Solution Set #3

Size: px
Start display at page:

Download "Solution Set #3"

Transcription

1 Soluton Set #. Te varaton of refractve ndex wt wavelengt for a transarent substance (suc as glass) may be aroxmately reresented by te emrcal equaton due to Caucy: n [] A + were A and are emrcally determned constants and s te wavelengt of lgt n a vacuum. If A :, :5 ( nm), determne te ase and grou veloctes at 5 nm. n [ 5 nm] : + :5 ( nm) (5 nm) :5 v [ 5 nm] n! jk j c n : m s v : 8 m :5 s Te grou velocty may also be called te modulaton velocty v mod, wc s te seed of te low-frequency modulaton. We need to nd an exresson for te modulaton velocty n terms of te numbers we know: d! v mod v dk! k 5 nm ) d! dk d dk )! k v k c n k c c n n dk dk + k n dc dk + kc d dk n d! v mod dk c n + k n + kc n dn dk c ck dn n n dk c n dn dn dk d d dk dn dk d dn d d dn d v mod v n dn d v + n dn c d n n [] A + ) dn d c v mod + n n B c B n n! c :5 :5 ( nm) :5 (5 nm) c :78 v :5 k dn n dk + n dn d

2 . or te crown and nt glasses gven n te notes wt te followng ndces measured at two vacuum wavelengts: Lne [ nm] n for Crown n for lnt C 5:8 :58 :97 8: :55 :778 Aroxmate te emrcal constants A and n Caucy s equaton (gven n #) and use tem to evaluate te refractve ndex at 589:59 nm (raunofer s D lne); comare te results to te actual values: Lne [ nm] n for Crown n for lnt D 589:59 :5 :7 Two equatons n two unknowns: n C A + C n A + Many ways to solve; I ll use matrx nverson. or te crown glass: det C C : 8 nm : 5 nm C nc ) C n (5:8 nm) (8: nm) :997 nm nc n : 8 nm : 5 nm : 5 nm : 8 nm :997 nm :5 8 :5 8 5: 5 nm 5: 5 nm :5 8 :5 8 :58 5: 5 nm 5: 5 nm :55 :5 5:8 nm at D 589:59 nm : Crown glass: n A + D 5:8 nm :5 + :5, dentcal to measurement (589:59 nm) or te nt glass: 5: 5 nm 5: 5 nm :778 :5 8 :5 8 :97 : 5: nm at D 589:59 nm : lnt Glass: n A + D 5: nm : + :7 vs. :7 (589:59 nm)

3 . (owles.5) Te electrc vector of a wave s gven by te real exresson: E [z; t] E ^x [k z! t] + ^y b [k z! t + ] Sow tat ts s equvalent to te comlex-valued exresson: E [z; t] E ^x + ^y b ex [ ] ex [ (k z! t)] E [z; t] E ^x [k z! t] + ^y b [k z! t + ] Re E ^x ex [ (k z! t)] + ^y b ex [ (k z! t + )] E Re ^x ex [ (k z! t)] + ^y b ex [ (k z! t)] ex [ ] E Re ^x + ^y b ex [ ] ex [ (k z! t)]. Sketc dagrams to sow te tye of olarzatons n # for te followng cases: (a) ; b E [z; t] E ^x + ^y ex [ (k z! t)] E ex [ (k z! t)] ) LP wt amltude E + E at angle tan 5 (b) ; b E [z; t] E ^x + ^y ex [ (k z! t)] E ex [ (k z! t)] ) LP wt amltude E + E at angle tan :7 radans :5 radans : (c) + ; b E [z; t] E ^x ^y ex ex [ (k z! t)] E ex ex [ (k z! t)] E ex ex ex ) LHEP wt major axs at angle tan 5 5. Wrte down te Jones vectors for te tree cases n te revous roblem. Dd t wtn te roblems (a) (b) E E (c) E ex ex

4 . or te followng tree Jones vectors: E E E (a) Determne te tye of olarzaton of eac wave; E [] E sn [] " # tan r E + + Lnearly olarzed wt amltude of at angle of E RHCP wt unt amltude ex ex E + ( ) " ( ) () () ( ) () # ex RHCP wt amltude (b) nd Jones vectors tat are ortogonal to eac of te tree cases and descrbe te state of olarzaton. nd a vector suc tat te scalar roduct s zero, were te de nton of te scalar roduct for vectors wt comlex-valued comonents ncludes a comlex conjugate E E? E X (E ) n E? n ) E? n ) (E ) x ceck by evaluatng scalar roduct E E? + + E? x + (E ) y or E? y E E? ex ex ex or E E? ex ex or

5 7. (P 5-) Intally unolarzed lgt asses n turn troug tree lnear olarzers wt transmsson axes at,, and, resectvely, relatve to te orzontal axs. Wat s te rradance of te roduct lgt exressed as a ercentage of te unolarzed lgt rradance? ts s Malus law mlemented twce, lus recognzng tat te rradance s te squared magntude of te amltude. Te rst olarzer reduces te rradance by alf and te lgt s lnearly olarzed orzontally, so te Jones vector after te rst olarzer s: r I E Te Jones matrx for te second olarzer s: M (n:b:; det M ) sn sn sn " # Te angle of te trd olarzer s : M sn sn sn " # Te outut state s te roduct of te matrces wt te nut state: " # " # r I E M M E r 8 I I E E 9 I + 9 I : I 9 I :8I tan (as t sould!) 5

