Maximum work for Carnot-like heat engines with infinite heat source

Size: px
Start display at page:

Download "Maximum work for Carnot-like heat engines with infinite heat source"

Transcription

1 Maximum work for arnot-like eat engines wit infinite eat soure Rui Long and Wei Liu* Sool of Energy and Power Engineering, Huazong University of Siene and enology, Wuan 4374, ina orresponding autor: Wei Liu An analysis of effiieny and its bounds at maximum work output for arnot-like eat engines is onduted and te eat transfer proesses are desribed by Newton s law of ooling wit timedependent eat ondutane. e upper bound of te effiieny is found to be te A effiieny, and is independent of te time duration ompleting ea proess and te time-dependent ondutane. We prove tat even te working medium exanges eat suffiiently wit te eat 2 reservoirs, te work wi ould be extrated is finite and limited by W max+ m η. e imal temperature profiles in te eat exanging proesses are also analyzed. Wen te dimensionless ontat times satisfy ertain relations, te endoreversible model is reovered. PAS numbers: 5.7.-a, 5.7.Ln As we all know, te arnot effiieny, η 1 /, defines te upper bound of effiieny of all te eat engines operating between two eat reservoirs at temperatures and, > [1]. Any real-life eat engines sould operate at te effiieny lower tan η. However, in te arnot eat engines all te proesses are qusi-stati and te time for ompleting tat yle is infinitely long wi leads to zero power output. As to atual eat engines, its time duaraion is finite, wi sows a signifiant deviative from te ideal arnot ones. e ideal arnot yle must be speeded up to meet te atual demand. aking only into onsideration te irreversibility aused by eat transfer between te eat reservoirs and working substane during te isotermal proesses, urzon-alborn[2] proposed te onept of endoreversible arnot eat engine, and dedued its effiieny at maximum power output. at is te groundbreaking A effiienyη 1 A /. It opens te era of finite time termodynamis. In addition, Otto and J-B yles operating at te maximum work (MW) output also ave te effiienies as η A and Diesel and Atkinson yles ave MW effiienies very lose to η A [3, 4]. A For atual eat engines, in te eat aborsbing proess te temperature of te working medium sould be lower tan tat of te ot reservoir and in te eat releasing proess te temperature of

2 te working medium sould be iger tan tat of te old reservoir to estabilis te eat exanging proesses. e eat exanging proesses are no longer isotermal. o disribe te eat exanging between te working meium and te eat reserviors, different eat transfer laws ave been systematially studied [5-7]. e genearal eat transfer law is depited as n n s Q k ( ), were k is te eat ondutane; s and are te temperatures of te eat reservoir and te working medium, respetively. Wen n1, it returns to te linear transfer law[8, 9], and te Stefan-boltzmann radiation law if n4. erefore it is of universality. In addition te Dulong-Petit nonlinear eat transfer law is also investigated [1]. However all te eat transfer laws studied before assume te eat ondutane stays onstant during te eat exanging proess. For atual eat transfer proess, as te development of te eat transfer, te temperature differene between te working medium and te eat reservoir is dereasing. erefore te eat ondutane sould derease as well. e eat ondutane sould not be kept onstant, rater be a timedependent dereasing variable. In tis paper, we assume te eat transfer law between te eat reservoir and te working medium onfirms to te linear law wit time-dependent eat ondutane. e effiieny at te maximum work output is dedued. And te maximum work wi an be extrated is also proposed. As to eat engines, a ertain amount of eatq is absorbed from te ot reservoir ( ), and some of wi Q, is evauated to te old reservoir ( ) at te end of a yle. e eat transfer law between te eat soure and te working medium is assumed to onform to Newton s law of ooling: dq dt d m k( s ) (1) dt were is te eat apaity, m is te working substane mass, is te working substane temperature, is eat soure temperature, k is te eat ondutane. In tis paper, we assume s te eat ondutane between te working medium and te ot and old reservoirs onform to te n n following power-law relations: k a( ), k b( ), n >, were te subsripts ( and ) indiate te ot and old reservoirs; a,b, and are te initial eat ondutane and initial temperatures of te working substane at te beginning of te eating and ooling proesses, respetively. Aording to Eq.(1), te working substane temperature in te eat absorbing proess is a funtion of time t:

3 ( ) ( )( / 1) w t + n Ψ + (2) were Ψ m / a, wi reflets te temperature inrease degree of te working medium in te time absorbing proess and as te dimension of time. e time duration is denoted as, te eat absorbed from te ot reservoir an be alulated as: ( ) ( w )[1 ( / Ψ + 1) ] Q k m n (3) e relative entropy ange of te working substane in te eat absorbing proess is given by: dq + ( )( n / Ψ + 1) s ln m (4) Similarly, te temperature of te working medium, te eat evauated to te old reservoir and te entropy ange during te eat releasing proess are given by 1/n ( ) ( )( / Ψ + 1) w t nt (5) ( ) ( w )[1 ( / Ψ + 1) ] Q k m n (6) s dq ( )( n / Ψ + 1) ln m (7) were Ψ m / b, wi reflets te temperature inrease degree of te working medium in te time releasing proess and as te dimension of time. is te time duration of tat proess. In tis paper, we assume tat te ompressing and expanding proesses are isentropi and te times for ompleting tose proesses are zero. After a yle, te working substane return to its initial state, and te total entropy ange of te working substane sould be zero i.e. s + s. en we ave ( )( n / Ψ + 1) + ( )( n / Ψ + 1) 1 (8) e work extrated during te yle is W Q + Q, and te effiieny isη 1 + Q / Q. ombining Eq.(8) and maximizing W wit respet to, we ave

