 1 00 J durng expanson. (a) J ( ) (b) J 49 J.14 e arnot summer eeny s e nd n wnter, ( 7 + 0) K ( 7 + 0) K s,. e w, en te atual wnter eeny s or.% p ndd 77 1/8/07 7::9 M

8 78 apter V V.1 (a) In an adabat proess, V V. lso, vdng te seond equaton by te rst yelds Sne or rgon, and we ave ( 1 07 K) a a ( 1) 64 K (b) Ent nv 0, so n V, and te power output s nv or t t ( kg ) ( 1 mol/0.099 kg)( )( J mol K) ( ) K s k () e 64 K or 47.% 1 07 K.16 (a) emax % 9 (b) Js ( )( ) 6 11 ereore, Js 600 s J 11 From e we nd e J J 7. J () s ossl-uel pres rse, ts way to use solar energy wll beome a good buy. *.17 (a) e Now So e + e e e + e e e ( ) e e ee 1 1 ontnued on next page 1794 p ndd 78 1/8/07 7::1 M

9 Heat Engnes, Entropy, and te Seond Law o ermodynams 79 (b) e e + e ee e ombnaton o reversble nes s tsel a reversble ne so t as te arnot eeny. No mprovement n net eeny as resulted. () t, e ( ) (d) e1 e ( ) + e *.18 (a) e atual eeny s two trds te arnot eeny reads as an equaton + 1. ll te s represent absolute temperatures. en M 0. K 8 K e domnatng n te bottom o ts raton means tat te exaust power dereases as te rebox temperature nreases. (b) () (d) t M 0. K 0.(107 K) M K 8 K ( 107 8) K 187. M e requre t M. M 0. K K K 8 K K K 68 K/ K e mnmum possble eat exaust power s approaed as te rebox temperature goes to nnty, and t s 1.40 M( 0. 1) 0.7 M. e eat exaust power annot be as small as (1 4)(1.87 M) M. So no answer exsts. e energy exaust annot be tat small p ndd 79 1/8/07 7:: M

10 80 apter ( O) rerg (a) Frst, onsder te adabat proess : V V so V V ka 10.0 L 1.0 L lso nr V or nr V V V 1 71 ka V V 70 K K 1.0 Now, onsder te sotermal proess : 49 K V V V V V V V VV ka ( L) 44 ka 4. 0 L( 1. 0 L) Next, onsder te adabat proess B : V V B B V But, VV rom above. lso onsderng te sotermal proess, V 1 B VB Hene, V V V V B V VV L( 4.0 L) 1 VV w redues to VB L V 1. 0 L B B Fnally, V B V 10.0 L ka 87ka 16.0 L 1 State (ka) V (L) (K) B ontnued on next page 1794 p ndd 80 1/8/07 7:: M

11 Heat Engnes, Entropy, and te Seond Law o ermodynams 81 (b) For te sotermal proess B: Ent nv 0 VB so nr ln V. 4 mol ( 8.14 J mol K ) 16 0 ( 70 K) ln. 68kJ For te adabat proess B : 0 Ent nv ( B). 4 mol ( J mol K) ( 49 70) K kj and + E nt 0 + ( kj) kj For te sotermal proess : Ent nv 0 V and nr ln V. 4 mol ( 8.14 J mol K ) 1 0 ( 49 K) ln Fnally, or te adabat proess : 0 0. kj Ent nv ( ). 4 mol ( J mol K) ( 70 49) K kj and + E nt kj kj roess (kj) (kj) E nt (kj) B B B e work done by te ne s te negatve o te work nput. e output work s gven by te work olumn n te table wt all sgns reversed. () B e 16. kj 0. 7 or.% kj B e or.% 7.1 (a) For a omplete yle, E nt 0 and e text sows tat or a arnot yle (and only or a reversble yle) ( ) 1 ereore, (b) e ave te denton o te oeent o perormane or a rergerator, O Usng te result rom part (a), ts beomes O 1794 p ndd 81 1/8/07 7:: M

12 8 apter. ( O) eat pump ( O) arnot rerg J per 1 J energy removed by eat..4 O O arnot yle or arnot eeny arnot yle K 9 K 68 K 117. us, 117. joules o energy enter te room by eat or ea joule o work done. FIG..4 *. O ( rergerator) K 40.0 K K m 60 K. 1.6 e ( ) O rergerator Seton. Gasolne and esel Engnes.7 (a) V V V V V ( a) 0. 0 m 00 m (b) dv V V V Integratng, V V V 1 6 (.0)( a) m 1 19 J ( ) m 00 m 44 ka p ndd 8 1/8/07 7:: M

13 Heat Engnes, Entropy, and te Seond Law o ermodynams 8.8 (a), (b) e quantty o gas s 6 V ( a) m n R ( Jmol K)( 9 K) ( ) mol 6 Ent, nr V ( a) ( m ) 1 J In proess B, V 140. B VB ( a )( 8. 00) a 6 6 V B B ( a) ( m 8. 00) B nr mol J mol K 67 K E nt, nr ( )( ) 0 00 mol 8 14 J mol K 67 K 87 J (. )(. )( ) B B so E 87 J 1 J 16 J 0 B 16 J nt, B out out roess B takes us to: 0 00 mol ( 8 14 J mol K )( 1 0 K) nr (. ). 6 V m Ent, nr ( mol) ( J mol K)( 1 0 K) 46 J E nt, B 46 J 87 J 149 J 0 out 6 a B 149 J In proess : V V ( ) a a V ( a) ( m ) 44 K nr mol J mol K ( )( ) E nt, nr ( 0 00 mol) ( 8 14 J mol K) 44.. ( K ) 190 J E 190 J 46 J 46 J 0 nt, out out 46 J and Ent, Ent, Ent, 1 J 190 J 6. 0 J out J For te entre yle, E nt, net 16 J e net work s net 16 J J J J J 84. J ontnued on next page 1794 p ndd 8 1/8/07 7::6 M

14 84 apter e tables look lke: State (K) (ka) V (m ) E nt (J) B roess (J) output (J) E nt (J) B B B () e nput energy s 149 J, te waste s 6. 0 J, and 84. J. (d) 84. J e eeny s: e 149 J 0. 6 (e) Let represent te angular speed o te ranksat. en s te requeny at w we obtan work n te amount o 84. J yle: Js 84 Jyle (. ) 000 Js. 7 rev s 84. Jyle rev mn.9 ompresson rato 6.00, 1.40 (a) V Eeny o an Otto-ne e 1 1 V e % (b) I atual eeny e 1.% 0 losses n system are e e 6.% Seton.6 Entropy.0 For a reezng proess, S (. kg ). ( J kg ) K *.1 e proess o rasng te temperature o te sample n ts way s reversble, beause an nntesmal ange would make δ negatve, and energy would low out nstead o n. en we may nd te entropy ange o te sample as d md S ds m m 610 JK ln ln ln mln( ) 1794 p ndd 84 1/8/07 7::7 M

15 Heat Engnes, Entropy, and te Seond Law o ermodynams 8 *. (a) (b) () e proess s sobar beause t takes plae under onstant atmosper pressure. s desrbed by Newton s trd law, te stewng syrup must exert te same ore on te ar as te ar exerts on t. e eatng proess s not adabat (beause energy goes n by eat), sotermal ( goes up), sovolumetr (t lkely expands a bt), yl (t s derent at te end), or sentrop (entropy nreases). It ould be made as nearly reversble as you ws, by not usng a kten stove but a eater kept always just nrementally ger n temperature tan te syrup. e proess would ten also be eternal, and mpratal or ood produton. e nal temperature s 0 0 F 1 F+ 8 F F F 104 For te mxture, m m ( 900 g 1 al g + 90 g 0.99 al g ) ( ) al J onsder te reversble eatng proess desrbed n part (a): d ( m m d 1 1+ ) S ( m + m ) 1 1 ln [ 900( 1) + 90( 0 99) ]( ) J. al ln 1 al 1K JK J K ( ) d md. S m ln S 0 g( 1.00 al g ) ln al K 19 J K Seton.7 Entropy anges n Irreversble roesses.4 S JK 7. JK e ar ends up n te same termodynam state as t started, so t undergoes zero anges n entropy. e orgnal knet energy o te ar s transerred by eat to te surroundng ar, addng to te nternal energy o te ar. Its ange n entropy s 1 mv 70( 0. 0) S J K 10. kj K p ndd 8 1/8/07 7::8 M