6 8. (P 5-): Snce a seet of Polarod s not an deal olarzer, not all te energy of te E-vbratons arallel to te TA are transmtted, nor are all E-vbratons erendcular to te transmsson axs are absorbed. Suose an energy fracton us transmtted n te rst case and a fracton s transmtted n te second. (a) Extend Malus law by calculatng te rradance transmtted by a ar of suc olarzers wt angle between ter transmsson axes. Assume ntally unolarzed lgt of rradance I. Sow tat Malus law follows n te deal case. If two olarzers orented at angle : Ideal Malus Law : I I We know tat alf of rradance of unolarzed lgt s blocked by an deal olarzer, so tat f a ercentage s assed of te lgt at angle and a ercentage s assed at te ortogonal angle, ten some lgt gets troug n all cases. Assume tat te ntal olarzer s orented along x and te second at te angle relatve to x: Lgt assed by x-olarzer orented along x : (I ) x I Lgt assed by x-olarzer orented along y : (I ) y I x-axs lgt assed by olarzer # orented along : (I x ) (I ) x I y-axs lgt assed by olarzer # orented along : (I y ) (I ) y + I sn Total lgt assed: x-axs lgt assed by olarzer # n ortogonal drecton: (I x ) + (I ) x + I sn y-axs lgt assed by olarzer # n ortogonal drecton : (I x ) + (I ) y () I I I + sn + Ceck lmtng beavor of total lgt assed: set, : I I + sn + I [] dentcal to Malus law for deal olarzer: I I [] I [] (b) Let :95 and :5 for a gven seet of Polarod. Comare te rradance wt tat of an deal olarzer wen unolarzed lgt s assed troug two suc seets ave relatve angle between transmsson axes of,, 5, and 9. Ideal Malus Law: I I [] Realstc Malus Law: I I :95 + :95 :5 sn + :5 I :95 + :95 sn

7 ) I I :95 + :95 sn :95 I :55I ) I I :5 5I ) I I I :95 + :95 ) I I :8 75I :95 + :95 sn :95 + :95 sn :95 I + :95 :5I :95 + :95 sn Just for fun, lot te deal equaton and te realstc equatons for tese values of and wt I Transmsson Angle teta (degrees) Comarson of te realstc exresson for Malus Law (black sold lne) to te deal exresson (red dased lne) for a :95, :5. Note tat te exressons are equal at 5. Try t agan for d erent values of :75; :5 : Transmsson Angle teta (degrees) wc sows tat te senstvty of te amount of transmtted lgt te te angle of te olarzers as become oor. 7

Not-for-Publication Appendix to Optimal Asymptotic Least Aquares Estimation in a Singular Set-up

Not-for-Publication Appendix to Optimal Asymptotic Least Aquares Estimation in a Singular Set-up Not-for-Publcaton Aendx to Otmal Asymtotc Least Aquares Estmaton n a Sngular Set-u Antono Dez de los Ros Bank of Canada dezbankofcanada.ca December 214 A Proof of Proostons A.1 Proof of Prooston 1 Ts roof

More information

ORDINARY DIFFERENTIAL EQUATIONS EULER S METHOD

ORDINARY DIFFERENTIAL EQUATIONS EULER S METHOD Numercal Analss or Engneers German Jordanan Unverst ORDINARY DIFFERENTIAL EQUATIONS We wll eplore several metods o solvng rst order ordnar derental equatons (ODEs and we wll sow ow tese metods can be appled

More information

SIMG Solution Set #5

SIMG Solution Set #5 SIMG-303-0033 Solution Set #5. Describe completely te state of polarization of eac of te following waves: (a) E [z,t] =ˆxE 0 cos [k 0 z ω 0 t] ŷe 0 cos [k 0 z ω 0 t] Bot components are traveling down te

More information

3.4 Worksheet: Proof of the Chain Rule NAME

3.4 Worksheet: Proof of the Chain Rule NAME Mat 1170 3.4 Workseet: Proof of te Cain Rule NAME Te Cain Rule So far we are able to differentiate all types of functions. For example: polynomials, rational, root, and trigonometric functions. We are

More information

LECTURE 5: FIBRATIONS AND HOMOTOPY FIBERS

LECTURE 5: FIBRATIONS AND HOMOTOPY FIBERS LECTURE 5: FIBRATIONS AND HOMOTOPY FIBERS In ts lecture we wll ntroduce two mortant classes of mas of saces, namely te Hurewcz fbratons and te more general Serre fbratons, wc are bot obtaned by mosng certan

More information

Lesson 16: Basic Control Modes

Lesson 16: Basic Control Modes 0/8/05 Lesson 6: Basc Control Modes ET 438a Automatc Control Systems Technology lesson6et438a.tx Learnng Objectves Ater ths resentaton you wll be able to: Descrbe the common control modes used n analog

More information

. Compute the following limits.

. Compute the following limits. Today: Tangent Lines and te Derivative at a Point Warmup:. Let f(x) =x. Compute te following limits. f( + ) f() (a) lim f( +) f( ) (b) lim. Let g(x) = x. Compute te following limits. g(3 + ) g(3) (a) lim

More information

On Pfaff s solution of the Pfaff problem

On Pfaff s solution of the Pfaff problem Zur Pfaff scen Lösung des Pfaff scen Probles Mat. Ann. 7 (880) 53-530. On Pfaff s soluton of te Pfaff proble By A. MAYER n Lepzg Translated by D. H. Delpenc Te way tat Pfaff adopted for te ntegraton of

More information

CENTROID (AĞIRLIK MERKEZİ )

CENTROID (AĞIRLIK MERKEZİ ) CENTOD (ĞLK MEKEZİ ) centrod s a geometrcal concept arsng from parallel forces. Tus, onl parallel forces possess a centrod. Centrod s tougt of as te pont were te wole wegt of a pscal od or sstem of partcles

More information

CENTROID (AĞIRLIK MERKEZİ )

CENTROID (AĞIRLIK MERKEZİ ) CENTOD (ĞLK MEKEZİ ) centrod s a geometrcal concept arsng from parallel forces. Tus, onl parallel forces possess a centrod. Centrod s tougt of as te pont were te wole wegt of a pscal od or sstem of partcles

More information

2.3 Product and Quotient Rules

2.3 Product and Quotient Rules .3. PRODUCT AND QUOTIENT RULES 75.3 Product and Quotient Rules.3.1 Product rule Suppose tat f and g are two di erentiable functions. Ten ( g (x)) 0 = f 0 (x) g (x) + g 0 (x) See.3.5 on page 77 for a proof.