4 n n n 1 ( + 1) + 1 η ( + 1) [1 ( + 1) ] Ψ Ψ Ψ n n 1 η{1 [( + 1)( + 1)] } Ψ Ψ (9) Substituting Eq.(9) into Eq.(8), we an also obtain te imal initial temperature of te working medium in te eat releasing proess. n n n η [1 ( 1) ] ( 1) [1 ( 1) ] Ψ Ψ Ψ n n n 1 ( + 1) + ( + 1) [1 ( + 1) ] Ψ Ψ Ψ (1) From te above equations, we an obtain te effiieny at MWη 1 1η η m A. It is independent of te time duration in eiter proess, and is te A effiieny, wi as been obtained toug and JB yles at MW [3, 4, 11]. Altoug te upper bounds of te effiieny are te same, our model is more universal and general. our model an deribe te J-B and Otto yles if We let, v, respetively. Wat is more, tis model does not speify te p termodynami pates in te eat exanging proess. erefore it an desiribe any arbitraty termodynami pat of te eat exanging proess and is more pratial and realisti tan te traditional ones. We an get te temperature profiles in te eat absorbing and releasing proess by substituting Eqs.(1) into Eq.(2) and substituting Eq. (9)into Eq.(5). e work output an be rewritten as max n n W mη A[1 ( + 1) ][1 ( + 1) ] Ψ Ψ 1 1η 1 ( + 1) + ( + 1) [1 ( + 1) ] 1 [( + 1)( + 1)] Ψ Ψ Ψ Ψ Ψ ( ) n n n n n (11) 2 Eq.(11) aieves its maximum valuew max+ m η wen / Ψ and / Ψ A. It indiates tat even te working medium exanges eat suffiiently wit te eat reservoirs, te max+ work wi ould be extrated is finite and limited by W wi is determined by te eat apaity and te temperatures of ot and old reservoirs. Wile in ideal arnot eat engines, tere is no limitation of work output, oter tan te effiieny. Aording to Eq.(11), we ave te power max output at te maximum work PW /( + ). Altoug wen / Ψ and

5 / Ψ, max W aieves it maximum value, but te effiieny stays unanged and is still te A effiieny. However its power output is zero. We define / Ψ as te dimensionless ontat time, wi reflets te equilibrium degree of te temperature between te working medium and eat reservoirs. Aording to Eqs.(9) and(1), wen / Ψ and / Ψ, we ave and 1η. For / Ψ, te eat absorbing proesses are sort enoug so tat te final temperature of te working substane is almost equal to its initial temperature. Furtermore () t to establis te eat w releasing proess. en we ave w() t and () t 1η. It means te eat exanging proesses are isotermal. w Wen / Ψ and / Ψ, we ave / 1η and. For / Ψ, te eat releasing proess is sort enoug so tat te final temperature of te working substane is almost equal to its initial temperature. Furtermore w() t to establis te eat exanging proess. en we ave w() t and () t / 1η, It w means tat te temperatures of te working medium also keep onstant in te eat exanging proesses. But te temperature profiles are not like tose obtained under te situation: / Ψ and / Ψ. For situations were / Ψ and / Ψ, te final temperatures are te same as te initial ones. erefore () t, w() t. e eat ondutane are also kept w onstant and are te initial ones, respetively. However te limits of Eqs.(9) and (1) do not exit. We assume te time durations fulfill te relation / b/ a wi is obtained troug te endoreversible model under te maximum power output [2]. Applying te limit / Ψ, we also dedue te same temperature profiles as tose in Ref. [2]. Meanwile P also aieves its maximum value. Furtermore te orresponding effiieny is also η A.at is to say, te endoreversible model is reovered under tese situations.

6 In addition, wen / Ψ, / Ψ, we ave / 1η. e eat absorbing proess is long enoug so tat te final temperature of te working substane is almost equal to tat of te eat reservoir, i.e. ( ). And its initial temperature is w n n { 1 η [1 ( + 1) ] + ( + 1) } (12) Ψ Ψ It depends on te ontat time of te old reservoir. For situations were / Ψ, / Ψ, we ave 1η. e eat releasing proess is long enoug so tat te final temperature of te working substane is almost equal to tat of te eat reservoir, i.e. ( ). And its initial temperature is w n ( 1η 1)( + 1) + 1 Ψ (13) 1η It depends on te ontat time of te ot reservoir. Furtermore, wen / Ψ and / Ψ, we ould obtain te initial temperatures, / 1η, 1η, and te final temperatures ( ), ( ) for te eat absorbing and releasing proesses, w w respetively. Representative ases ave been studied to investigate te impat of power index n on te imal eat engine yles as depited in Fig. 1. e imal temperature profile of te working medium in te eat absorbing proess is nearly a linear funtion of S and moves upward wit inreasing n. As we all know, temperature profile sould be onave, and to te most extend an be linear in te -S diagram. erefore, te eat absorbing proess approaes its maximum ability in our imal onditions. Under te same dimensionless ontat time, te lower n leads to a lager eat ondutane, tus more work ould be extrated. e temperature differenes between te eat reservoirs and working medium in bot eat exanging proesses are very signifiant, from wi te irreversible entropy generation stems. In addition, by onsidering various n, we ould ave a furter insigt into oter yles wose temperature profiles during te eat exanging proesses are not onstant su as J-B, Otto yles and any oter yles wit isentropi ompression and expansion proesses.

7 FIG. 1 e -S diagrams of different imal eat engine yles under different n ( n,.5,1,2 ), were 5K, 3K, / Ψ / Ψ 1 and m 1J / K In onlusion, we ave onduted as analysis of effiieny and its bounds at maximum work output for arnot-like eat engines wose eat transfer proesses are desribed by Newton s law of ooling. But for generality, te eat ondutane are no longer treated as onstants, rater as time-dependent dereasing variables. e upper bound of te effiieny is found to be te A effiieny, and is independent of te time duration ompleting eiter proess or te time-dependent ondutane. Furtermore even te working medium exanges eat suffiiently wit te eat 2 reservoirs, te work wi ould be extrated is finite and limited byw max+ m η. e imal temperature profiles in te eat exanging proesses are analyzed under different dimensionless ontat time limits. Wen te dimensionless ontat times satisfy ertain relations, te endoreversible model is reovered. Furtermore representative ases ave been studied to investigate te effet of n on te imal temperature profiles. e results in present paper ould offer us a furter insigt into any eat engine yles wit isentropi ompression and expansion proesses. is migt be of great guidane for designing or operating atual eat engines. A

8 e autors are grateful for te finanial support from te National Natural Siene Foundation of ina (No.51363) and te National Key Basi Resear Development Program of ina (No.213B22832). [1] S. arnot, Reflexions sur la Puissane Motorie Du Feu et Sur Les Maines (Eole Polytenique, Paris, 1824). [2] F. L. urzon and B. Alborn, Am. J. Pys. 43, 22 (1975). [3] H. S. Leff, Am. J. Pys 55, 62 (1987). [4] P.. Landsberg and H. S. Leff, J. Pys. A: Mat. Gen. 22, 419 (1989). [5] L. en, F. Sun, and. Wu, J. Pys. D: Appl. Pys. 32, 99 (1999). [6] L. en and Z. Yan, J. em. Pys. 9, 374 (1989). [7] Z. Yan and J. en, J. em. Pys. 92, 1994 (199). [8] P. Salamon, J. em. Pys. 74, 3546 (1981). [9] J. Gonzalez-Ayala, L. A. Arias-Hernandez, and F. Angulo-Brown, Pys. Rev. E 88, (213). [1] A. De Vos, Am. J. Pys. 53, 57 (1985). [11] F. Angulo-Brown, J. Gonzalez-Ayala, and L. A. Arias-Hernandez, Pys. Rev. E 89, (214).

