coefnum = coefden =

Size: px
Start display at page:

Download "coefnum = coefden ="

Transcription

1

2 P57-58 clear; clc; format long; Amax = 1.4; Amin = 33; wp = 3400; ws = 16500; % Compute filter order n = ellipord(wp,ws,amax,amin, 's') % Compute the zeros, poles, and gain constant of HNLP(s) [z,p,k] = ellipap(,amax,amin); % Compute the numerator and denominator polynomial coefficients of HNLP(s) coefnum = k*poly(z) coefden = poly(p) syms s HNLP = (polysym(coefnum, s))/(polysym(coefden, s)); fprintf('%s\n','the HNLP(s) is:'); pretty(vpa((hnlp), 6)) OUTPUT: n = coefnum = coefden = The HNLP(s) is: s s s %Part (a) w = 0:0.001:10; HNLP = freqs(coefnum, coefden, w); %(i) subplot(,,1); plot(w,abs(hnlp)); grid on; xlabel('normalized frequency (rad/s)'); ylabel(' HNLP(jw) '); %(ii) subplot(,,); semilogx(w,abs(hnlp)); grid on; xlabel('normalized frequency (rad/s)'); ylabel(' HNLP(jw) '); %(iii)

3 subplot(,,3); plot(w,-0*log10(abs(hnlp))); grid on; xlabel('normalized frequency (rad/s)'); ylabel('loss (db)'); %(iv) subplot(,,4); semilogx(w,-0*log10(abs(hnlp))); grid on; xlabel('normalized frequency (rad/s)'); ylabel('loss (db)'); %(v) dcgain = coefnum(3)/coefden(3); fprintf('the approx dc gain is %f.\n', dcgain); [val idx] = max(abs(hnlp)); fprintf('the max val of abs(hnlp) is %f, which occurs at %f rad/sec\n', val, w(idx)); %(vi) [val idx] = min(abs(hnlp)); fprintf('\nthe abs(hnlp) becomes almost zero at %f rad/sec\n', w(idx));

4 OUTPUT: The approx dc gain is The max val of abs(hnlp) is 1.00, which occurs at 0.71 rad/sec The abs(hnlp) becomes almost zero at 6.06 rad/sec (iv) The loss in db at w = 1 rad/s is 1.4 db which is Amax as per the given specs, and the graph shows NLP characterstics. %Part (b) a = coefden(); b = coefden(3); e = coefnum(1); f = coefnum(3); R = 1 R1 = 1/b R = 1/a R3 = 1/e R4 = 1/(f - e*b) R5 = 1/(e*a) C = 1 OUTPUT: R = 1 R1 = R = R3 = R4 = R5 = C = 1

5

6

7 %Part (c) kf = wp; km = round(1/(kf*9.4e-9)); Rn = R*km; R1n = R1*km; Rn = R*km; R3n = R3*km; R4n = R4*km; R5n = R5*km; Cn = C/(kf*km); fprintf('\nkf = %f\n', kf); fprintf('km = %f\n', km); fprintf('\ng = %f changes to Rn = %f\n', 1/R, Rn); fprintf('g1 = %f changes to R1n = %f\n', 1/R1, R1n); fprintf('g = %f changes to Rn = %f\n', 1/R, Rn); fprintf('g3 = %f changes to R3n = %f\n', 1/R3, R3n); fprintf('g4 = %f changes to R4n = %f\n', 1/R4, R4n); fprintf('g5 = %f changes to R5n = %f\n', 1/R5, R5n); fprintf('c = %f changes to Cn = %i\n', C, Cn); figure() semilogx(w*kf/(*pi),abs(hnlp)); grid on; xlabel('frequency (Hz)'); ylabel(' HNLP(jw) '); OUTPUT: kf = km = G = changes to Rn = G1 = changes to R1n = G = changes to Rn = G3 = changes to R3n = G4 = changes to R4n = G5 = changes to R5n = C = changes to Cn = e-08 Freq (Hz) Matlab Spice

8

9 D C DC = 0 AC = 1 TRAN = Vin V1 0 R8 10k R9 10k R10 11k - + U1 0 -Vout_hat C1 9.4n OPAMP OUT -D(Vout_hat) R5 10k U3 + OUT R7 10k R6 10k - + U 0 C 9.4n OPAMP OUT Vout_hat R 447k R3 476k R4 13k - + U4 0 R1 10k OPAMP OUT Vout V D C OPAMP - 0 B B A A Title <Title> Size Document Number Rev A <Doc> <RevCod Date: Monday, March 6, 018 Sheet 1 of 1 1