16 86 apter *.6 ene 1 emp ream K. ene emp oee K e nal temperature o te mxture s: e entropy ange due to ts mxng s S S + ( ) JK ln 840 JK ln ( ) S J K 1 ( 0. 0 g) + ( 00 g) 0 g 1 d V 0. 0 g 00 g ( ) + ( ) ( 84 0 ) K d V 8 + ( ) 8. KJln 840 JKln 78.7 Sttng ere wrtng, I onvert emal energy, n ordered moleules n ood, nto nternal energy tat leaves my body by eat nto te room-temperature surroundngs. My rate o energy output s equal to my metabol rate, al J kal d s 1 al 10 My body s n steady state, angng lttle n entropy, as te envronment nreases n entropy at te rate S K~ 1 K 9 K en usng powerul applanes or an automoble, my personal ontrbuton to entropy produton s mu greater tan te above estmate, based only on metabolsm..8 ron 448 Jkg ; water Jkg old : kg J kg kg 448 Jkg 900 ot ( ) w yelds. 06. K 06. K ( ) ( ) 06. K ( ) ( ) watermwaterd ronmrond S + 8 K 117 K 06 S waterm. water ln ronmron ln 117 S Jkg K kg J kg K kg ( 14. ) S ( )( )( ) + ( )( ) 718 JK V.9 S nrln R V ln. 76 J K ere s no ange n temperature or an deal gas. FIG p ndd 86 1/8/07 7::8 M

17 Heat Engnes, Entropy, and te Seond Law o ermodynams 87 V.40 S nrln R V ( )( ) ln S ( 8. 14) ln J K FIG..40 Seton.8 Entropy on a Mrosop Sale.41 (a) 1 an only be obtaned one way, as (b) 7 an be obtaned sx ways: 6 + 1, +, 4 +, + 4, +, (a) e table s sown below. On te bass o te table, te most probable reorded result o a toss s eads and tals. (b) e most ordered state s te least lkely marostate. us, on te bass o te table ts s eter all eads or all tals. () e most dsordered s te most lkely marostate. us, ts s eads and tals. Result ossble ombnatons otal ll eads HHHH 1 H, 1 HHH, HHH, HHH, HHH 4 H, HH, HH, HH, HH, HH, HH 6 1H, H, H, H, H 4 ll tals 1.4 (a) Result ossble ombnatons otal ll red RRR 1 R, 1G RRG, RGR, GRR 1R, G RGG, GRG, GGR ll green GGG 1 (b) Result ossble ombnatons otal ll red RRRRR 1 4R, 1G RRRRG, RRRGR, RRGRR, RGRRR, GRRRR R, G RRRGG, RRGRG, RGRRG, GRRRG, RRGGR, RGRGR, GRRGR, RGGRR, GRGRR, GGRRR 10 R, G GGGRR, GGRGR, GRGGR, RGGGR, GGRRG, GRGRG, RGGRG, GRRGG, RGRGG, RRGGG 10 1R, 4G RGGGG, GRGGG, GGRGG, GGGRG, GGGGR ll green GGGGG p ndd 87 1/8/07 7::40 M

18 88 apter ddtonal roblems.44 e onverson o gravtatonal potental energy nto knet energy as te water alls s reversble. But te subsequent onverson nto nternal energy s not. e magne arrvng at te same nal state by addng energy by eat, n amount mgy, to te water rom a stove at a temperature nntesmally above 0.0. en, d mgy ( )( S 000 m kg m m s )( 0. 0 m) JK 9 K *.4 For te arnot ne, lso, so e e K K 10 J 0 J e and 0 J 10 J 100 J (a) 10 J e S 14 J FIG J 10 J 64. J (b), net 14 J 0 J. 7 J, net 64. J 100 J. 7 J e net low o energy by eat rom te old to te ot reservor wtout work nput, s mpossble. () For ne S: e so J e S S J and + J+ 100 J J FIG..4(b) (d), net J 0 J 8. J net J 10 J 8. J,net 0 e output o 8. J o energy rom te eat ne by work n a yl proess wtout any exaust by eat s mpossble. FIG..4(d) ontnued on next page 1794 p ndd 88 1/8/07 7::4 M

19 Heat Engnes, Entropy, and te Seond Law o ermodynams 89 (e) Bot nes operate n yles, so S S S arnot 0 For te reservors, S and S + us, 8. J 0 Stotal SS + Sarnot + S + S K 00 K derease n total entropy s mpossble. JK V *.46 (a) Let state represent te gas beore ts ompresson and state aterwards, V. For a 8 datom deal gas, v R, R p, and p Next, V V V so 0. V 140. V V nr V 18. 4V V. nr nr ( ) Ent nv n R nr V 10( Nm) m 94. J Sne te proess s adabat, 0 and E nt + gves 9. 4 J 1 1 (b) e moment o nerta o te weel s I MR. 1 kg( m) kg m e want te lyweel to do work 9.4 J, so te work on te lyweel sould be 9.4 J: () Now we want 00. Krot K + K rot rot 1 Iω 9. 4 J (. J) ω kg m 6. 4 rad s 9. 4J kg m ω 1 ( 789 J) ω kg m 9 rad s 1794 p ndd 89 1/8/07 7::4 M

20 90 apter.47 (a) eletr H E so all te eletr energy s onverted nto nternal energy, te steady-state ondton o te ouse s desrbed by H E. ereore, eletr K (b) For a eat pump, ( O) arnot 7 K tual O 0. 6( 10. 9) 6. ereore, to brng 000 o energy nto te ouse only requres nput power 000 eat pump 76 O J.48 S ot 600 K J S old K (a) S S + U S (b) ot old JK e e ( J) 417 J () net 417 J 0 J 167 J 1 S U 0 K ( J K) 167 J V.49 (a) For an sotermal proess, nr ln V 1 ereore, 1 nr( )ln and nr For te onstant volume proesses, E nt, nr and 4 E nt, 4 nr e net energy by eat transerred s ten ( ) ln 1 4 ( ) ( ) FIG..49 or nr ln (b) postve value or eat represents energy transerred nto te system. ereore, 1+ 4 nr( 1+ ln ) Sne te ange n temperature or te omplete yle s zero, ereore, te eeny s E nt 0 and e ln 1 ( + ln ) p ndd 90 1/8/07 7::44 M

21 Heat Engnes, Entropy, and te Seond Law o ermodynams 91.0 (a) K S e water S body d 4. 6 g ( al g K) d ln ( ) body S al K system ( ( 4. 6)( 1. 00) ) al K (b) ( 4. 6)( 1) ( F 74. 8) ( )( 1) ( ) F al K us, ( ) 10 F ( 70. 0)( 10. 1) + ( ) ( 74. 8) 10 and F K F S e water 4. 6ln 4. al K S body ( ) ln al K S sys 1. 9 al K s s sgnantly less tan te estmate n part (a)..1 e 1 + / : m : / t : t ( 1 ) t m m ( ) 9 m ( )( 00 K) K J kg ( 600. ) ( ) kg s 1794 p ndd 91 1/8/07 7::46 M

22 9 apter. e 1 / / t 1 ( / ) m, were s te spe eat o water. m ereore, and m ( ) e test or dmensonal orretness by dentyng te unts o te rgt-and sde: Js kg ( ) kg s, as on te let and sde. nk o yoursel as a power-ompany Jkg ( ) J neer arrangng to ave enoug oolng water to arry o your termal polluton. I te plant power nreases, te requred low rate nreases n dret proporton. I envronmental regulatons requre a smaller temperature ange, ten te requred low rate nreases agan, now n nverse proporton. Next note tat s n te bottom o te raton. s means tat you an run te reator ore or rebox otter, te requred oolant low rate dereases! I te turbnes take n steam at ger temperature, tey an be made more eent to redue waste eat output p ndd 9 1/8/07 7::47 M