ESCI 341 Atmospheric Thermodynamics Lesson 11 The Second Law of Thermodynamics

ESCI 341 Atmospheric Thermodynamics Lesson 11 The Second Law of Thermodynamics ESCI 341 Atmosperi ermodynamis Lesson 11 e Seond Law of ermodynamis Referenes: Pysial Cemistry (4 t edition), Levine ermodynamis and an Introdution to ermostatistis, Callen HE SECOND LAW OF HERMODYNAMICS

More information

Physics 231 Lecture 35

Physics 231 Lecture 35 ysis 1 Leture 5 Main points of last leture: Heat engines and effiieny: eng e 1 Carnot yle and Carnot engine. eng e 1 is in Kelvin. Refrigerators CO eng Ideal refrigerator CO rev reversible Entropy ΔS Computation

More information

EF 152 Exam #3, Fall, 2012 Page 1 of 6

EF 152 Exam #3, Fall, 2012 Page 1 of 6 EF 5 Exam #3, Fall, 0 Page of 6 Name: Setion: Guidelines: ssume 3 signifiant figures for all given numbers. Sow all of your work no work, no redit Write your final answer in te box provided - inlude units

More information

Lecture 27: Entropy and Information Prof. WAN, Xin

Lecture 27: Entropy and Information Prof. WAN, Xin General Pysis I Leture 27: Entropy and Information Prof. WAN, Xin xinwan@zju.edu.n ttp://zimp.zju.edu.n/~xinwan/ 1st & 2nd Laws of ermodynamis e 1st law speifies tat we annot get more energy out of a yli

More information

Role of Thermal Conductivity for Thermoelectrics with Finite Contacts

Role of Thermal Conductivity for Thermoelectrics with Finite Contacts 3 nd International Termal Condutivity Conferene 0 t International Termal Expansion Symposium April 7 May 1, 014 Purdue University, West Lafayette, Indiana, USA Role of Termal Condutivity for Termoeletris

More information

EF 152 Exam #3, Spring 2016 Page 1 of 6

EF 152 Exam #3, Spring 2016 Page 1 of 6 EF 5 Exam #3, Spring 06 Page of 6 Name: Setion: Instrutions Do not open te exam until instruted to do so. Do not leave if tere is less tan 5 minutes to go in te exam. Wen time is alled, immediately stop

More information

The Second Law of Thermodynamics

The Second Law of Thermodynamics Capter 6 Te Seond Law of Termodynamis In te last two apters of tis book we applied te first law of termodynamis to losed and open systems onsidering bot quasistati and non-quasi-stati proesses. A question

More information

Physics 41 Chapter 22 HW

Physics 41 Chapter 22 HW Pysis 41 apter 22 H 1. eat ine performs 200 J of work in ea yle and as an effiieny of 30.0%. For ea yle, ow mu energy is (a) taken in and (b) expelled as eat? = = 200 J (1) e = 1 0.300 = = (2) From (2),

More information

Lecture 27: Entropy and Information Prof. WAN, Xin

Lecture 27: Entropy and Information Prof. WAN, Xin General Pysis I Leture 27: Entropy and Information Prof. WAN, Xin xinwan@zju.edu.n ttp://zimp.zju.edu.n/~xinwan/ Outline Introduing entropy e meaning of entropy Reversibility Disorder Information Seleted

More information

Carnot's theorem and Szilárd engine. School of energy and power engineering, Huazhong University of Science & Technology. Wuhan, China.

Carnot's theorem and Szilárd engine. School of energy and power engineering, Huazhong University of Science & Technology. Wuhan, China. Carnot's teorem and Szilárd engine Liangsuo Su 1,2, Xiaokang Liu 1, Suyi Huang 1, Siping Jin 1,2,3 1 Sool of energy and power engineering, Huazong University of Siene & enology. Wuan, Cina. 2 Innovation

More information

Physics 207 Lecture 23

Physics 207 Lecture 23 ysics 07 Lecture ysics 07, Lecture 8, Dec. Agenda:. Finis, Start. Ideal gas at te molecular level, Internal Energy Molar Specific Heat ( = m c = n ) Ideal Molar Heat apacity (and U int = + W) onstant :

More information

3B SCIENTIFIC PHYSICS

3B SCIENTIFIC PHYSICS 3B SCIENTIFIC PHYSICS Peltier Heat Pump 0076 Instrution manual 05/7 TL/JS Transport ase Semati view 3 Stirrer unit 4 Connetor for stirrer unit 5 Connetor for power supply 6 Stirring rod old side 7 Peltier

More information

A Counterexample to the Second Law of Thermodynamics

A Counterexample to the Second Law of Thermodynamics Applied Pysis Resear; Vol. 6, No. 3; 2014 ISSN 1916-9639 E-ISSN 1916-9647 Publised by Canadian Center of Siene and Eduation A Counterexample to te Seond Law of ermodynamis 1 Douglas, AZ, USA José C Íñiguez

More information

Earlier Lecture. This gas tube is called as Pulse Tube and this phenomenon is called as Pulse Tube action.

Earlier Lecture. This gas tube is called as Pulse Tube and this phenomenon is called as Pulse Tube action. 31 1 Earlier Leture In te earlier leture, we ave seen a Pulse Tube (PT) ryoooler in wi te meanial displaer is removed and an osillating gas flow in te tin walled tube produes ooling. Tis gas tube is alled

More information

Chapter 3. Problem Solutions

Chapter 3. Problem Solutions Capter. Proble Solutions. A poton and a partile ave te sae wavelengt. Can anyting be said about ow teir linear oenta opare? About ow te poton's energy opares wit te partile's total energy? About ow te

More information

THE SECOND LAW OF THERMODYNAMICS

THE SECOND LAW OF THERMODYNAMICS HE SECOND LAW OF HERMODYNAMICS 9 EXERCISES Setions 9. and 9.3 e Seond Law of ermodynamis and Its Appliations 3. INERPRE is problem requires us to alulate te effiieny of reversible eat engines tat operate

More information

Natural Convection Experiment Measurements from a Vertical Surface

Natural Convection Experiment Measurements from a Vertical Surface OBJECTIVE Natural Convetion Experiment Measurements from a Vertial Surfae 1. To demonstrate te basi priniples of natural onvetion eat transfer inluding determination of te onvetive eat transfer oeffiient.