More information

Shuai Dong. Isaac Newton. Gottfried Leibniz

Shuai Dong. Isaac Newton. Gottfried Leibniz Computatonal pyscs Sua Dong Isaac Newton Gottred Lebnz Numercal calculus poston dervatve ntegral v velocty dervatve ntegral a acceleraton Numercal calculus Numercal derentaton Numercal ntegraton Roots

More information

5. (a) Find the slope of the tangent line to the parabola y = x + 2x

5. (a) Find the slope of the tangent line to the parabola y = x + 2x MATH 141 090 Homework Solutions Fall 00 Section.6: Pages 148 150 3. Consider te slope of te given curve at eac of te five points sown (see text for figure). List tese five slopes in decreasing order and

More information

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur Analyss of Varance and Desgn of Exerments-I MODULE III LECTURE - 2 EXPERIMENTAL DESIGN MODELS Dr. Shalabh Deartment of Mathematcs and Statstcs Indan Insttute of Technology Kanur 2 We consder the models

More information

SE Story Shear Frame. Final Project. 2 Story Bending Beam. m 2. u 2. m 1. u 1. m 3. u 3 L 3. Given: L 1 L 2. EI ω 1 ω 2 Solve for m 2.

SE Story Shear Frame. Final Project. 2 Story Bending Beam. m 2. u 2. m 1. u 1. m 3. u 3 L 3. Given: L 1 L 2. EI ω 1 ω 2 Solve for m 2. SE 8 Fnal Project Story Sear Frame Gven: EI ω ω Solve for Story Bendng Beam Gven: EI ω ω 3 Story Sear Frame Gven: L 3 EI ω ω ω 3 3 m 3 L 3 Solve for Solve for m 3 3 4 3 Story Bendng Beam Part : Determnng

More information

Stanford University CS254: Computational Complexity Notes 7 Luca Trevisan January 29, Notes for Lecture 7

Stanford University CS254: Computational Complexity Notes 7 Luca Trevisan January 29, Notes for Lecture 7 Stanford Unversty CS54: Computatonal Complexty Notes 7 Luca Trevsan January 9, 014 Notes for Lecture 7 1 Approxmate Countng wt an N oracle We complete te proof of te followng result: Teorem 1 For every

More information

Continuity and Differentiability Worksheet

Continuity and Differentiability Worksheet Continuity and Differentiability Workseet (Be sure tat you can also do te grapical eercises from te tet- Tese were not included below! Typical problems are like problems -3, p. 6; -3, p. 7; 33-34, p. 7;

More information

MVT and Rolle s Theorem

MVT and Rolle s Theorem AP Calculus CHAPTER 4 WORKSHEET APPLICATIONS OF DIFFERENTIATION MVT and Rolle s Teorem Name Seat # Date UNLESS INDICATED, DO NOT USE YOUR CALCULATOR FOR ANY OF THESE QUESTIONS In problems 1 and, state

More information

Homework Notes Week 7

Homework Notes Week 7 Homework Notes Week 7 Math 4 Sprng 4 #4 (a Complete the proof n example 5 that s an nner product (the Frobenus nner product on M n n (F In the example propertes (a and (d have already been verfed so we

More information

Math 31A Discussion Notes Week 4 October 20 and October 22, 2015

Math 31A Discussion Notes Week 4 October 20 and October 22, 2015 Mat 3A Discussion Notes Week 4 October 20 and October 22, 205 To prepare for te first midterm, we ll spend tis week working eamples resembling te various problems you ve seen so far tis term. In tese notes

More information

Math Spring 2013 Solutions to Assignment # 3 Completion Date: Wednesday May 15, (1/z) 2 (1/z 1) 2 = lim

Math Spring 2013 Solutions to Assignment # 3 Completion Date: Wednesday May 15, (1/z) 2 (1/z 1) 2 = lim Mat 311 - Spring 013 Solutions to Assignment # 3 Completion Date: Wednesday May 15, 013 Question 1. [p 56, #10 (a)] 4z Use te teorem of Sec. 17 to sow tat z (z 1) = 4. We ave z 4z (z 1) = z 0 4 (1/z) (1/z

More information

Lecture 26 Finite Differences and Boundary Value Problems

Lecture 26 Finite Differences and Boundary Value Problems 4//3 Leture 6 Fnte erenes and Boundar Value Problems Numeral derentaton A nte derene s an appromaton o a dervatve - eample erved rom Talor seres 3 O! Negletng all terms ger tan rst order O O Tat s te orward

More information

Lesson 6: The Derivative

Lesson 6: The Derivative Lesson 6: Te Derivative Def. A difference quotient for a function as te form f(x + ) f(x) (x + ) x f(x + x) f(x) (x + x) x f(a + ) f(a) (a + ) a Notice tat a difference quotient always as te form of cange

More information

Mechanics Physics 151

Mechanics Physics 151 Mechancs hyscs 151 Lecture Canoncal Transformatons (Chater 9) What We Dd Last Tme Drect Condtons Q j Q j = = j, Q, j, Q, Necessary and suffcent j j for Canoncal Transf. = = j Q, Q, j Q, Q, Infntesmal CT

More information

Exam 1 Review Solutions

Exam 1 Review Solutions Exam Review Solutions Please also review te old quizzes, and be sure tat you understand te omework problems. General notes: () Always give an algebraic reason for your answer (graps are not sufficient),

More information

Precalculus Test 2 Practice Questions Page 1. Note: You can expect other types of questions on the test than the ones presented here!