23 Heat Engnes, Entropy, and te Seond Law o ermodynams 9. Lke a rergerator, an ar ondtoner as as ts purpose te removal o energy by eat rom te old reservor. Its deal O s O arnot (a) Its atual O s ( 14. 0) K K ( 100. k) 660. and t 848. k (b) + : k k 1. k () e ar ondtoner operates n a yle, so te entropy o te workng lud does not ange. e ot reservor nreases n entropy by ( Js)( 600 s) JK 00 K e old room dereases n entropy by ( Js)( 600 s) S JK 80 K e net entropy ange s postve, as t must be: JK JK JK (d) e new deal O s O arnot e suppose te atual O s ( 11. ) K 11. K s a raton o te orgnal.60, ts s , so te ratonal ange s to 60. drop by 0.0% p ndd 9 1/8/07 7::47 M

24 94 apter *.4 (a) For te sotermal proess B, te work on te gas s V B B B V B ln V ( a )( m ) ln J were we ave used atm a and L m FIG..4 V ( ) a m J B B ( ) 0 and B B J 410. kj (b) Sne B s an sotermal proess, E nt, B 0 and J For an deal monatom gas, B B R V and R lso, B V B B nr ( )( ) R R ( )( ) V nr R R n R V R 608. kj so te total energy absorbed by eat s B kj kj 14. kj () B n ( nr ) B VB B ( ) ( ) J kj J (d) e 0.88 or 8.% J (e) B arnot ne operatng between ot 060 R and old 1010 R as eeny %. e tree-proess ne onsdered n ts problem as mu lower eeny p ndd 94 1/8/07 7::48 M

25 Heat Engnes, Entropy, and te Seond Law o ermodynams 9 *. t pont, V nr and n 100. mol t pont B, V nrb so B ( )( ) and 6 t pont, V nr t pont, V nr ( ) so R e eat or ea step n te yle s ound usng V R and : n nr ( ) ( ) ( ) ( ) B V n nR B n 6 6nR V n. 0nR (a) ereore, + enterng B 10. B nr FIG.. (b) + leavng 80. nr () tual eeny, e (d) arnot eeny, e e arnot eeny s mu ger d nd 1.6 S n d n ln n( ln ln) n ln S n V nr ln n nr V ln 1794 p ndd 9 1/8/07 7::49 M

26 96 apter.7 (a) e deal gas at onstant temperature keeps onstant nternal energy. s t puts out energy by work n expandng t must take n an equal amount o energy by eat. us ts entropy nreases. Let, V, represent te state o te gas beore te sotermal expanson. Let, V, represent te state ater ts proess, so tat V V. Let, V, represent te state ater te adabat ompresson. en V ( V) Substtutng V V gves VV 1 V en 1 1 V ( 1) V V and V e work output n te sotermal expanson s 1 V dv nr V dv nr ln nr V ( 1) ln( ) nr ln 1 s s also te nput eat, so te entropy ange s S nr 1 ln Sne + R we ave and V V ( 1) R, V R 1 en te result s S n ln V R 1 (b) e par o proesses onsdered ere arres te gas rom te ntal state n roblem 6 to te nal state tere. Entropy s a unton o state. Entropy ange does not depend on pat. ereore te entropy ange n roblem 6 equals Ssotermal + Sadabat n ts problem. Sne S adabat 0, te answers to roblems 6 and 7(a) must be te same. V *.8 (a) dv V dv nr ( 100. ) R ln V V R ln V V V (b) le t lasts, ts proess does onvert all o te energy nput nto work output. But te gas sample s n a derent state at te end tan t was at te begnnng. e proess annot be done over unless te gas s reompressed by a work nput. o be pratal, a eat ne must operate n a yle. e seond law reers to a eat ne operatng n a yle, so ts proess s onsstent wt te seond law o termodynams p ndd 96 1/8/07 7::0 M

27 Heat Engnes, Entropy, and te Seond Law o ermodynams 97.9 e eat transer over te pats and B s zero sne tey are adabat. ( ) > 0 Over pat B: n B B B dabat roesses ( ) < 0 Over pat : n V ereore, and e eeny s ten ( ) V e 1 1 ( B) e 1 1 B.60 Smply evaluate te maxmum (arnot) eeny. B V V FIG..9 V e 400. K K e proposal does not mert serous onsderaton. Operatng between tese temperatures, ts deve ould not attan so g an eeny. *.61 (a) 0. 0 (b) S mln + mln 100. kg( 419. kj kg K) ln ( 419. kj K) ln 8 0 () S J K + ln 1 (d) Yes, te mxng s rreversble. Entropy as nreased p ndd 97 1/8/07 7::1 M

28 98 apter.6 (a) Use te equaton o state or an deal gas V nr 1. 00( 8. 14)( 600) V 0( ) ( 8. 14)( 400) V m m Sne B s sotermal, V V B B FIG..6 and sne B s adabat, V V ombnng tese expressons, V B B B V V 1 ( 1) V B m ( m ) ( ) m Smlarly, V V V 1 ( 1) ( ) m m 140. ( ) or V m Sne B s sotermal, V V B B and V B V m. 0 atm atm m lso, s an sotermal and V V.8 10 m 100. atm atm m Solvng part () beore part (b): () For ts arnot yle, e (b) B K K Energy s added by eat to te gas durng te proess B. For te sotermal proess, E nt 0. V B and te rst law gves B B nr ln V 11 9 or B 1 00 ( )( 600 ).. mol 8.14 J mol K K ln kj en, rom e te net work done per yle s e 0. ( kj). 99 kj 1794 p ndd 98 1/8/07 7:: M

29 Heat Engnes, Entropy, and te Seond Law o ermodynams 99 NSERS O EVEN ROBLEMS (a) 9.4 L (b) 18 p () 7 N. m (d) (a) 4.0 J (b) 144 J.8 (a).9 (b) oeent o perormane or a rergerator () e ost or ar ondtonng s al as mu or an ar ondtoner wt EER 10 ompared wt an ar ondtoner wt EER..10 (a) 870 MJ (b) 0 MJ.1 (a) 0.00 (b) () %.16 (a).1% (b).7 J () s ossl-uel pres rse, ts way to use solar energy wll beome a good buy..18 (a) 700 k( K) ( 8 K) e exaust power dereases as te rebox temperature nreases. (b) 1.87 M () K (d) No answer exsts. e energy exaust annot be tat small..0 (a) State (ka) V (L) (K) B J (b) roess (kj) (kj) E nt (kj) B B B ().7%; see te soluton.8 (a), (b) see te soluton () 149 J; 6. 0 J; 84. J (d) 6.% (e) rev mn J K 1794 p ndd 99 1/8/07 7:: M

30 600 apter. (a) e proess s sobar beause t takes plae under onstant atmosper pressure. e eatng proess s not adabat (beause energy goes n by eat), sotermal ( goes up), sovolumetr (t lkely expands a bt), yl (t s derent at te end), or sentrop (entropy nreases). It ould be made as nearly reversble as you ws, by not usng a kten stove but a eater kept always just nrementally ger n temperature tan te syrup. (b) 40 kj () 1.0 kj K.4.7 J K J K J K J K.4 (a) eads and tals (b) ll eads or all tals () eads and tals MJ K.46 (a) 9.4 J (b) 6.4 rad s 6 rev mn () 9 rad s 790 rev mn.48 (a) J K (b) 417 J () net 1 S U 167 J.0 (a).19 al K (b) 98.19ºF,.9 al K s s sgnantly less tan te estmate n part (a).. ( ).4 (a) 4.10 kj (b) 14. kj () 10.1 kj (d) 8.8% (e) e tree-proess ne onsdered n ts problem as mu lower eeny tan te arnot eeny..6 n p ln.8 (a) see te soluton (b) le t lasts, ts proess does onvert all o te energy nput nto work output. But te gas sample s n a derent state at te end tan t was at te begnnng. e proess annot be done over unless te gas s reompressed by a work nput. o be pratal, a eat ne must operate n a yle. e seond law reers to a eat ne operatng n a yle, so ts proess s onsstent wt te seond law o termodynams..60 e proposal does not mert serous onsderaton. Operatng between tese temperatures, ts deve ould not attan so g an eeny..6 (a), atm V, L B (b).99kj ().% 1794 p ndd 600 1/8/07 7:: M