More information

Thermal interaction between free convection and forced convection along a vertical conducting wall

Thermal interaction between free convection and forced convection along a vertical conducting wall Termal interation between free onvetion and fored onvetion along a vertial onduting wall J.-J. Su, I. Pop Heat and Mass Transfer 35 (1999) 33±38 Ó Springer-Verlag 1999 Abstrat A teoretial study is presented

More information

Observations on harmonic Progressions *

Observations on harmonic Progressions * Oservations on armoni Progressions * Leonard Euler Under te name of armoni progressions all series of frations are understood, wose numerators are equal to ea oter, ut wose denominators on te oter onstitute

More information

The Compton effect according to Schrödinger s theory

The Compton effect according to Schrödinger s theory Der Comptoneffet na der Srödingersen Teorie, Zeit. f. Pys. 40 (196), 117-133. Te Compton effet aording to Srödinger s teory By W. GORDON in Berlin (Reeived on 9 September 196) Translated by D. H. Delpeni

More information

Supporting information

Supporting information Eletroni Supplementary Material (ESI) for Journal of Materials Cemistry A. Tis journal is Te Royal Soiety of Cemistry 017 Supporting information Simultaneous improvement of power fator and termal ondutivity

More information

Chapters 19 & 20 Heat and the First Law of Thermodynamics

Chapters 19 & 20 Heat and the First Law of Thermodynamics Capters 19 & 20 Heat and te First Law of Termodynamics Te Zerot Law of Termodynamics Te First Law of Termodynamics Termal Processes Te Second Law of Termodynamics Heat Engines and te Carnot Cycle Refrigerators,

More information

THERMODYNAMICS Lecture 15: Heat exchangers

THERMODYNAMICS Lecture 15: Heat exchangers HERMODYNAMICS Leture 5: Heat exangers Pierwsza strona Introdution to Heat Exangers Wat Are Heat Exangers? Heat exangers are units designed to transfer eat from a ot flowing stream to a old flowing stream

More information

FEM ANALYSES OF CUTTING OF ANISOTROPIC DENSELY COMPACTED AND SATURATED SAND

FEM ANALYSES OF CUTTING OF ANISOTROPIC DENSELY COMPACTED AND SATURATED SAND FEM ANALYSES OF CUTTING OF ANISOTROPIC DENSELY COMPACTED AND SATURATED SAND Jisong He 1, W.J. Vlasblom 2 and S. A. Miedema 3 ABSTRACT Te literature studies sow tat until now, te existing investigations

More information

Performance of an irreversible Diesel cycle under variable stroke length and compression ratio

Performance of an irreversible Diesel cycle under variable stroke length and compression ratio Marsland Press Journal of Amerian Siene 00;6():58-6 Performane of an irreversible iesel yle under variable stroke length and ompression ratio epartment of Agriulture Mahine Mehanis, Shahrekord University,

More information

International Journal of Advance Engineering and Research Development PERFORMANCE EVALUATION OF COMPOUND MULTILAYER INSULATION (77K-300K)

International Journal of Advance Engineering and Research Development PERFORMANCE EVALUATION OF COMPOUND MULTILAYER INSULATION (77K-300K) Sientifi Journal of Impat Fator (SJIF): 5.71 International Journal of Advane Engineering and Resear Development Volume 5, Issue 0, February -018 e-issn (O): 348-4470 p-issn (P): 348-6406 PERFORMANCE EVALUATION

More information

entropy Carnot-Like Heat Engines Versus Low-Dissipation Models Article

entropy Carnot-Like Heat Engines Versus Low-Dissipation Models Article entropy Article Carnot-Like Heat Engines Versus Low-Dissipation Models Julian Gonzalez-Ayala 1, *, José Miguel M. Roco 1,2, Alejandro Medina 1 and Antonio Calvo Hernández 1,2, * 1 Departamento de Física

More information

Lecture 3 Heat Exchangers

Lecture 3 Heat Exchangers L3 Leture 3 Heat Exangers Heat Exangers. Heat Exangers Transfer eat from one fluid to anoter. Want to imise neessary ardware. Examples: boilers, ondensors, ar radiator, air-onditioning oils, uman body.

More information

Maximizing Energy in Terahertz Pulse Radiation from a Switched Oscillator

Maximizing Energy in Terahertz Pulse Radiation from a Switched Oscillator Sensor and Simulation Notes Note 554 July 1 Maximizing Energy in Teraertz Pulse Radiation from a Swited Osillator Carl E. Baum and Prasant Kumar University of New Mexio Department of Eletrial and Computer

More information

3.4 Worksheet: Proof of the Chain Rule NAME

3.4 Worksheet: Proof of the Chain Rule NAME Mat 1170 3.4 Workseet: Proof of te Cain Rule NAME Te Cain Rule So far we are able to differentiate all types of functions. For example: polynomials, rational, root, and trigonometric functions. We are

More information

Solution for the Homework 4

Solution for the Homework 4 Solution for te Homework 4 Problem 6.5: In tis section we computed te single-particle translational partition function, tr, by summing over all definite-energy wavefunctions. An alternative approac, owever,

More information

Main Menu. SEG Houston 2009 International Exposition and Annual Meeting

Main Menu. SEG Houston 2009 International Exposition and Annual Meeting Are penny-saped raks a good model for ompliant porosity? oris Gurevi Curtin Univ. and CSIRO Petroleum Dina Makarynska Curtin Univ. and Marina Pervukina CSIRO Petroleum Pert Australia Summary Variation

More information

Numerical Differentiation

Numerical Differentiation Numerical Differentiation Finite Difference Formulas for te first derivative (Using Taylor Expansion tecnique) (section 8.3.) Suppose tat f() = g() is a function of te variable, and tat as 0 te function

More information

Simulation of hybrid Photovoltaic-Thermal Collector (PV-TC) Systems for domestic Heating and Cooling Case Study: Island of Rhodes

Simulation of hybrid Photovoltaic-Thermal Collector (PV-TC) Systems for domestic Heating and Cooling Case Study: Island of Rhodes Simulation of ybrid Potovoltai-Termal olletor (PV-T) Systems for domesti Heating and ooling ase Study: Island of odes N. HISTANDONIS G.A VOKAS. SKITTIDES Department of Meanial Engineering - Management