10 ** Profile: "SCHEMATIC1-dcAnal" [ \\myhome.itap.purdue.edu\myhome\farooqs\ecn.data\desktop\spice\3\p57_5... Date/Time run: 03/6/18 16:50:40 Temperature: 7.0 (A) dcanal.dat (active) V 0.6V 0.4V 0.V 1.0Hz 10Hz 100Hz 1.0KHz 10KHz 100KHz V(R1:) Frequency Date: March 6, 018 Page 1 Time: 16:51:9

11 P59-60 clear; clc; format long; Amax = 1.45; Amin = 30; fs = 3000; fp = 1000; n = ellipord(1,fp/fs,amax,amin,'s') [z,p,k] = ellipap(,amax,amin); % Compute the numerator and denominator polynomial coefficients of equivalent HNLP(s) % associated with the given HP filter specs. coefnum = k*poly(z) coefden = poly(p) syms s fprintf('%s\n','the HNLP(s) is:'); pretty(vpa((polysym(coefnum,s)/polysym(coefden,s)), 6)) OUTPUT: n = coefnum = coefden = The HNLP(s) is: s s s The HNHP(s) is: s s s %Part (a) HNLP = (polysym(coefnum, s))/(polysym(coefden, s)); HNHP = collect(subs(hnlp, s, 1/s)); [n d] = numden(hnhp); % cleaning HNHP for print. numnhp = sympoly(n); dennhp = sympoly(d); numnhp = numnhp/dennhp(1);

12 dennhp = dennhp/dennhp(1); fprintf('%s\n','the HNHP(s) is:'); pretty(vpa((polysym(numnhp,s)/polysym(dennhp,s)), 6)) OUTPUT: The HNHP(s) is: s s s %Part (b) w = 0:0.005:10; h = freqs(numnhp,dennhp,w); subplot(,,1); plot(w,abs(h)); grid; xlabel('normalized frequency (rad/s)'); ylabel('magnitude NHP'); subplot(,,); semilogx(w,abs(h)); grid; xlabel('normalized frequency (rad/s)'); ylabel('magnitude NHP'); subplot(,,3); plot(w,-0*log10(abs(h))); grid; xlabel('normalized frequency (rad/s)'); ylabel('loss in db'); subplot(,,4); semilogx(w,-0*log10(abs(h))); grid; xlabel('normalized frequency (rad/s)'); ylabel('loss in db');

13 %Part(c) a = numnhp(1); b = numnhp(3); e = dennhp(); f = dennhp(3); G = 1 G1 = f*a - b G = f G3 = e G4 = e*a G5 = a C = 1 OUTPUT: G = 1 G1 = G =

14 G3 = G4 = G5 = C = 1

15

16

17 %Part (d) kf = fp/(*pi); km = 1/(11.905e-9*kf); km = round(km); OUTPUT: kf = km = %Part (e) R = km/g; R1 = km/g1; R = km/g; R3 = km/g3; R4 = km/g4; R5 = km/g5; Cn = C/(kf*km); fprintf('kf = %f\n', kf); fprintf('km = %f\n', km); fprintf('\ng = %f changes to Rn = %f\n', G, R); fprintf('g1 = %f changes to R1n = %f\n', G1, R1); fprintf('g = %f changes to Rn = %f\n', G, R); fprintf('g3 = %f changes to R3n = %f\n', G3, R3); fprintf('g4 = %f changes to R4n = %f\n', G4, R4); fprintf('g5 = %f changes to R5n = %f\n', G5, R5); fprintf('c = %f changes to Cn = %i\n', C, Cn); figure() semilogx(w*kf/(*pi),abs(h)); grid on; xlabel('frequency (Hz)'); ylabel(' HNLP(jw) '); OUTPUT: G = changes to Rn = G1 = changes to R1n = G = changes to Rn = G3 = changes to R3n = G4 = changes to R4n = G5 = changes to R5n = C = changes to Cn = e-08

18 Freq (Hz) Matlab Spice 1k k k k k

19 D D x1 R C DC = 0 AC = 1 TRAN = 0 V1 0 Vin x1 R R 1066 C1 R6 C R9 R n Vin n Vin1316 R3 R5 R8 OPAMP OPAMP OPAMP OUT x OUT -x OUT x U1 U U3 U R OPAMP OUT Vout V C B B A A Title <Title> Size Document Number Rev A <Doc> <RevCod Date: Thursday, March 9, 018 Sheet 1 of 1 1