Physics 41 Chapter 22 HW Serway 7 th Edition

Physics 41 Chapter 22 HW Serway 7 th Edition yss 41 apter H Serway 7 t Edton oneptual uestons: 1,, 8, 1 roblems: 9, 1, 0,, 7, 9, 48, 54, 55 oneptual uestons: 1,, 8, 1 1 Frst, te effeny of te automoble engne annot exeed te arnot effeny: t s lmted

More information

11/19/2013. PHY 113 C General Physics I 11 AM 12:15 PM MWF Olin 101

11/19/2013. PHY 113 C General Physics I 11 AM 12:15 PM MWF Olin 101 PHY 113 C General Pyss I 11 AM 12:15 PM MWF Oln 101 Plan or Leture 23: Capter 22: Heat engnes 1. ermodynam yles; work and eat eeny 2. Carnot yle 3. Otto yle; desel yle 4. Bre omments on entropy 11/19/2013

More information

Chapter 18: The Laws of Thermodynamics

Chapter 18: The Laws of Thermodynamics Capter 18: e Laws o ermodynams Answers to Even-Numbered Coneptual uestons. (a) Yes. Heat an low nto te system at te same tme te system expands, as n an sotermal expanson o a gas. (b) Yes. Heat an low out

More information

18. Heat Engine, Entropy and the second law of thermodynamics

18. Heat Engine, Entropy and the second law of thermodynamics 8. Heat Engne, Entropy and te seond law o terodynas In nature, ost o proesses are rreversble. due to te seond Law o terodynas Heat alwasys lows ro Hot to old. 8-. Heat Engne and te eond Law o erodynas

More information

Chapter 6 Second Law of Thermodynamics

Chapter 6 Second Law of Thermodynamics Capter 6 Second Law o Termodynamcs Te rst law o termodynamcs s an energy conservaton statement. It determnes weter or not a process can take place energetcally. It does not tell n wc drecton te process

More information

Physics 41 Chapter 22 HW

Physics 41 Chapter 22 HW Pysis 41 apter 22 H 1. eat ine performs 200 J of work in ea yle and as an effiieny of 30.0%. For ea yle, ow mu energy is (a) taken in and (b) expelled as eat? = = 200 J (1) e = 1 0.300 = = (2) From (2),

More information

EF 152 Exam #3, Fall, 2012 Page 1 of 6

EF 152 Exam #3, Fall, 2012 Page 1 of 6 EF 5 Exam #3, Fall, 0 Page of 6 Name: Setion: Guidelines: ssume 3 signifiant figures for all given numbers. Sow all of your work no work, no redit Write your final answer in te box provided - inlude units

More information

PHYSICS 212 MIDTERM II 19 February 2003

PHYSICS 212 MIDTERM II 19 February 2003 PHYSICS 1 MIDERM II 19 Feruary 003 Exam s losed ook, losed notes. Use only your formula sheet. Wrte all work and answers n exam ooklets. he aks of pages wll not e graded unless you so request on the front

More information

Chapter 5 rd Law of Thermodynamics

Chapter 5 rd Law of Thermodynamics Entropy and the nd and 3 rd Chapter 5 rd Law o hermodynamcs homas Engel, hlp Red Objectves Introduce entropy. Derve the condtons or spontanety. Show how S vares wth the macroscopc varables,, and. Chapter

More information

University Physics AI No. 10 The First Law of Thermodynamics

University Physics AI No. 10 The First Law of Thermodynamics Unversty hyscs I No he Frst Law o hermodynamcs lass Number Name Ihoose the orrect nswer Whch o the ollowng processes must volate the rst law o thermodynamcs? (here may be more than one answer!) (,B,D )

More information

P REVIEW NOTES

P REVIEW NOTES P34 - REIEW NOTES Capter 1 Energy n Termal Pyss termal equlbrum & relaxaton tme temperature & termometry: fxed ponts, absolute temperature sale P = nrt deal gas law: ( ) ( T ) ( / n) C( T ) ( ) + / n vral

More information

Chapter 21 - The Kinetic Theory of Gases

Chapter 21 - The Kinetic Theory of Gases hapter 1 - he Knetc heory o Gases 1. Δv 8.sn 4. 8.sn 4. m s F Nm. 1 kg.94 N Δ t. s F A 1.7 N m 1.7 a N mv 1.6 Use the equaton descrbng the knetc-theory account or pressure:. hen mv Kav where N nna NA N

More information

Lecture 26 Finite Differences and Boundary Value Problems

Lecture 26 Finite Differences and Boundary Value Problems 4//3 Leture 6 Fnte erenes and Boundar Value Problems Numeral derentaton A nte derene s an appromaton o a dervatve - eample erved rom Talor seres 3 O! Negletng all terms ger tan rst order O O Tat s te orward

More information

Physics 2B Chapter 17 Notes - Calorimetry Spring 2018

Physics 2B Chapter 17 Notes - Calorimetry Spring 2018 Physs 2B Chapter 17 Notes - Calormetry Sprng 2018 hermal Energy and Heat Heat Capaty and Spe Heat Capaty Phase Change and Latent Heat Rules or Calormetry Problems hermal Energy and Heat Calormetry lterally

More information

Homework Chapter 21 Solutions!!

Homework Chapter 21 Solutions!! Homework Chapter 1 Solutons 1.7 1.13 1.17 1.19 1.6 1.33 1.45 1.51 1.71 page 1 Problem 1.7 A mole sample of oxygen gas s confned to a 5 lter vessel at a pressure of 8 atm. Fnd the average translatonal knetc

More information

Force = F Piston area = A

Force = F Piston area = A CHAPTER III Ths chapter s an mportant transton between the propertes o pure substances and the most mportant chapter whch s: the rst law o thermodynamcs In ths chapter, we wll ntroduce the notons o heat,

More information

Physics 231 Lecture 35

Physics 231 Lecture 35 ysis 1 Leture 5 Main points of last leture: Heat engines and effiieny: eng e 1 Carnot yle and Carnot engine. eng e 1 is in Kelvin. Refrigerators CO eng Ideal refrigerator CO rev reversible Entropy ΔS Computation

More information

TEST 5 (phy 240) 2. Show that the volume coefficient of thermal expansion for an ideal gas at constant pressure is temperature dependent and given by

TEST 5 (phy 240) 2. Show that the volume coefficient of thermal expansion for an ideal gas at constant pressure is temperature dependent and given by ES 5 (phy 40). a) Wrte the zeroth law o thermodynamcs. b) What s thermal conductvty? c) Identyng all es, draw schematcally a P dagram o the arnot cycle. d) What s the ecency o an engne and what s the coecent

More information

Physics 207 Lecture 23

Physics 207 Lecture 23 ysics 07 Lecture ysics 07, Lecture 8, Dec. Agenda:. Finis, Start. Ideal gas at te molecular level, Internal Energy Molar Specific Heat ( = m c = n ) Ideal Molar Heat apacity (and U int = + W) onstant :

More information

Main components of the above cycle are: 1) Boiler (steam generator) heat exchanger 2) Turbine generates work 3) Condenser heat exchanger 4) Pump

Main components of the above cycle are: 1) Boiler (steam generator) heat exchanger 2) Turbine generates work 3) Condenser heat exchanger 4) Pump Introducton to Terodynacs, Lecture -5 Pro. G. Cccarell (0 Applcaton o Control olue Energy Analyss Most terodynac devces consst o a seres o coponents operatng n a cycle, e.g., stea power plant Man coponents

More information

Thermodynamics and Gases

Thermodynamics and Gases hermodynamcs and Gases Last tme Knetc heory o Gases or smple (monatomc) gases Atomc nature o matter Demonstrate deal gas law Atomc knetc energy nternal energy Mean ree path and velocty dstrbutons From

More information

#64. ΔS for Isothermal Mixing of Ideal Gases

#64. ΔS for Isothermal Mixing of Ideal Gases #64 Carnot Heat Engne ΔS for Isothermal Mxng of Ideal Gases ds = S dt + S T V V S = P V T T V PV = nrt, P T ds = v T = nr V dv V nr V V = nrln V V = - nrln V V ΔS ΔS ΔS for Isothermal Mxng for Ideal Gases