More information

SECTION 3.2: DERIVATIVE FUNCTIONS and DIFFERENTIABILITY

SECTION 3.2: DERIVATIVE FUNCTIONS and DIFFERENTIABILITY (Section 3.2: Derivative Functions and Differentiability) 3.2.1 SECTION 3.2: DERIVATIVE FUNCTIONS and DIFFERENTIABILITY LEARNING OBJECTIVES Know, understand, and apply te Limit Definition of te Derivative

More information

The total error in numerical differentiation

The total error in numerical differentiation AMS 147 Computational Metods and Applications Lecture 08 Copyrigt by Hongyun Wang, UCSC Recap: Loss of accuracy due to numerical cancellation A B 3, 3 ~10 16 In calculating te difference between A and

More information

Association of Finite-Time Thermodynamics and a Bond-Graph Approach for Modeling an Endoreversible Heat Engine

Association of Finite-Time Thermodynamics and a Bond-Graph Approach for Modeling an Endoreversible Heat Engine Entropy, 4, 64-653; doi:.339/e4464 Artile OPEN ACCE entropy IN 99-43 www.mdpi.om/journal/entropy Assoiation of Finite-ime ermodynamis and a Bond-Grap Approa for Modeling an Endoreversible Heat Engine Yuxiang

More information

On my honor as a student, I have neither given nor received unauthorized assistance on this exam.

On my honor as a student, I have neither given nor received unauthorized assistance on this exam. HW2 (Overview of Transport) (Print name above) On my onor as a student, I ave neiter given nor received unautorized assistance on tis exam. (sign name above) 1 Figure 1: Band-diagram before and after application

More information

Why gravity is not an entropic force

Why gravity is not an entropic force Wy gravity is not an entropic force San Gao Unit for History and Pilosopy of Science & Centre for Time, SOPHI, University of Sydney Email: sgao7319@uni.sydney.edu.au Te remarkable connections between gravity

More information

Model Prediction of Heat Losses from Sirosmelt Pilot Plant

Model Prediction of Heat Losses from Sirosmelt Pilot Plant 00 mm 855 mm 855 mm Model Predition of Heat Losses from Sirosmelt Pilot Plant Yuua Pan 1 and Miael A Somerville 1 1 CSIRO Mineral Resoures Flagsip, Private Bag 10, Clayton Sout, VIC 169, Australia Keywords:

More information

lecture 26: Richardson extrapolation

lecture 26: Richardson extrapolation 43 lecture 26: Ricardson extrapolation 35 Ricardson extrapolation, Romberg integration Trougout numerical analysis, one encounters procedures tat apply some simple approximation (eg, linear interpolation)

More information

Research on Static Tension Ratio Characteristic of Double-Vessel Friction Hoist System Components

Research on Static Tension Ratio Characteristic of Double-Vessel Friction Hoist System Components TELKOMIKA Indonesian Journal of Eletrial Engineering Vol., o., Otober 4, pp. 78 ~ 73 DOI:.59/telkomnika.vi8.564 78 Resear on Stati Tension Ratio Carateristi of Double-Vessel Frition oist System Components

More information

Experimental Investigation on the Effect of Fluid Flow Rate on the Performance of a Parallel Flow Heat Exchanger

Experimental Investigation on the Effect of Fluid Flow Rate on the Performance of a Parallel Flow Heat Exchanger International Journal of Innovative Resear in Advaned Engineering (IJIRAE) ISSN: 2349-2163 Issue 6, Volume 2 (June 215) www.ijirae.om Experimental Investigation on te Effet of Fluid Flow Rate on te Performane

More information

f a h f a h h lim lim

f a h f a h h lim lim Te Derivative Te derivative of a function f at a (denoted f a) is f a if tis it exists. An alternative way of defining f a is f a x a fa fa fx fa x a Note tat te tangent line to te grap of f at te point

More information

A Quintic Spline Collocation Method for the Fractional Sub- Diffusion Equation with Variable Coefficients

A Quintic Spline Collocation Method for the Fractional Sub- Diffusion Equation with Variable Coefficients AMSE JOURALS-AMSE IIETA pbliation-07-series: Advanes A; Vol. ; ; pp 0-9 Sbmitted Jan. 07; Revised Mar, 07, Aepted April, 06 A Qinti Spline Colloation Metod for te Frational Sb- Diffsion Eqation wit Variable

More information

Brazilian Journal of Physics, vol. 29, no. 1, March, Ensemble and their Parameter Dierentiation. A. K. Rajagopal. Naval Research Laboratory,

Brazilian Journal of Physics, vol. 29, no. 1, March, Ensemble and their Parameter Dierentiation. A. K. Rajagopal. Naval Research Laboratory, Brazilian Journal of Pysics, vol. 29, no. 1, Marc, 1999 61 Fractional Powers of Operators of sallis Ensemble and teir Parameter Dierentiation A. K. Rajagopal Naval Researc Laboratory, Wasington D. C. 2375-532,

More information

Heat Exchanger s Shell and Tube Modeling for Intelligent Control Design

Heat Exchanger s Shell and Tube Modeling for Intelligent Control Design 2011 International Conferene on Computer Communiation Devies (ICCCD 2011) Heat Exanger s Sell Tube Modeling for Intelligent Control Design Dirman Hanafi 1 Mod Nor Mod Tan 2 Abdulraman A.A. Ememed 3 Tatang

More information

QCLAS Sensor for Purity Monitoring in Medical Gas Supply Lines

QCLAS Sensor for Purity Monitoring in Medical Gas Supply Lines DOI.56/sensoren6/P3. QLAS Sensor for Purity Monitoring in Medial Gas Supply Lines Henrik Zimmermann, Mathias Wiese, Alessandro Ragnoni neoplas ontrol GmbH, Walther-Rathenau-Str. 49a, 7489 Greifswald, Germany

More information

Simulation and Development of Trans-critical CO2 Rolling Piston Compressor

Simulation and Development of Trans-critical CO2 Rolling Piston Compressor Purdue University Purdue e-pubs International Compressor Engineering Conferene Shool of Mehanial Engineering 010 Simulation and Development of Trans-ritial CO Rolling Piston Compressor Yunfeng Chang Xi'an

More information

MATHEMATICS FOR ENGINEERING DIFFERENTIATION TUTORIAL 1 - BASIC DIFFERENTIATION

MATHEMATICS FOR ENGINEERING DIFFERENTIATION TUTORIAL 1 - BASIC DIFFERENTIATION MATHEMATICS FOR ENGINEERING DIFFERENTIATION TUTORIAL 1 - BASIC DIFFERENTIATION Tis tutorial is essential pre-requisite material for anyone stuing mecanical engineering. Tis tutorial uses te principle of