20 ** Profile: "SCHEMATIC1-p59-60" [ \\myhome.itap.purdue.edu\myhome\farooqs\ecn.data\desktop\spice\p Date/Time run: 03/9/18 :6:51 Temperature: 7.0 (A) p59-60.dat (active) 1.V V 0.6V 0.4V 0.V 1.0Hz 10Hz 100Hz 1.0KHz 10KHz 100KHz V(R10:) Frequency Date: March 9, 018 Page 1 Time: :7:18

Lecture 16 FREQUENCY RESPONSE OF SIMPLE CIRCUITS

Lecture 16 FREQUENCY RESPONSE OF SIMPLE CIRCUITS Lecture 6 FREQUENCY RESPONSE OF SIMPLE CIRCUITS Ray DeCarlo School of ECE Purdue University West Lafayette, IN 47907-285 decarlo@ecn.purdue.edu EE-202, Frequency Response p 2 R. A. DeCarlo I. WHAT IS FREQUENCY

More information

Design IIR Butterworth Filters Using 12 Lines of Code

Design IIR Butterworth Filters Using 12 Lines of Code db Design IIR Butterworth Filters Using 12 Lines of Code While there are plenty of canned functions to design Butterworth IIR filters [1], it s instructive and not that complicated to design them from

More information

INFINITE-IMPULSE RESPONSE DIGITAL FILTERS Classical analog filters and their conversion to digital filters 4. THE BUTTERWORTH ANALOG FILTER

INFINITE-IMPULSE RESPONSE DIGITAL FILTERS Classical analog filters and their conversion to digital filters 4. THE BUTTERWORTH ANALOG FILTER INFINITE-IMPULSE RESPONSE DIGITAL FILTERS Classical analog filters and their conversion to digital filters. INTRODUCTION 2. IIR FILTER DESIGN 3. ANALOG FILTERS 4. THE BUTTERWORTH ANALOG FILTER 5. THE CHEBYSHEV-I

More information

Stability and Frequency Response of Linear Systems

Stability and Frequency Response of Linear Systems ECE 350 Linear Systems I MATLAB Tutorial #4 Stability and Frequency Response of Linear Systems This tutorial describes the MATLAB commands that can be used to determine the stability and/or frequency response

More information

Digital Signal Processing: Signal Transforms

Digital Signal Processing: Signal Transforms Digital Signal Processing: Signal Transforms Aishy Amer, Mohammed Ghazal January 19, 1 Instructions: 1. This tutorial introduces frequency analysis in Matlab using the Fourier and z transforms.. More Matlab

More information

LAB # 5 HANDOUT. »»» The N-point DFT is converted into two DFTs each of N/2 points. N = -W N Then, the following formulas must be used. = k=0,...

LAB # 5 HANDOUT. »»» The N-point DFT is converted into two DFTs each of N/2 points. N = -W N Then, the following formulas must be used. = k=0,... EEE4 Lab Handout. FAST FOURIER TRANSFORM LAB # 5 HANDOUT Data Sequence A = x, x, x, x3, x4, x5, x6, x7»»» The N-point DFT is converted into two DFTs each of N/ points. x, x, x4, x6 x, x3, x5, x7»»» N =e

More information

Dynamic circuits: Frequency domain analysis

Dynamic circuits: Frequency domain analysis Electronic Circuits 1 Dynamic circuits: Contents Free oscillation and natural frequency Transfer functions Frequency response Bode plots 1 System behaviour: overview 2 System behaviour : review solution

More information

Chapter 7 - Solved Problems

Chapter 7 - Solved Problems Chapter 7 - Solved Problems Solved Problem 7.1. A continuous time system has transfer function G o (s) given by G o (s) = B o(s) A o (s) = 2 (s 1)(s + 2) = 2 s 2 + s 2 (1) Find a controller of minimal

More information

1. Design a 3rd order Butterworth low-pass filters having a dc gain of unity and a cutoff frequency, fc, of khz.

1. Design a 3rd order Butterworth low-pass filters having a dc gain of unity and a cutoff frequency, fc, of khz. ECE 34 Experiment 6 Active Filter Design. Design a 3rd order Butterworth low-pass ilters having a dc gain o unity and a cuto requency, c, o.8 khz. c :=.8kHz K:= The transer unction is given on page 7 j

More information

LECTURE 25 and MORE: Basic Ingredients of Butterworth Filtering. Objective: Design a second order low pass filter whose 3dB down point is f c,min