More information

PHYS 1441 Section 002 Lecture #15

PHYS 1441 Section 002 Lecture #15 PHYS 1441 Secton 00 Lecture #15 Monday, March 18, 013 Work wth rcton Potental Energy Gravtatonal Potental Energy Elastc Potental Energy Mechancal Energy Conservaton Announcements Mdterm comprehensve exam

More information

General Formulas applicable to ALL processes in an Ideal Gas:

General Formulas applicable to ALL processes in an Ideal Gas: Calormetrc calculatons: dq mcd or dq ncd ( specc heat) Q ml ( latent heat) General Formulas applcable to ALL processes n an Ideal Gas: P nr du dq dw dw Pd du nc d C R ( monoatomc) C C R P Specc Processes:

More information

Chapters 19 & 20 Heat and the First Law of Thermodynamics

Chapters 19 & 20 Heat and the First Law of Thermodynamics Capters 19 & 20 Heat and te First Law of Termodynamics Te Zerot Law of Termodynamics Te First Law of Termodynamics Termal Processes Te Second Law of Termodynamics Heat Engines and te Carnot Cycle Refrigerators,

More information

Thermodynamics Second Law Entropy

Thermodynamics Second Law Entropy Thermodynamcs Second Law Entropy Lana Sherdan De Anza College May 8, 2018 Last tme the Boltzmann dstrbuton (dstrbuton of energes) the Maxwell-Boltzmann dstrbuton (dstrbuton of speeds) the Second Law of

More information

COMP4630: λ-calculus

COMP4630: λ-calculus COMP4630: λ-calculus 4. Standardsaton Mcael Norrs Mcael.Norrs@ncta.com.au Canberra Researc Lab., NICTA Semester 2, 2015 Last Tme Confluence Te property tat dvergent evaluatons can rejon one anoter Proof

More information

Lecture 27: Entropy and Information Prof. WAN, Xin

Lecture 27: Entropy and Information Prof. WAN, Xin General Pysis I Leture 27: Entropy and Information Prof. WAN, Xin xinwan@zju.edu.n ttp://zimp.zju.edu.n/~xinwan/ 1st & 2nd Laws of ermodynamis e 1st law speifies tat we annot get more energy out of a yli

More information

Work is the change in energy of a system (neglecting heat transfer). To examine what could

Work is the change in energy of a system (neglecting heat transfer). To examine what could Work Work s the change n energy o a system (neglectng heat transer). To eamne what could cause work, let s look at the dmensons o energy: L ML E M L F L so T T dmensonally energy s equal to a orce tmes

More information

A Tale of Friction Basic Rollercoaster Physics. Fahrenheit Rollercoaster, Hershey, PA max height = 121 ft max speed = 58 mph

A Tale of Friction Basic Rollercoaster Physics. Fahrenheit Rollercoaster, Hershey, PA max height = 121 ft max speed = 58 mph A Tale o Frcton Basc Rollercoaster Physcs Fahrenhet Rollercoaster, Hershey, PA max heght = 11 t max speed = 58 mph PLAY PLAY PLAY PLAY Rotatonal Movement Knematcs Smlar to how lnear velocty s dened, angular

More information

EF 152 Exam #3, Spring 2016 Page 1 of 6

EF 152 Exam #3, Spring 2016 Page 1 of 6 EF 5 Exam #3, Spring 06 Page of 6 Name: Setion: Instrutions Do not open te exam until instruted to do so. Do not leave if tere is less tan 5 minutes to go in te exam. Wen time is alled, immediately stop

More information

TIME OF COMPLETION NAME SOLUTION DEPARTMENT OF NATURAL SCIENCES. PHYS 2211, Exam 2 Section 1 Version 1 October 18, 2013 Total Weight: 100 points

TIME OF COMPLETION NAME SOLUTION DEPARTMENT OF NATURAL SCIENCES. PHYS 2211, Exam 2 Section 1 Version 1 October 18, 2013 Total Weight: 100 points TIME OF COMPLETION NAME SOLUTION DEPARTMENT OF NATURAL SCIENCES PHYS, Exam Secton Verson October 8, 03 Total Weght: 00 ponts. Check your examnaton or completeness pror to startng. There are a total o nne

More information

represents the amplitude of the signal after modulation and (t) is the phase of the carrier wave.

represents the amplitude of the signal after modulation and (t) is the phase of the carrier wave. 1 IQ Sgnals general overvew 2 IQ reevers IQ Sgnals general overvew Rado waves are used to arry a message over a dstane determned by the ln budget The rado wave (alled a arrer wave) s modulated (moded)

More information

Physics 2A Chapter 3 HW Solutions

Physics 2A Chapter 3 HW Solutions Phscs A Chapter 3 HW Solutons Chapter 3 Conceptual Queston: 4, 6, 8, Problems: 5,, 8, 7, 3, 44, 46, 69, 70, 73 Q3.4. Reason: (a) C = A+ B onl A and B are n the same drecton. Sze does not matter. (b) C

More information

Period & Frequency. Work and Energy. Methods of Energy Transfer: Energy. Work-KE Theorem 3/4/16. Ranking: Which has the greatest kinetic energy?

Period & Frequency. Work and Energy. Methods of Energy Transfer: Energy. Work-KE Theorem 3/4/16. Ranking: Which has the greatest kinetic energy? Perod & Frequency Perod (T): Tme to complete one ull rotaton Frequency (): Number o rotatons completed per second. = 1/T, T = 1/ v = πr/t Work and Energy Work: W = F!d (pcks out parallel components) F

More information

Chapters 18 & 19: Themodynamics review. All macroscopic (i.e., human scale) quantities must ultimately be explained on the microscopic scale.

Chapters 18 & 19: Themodynamics review. All macroscopic (i.e., human scale) quantities must ultimately be explained on the microscopic scale. Chapters 18 & 19: Themodynamcs revew ll macroscopc (.e., human scale) quanttes must ultmately be explaned on the mcroscopc scale. Chapter 18: Thermodynamcs Thermodynamcs s the study o the thermal energy

More information

Shuai Dong. Isaac Newton. Gottfried Leibniz

Shuai Dong. Isaac Newton. Gottfried Leibniz Computatonal pyscs Sua Dong Isaac Newton Gottred Lebnz Numercal calculus poston dervatve ntegral v velocty dervatve ntegral a acceleraton Numercal calculus Numercal derentaton Numercal ntegraton Roots

More information

Chapter 07: Kinetic Energy and Work

Chapter 07: Kinetic Energy and Work Chapter 07: Knetc Energy and Work Conservaton o Energy s one o Nature s undamental laws that s not volated. Energy can take on derent orms n a gven system. Ths chapter we wll dscuss work and knetc energy.

More information

Physics 4C. Chapter 19: Conceptual Questions: 6, 8, 10 Problems: 3, 13, 24, 31, 35, 48, 53, 63, 65, 78, 87

Physics 4C. Chapter 19: Conceptual Questions: 6, 8, 10 Problems: 3, 13, 24, 31, 35, 48, 53, 63, 65, 78, 87 Physcs 4C Solutons to Chater 9 HW Chater 9: Concetual Questons: 6, 8, 0 Problems:,, 4,,, 48,, 6, 6, 78, 87 Queston 9-6 (a) 0 (b) 0 (c) negate (d) oste Queston 9-8 (a) 0 (b) 0 (c) negate (d) oste Queston

More information

ENGINEERING OF NUCLEAR REACTORS. Due November 17, 2006 by 12:00 pm

ENGINEERING OF NUCLEAR REACTORS. Due November 17, 2006 by 12:00 pm .3 ENINEEIN OF NUCEA EACOS ue Noveer 7, 006 y :00 AKE HOME QUIZ (SOUION Prole (60% Hydraul Analyss o te Eereny Core Sray Syste n a BW e nuern o te relevant loatons wtn te syste s sown n Fure elow. 3 e

More information

PHYS 1441 Section 002 Lecture #16

PHYS 1441 Section 002 Lecture #16 PHYS 1441 Secton 00 Lecture #16 Monday, Mar. 4, 008 Potental Energy Conservatve and Non-conservatve Forces Conservaton o Mechancal Energy Power Today s homework s homework #8, due 9pm, Monday, Mar. 31!!