Precalculus Test 2 Practice Questions Page 1. Note: You can expect other types of questions on the test than the ones presented here! Precalculus Test 2 Practice Questions Page Note: You can expect oter types of questions on te test tan te ones presented ere! Questions Example. Find te vertex of te quadratic f(x) = 4x 2 x. Example 2.

More information

( ) 1/ 2. ( P SO2 )( P O2 ) 1/ 2.

( ) 1/ 2. ( P SO2 )( P O2 ) 1/ 2. Chemstry 360 Dr. Jean M. Standard Problem Set 9 Solutons. The followng chemcal reacton converts sulfur doxde to sulfur troxde. SO ( g) + O ( g) SO 3 ( l). (a.) Wrte the expresson for K eq for ths reacton.

More information

, rst we solve te PDE's L ad L ad n g g (x) = ; = ; ; ; n () (x) = () Ten, we nd te uncton (x), te lnearzng eedbac and coordnates transormaton are gve

, rst we solve te PDE's L ad L ad n g g (x) = ; = ; ; ; n () (x) = () Ten, we nd te uncton (x), te lnearzng eedbac and coordnates transormaton are gve Freedom n Coordnates Transormaton or Exact Lnearzaton and ts Applcaton to Transent Beavor Improvement Kenj Fujmoto and Tosaru Suge Dvson o Appled Systems Scence, Kyoto Unversty, Uj, Kyoto, Japan suge@robotuassyoto-uacjp

More information

MTH 119 Pre Calculus I Essex County College Division of Mathematics Sample Review Questions 1 Created April 17, 2007

MTH 119 Pre Calculus I Essex County College Division of Mathematics Sample Review Questions 1 Created April 17, 2007 MTH 9 Pre Calculus I Essex County College Division of Matematics Sample Review Questions Created April 7, 007 At Essex County College you sould be prepared to sow all work clearly and in order, ending

More information

Main components of the above cycle are: 1) Boiler (steam generator) heat exchanger 2) Turbine generates work 3) Condenser heat exchanger 4) Pump

Main components of the above cycle are: 1) Boiler (steam generator) heat exchanger 2) Turbine generates work 3) Condenser heat exchanger 4) Pump Introducton to Terodynacs, Lecture -5 Pro. G. Cccarell (0 Applcaton o Control olue Energy Analyss Most terodynac devces consst o a seres o coponents operatng n a cycle, e.g., stea power plant Man coponents

More information

How to Find the Derivative of a Function: Calculus 1

How to Find the Derivative of a Function: Calculus 1 Introduction How to Find te Derivative of a Function: Calculus 1 Calculus is not an easy matematics course Te fact tat you ave enrolled in suc a difficult subject indicates tat you are interested in te

More information

Degrees of Freedom. Spherical (ball & socket) 3 (3 rotation) Two-Angle (universal) 2 (2 rotation)

Degrees of Freedom. Spherical (ball & socket) 3 (3 rotation) Two-Angle (universal) 2 (2 rotation) ME 6590 Multbody Dynamcs Connectn Jonts Part I o Connectn jonts constran te relatve moton between adjonn bodes n a multbody system. Jonts rane rom allown no relatve moton (a rd jont) to allown all motons

More information

The derivative function

The derivative function Roberto s Notes on Differential Calculus Capter : Definition of derivative Section Te derivative function Wat you need to know already: f is at a point on its grap and ow to compute it. Wat te derivative

More information

UNIVERSITY OF BOLTON RAK ACADEMIC CENTRE BENG(HONS) MECHANICAL ENGINEERING SEMESTER TWO EXAMINATION 2017/2018 FINITE ELEMENT AND DIFFERENCE SOLUTIONS

UNIVERSITY OF BOLTON RAK ACADEMIC CENTRE BENG(HONS) MECHANICAL ENGINEERING SEMESTER TWO EXAMINATION 2017/2018 FINITE ELEMENT AND DIFFERENCE SOLUTIONS OCD0 UNIVERSITY OF BOLTON RAK ACADEMIC CENTRE BENG(HONS) MECHANICAL ENGINEERING SEMESTER TWO EXAMINATION 07/08 FINITE ELEMENT AND DIFFERENCE SOLUTIONS MODULE NO. AME6006 Date: Wednesda 0 Ma 08 Tme: 0:00

More information

5.1 introduction problem : Given a function f(x), find a polynomial approximation p n (x).

5.1 introduction problem : Given a function f(x), find a polynomial approximation p n (x). capter 5 : polynomial approximation and interpolation 5 introduction problem : Given a function f(x), find a polynomial approximation p n (x) Z b Z application : f(x)dx b p n(x)dx, a a one solution : Te

More information

Y = X + " E [X 0 "] = 0 K E ["" 0 ] = = 2 I N : 2. So, you get an estimated parameter vector ^ OLS = (X 0 X) 1 X 0 Y:

Y = X +  E [X 0 ] = 0 K E [ 0 ] = = 2 I N : 2. So, you get an estimated parameter vector ^ OLS = (X 0 X) 1 X 0 Y: 1 Ecent OLS 1. Consder te model Y = X + " E [X 0 "] = 0 K E ["" 0 ] = = 2 I N : Ts s OLS appyland! OLS s BLUE ere. 2. So, you get an estmated parameter vector ^ OLS = (X 0 X) 1 X 0 Y: 3. You know tat t

More information

REVIEW LAB ANSWER KEY

REVIEW LAB ANSWER KEY REVIEW LAB ANSWER KEY. Witout using SN, find te derivative of eac of te following (you do not need to simplify your answers): a. f x 3x 3 5x x 6 f x 3 3x 5 x 0 b. g x 4 x x x notice te trick ere! x x g

More information

Math 34A Practice Final Solutions Fall 2007

Math 34A Practice Final Solutions Fall 2007 Mat 34A Practice Final Solutions Fall 007 Problem Find te derivatives of te following functions:. f(x) = 3x + e 3x. f(x) = x + x 3. f(x) = (x + a) 4. Is te function 3t 4t t 3 increasing or decreasing wen

More information

= = = (a) Use the MATLAB command rref to solve the system. (b) Let A be the coefficient matrix and B be the right-hand side of the system.