LECTURE 25 and MORE: Basic Ingredients of Butterworth Filtering. Objective: Design a second order low pass filter whose 3dB down point is f c,min LECTURE 25 and MORE: Basic Ingredients of Butterworth Filtering INTRODUCTION: A SIMPLISTIC DESIGN OVERVIEW Objective: Design a second order low pass filter whose 3dB down point is f c,min 500 Hz or ω c,min

More information

Lecture 28. Passive HP Filter Design

Lecture 28. Passive HP Filter Design Lecture 28. Paive HP Filter Deign STRATEGY: Convert HP pec to Equivalent NLP pec. Deign an appropriate 3dB NLP tranfer function. Realize the 3dB NLP tranfer function a a circuit. Convert the 3dB NLP circuit

More information

The Impulse Signal. A signal I(k), which is defined as zero everywhere except at a single point, where its value is equal to 1

The Impulse Signal. A signal I(k), which is defined as zero everywhere except at a single point, where its value is equal to 1 The Impulse Signal A signal I(k), which is defined as zero everywhere except at a single point, where its value is equal to 1 I = [0 0 1 0 0 0]; stem(i) Filter Impulse through Feedforward Filter 0 0.25.5.25

More information

Formant Analysis using LPC

Formant Analysis using LPC Linguistics 582 Basics of Digital Signal Processing Formant Analysis using LPC LPC (linear predictive coefficients) analysis is a technique for estimating the vocal tract transfer function, from which

More information

Texas A&M University Department of Electrical and Computer Engineering

Texas A&M University Department of Electrical and Computer Engineering Texas A&M University Department of Electrical and Computer Engineering ECEN 622: Active Network Synthesis Homework #2, Fall 206 Carlos Pech Catzim 72300256 Page of .i) Obtain the transfer function of circuit

More information

MAE 143B - Homework 9

MAE 143B - Homework 9 MAE 143B - Homework 9 7.1 a) We have stable first-order poles at p 1 = 1 and p 2 = 1. For small values of ω, we recover the DC gain K = lim ω G(jω) = 1 1 = 2dB. Having this finite limit, our straight-line

More information

EE482: Digital Signal Processing Applications

EE482: Digital Signal Processing Applications Professor Brendan Morris, SEB 3216, brendan.morris@unlv.edu EE482: Digital Signal Processing Applications Spring 2014 TTh 14:30-15:45 CBC C222 Lecture 02 DSP Fundamentals 14/01/21 http://www.ee.unlv.edu/~b1morris/ee482/

More information

Discrete Time Systems

Discrete Time Systems Discrete Time Systems Valentina Hubeika, Jan Černocký DCGM FIT BUT Brno, {ihubeika,cernocky}@fit.vutbr.cz 1 LTI systems In this course, we work only with linear and time-invariant systems. We talked about

More information

DFT Octave Codes (0B) Young Won Lim 4/15/17

DFT Octave Codes (0B) Young Won Lim 4/15/17 Copyright (c) 2009-2017 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published

More information

Active Filters an Introduction

Active Filters an Introduction Active Filter an Introduction + Vin() - Filter circuit G() + Vout() - Active Filter. Continuou-time or Sampled-data. Employ active element (e.g. tranitor, amplifier, op-amp) a. inductor-le (continuou-time)

More information

Switched-Capacitor Circuits David Johns and Ken Martin University of Toronto

Switched-Capacitor Circuits David Johns and Ken Martin University of Toronto Switched-Capacitor Circuits David Johns and Ken Martin University of Toronto (johns@eecg.toronto.edu) (martin@eecg.toronto.edu) University of Toronto 1 of 60 Basic Building Blocks Opamps Ideal opamps usually

More information

CE 513: STATISTICAL METHODS

CE 513: STATISTICAL METHODS 28-8-217/CE 68 CE 513: STATISTICAL METHODS IN CIVIL ENGINEERING Lecture: Introduction to Fourier transforms Dr. Budhaditya Hazra Room: N-37 Department of Civil Engineering 1 Fourier Analysis Fourier Series

More information

FFT Octave Codes (1B) Young Won Lim 7/6/17

FFT Octave Codes (1B) Young Won Lim 7/6/17 FFT Octave Codes (1B) Copyright (c) 2009-2017 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any

More information

Bfh Ti Control F Ws 2008/2009 Lab Matlab-1

Bfh Ti Control F Ws 2008/2009 Lab Matlab-1 Bfh Ti Control F Ws 2008/2009 Lab Matlab-1 Theme: The very first steps with Matlab. Goals: After this laboratory you should be able to solve simple numerical engineering problems with Matlab. Furthermore,