More information

Physics 4B. A positive value is obtained, so the current is counterclockwise around the circuit.

Physics 4B. A positive value is obtained, so the current is counterclockwise around the circuit. Physcs 4B Solutons to Chapter 7 HW Chapter 7: Questons:, 8, 0 Problems:,,, 45, 48,,, 7, 9 Queston 7- (a) no (b) yes (c) all te Queston 7-8 0 μc Queston 7-0, c;, a;, d; 4, b Problem 7- (a) Let be the current

More information

Nonequilibrium Thermodynamics of open driven systems

Nonequilibrium Thermodynamics of open driven systems 1 Boynam Otal Imagng Center (BIOPIC) 2 Beng Internatonal Center for Matematal Resear (BICMR) Peng Unversty, Cna Nonequlbrum ermoynams of oen rven systems Hao Ge A sngle boemal reaton yle B + AP 1 C + ADP

More information

PHYS 1443 Section 004 Lecture #12 Thursday, Oct. 2, 2014

PHYS 1443 Section 004 Lecture #12 Thursday, Oct. 2, 2014 PHYS 1443 Secton 004 Lecture #1 Thursday, Oct., 014 Work-Knetc Energy Theorem Work under rcton Potental Energy and the Conservatve Force Gravtatonal Potental Energy Elastc Potental Energy Conservaton o

More information

Chapter 20 The First Law of Thermodynamics

Chapter 20 The First Law of Thermodynamics Chapter he Frst aw o hermodynamcs. developng the concept o heat. etendng our concept o work to thermal processes 3. ntroducng the rst law o thermodynamcs. Heat and Internal Energy Internal energy: s the

More information

Outline. Unit Eight Calculations with Entropy. The Second Law. Second Law Notes. Uses of Entropy. Entropy is a Property.

Outline. Unit Eight Calculations with Entropy. The Second Law. Second Law Notes. Uses of Entropy. Entropy is a Property. Unt Eght Calculatons wth Entropy Mechancal Engneerng 370 Thermodynamcs Larry Caretto October 6, 010 Outlne Quz Seven Solutons Second law revew Goals for unt eght Usng entropy to calculate the maxmum work

More information

Chemical Engineering Department University of Washington

Chemical Engineering Department University of Washington Chemcal Engneerng Department Unversty of Washngton ChemE 60 - Exam I July 4, 003 - Mass Flow Rate of Steam Through a Turbne (5 onts) Steam enters a turbne at 70 o C and.8 Ma and leaves at 00 ka wth a qualty

More information

Energy and Energy Transfer

Energy and Energy Transfer Energy and Energy Transer Chapter 7 Scalar Product (Dot) Work Done by a Constant Force F s constant over the dsplacement r 1 Denton o the scalar (dot) product o vectors Scalar product o unt vectors = 1

More information

Physics 181. Particle Systems

Physics 181. Particle Systems Physcs 181 Partcle Systems Overvew In these notes we dscuss the varables approprate to the descrpton of systems of partcles, ther defntons, ther relatons, and ther conservatons laws. We consder a system

More information

First Law of Thermodynamics

First Law of Thermodynamics Frst Law of Thermodynamcs Readng: Chapter 18, Sectons 18-7 to 18-11 Heat and Work When the pston s dsplaced by ds, force exerted by the gas = F = pa, work done by the gas: dw Fds ( pa)( ds) p( Ads) p d.

More information

THE SECOND LAW OF THERMODYNAMICS

THE SECOND LAW OF THERMODYNAMICS HE SECOND LAW OF HERMODYNAMICS 9 EXERCISES Setions 9. and 9.3 e Seond Law of ermodynamis and Its Appliations 3. INERPRE is problem requires us to alulate te effiieny of reversible eat engines tat operate

More information

Review of Classical Thermodynamics

Review of Classical Thermodynamics Revew of Classcal hermodynamcs Physcs 4362, Lecture #1, 2 Syllabus What s hermodynamcs? 1 [A law] s more mpressve the greater the smplcty of ts premses, the more dfferent are the knds of thngs t relates,

More information

Momentum. Momentum. Impulse. Momentum and Collisions

Momentum. Momentum. Impulse. Momentum and Collisions Momentum Momentum and Collsons From Newton s laws: orce must be present to change an object s elocty (speed and/or drecton) Wsh to consder eects o collsons and correspondng change n elocty Gol ball ntally

More information

Physics 107 Problem 2.5 O. A. Pringle h Physics 107 Problem 2.6 O. A. Pringle

Physics 107 Problem 2.5 O. A. Pringle h Physics 107 Problem 2.6 O. A. Pringle Pysis 07 Problem 25 O A Pringle 3 663 0 34 700 = 284 0 9 Joules ote I ad to set te zero tolerane ere e 6 0 9 ev joules onversion ator ev e ev = 776 ev Pysis 07 Problem 26 O A Pringle 663 0 34 3 ev

More information

Announcements. Exam 4 - Review of important concepts

Announcements. Exam 4 - Review of important concepts Announcements 1. Exam 4 starts Friday! a. Available in esting Center from Friday, Dec 7 (opening time), up to Monday, Dec 10 at 4:00 pm. i. Late fee if you start your exam after 4 pm b. Covers C. 9-1 (up

More information

PES 2130 Fall 2014, Spendier Lecture 7/Page 1

PES 2130 Fall 2014, Spendier Lecture 7/Page 1 PES 2130 Fall 2014, Spender Lecture 7/Page 1 Lecture today: Chapter 20 (ncluded n exam 1) 1) Entropy 2) Second Law o hermodynamcs 3) Statstcal Vew o Entropy Announcements: Next week Wednesday Exam 1! -

More information

A Theorem of Mass Being Derived From Electrical Standing Waves (As Applied to Jean Louis Naudin's Test)

A Theorem of Mass Being Derived From Electrical Standing Waves (As Applied to Jean Louis Naudin's Test) A Theorem of Mass Beng Derved From Eletral Standng Waves (As Appled to Jean Lous Naudn's Test) - by - Jerry E Bayles Aprl 4, 000 Ths paper formalzes a onept presented n my book, "Eletrogravtaton As A Unfed

More information

Chapter 7: Conservation of Energy

Chapter 7: Conservation of Energy Lecture 7: Conservaton o nergy Chapter 7: Conservaton o nergy Introucton I the quantty o a subject oes not change wth tme, t means that the quantty s conserve. The quantty o that subject remans constant

More information

3B SCIENTIFIC PHYSICS

3B SCIENTIFIC PHYSICS 3B SCIENTIFIC PHYSICS Peltier Heat Pump 0076 Instrution manual 05/7 TL/JS Transport ase Semati view 3 Stirrer unit 4 Connetor for stirrer unit 5 Connetor for power supply 6 Stirring rod old side 7 Peltier

More information

10/24/2013. PHY 113 C General Physics I 11 AM 12:15 PM TR Olin 101. Plan for Lecture 17: Review of Chapters 9-13, 15-16

10/24/2013. PHY 113 C General Physics I 11 AM 12:15 PM TR Olin 101. Plan for Lecture 17: Review of Chapters 9-13, 15-16 0/4/03 PHY 3 C General Physcs I AM :5 PM T Oln 0 Plan or Lecture 7: evew o Chapters 9-3, 5-6. Comment on exam and advce or preparaton. evew 3. Example problems 0/4/03 PHY 3 C Fall 03 -- Lecture 7 0/4/03

More information

Introduction to Statistical Methods

Introduction to Statistical Methods Introducton to Statstcal Methods Physcs 4362, Lecture #3 hermodynamcs Classcal Statstcal Knetc heory Classcal hermodynamcs Macroscopc approach General propertes of the system Macroscopc varables 1 hermodynamc

More information

On Pfaff s solution of the Pfaff problem

On Pfaff s solution of the Pfaff problem Zur Pfaff scen Lösung des Pfaff scen Probles Mat. Ann. 7 (880) 53-530. On Pfaff s soluton of te Pfaff proble By A. MAYER n Lepzg Translated by D. H. Delpenc Te way tat Pfaff adopted for te ntegraton of