= = = (a) Use the MATLAB command rref to solve the system. (b) Let A be the coefficient matrix and B be the right-hand side of the system. Chapter Matlab Exercses Chapter Matlab Exercses. Consder the lnear system of Example n Secton.. x x x y z y y z (a) Use the MATLAB command rref to solve the system. (b) Let A be the coeffcent matrx and

More information

Quantum Mechanics I - Session 4

Quantum Mechanics I - Session 4 Quantum Mechancs I - Sesson 4 Aprl 3, 05 Contents Operators Change of Bass 4 3 Egenvectors and Egenvalues 5 3. Denton....................................... 5 3. Rotaton n D....................................

More information

actuary )uj, problem L It X Projection approximation Orthogonal subspace of !- ( iii. ( run projection of Pcxzll rim orthogonal ( Nuu, y H, ye W )

actuary )uj, problem L It X Projection approximation Orthogonal subspace of !- ( iii. ( run projection of Pcxzll rim orthogonal ( Nuu, y H, ye W ) dmensonal ( Note thot rm t w ; n ( ( run u! ( t E 21 k f } actuary uj n ( Nuu h rate h Hutt O Snce when Truth Klment we also have wht Lu te It k} Orthogonal Projecton let W be an un subspace a Eucldean

More information

1 The concept of limits (p.217 p.229, p.242 p.249, p.255 p.256) 1.1 Limits Consider the function determined by the formula 3. x since at this point

1 The concept of limits (p.217 p.229, p.242 p.249, p.255 p.256) 1.1 Limits Consider the function determined by the formula 3. x since at this point MA00 Capter 6 Calculus and Basic Linear Algebra I Limits, Continuity and Differentiability Te concept of its (p.7 p.9, p.4 p.49, p.55 p.56). Limits Consider te function determined by te formula f Note

More information

Polynomial Functions. Linear Functions. Precalculus: Linear and Quadratic Functions

Polynomial Functions. Linear Functions. Precalculus: Linear and Quadratic Functions Concepts: definition of polynomial functions, linear functions tree representations), transformation of y = x to get y = mx + b, quadratic functions axis of symmetry, vertex, x-intercepts), transformations

More information

Math 312 Lecture Notes Modeling

Math 312 Lecture Notes Modeling Mat 3 Lecture Notes Modeling Warren Weckesser Department of Matematics Colgate University 5 7 January 006 Classifying Matematical Models An Example We consider te following scenario. During a storm, a

More information

2.11 That s So Derivative

2.11 That s So Derivative 2.11 Tat s So Derivative Introduction to Differential Calculus Just as one defines instantaneous velocity in terms of average velocity, we now define te instantaneous rate of cange of a function at a point

More information

Mathematical Preparations

Mathematical Preparations 1 Introducton Mathematcal Preparatons The theory of relatvty was developed to explan experments whch studed the propagaton of electromagnetc radaton n movng coordnate systems. Wthn expermental error the

More information

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity Week3, Chapter 4 Moton n Two Dmensons Lecture Quz A partcle confned to moton along the x axs moves wth constant acceleraton from x =.0 m to x = 8.0 m durng a 1-s tme nterval. The velocty of the partcle

More information

MATH1131/1141 Calculus Test S1 v8a

MATH1131/1141 Calculus Test S1 v8a MATH/ Calculus Test 8 S v8a October, 7 Tese solutions were written by Joann Blanco, typed by Brendan Trin and edited by Mattew Yan and Henderson Ko Please be etical wit tis resource It is for te use of

More information

Midterm #1B. x 8 < < x 8 < 11 3 < x < x > x < 5 or 3 2x > 5 2x < 8 2x > 2

Midterm #1B. x 8 < < x 8 < 11 3 < x < x > x < 5 or 3 2x > 5 2x < 8 2x > 2 Mat 30 College Algebra Februar 2, 2016 Midterm #1B Name: Answer Ke David Arnold Instructions. ( points) For eac o te ollowing questions, select te best answer and darken te corresponding circle on our

More information

Function Composition and Chain Rules

Function Composition and Chain Rules Function Composition and s James K. Peterson Department of Biological Sciences and Department of Matematical Sciences Clemson University Marc 8, 2017 Outline 1 Function Composition and Continuity 2 Function

More information

Section 2.1 The Definition of the Derivative. We are interested in finding the slope of the tangent line at a specific point.

Section 2.1 The Definition of the Derivative. We are interested in finding the slope of the tangent line at a specific point. Popper 6: Review of skills: Find tis difference quotient. f ( x ) f ( x) if f ( x) x Answer coices given in audio on te video. Section.1 Te Definition of te Derivative We are interested in finding te slope

More information

1watt=1W=1kg m 2 /s 3

1watt=1W=1kg m 2 /s 3 Appendix A Matematics Appendix A.1 Units To measure a pysical quantity, you need a standard. Eac pysical quantity as certain units. A unit is just a standard we use to compare, e.g. a ruler. In tis laboratory

More information

SFU UBC UNBC Uvic Calculus Challenge Examination June 5, 2008, 12:00 15:00

SFU UBC UNBC Uvic Calculus Challenge Examination June 5, 2008, 12:00 15:00 SFU UBC UNBC Uvic Calculus Callenge Eamination June 5, 008, :00 5:00 Host: SIMON FRASER UNIVERSITY First Name: Last Name: Scool: Student signature INSTRUCTIONS Sow all your work Full marks are given only

More information

Non-Ideality Through Fugacity and Activity

Non-Ideality Through Fugacity and Activity Non-Idealty Through Fugacty and Actvty S. Patel Deartment of Chemstry and Bochemstry, Unversty of Delaware, Newark, Delaware 19716, USA Corresondng author. E-mal: saatel@udel.edu 1 I. FUGACITY In ths dscusson,

More information

Week #15 - Word Problems & Differential Equations Section 8.2

Week #15 - Word Problems & Differential Equations Section 8.2 Week #1 - Word Problems & Differential Equations Section 8. From Calculus, Single Variable by Huges-Hallett, Gleason, McCallum et. al. Copyrigt 00 by Jon Wiley & Sons, Inc. Tis material is used by permission

More information

Calculus I Homework: The Derivative as a Function Page 1

Calculus I Homework: The Derivative as a Function Page 1 Calculus I Homework: Te Derivative as a Function Page 1 Example (2.9.16) Make a careful sketc of te grap of f(x) = sin x and below it sketc te grap of f (x). Try to guess te formula of f (x) from its grap.