More information

Polynomial Interpolation

Polynomial Interpolation Capter 4 Polynomial Interpolation In tis capter, we consider te important problem of approximatinga function fx, wose values at a set of distinct points x, x, x,, x n are known, by a polynomial P x suc

More information

Physics 107 Problem 2.5 O. A. Pringle h Physics 107 Problem 2.6 O. A. Pringle

Physics 107 Problem 2.5 O. A. Pringle h Physics 107 Problem 2.6 O. A. Pringle Pysis 07 Problem 25 O A Pringle 3 663 0 34 700 = 284 0 9 Joules ote I ad to set te zero tolerane ere e 6 0 9 ev joules onversion ator ev e ev = 776 ev Pysis 07 Problem 26 O A Pringle 663 0 34 3 ev

More information

the first derivative with respect to time is obtained by carefully applying the chain rule ( surf init ) T Tinit

the first derivative with respect to time is obtained by carefully applying the chain rule ( surf init ) T Tinit .005 ermal Fluids Engineering I Fall`08 roblem Set 8 Solutions roblem ( ( a e -D eat equation is α t x d erfc( u du π x, 4αt te first derivative wit respect to time is obtained by carefully applying te

More information

Relativistic nuclear matter in generalized thermo-statistics

Relativistic nuclear matter in generalized thermo-statistics Relativistic nuclear matter in generalized termo-statistics K. Miyazaki E-mail: miyazakiro@rio.odn.ne.jp Abstract Te generalized Fermi-Dirac termo-statistics is developed for relativistic nuclear matter.

More information

Design of Unknown Inputs Observer for a Chemical Process: Analysis of Existence and Observability Based on Phenomenological Model

Design of Unknown Inputs Observer for a Chemical Process: Analysis of Existence and Observability Based on Phenomenological Model Design of Unknown Inputs Observer for a Cemial Proess: Analysis of Existene and Observability Based on Penomenologial Model Mario Giraldo Esuela de Meatrónia aultad de Minas Universidad Naional de Colombia

More information

MODELLING THE POSTPEAK STRESS DISPLACEMENT RELATIONSHIP OF CONCRETE IN UNIAXIAL COMPRESSION

MODELLING THE POSTPEAK STRESS DISPLACEMENT RELATIONSHIP OF CONCRETE IN UNIAXIAL COMPRESSION VIII International Conferene on Frature Mehanis of Conrete and Conrete Strutures FraMCoS-8 J.G.M. Van Mier, G. Ruiz, C. Andrade, R.C. Yu and X.X. Zhang Eds) MODELLING THE POSTPEAK STRESS DISPLACEMENT RELATIONSHIP

More information

Higher Derivatives. Differentiable Functions

Higher Derivatives. Differentiable Functions Calculus 1 Lia Vas Higer Derivatives. Differentiable Functions Te second derivative. Te derivative itself can be considered as a function. Te instantaneous rate of cange of tis function is te second derivative.

More information

STRESS ANALYSIS OF RUBBER BLOCKS UNDER VERTICAL LOADING AND SHEAR LOADING. A Dissertation. Presented to

STRESS ANALYSIS OF RUBBER BLOCKS UNDER VERTICAL LOADING AND SHEAR LOADING. A Dissertation. Presented to STRESS ANALYSIS OF RUBBER BLOCKS UNDER VERTICAL LOADING AND SHEAR LOADING A Dissertation Presented to Te Graduate Faulty of Te University of Akron In Partial Fulfillment of te Requirement for te Degree

More information

Lecture 10: Carnot theorem

Lecture 10: Carnot theorem ecture 0: Carnot teorem Feb 7, 005 Equivalence of Kelvin and Clausius formulations ast time we learned tat te Second aw can be formulated in two ways. e Kelvin formulation: No process is possible wose

More information

Physics 41 Chapter 22 HW Serway 7 th Edition

Physics 41 Chapter 22 HW Serway 7 th Edition yss 41 apter H Serway 7 t Edton oneptual uestons: 1,, 8, 1 roblems: 9, 1, 0,, 7, 9, 48, 54, 55 oneptual uestons: 1,, 8, 1 1 Frst, te effeny of te automoble engne annot exeed te arnot effeny: t s lmted

More information

MMI-based Training for a Probabilistic Neural Network

MMI-based Training for a Probabilistic Neural Network MMI-based Training for a Probabilisti Neural Network Nan Bu and Tosio Tsuji Department of te Artifiial Complex Systems Engineering Hirosima University Higasi-Hirosima, 739-8527 JAPAN Email: bu@bsys.irosima-u.a.jp

More information

Test 2 Review. 1. Find the determinant of the matrix below using (a) cofactor expansion and (b) row reduction. A = 3 2 =

Test 2 Review. 1. Find the determinant of the matrix below using (a) cofactor expansion and (b) row reduction. A = 3 2 = Test Review Find te determinant of te matrix below using (a cofactor expansion and (b row reduction Answer: (a det + = (b Observe R R R R R R R R R Ten det B = (((det Hence det Use Cramer s rule to solve:

More information

Wave-Particle Duality: de Broglie Waves and Uncertainty

Wave-Particle Duality: de Broglie Waves and Uncertainty Gauge Institute Journal Vol. No 4, November 6 Wave-Partile Duality: de Broglie Waves and Unertainty vik@adn.om November 6 Abstrat In 195, de Broglie ypotesized tat any material partile as an assoiated

More information

Chapter 5 Differentiation

Chapter 5 Differentiation Capter 5 Differentiation Course Title: Real Analsis 1 Course Code: MTH31 Course instrutor: Dr Atiq ur Reman Class: MS-II Course URL: wwwmatitorg/atiq/fa15-mt31 Derivative of a funtion: Let f be defined

More information

10.1 VIBRATIONAL RELAXATION *

10.1 VIBRATIONAL RELAXATION * Andrei Tokmakoff, MIT Department of Cemistry, 3//009 p. 0-0. VIRATIONAL RELAXATION * Here we want to address ow a quantum mecanical vibration undergoes irreversible energy dissipation as a result of interactions

More information

ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 1 MATH00030 SEMESTER /2019

ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 1 MATH00030 SEMESTER /2019 ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS MATH00030 SEMESTER 208/209 DR. ANTHONY BROWN 6. Differential Calculus 6.. Differentiation from First Principles. In tis capter, we will introduce