More information

Maximum work for Carnot-like heat engines with infinite heat source

Maximum work for Carnot-like heat engines with infinite heat source Maximum work for arnot-like eat engines wit infinite eat soure Rui Long and Wei Liu* Sool of Energy and Power Engineering, Huazong University of Siene and enology, Wuan 4374, ina orresponding autor: Wei

More information

University of Washington Department of Chemistry Chemistry 452/456 Summer Quarter 2014

University of Washington Department of Chemistry Chemistry 452/456 Summer Quarter 2014 Lecture 12 7/25/14 ERD: 7.1-7.5 Devoe: 8.1.1-8.1.2, 8.2.1-8.2.3, 8.4.1-8.4.3 Unversty o Washngton Department o Chemstry Chemstry 452/456 Summer Quarter 2014 A. Free Energy and Changes n Composton: The

More information

CENTROID (AĞIRLIK MERKEZİ )

CENTROID (AĞIRLIK MERKEZİ ) CENTOD (ĞLK MEKEZİ ) centrod s a geometrcal concept arsng from parallel forces. Tus, onl parallel forces possess a centrod. Centrod s tougt of as te pont were te wole wegt of a pscal od or sstem of partcles

More information

A Theorem of Mass Being Derived From Electrical Standing Waves (As Applied to Jean Louis Naudin's Test)

A Theorem of Mass Being Derived From Electrical Standing Waves (As Applied to Jean Louis Naudin's Test) A Theorem of Mass Beng Derved From Eletral Standng Waves (As Appled to Jean Lous Naudn's Test) - by - Jerry E Bayles Aprl 5, 000 Ths Analyss Proposes The Neessary Changes Requred For A Workng Test Ths

More information

The Karush-Kuhn-Tucker. Nuno Vasconcelos ECE Department, UCSD

The Karush-Kuhn-Tucker. Nuno Vasconcelos ECE Department, UCSD e Karus-Kun-ucker condtons and dualt Nuno Vasconcelos ECE Department, UCSD Optmzaton goal: nd mamum or mnmum o a uncton Denton: gven unctons, g, 1,...,k and, 1,...m dened on some doman Ω R n mn w, w Ω

More information

Topics Adiabatic Combustion Adiabatic Flame Temperature Example Combustion Efficiency Second and First Law Efficiencies Contrasted Example Problem

Topics Adiabatic Combustion Adiabatic Flame Temperature Example Combustion Efficiency Second and First Law Efficiencies Contrasted Example Problem ME 410 Day 12 opis diabati Combustion diabati Flame emperature Example Combustion Eiieny Seond and First Law Eiienies Contrasted Example roblem 1. he Case o diabati Combustion Here is it assumed that there

More information

Voltammetry. Bulk electrolysis: relatively large electrodes (on the order of cm 2 ) Voltammetry:

Voltammetry. Bulk electrolysis: relatively large electrodes (on the order of cm 2 ) Voltammetry: Voltammetry varety of eletroanalytal methods rely on the applaton of a potental funton to an eletrode wth the measurement of the resultng urrent n the ell. In ontrast wth bul eletrolyss methods, the objetve

More information

Carnot Factor of a Vapour Power Cycle with Regenerative Extraction

Carnot Factor of a Vapour Power Cycle with Regenerative Extraction Journal of Modern Pysics, 2017, 8, 1795-1808 ttp://www.scirp.org/journal/jmp ISSN Online: 2153-120X ISSN Print: 2153-1196 arnot Factor of a Vapour Power ycle wit Regenerative Extraction Duparquet Alain

More information

PHYS 705: Classical Mechanics. Newtonian Mechanics

PHYS 705: Classical Mechanics. Newtonian Mechanics 1 PHYS 705: Classcal Mechancs Newtonan Mechancs Quck Revew of Newtonan Mechancs Basc Descrpton: -An dealzed pont partcle or a system of pont partcles n an nertal reference frame [Rgd bodes (ch. 5 later)]

More information

e a = 12.4 i a = 13.5i h a = xi + yj 3 a Let r a = 25cos(20) i + 25sin(20) j b = 15cos(55) i + 15sin(55) j

e a = 12.4 i a = 13.5i h a = xi + yj 3 a Let r a = 25cos(20) i + 25sin(20) j b = 15cos(55) i + 15sin(55) j Vetors MC Qld-3 49 Chapter 3 Vetors Exerse 3A Revew of vetors a d e f e a x + y omponent: x a os(θ 6 os(80 + 39 6 os(9.4 omponent: y a sn(θ 6 sn(9 0. a.4 0. f a x + y omponent: x a os(θ 5 os( 5 3.6 omponent:

More information

Solution Set #3

Solution Set #3 5-55-7 Soluton Set #. Te varaton of refractve ndex wt wavelengt for a transarent substance (suc as glass) may be aroxmately reresented by te emrcal equaton due to Caucy: n [] A + were A and are emrcally

More information

G4023 Mid-Term Exam #1 Solutions

G4023 Mid-Term Exam #1 Solutions Exam1Solutons.nb 1 G03 Md-Term Exam #1 Solutons 1-Oct-0, 1:10 p.m to :5 p.m n 1 Pupn Ths exam s open-book, open-notes. You may also use prnt-outs of the homework solutons and a calculator. 1 (30 ponts,

More information

PHYS 1101 Practice problem set 12, Chapter 32: 21, 22, 24, 57, 61, 83 Chapter 33: 7, 12, 32, 38, 44, 49, 76

PHYS 1101 Practice problem set 12, Chapter 32: 21, 22, 24, 57, 61, 83 Chapter 33: 7, 12, 32, 38, 44, 49, 76 PHYS 1101 Practce problem set 1, Chapter 3: 1,, 4, 57, 61, 83 Chapter 33: 7, 1, 3, 38, 44, 49, 76 3.1. Vsualze: Please reer to Fgure Ex3.1. Solve: Because B s n the same drecton as the ntegraton path s

More information

ORDINARY DIFFERENTIAL EQUATIONS EULER S METHOD

ORDINARY DIFFERENTIAL EQUATIONS EULER S METHOD Numercal Analss or Engneers German Jordanan Unverst ORDINARY DIFFERENTIAL EQUATIONS We wll eplore several metods o solvng rst order ordnar derental equatons (ODEs and we wll sow ow tese metods can be appled

More information

Physics for Scientists and Engineers. Chapter 9 Impulse and Momentum

Physics for Scientists and Engineers. Chapter 9 Impulse and Momentum Physcs or Scentsts and Engneers Chapter 9 Impulse and Momentum Sprng, 008 Ho Jung Pak Lnear Momentum Lnear momentum o an object o mass m movng wth a velocty v s dened to be p mv Momentum and lnear momentum

More information

CENTROID (AĞIRLIK MERKEZİ )

CENTROID (AĞIRLIK MERKEZİ ) CENTOD (ĞLK MEKEZİ ) centrod s a geometrcal concept arsng from parallel forces. Tus, onl parallel forces possess a centrod. Centrod s tougt of as te pont were te wole wegt of a pscal od or sstem of partcles

More information

You will analyze the motion of the block at different moments using the law of conservation of energy.

You will analyze the motion of the block at different moments using the law of conservation of energy. Physcs 00A Homework 7 Chapter 8 Where s the Energy? In ths problem, we wll consder the ollowng stuaton as depcted n the dagram: A block o mass m sldes at a speed v along a horzontal smooth table. It next

More information

Spring 2002 Lecture #13

Spring 2002 Lecture #13 44-50 Sprng 00 ecture # Dr. Jaehoon Yu. Rotatonal Energy. Computaton of oments of nerta. Parallel-as Theorem 4. Torque & Angular Acceleraton 5. Work, Power, & Energy of Rotatonal otons Remember the md-term

More information

Week 9 Chapter 10 Section 1-5

Week 9 Chapter 10 Section 1-5 Week 9 Chapter 10 Secton 1-5 Rotaton Rgd Object A rgd object s one that s nondeformable The relatve locatons of all partcles makng up the object reman constant All real objects are deformable to some extent,

More information

Structure and Drive Paul A. Jensen Copyright July 20, 2003

Structure and Drive Paul A. Jensen Copyright July 20, 2003 Structure and Drve Paul A. Jensen Copyrght July 20, 2003 A system s made up of several operatons wth flow passng between them. The structure of the system descrbes the flow paths from nputs to outputs.