More information

Name: Answer Key No calculators. Show your work! 1. (21 points) All answers should either be,, a (finite) real number, or DNE ( does not exist ).

Name: Answer Key No calculators. Show your work! 1. (21 points) All answers should either be,, a (finite) real number, or DNE ( does not exist ). Mat - Final Exam August 3 rd, Name: Answer Key No calculators. Sow your work!. points) All answers sould eiter be,, a finite) real number, or DNE does not exist ). a) Use te grap of te function to evaluate

More information

n α j x j = 0 j=1 has a nontrivial solution. Here A is the n k matrix whose jth column is the vector for all t j=0

n α j x j = 0 j=1 has a nontrivial solution. Here A is the n k matrix whose jth column is the vector for all t j=0 MODULE 2 Topcs: Lnear ndependence, bass and dmenson We have seen that f n a set of vectors one vector s a lnear combnaton of the remanng vectors n the set then the span of the set s unchanged f that vector

More information

Solutions to the Multivariable Calculus and Linear Algebra problems on the Comprehensive Examination of January 31, 2014

Solutions to the Multivariable Calculus and Linear Algebra problems on the Comprehensive Examination of January 31, 2014 Solutions to te Multivariable Calculus and Linear Algebra problems on te Compreensive Examination of January 3, 24 Tere are 9 problems ( points eac, totaling 9 points) on tis portion of te examination.

More information

Translational Equations of Motion for A Body Translational equations of motion (centroidal) for a body are m r = f.

Translational Equations of Motion for A Body Translational equations of motion (centroidal) for a body are m r = f. Lesson 12: Equatons o Moton Newton s Laws Frst Law: A artcle remans at rest or contnues to move n a straght lne wth constant seed there s no orce actng on t Second Law: The acceleraton o a artcle s roortonal

More information

Structure and Drive Paul A. Jensen Copyright July 20, 2003

Structure and Drive Paul A. Jensen Copyright July 20, 2003 Structure and Drve Paul A. Jensen Copyrght July 20, 2003 A system s made up of several operatons wth flow passng between them. The structure of the system descrbes the flow paths from nputs to outputs.

More information

Math 124. Section 2.6: Limits at infinity & Horizontal Asymptotes. 1 x. lim

Math 124. Section 2.6: Limits at infinity & Horizontal Asymptotes. 1 x. lim Mat 4 Section.6: Limits at infinity & Horizontal Asymptotes Tolstoy, Count Lev Nikolgevic (88-90) A man is like a fraction wose numerator is wat e is and wose denominator is wat e tinks of imself. Te larger

More information

Tribology Prof. Dr.Harish Hirani Department of Mechanical Engineering Indian Institute of Technology, Delhi. Lecture No. # 20 Reynolds Equation

Tribology Prof. Dr.Harish Hirani Department of Mechanical Engineering Indian Institute of Technology, Delhi. Lecture No. # 20 Reynolds Equation Trbology ro. Dr.Hars Hran Deartment o Mecancal Engneerng Indan Insttute o Tecnology, Del Lecture No. # 0 Reynolds Equaton Welcome to twentet lecture o vdeo course on trbology. Today s toc s te Reynolds

More information

Linear system of the Schrödinger equation Notes on Quantum Mechanics

Linear system of the Schrödinger equation Notes on Quantum Mechanics Lnear sstem of the Schrödnger equaton Notes on Quantum Mechancs htt://quantum.bu.edu/notes/quantummechancs/lnearsstems.df Last udated Wednesda, October 9, 003 :0:08 Corght 003 Dan Dll (dan@bu.edu) Deartment

More information

2.8 The Derivative as a Function

2.8 The Derivative as a Function .8 Te Derivative as a Function Typically, we can find te derivative of a function f at many points of its domain: Definition. Suppose tat f is a function wic is differentiable at every point of an open

More information

pancakes. A typical pancake also appears in the sketch above. The pancake at height x (which is the fraction x of the total height of the cone) has

pancakes. A typical pancake also appears in the sketch above. The pancake at height x (which is the fraction x of the total height of the cone) has Volumes One can epress volumes of regions in tree dimensions as integrals using te same strateg as we used to epress areas of regions in two dimensions as integrals approimate te region b a union of small,

More information

MAT 145. Type of Calculator Used TI-89 Titanium 100 points Score 100 possible points

MAT 145. Type of Calculator Used TI-89 Titanium 100 points Score 100 possible points MAT 15 Test #2 Name Solution Guide Type of Calculator Used TI-89 Titanium 100 points Score 100 possible points Use te grap of a function sown ere as you respond to questions 1 to 8. 1. lim f (x) 0 2. lim

More information

Pre-Calculus Review Preemptive Strike

Pre-Calculus Review Preemptive Strike Pre-Calculus Review Preemptive Strike Attaced are some notes and one assignment wit tree parts. Tese are due on te day tat we start te pre-calculus review. I strongly suggest reading troug te notes torougly