More information

Research Article Substance Independence of Efficiency of a Class of Heat Engines Undergoing Two Isothermal Processes

Research Article Substance Independence of Efficiency of a Class of Heat Engines Undergoing Two Isothermal Processes hermodynamis olume 0, Artile ID 6797, 5 pages doi:0.55/0/6797 Researh Artile Substane Independene of Effiieny of a Class of Heat Engines Undergoing wo Isothermal roesses Y. Haseli Department of Mehanial

More information

The Laws of Thermodynamics

The Laws of Thermodynamics 1 Te Laws of Termodynamics CLICKER QUESTIONS Question J.01 Description: Relating termodynamic processes to PV curves: isobar. Question A quantity of ideal gas undergoes a termodynamic process. Wic curve

More information

The Basics of Vacuum Technology

The Basics of Vacuum Technology Te Basics of Vacuum Tecnology Grolik Benno, Kopp Joacim January 2, 2003 Basics Many scientific and industrial processes are so sensitive tat is is necessary to omit te disturbing influence of air. For

More information

Copyright c 2008 Kevin Long

Copyright c 2008 Kevin Long Lecture 4 Numerical solution of initial value problems Te metods you ve learned so far ave obtained closed-form solutions to initial value problems. A closedform solution is an explicit algebriac formula

More information

The entransy dissipation minimization principle under given heat duty and heat transfer area conditions

The entransy dissipation minimization principle under given heat duty and heat transfer area conditions Article Engineering Termopysics July 2011 Vol.56 No.19: 2071 2076 doi: 10.1007/s11434-010-4189-x SPECIAL TOPICS: Te entransy dissipation minimization principle under given eat duty and eat transfer area

More information

THE IDEA OF DIFFERENTIABILITY FOR FUNCTIONS OF SEVERAL VARIABLES Math 225

THE IDEA OF DIFFERENTIABILITY FOR FUNCTIONS OF SEVERAL VARIABLES Math 225 THE IDEA OF DIFFERENTIABILITY FOR FUNCTIONS OF SEVERAL VARIABLES Mat 225 As we ave seen, te definition of derivative for a Mat 111 function g : R R and for acurveγ : R E n are te same, except for interpretation:

More information

Effects of Baffle on Entropy Generation in Separated Convection Flow Adjacent to Inclined Backward-Facing Step

Effects of Baffle on Entropy Generation in Separated Convection Flow Adjacent to Inclined Backward-Facing Step Journal of Eletronis Cooling and Termal Control,,, 53- ttp://dx.doi.org/.3/jet.. Pulised Online Deemer (ttp://www.sirp.org/journal/jet) Effets of Baffle on Entropy Generation in Separated Convetion Flow

More information

1. Consider the trigonometric function f(t) whose graph is shown below. Write down a possible formula for f(t).

1. Consider the trigonometric function f(t) whose graph is shown below. Write down a possible formula for f(t). . Consider te trigonometric function f(t) wose grap is sown below. Write down a possible formula for f(t). Tis function appears to be an odd, periodic function tat as been sifted upwards, so we will use

More information

Determination of heat transfer intensity between free streaming water film and rigid surface using thermography

Determination of heat transfer intensity between free streaming water film and rigid surface using thermography Determination of eat transfer intensity between free ing water film and rigid surfae using termograpy Faulty of meanial engineering and naval ariteture University of Zagreb, Croatia Abstrat by S. Švaić,

More information

EFFECT OF SURFACE FINISH ON HEAT TRANSFER PERFORMANCE OF PLATE HEAT EXCHANGER

EFFECT OF SURFACE FINISH ON HEAT TRANSFER PERFORMANCE OF PLATE HEAT EXCHANGER HEFAT202 9 t International Conferene on Heat Transfer, Fluid Meanis and Termodynamis 6 8 July 202 Malta EFFECT OF SURFACE FINISH ON HEAT TRANSFER PERFORMANCE OF PLATE HEAT EXCHANGER Wajs J.,2 * and Mikielewiz

More information

NUMERICAL DIFFERENTIATION

NUMERICAL DIFFERENTIATION NUMERICAL IFFERENTIATION FIRST ERIVATIVES Te simplest difference formulas are based on using a straigt line to interpolate te given data; tey use two data pints to estimate te derivative. We assume tat

More information

Solution. Solution. f (x) = (cos x)2 cos(2x) 2 sin(2x) 2 cos x ( sin x) (cos x) 4. f (π/4) = ( 2/2) ( 2/2) ( 2/2) ( 2/2) 4.

Solution. Solution. f (x) = (cos x)2 cos(2x) 2 sin(2x) 2 cos x ( sin x) (cos x) 4. f (π/4) = ( 2/2) ( 2/2) ( 2/2) ( 2/2) 4. December 09, 20 Calculus PracticeTest s Name: (4 points) Find te absolute extrema of f(x) = x 3 0 on te interval [0, 4] Te derivative of f(x) is f (x) = 3x 2, wic is zero only at x = 0 Tus we only need

More information

= T. (kj/k) (kj/k) 0 (kj/k) int rev. Chapter 6 SUMMARY

= T. (kj/k) (kj/k) 0 (kj/k) int rev. Chapter 6 SUMMARY Capter 6 SUMMARY e second la of termodynamics leads to te definition of a ne property called entropy ic is a quantitative measure of microscopic disorder for a system. e definition of entropy is based

More information

EOQ and EPQ-Partial Backordering-Approximations

EOQ and EPQ-Partial Backordering-Approximations USING A ONSTANT RATE TO APPROXIMATE A LINEARLY HANGING RATE FOR THE EOQ AND EPQ WITH PARTIAL BAKORDERING David W. Pentico, Palumo-Donaue Scool of Business, Duquesne University, Pittsurg, PA 158-18, pentico@duq.edu,

More information

Introduction to Exergoeconomic and Exergoenvironmental Analyses

Introduction to Exergoeconomic and Exergoenvironmental Analyses Tehnishe Universität Berlin Introdution to Exergoeonomi and Exergoenvironmental Analyses George Tsatsaronis The Summer Course on Exergy and its Appliation for Better Environment Oshawa, Canada April, 30

More information

Notes: Most of the material in this chapter is taken from Young and Freedman, Chap. 12.