More information

Physics 3 (PHYF144) Chap 2: Heat and the First Law of Thermodynamics System. Quantity Positive Negative

Physics 3 (PHYF144) Chap 2: Heat and the First Law of Thermodynamics System. Quantity Positive Negative Physcs (PHYF hap : Heat and the Frst aw of hermodynamcs -. Work and Heat n hermodynamc Processes A thermodynamc system s a system that may exchange energy wth ts surroundngs by means of heat and work.

More information

First Law: A body at rest remains at rest, a body in motion continues to move at constant velocity, unless acted upon by an external force.

First Law: A body at rest remains at rest, a body in motion continues to move at constant velocity, unless acted upon by an external force. Secton 1. Dynamcs (Newton s Laws of Moton) Two approaches: 1) Gven all the forces actng on a body, predct the subsequent (changes n) moton. 2) Gven the (changes n) moton of a body, nfer what forces act

More information

Celestial Mechanics. Basic Orbits. Why circles? Tycho Brahe. PHY celestial-mechanics - J. Hedberg

Celestial Mechanics. Basic Orbits. Why circles? Tycho Brahe. PHY celestial-mechanics - J. Hedberg PHY 454 - celestal-mechancs - J. Hedberg - 207 Celestal Mechancs. Basc Orbts. Why crcles? 2. Tycho Brahe 3. Kepler 4. 3 laws of orbtng bodes 2. Newtonan Mechancs 3. Newton's Laws. Law of Gravtaton 2. The

More information

Spring Force and Power

Spring Force and Power Lecture 13 Chapter 9 Sprng Force and Power Yeah, energy s better than orces. What s net? Course webste: http://aculty.uml.edu/andry_danylov/teachng/physcsi IN THIS CHAPTER, you wll learn how to solve problems

More information

General Tips on How to Do Well in Physics Exams. 1. Establish a good habit in keeping track of your steps. For example, when you use the equation

General Tips on How to Do Well in Physics Exams. 1. Establish a good habit in keeping track of your steps. For example, when you use the equation General Tps on How to Do Well n Physcs Exams 1. Establsh a good habt n keepng track o your steps. For example when you use the equaton 1 1 1 + = d d to solve or d o you should rst rewrte t as 1 1 1 = d

More information

Physics 40 HW #4 Chapter 4 Key NEATNESS COUNTS! Solve but do not turn in the following problems from Chapter 4 Knight

Physics 40 HW #4 Chapter 4 Key NEATNESS COUNTS! Solve but do not turn in the following problems from Chapter 4 Knight Physcs 40 HW #4 Chapter 4 Key NEATNESS COUNTS! Solve but do not turn n the ollowng problems rom Chapter 4 Knght Conceptual Questons: 8, 0, ; 4.8. Anta s approachng ball and movng away rom where ball was

More information

Physics 111: Mechanics Lecture 11

Physics 111: Mechanics Lecture 11 Physcs 111: Mechancs Lecture 11 Bn Chen NJIT Physcs Department Textbook Chapter 10: Dynamcs of Rotatonal Moton q 10.1 Torque q 10. Torque and Angular Acceleraton for a Rgd Body q 10.3 Rgd-Body Rotaton

More information

Physical Chemistry I for Biochemists. Chem340. Lecture 16 (2/18/11)

Physical Chemistry I for Biochemists. Chem340. Lecture 16 (2/18/11) hyscal Chemstry I or Bochemsts Chem34 Lecture 16 (/18/11) Yoshtaka Ish Ch4.6, Ch5.1-5.5 & HW5 4.6 Derental Scannng Calormetry (Derental hermal Analyss) sample = C p, s d s + dh uson = ( s )Kdt, [1] where

More information

3-1 Introduction: 3-2 Spontaneous (Natural) Process:

3-1 Introduction: 3-2 Spontaneous (Natural) Process: - Introducton: * Reversble & Irreversble processes * Degree of rreversblty * Entropy S a state functon * Reversble heat engne Carnot cycle (Engne) * Crteron for Eulbrum SU,=Smax - Spontaneous (Natural)

More information

On Adaptive Control of Simulated Moving Bed Plants. Plants Using Comsol s Simulink Interface. Speaker: Marco Fütterer

On Adaptive Control of Simulated Moving Bed Plants. Plants Using Comsol s Simulink Interface. Speaker: Marco Fütterer daptve Smulated Movng ed Plants Usng Comsol s Smulnk Interfae Speaker: Maro Fütterer Insttut für utomatserungstehnk Otto-von-Guerke Unverstät Unverstätsplatz, D-39106 Magdeburg Germany e-mal: maro.fuetterer@ovgu.de

More information

Physics 123. Exam #1. October 11, 2006

Physics 123. Exam #1. October 11, 2006 hyscs Exa # October, 006 roble /0 roble /0 roble /0 roble 4 /0 roble 5 /0 roble 6 /0 roble 7 /0 roble 8 /0 roble 9 /0 roble 0 /0 Total /00 Free-Response robles: lease show all work n order to receve partal

More information

ESCI 341 Atmospheric Thermodynamics Lesson 11 The Second Law of Thermodynamics

ESCI 341 Atmospheric Thermodynamics Lesson 11 The Second Law of Thermodynamics ESCI 341 Atmosperi ermodynamis Lesson 11 e Seond Law of ermodynamis Referenes: Pysial Cemistry (4 t edition), Levine ermodynamis and an Introdution to ermostatistis, Callen HE SECOND LAW OF HERMODYNAMICS

More information

Physics 240: Worksheet 30 Name:

Physics 240: Worksheet 30 Name: (1) One mole of an deal monatomc gas doubles ts temperature and doubles ts volume. What s the change n entropy of the gas? () 1 kg of ce at 0 0 C melts to become water at 0 0 C. What s the change n entropy

More information

Single Variable Optimization

Single Variable Optimization 8/4/07 Course Instructor Dr. Raymond C. Rump Oce: A 337 Phone: (95) 747 6958 E Mal: rcrump@utep.edu Topc 8b Sngle Varable Optmzaton EE 4386/530 Computatonal Methods n EE Outlne Mathematcal Prelmnares Sngle

More information

Feedforward neural network. IFT Réseaux neuronaux

Feedforward neural network. IFT Réseaux neuronaux Feedforard neural netork IFT 725 - Réseau neuronau Septemer Astrat6, 22 ugolaroelle@userrookeasepte verste de Serrooke Sep Mat for my sldes Feedforard neural netork ARTIFICIAL NEURON aroelle@userrookea

More information

Complex Variables. Chapter 18 Integration in the Complex Plane. March 12, 2013 Lecturer: Shih-Yuan Chen

Complex Variables. Chapter 18 Integration in the Complex Plane. March 12, 2013 Lecturer: Shih-Yuan Chen omplex Varables hapter 8 Integraton n the omplex Plane March, Lecturer: Shh-Yuan hen Except where otherwse noted, content s lcensed under a BY-N-SA. TW Lcense. ontents ontour ntegrals auchy-goursat theorem

More information

Chapter 3 and Chapter 4

Chapter 3 and Chapter 4 Chapter 3 and Chapter 4 Chapter 3 Energy 3. Introducton:Work Work W s energy transerred to or rom an object by means o a orce actng on the object. Energy transerred to the object s postve work, and energy

More information

PART I: MULTIPLE CHOICE (32 questions, each multiple choice question has a 2-point value, 64 points total).

PART I: MULTIPLE CHOICE (32 questions, each multiple choice question has a 2-point value, 64 points total). CHEMISTRY 123-07 Mdterm #2 answer key November 04, 2010 Statstcs: Average: 68 p (68%); Hghest: 91 p (91%); Lowest: 37 p (37%) Number of students performng at or above average: 58 (53%) Number of students

More information