More information

Problem Set 4: Sketch of Solutions

Problem Set 4: Sketch of Solutions Problem Set 4: Sketc of Solutons Informaton Economcs (Ec 55) George Georgads Due n class or by e-mal to quel@bu.edu at :30, Monday, December 8 Problem. Screenng A monopolst can produce a good n dfferent

More information

16 Reflection and transmission, TE mode

16 Reflection and transmission, TE mode 16 Reflecton transmsson TE mode Last lecture we learned how to represent plane-tem waves propagatng n a drecton ˆ n terms of feld phasors such that η = Ẽ = E o e j r H = ˆ Ẽ η µ ɛ = ˆ = ω µɛ E o =0. Such

More information

Chapter Eight. Review and Summary. Two methods in solid mechanics ---- vectorial methods and energy methods or variational methods

Chapter Eight. Review and Summary. Two methods in solid mechanics ---- vectorial methods and energy methods or variational methods Chapter Eght Energy Method 8. Introducton 8. Stran energy expressons 8.3 Prncpal of statonary potental energy; several degrees of freedom ------ Castglano s frst theorem ---- Examples 8.4 Prncpal of statonary

More information

Lab 6 Derivatives and Mutant Bacteria

Lab 6 Derivatives and Mutant Bacteria Lab 6 Derivatives and Mutant Bacteria Date: September 27, 20 Assignment Due Date: October 4, 20 Goal: In tis lab you will furter explore te concept of a derivative using R. You will use your knowledge

More information

Important Instructions to the Examiners:

Important Instructions to the Examiners: Summer 0 Examnaton Subject & Code: asc Maths (70) Model Answer Page No: / Important Instructons to the Examners: ) The Answers should be examned by key words and not as word-to-word as gven n the model

More information

1 Lecture 13: The derivative as a function.

1 Lecture 13: The derivative as a function. 1 Lecture 13: Te erivative as a function. 1.1 Outline Definition of te erivative as a function. efinitions of ifferentiability. Power rule, erivative te exponential function Derivative of a sum an a multiple

More information

Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix

Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix Lectures - Week 4 Matrx norms, Condtonng, Vector Spaces, Lnear Independence, Spannng sets and Bass, Null space and Range of a Matrx Matrx Norms Now we turn to assocatng a number to each matrx. We could

More information

Tensor Analysis. For orthogonal curvilinear coordinates, ˆ ˆ (98) Expanding the derivative, we have, ˆ. h q. . h q h q

Tensor Analysis. For orthogonal curvilinear coordinates, ˆ ˆ (98) Expanding the derivative, we have, ˆ. h q. . h q h q For orthogonal curvlnear coordnates, eˆ grad a a= ( aˆ ˆ e). h q (98) Expandng the dervatve, we have, eˆ aˆ ˆ e a= ˆ ˆ a h e + q q 1 aˆ ˆ ˆ a e = ee ˆˆ ˆ + e. h q h q Now expandng eˆ / q (some of the detals

More information

Rethinking MIMO for Wireless Networks: Linear Throughput Increases with Multiple Receive Antennas

Rethinking MIMO for Wireless Networks: Linear Throughput Increases with Multiple Receive Antennas Retnng MIMO for Wreless etwors: Lnear Trougput Increases wt Multple Receve Antennas ar Jndal Unversty of Mnnesota Unverstat Pompeu Fabra Jont wor wt Jeff Andrews & Steven Weber MIMO n Pont-to-Pont Cannels

More information

Boundaries, Near-field Optics

Boundaries, Near-field Optics Boundares, Near-feld Optcs Fve boundary condtons at an nterface Fresnel Equatons : Transmsson and Reflecton Coeffcents Transmttance and Reflectance Brewster s condton a consequence of Impedance matchng

More information

1. An incident ray from the object to the mirror, parallel to the principal axis and then reflected through the focal point F.

1. An incident ray from the object to the mirror, parallel to the principal axis and then reflected through the focal point F. Hmewrk- Capter 25 4. REASONING Te bject stance ( = cm) s srter tan te cal lengt ( = 8 cm) te mrrr, s we expect te mage t be vrtual, appearng ben te mrrr. Takng Fgure 25.8a as ur mel, we wll trace ut: tree

More information

Introduction to Derivatives

Introduction to Derivatives Introduction to Derivatives 5-Minute Review: Instantaneous Rates and Tangent Slope Recall te analogy tat we developed earlier First we saw tat te secant slope of te line troug te two points (a, f (a))

More information

Lines, Conics, Tangents, Limits and the Derivative

Lines, Conics, Tangents, Limits and the Derivative Lines, Conics, Tangents, Limits and te Derivative Te Straigt Line An two points on te (,) plane wen joined form a line segment. If te line segment is etended beond te two points ten it is called a straigt

More information

1 + t5 dt with respect to x. du = 2. dg du = f(u). du dx. dg dx = dg. du du. dg du. dx = 4x3. - page 1 -

1 + t5 dt with respect to x. du = 2. dg du = f(u). du dx. dg dx = dg. du du. dg du. dx = 4x3. - page 1 - Eercise. Find te derivative of g( 3 + t5 dt wit respect to. Solution: Te integrand is f(t + t 5. By FTC, f( + 5. Eercise. Find te derivative of e t2 dt wit respect to. Solution: Te integrand is f(t e t2.

More information

Math Test No Calculator

Math Test No Calculator Mat Test No Calculator MINUTES, QUESTIONS Turn to Section of your answer seet to answer te questions in tis section. For questions -, solve eac problem, coose te best answer from te coices provided, and

More information

A = h w (1) Error Analysis Physics 141

A = h w (1) Error Analysis Physics 141 Introduction In all brances of pysical science and engineering one deals constantly wit numbers wic results more or less directly from experimental observations. Experimental observations always ave inaccuracies.