Notes: Most of the material in this chapter is taken from Young and Freedman, Chap. 12. Capter 6. Fluid Mecanics Notes: Most of te material in tis capter is taken from Young and Freedman, Cap. 12. 6.1 Fluid Statics Fluids, i.e., substances tat can flow, are te subjects of tis capter. But

More information

Chapter 3 Thermoelectric Coolers

Chapter 3 Thermoelectric Coolers 3- Capter 3 ermoelectric Coolers Contents Capter 3 ermoelectric Coolers... 3- Contents... 3-3. deal Equations... 3-3. Maximum Parameters... 3-7 3.3 Normalized Parameters... 3-8 Example 3. ermoelectric

More information

Consider a function f we ll specify which assumptions we need to make about it in a minute. Let us reformulate the integral. 1 f(x) dx.

Consider a function f we ll specify which assumptions we need to make about it in a minute. Let us reformulate the integral. 1 f(x) dx. Capter 2 Integrals as sums and derivatives as differences We now switc to te simplest metods for integrating or differentiating a function from its function samples. A careful study of Taylor expansions

More information

arxiv:gr-qc/ v2 24 Jul 2002

arxiv:gr-qc/ v2 24 Jul 2002 Frequeny and Wavelengt of Ligt in Relativistially Rotating Frames Robert D. Klauber 11 University Manor Dr., 38B, Fairfield, IA 52556, USA email: rklauber@netsape.net July 23, 22 arxiv:gr-q/1836v2 24 Jul

More information

Cubic Functions: Local Analysis

Cubic Functions: Local Analysis Cubic function cubing coefficient Capter 13 Cubic Functions: Local Analysis Input-Output Pairs, 378 Normalized Input-Output Rule, 380 Local I-O Rule Near, 382 Local Grap Near, 384 Types of Local Graps

More information

Polynomial Interpolation

Polynomial Interpolation Capter 4 Polynomial Interpolation In tis capter, we consider te important problem of approximating a function f(x, wose values at a set of distinct points x, x, x 2,,x n are known, by a polynomial P (x

More information

Topics in Generalized Differentiation

Topics in Generalized Differentiation Topics in Generalized Differentiation J. Marsall As Abstract Te course will be built around tree topics: ) Prove te almost everywere equivalence of te L p n-t symmetric quantum derivative and te L p Peano

More information

The Hyperbolic Region for Restricted Isometry Constants in Compressed Sensing

The Hyperbolic Region for Restricted Isometry Constants in Compressed Sensing INTERNATIONAL JOURNAL OF CIRCUITS SYSTEMS AND SIGNAL PROCESSING Volume 8 Te Hyeroli Region for Restrited Isometry Constants in Comressed Sensing Siqing Wang Yan Si and Limin Su Astrat Te restrited isometry

More information

How to Find the Derivative of a Function: Calculus 1

How to Find the Derivative of a Function: Calculus 1 Introduction How to Find te Derivative of a Function: Calculus 1 Calculus is not an easy matematics course Te fact tat you ave enrolled in suc a difficult subject indicates tat you are interested in te

More information

Consolidating Virtual Machines with Dynamic Bandwidth Demand in Data Centers

Consolidating Virtual Machines with Dynamic Bandwidth Demand in Data Centers Consolidating Virtual Maines wit Dynami Bandwidt Demand in Data Centers Meng Wang, Xiaoqiao Meng, and Li Zang Sool of ECE, Cornell University, Itaa, NY 4853, USA. Email: mw467@ornell.edu IBM T.J. Watson

More information

Math 124. Section 2.6: Limits at infinity & Horizontal Asymptotes. 1 x. lim

Math 124. Section 2.6: Limits at infinity & Horizontal Asymptotes. 1 x. lim Mat 4 Section.6: Limits at infinity & Horizontal Asymptotes Tolstoy, Count Lev Nikolgevic (88-90) A man is like a fraction wose numerator is wat e is and wose denominator is wat e tinks of imself. Te larger

More information

Graviton Induced Nuclear Fission through Electromagnetic Wave Flux Phil Russell, * Jerry Montgomery

Graviton Induced Nuclear Fission through Electromagnetic Wave Flux Phil Russell, * Jerry Montgomery Graviton Induced Nuclear Fission troug Electromagnetic Wave Flux Pil Russell, * Jerry Montgomery Nort Carolina Central University, Duram, NC 27707 Willowstick Tecnologies LLC, Draper, UT 84020 (Dated:

More information

Heat exchangers: Heat exchanger types:

Heat exchangers: Heat exchanger types: Heat exhangers: he proess of heat exhange between two fluids that are at different temperatures and separated by a solid wall ours in many engineering appliations. he devie used to implement this exhange

More information

MVT and Rolle s Theorem

MVT and Rolle s Theorem AP Calculus CHAPTER 4 WORKSHEET APPLICATIONS OF DIFFERENTIATION MVT and Rolle s Teorem Name Seat # Date UNLESS INDICATED, DO NOT USE YOUR CALCULATOR FOR ANY OF THESE QUESTIONS In problems 1 and, state

More information

General Physics I. New Lecture 27: Carnot Cycle, The 2nd Law, Entropy and Information. Prof. WAN, Xin

General Physics I. New Lecture 27: Carnot Cycle, The 2nd Law, Entropy and Information. Prof. WAN, Xin General Pysics I New Lecture 27: Carnot Cycle, e 2nd Law, Entropy and Information Prof. AN, Xin xinwan@zju.edu.cn ttp://zimp.zju.edu.cn/~xinwan/ Carnot s Engine Efficiency of a Carnot Engine isotermal

More information

10.2 The Occurrence of Critical Flow; Controls

10.2 The Occurrence of Critical Flow; Controls 10. The Ourrene of Critial Flow; Controls In addition to the type of problem in whih both q and E are initially presribed; there is a problem whih is of pratial interest: Given a value of q, what fators

More information

Continuity and Differentiability Worksheet

Continuity and Differentiability Worksheet Continuity and Differentiability Workseet (Be sure tat you can also do te grapical eercises from te tet- Tese were not included below! Typical problems are like problems -3, p. 6; -3, p. 7; 33-34, p. 7;

More information

A = h w (1) Error Analysis Physics 141

A = h w (1) Error Analysis Physics 141 Introduction In all brances of pysical science and engineering one deals constantly wit numbers wic results more or less directly from experimental observations. Experimental observations always ave inaccuracies.

More information

SOME FUNDAMENTAL ASPECTS OF COMPRESSIBLE FLOW

SOME FUNDAMENTAL ASPECTS OF COMPRESSIBLE FLOW SOE FUNDAENAL ASECS OF CORESSIBLE FLOW ah number gas veloity mah number, speed of sound a a R < : subsoni : transoni > : supersoni >> : hypersoni art three : ah Number 7 Isentropi flow in a streamtube

More information