More information

Sets of Orthogonal Latin Squares

Sets of Orthogonal Latin Squares Sets of Ortogonal Latin Squares To obtain sets of 1mutually ortogonal Latin Squares (MOLS) of side were is rime or a ower of a rime, we associate eac of te treaments wit an element of te Galois Field of

More information

Section 2.7 Derivatives and Rates of Change Part II Section 2.8 The Derivative as a Function. at the point a, to be. = at time t = a is

Section 2.7 Derivatives and Rates of Change Part II Section 2.8 The Derivative as a Function. at the point a, to be. = at time t = a is Mat 180 www.timetodare.com Section.7 Derivatives and Rates of Cange Part II Section.8 Te Derivative as a Function Derivatives ( ) In te previous section we defined te slope of te tangent to a curve wit

More information

64 IX. The Exceptional Lie Algebras

64 IX. The Exceptional Lie Algebras 64 IX. Te Exceptional Lie Algebras IX. Te Exceptional Lie Algebras We ave displayed te four series of classical Lie algebras and teir Dynkin diagrams. How many more simple Lie algebras are tere? Surprisingly,

More information

Math 1241 Calculus Test 1

Math 1241 Calculus Test 1 February 4, 2004 Name Te first nine problems count 6 points eac and te final seven count as marked. Tere are 120 points available on tis test. Multiple coice section. Circle te correct coice(s). You do

More information

The Finite Element Method: A Short Introduction

The Finite Element Method: A Short Introduction Te Fnte Element Metod: A Sort ntroducton Wat s FEM? Te Fnte Element Metod (FEM) ntroduced by engneers n late 50 s and 60 s s a numercal tecnque for solvng problems wc are descrbed by Ordnary Dfferental

More information

Bob Brown Math 251 Calculus 1 Chapter 3, Section 1 Completed 1 CCBC Dundalk

Bob Brown Math 251 Calculus 1 Chapter 3, Section 1 Completed 1 CCBC Dundalk Bob Brown Mat 251 Calculus 1 Capter 3, Section 1 Completed 1 Te Tangent Line Problem Te idea of a tangent line first arises in geometry in te context of a circle. But before we jump into a discussion of

More information

Numerical Differentiation

Numerical Differentiation Numerical Differentiation Finite Difference Formulas for te first derivative (Using Taylor Expansion tecnique) (section 8.3.) Suppose tat f() = g() is a function of te variable, and tat as 0 te function

More information

1. State whether the function is an exponential growth or exponential decay, and describe its end behaviour using limits.

1. State whether the function is an exponential growth or exponential decay, and describe its end behaviour using limits. Questions 1. State weter te function is an exponential growt or exponential decay, and describe its end beaviour using its. (a) f(x) = 3 2x (b) f(x) = 0.5 x (c) f(x) = e (d) f(x) = ( ) x 1 4 2. Matc te

More information

Notes on wavefunctions II: momentum wavefunctions

Notes on wavefunctions II: momentum wavefunctions Notes on wavefunctions II: momentum wavefunctions and uncertainty Te state of a particle at any time is described by a wavefunction ψ(x). Tese wavefunction must cange wit time, since we know tat particles

More information

Please review the following statement: I certify that I have not given unauthorized aid nor have I received aid in the completion of this exam.

Please review the following statement: I certify that I have not given unauthorized aid nor have I received aid in the completion of this exam. ME 270 Sprng 2017 Exam 1 NAME (Last, Frst): Please revew the followng statement: I certfy that I have not gven unauthorzed ad nor have I receved ad n the completon of ths exam. Sgnature: Instructor s Name

More information

Numerical Differentiation

Numerical Differentiation Part 5 Capter 19 Numercal Derentaton PowerPonts organzed by Dr. Mcael R. Gustason II, Duke Unversty Revsed by Pro. Jang, CAU All mages copyrgt Te McGraw-Hll Companes, Inc. Permsson requred or reproducton

More information

PHYS 1443 Section 002 Lecture #20

PHYS 1443 Section 002 Lecture #20 PHYS 1443 Secton 002 Lecture #20 Dr. Jae Condtons for Equlbru & Mechancal Equlbru How to Solve Equlbru Probles? A ew Exaples of Mechancal Equlbru Elastc Propertes of Solds Densty and Specfc Gravty lud

More information

1. Questions (a) through (e) refer to the graph of the function f given below. (A) 0 (B) 1 (C) 2 (D) 4 (E) does not exist

1. Questions (a) through (e) refer to the graph of the function f given below. (A) 0 (B) 1 (C) 2 (D) 4 (E) does not exist Mat 1120 Calculus Test 2. October 18, 2001 Your name Te multiple coice problems count 4 points eac. In te multiple coice section, circle te correct coice (or coices). You must sow your work on te oter

More information

NUMERICAL DIFFERENTIATION. James T. Smith San Francisco State University. In calculus classes, you compute derivatives algebraically: for example,

NUMERICAL DIFFERENTIATION. James T. Smith San Francisco State University. In calculus classes, you compute derivatives algebraically: for example, NUMERICAL DIFFERENTIATION James T Smit San Francisco State University In calculus classes, you compute derivatives algebraically: for example, f( x) = x + x f ( x) = x x Tis tecnique requires your knowing

More information

PHYSICS - CLUTCH CH 28: INDUCTION AND INDUCTANCE.

PHYSICS - CLUTCH CH 28: INDUCTION AND INDUCTANCE. !! www.clutchprep.com CONCEPT: ELECTROMAGNETIC INDUCTION A col of wre wth a VOLTAGE across each end wll have a current n t - Wre doesn t HAVE to have voltage source, voltage can be INDUCED V Common ways

More information

MTH 263 Practice Test #1 Spring 1999

MTH 263 Practice Test #1 Spring 1999 Pat Ross MTH 6 Practce Test # Sprng 999 Name. Fnd the area of the regon bounded by the graph r =acos (θ). Observe: Ths s a crcle of radus a, for r =acos (θ) r =a ³ x r r =ax x + y =ax x ax + y =0 x ax

More information