More information

V. IIR Digital Filters

V. IIR Digital Filters Digital Signal Processing 5 March 5, V. IIR Digital Filters (Deleted in 7 Syllabus). (dded in 7 Syllabus). 7 Syllabus: nalog filter approximations Butterworth and Chebyshev, Design of IIR digital filters

More information

ECE 3793 Matlab Project 3 Solution

ECE 3793 Matlab Project 3 Solution ECE 3793 Matlab Project 3 Solution Spring 27 Dr. Havlicek. (a) In text problem 9.22(d), we are given X(s) = s + 2 s 2 + 7s + 2 4 < Re {s} < 3. The following Matlab statements determine the partial fraction

More information

Print Name : ID : ECE Test #1 9/22/2016

Print Name :  ID : ECE Test #1 9/22/2016 Print Name : Email ID : ECE 2660 Test #1 9/22/2016 All answers must be recorded on the answer page (page 2). You must do all questions on the exam. For Part 4 you must show all your work and write your

More information

ECE382/ME482 Spring 2005 Homework 7 Solution April 17, K(s + 0.2) s 2 (s + 2)(s + 5) G(s) =

ECE382/ME482 Spring 2005 Homework 7 Solution April 17, K(s + 0.2) s 2 (s + 2)(s + 5) G(s) = ECE382/ME482 Spring 25 Homework 7 Solution April 17, 25 1 Solution to HW7 AP9.5 We are given a system with open loop transfer function G(s) = K(s +.2) s 2 (s + 2)(s + 5) (1) and unity negative feedback.

More information

EECE 301 Signals & Systems Prof. Mark Fowler

EECE 301 Signals & Systems Prof. Mark Fowler EECE 301 Signals & Systems Prof. Mark Fowler Note Set #15 C-T Systems: CT Filters & Frequency Response 1/14 Ideal Filters Often we have a scenario where part of the input signal s spectrum comprises what

More information

EE 4343/ Control System Design Project LECTURE 10

EE 4343/ Control System Design Project LECTURE 10 Copyright S. Ikenaga 998 All rights reserved EE 4343/5329 - Control System Design Project LECTURE EE 4343/5329 Homepage EE 4343/5329 Course Outline Design of Phase-lead and Phase-lag compensators using

More information

Introduction to Signal Analysis Parts I and II

Introduction to Signal Analysis Parts I and II 41614 Dynamics of Machinery 23/03/2005 IFS Introduction to Signal Analysis Parts I and II Contents 1 Topics of the Lecture 11/03/2005 (Part I) 2 2 Fourier Analysis Fourier Series, Integral and Complex

More information

Digital Signal Processing Lab 4: Transfer Functions in the Z-domain

Digital Signal Processing Lab 4: Transfer Functions in the Z-domain Digital Signal Processing Lab 4: Transfer Functions in the Z-domain A very important category of LTI systems is described by difference equations of the following type N a y[ nk] b x[ nk] M k k0 k0 k From

More information

Designing Information Devices and Systems II Fall 2018 Elad Alon and Miki Lustig Discussion 5A

Designing Information Devices and Systems II Fall 2018 Elad Alon and Miki Lustig Discussion 5A EECS 6B Designing Information Devices and Systems II Fall 208 Elad Alon and Miki Lustig Discussion 5A Transfer Function When we write the transfer function of an arbitrary circuit, it always takes the

More information

University of Illinois at Chicago Spring ECE 412 Introduction to Filter Synthesis Homework #4 Solutions

University of Illinois at Chicago Spring ECE 412 Introduction to Filter Synthesis Homework #4 Solutions Problem 1 A Butterworth lowpass filter is to be designed having the loss specifications given below. The limits of the the design specifications are shown in the brick-wall characteristic shown in Figure

More information

IMPACT OF PLANT COUPLING ON DECENTRALIZED PI CONTROL LAW. Date: 08/30/2016

IMPACT OF PLANT COUPLING ON DECENTRALIZED PI CONTROL LAW. Date: 08/30/2016 IMPACT OF PLANT COUPLING ON DECENTRALIZED PI CONTROL LAW Date: 8/3/216 1 / 37 Standard Negative Feedback System With Pre-Filter d i input disturbance d o output disturbance r reference command W Pre-Filter

More information

Problem Weight Score Total 100

Problem Weight Score Total 100 EE 350 EXAM IV 15 December 2010 Last Name (Print): First Name (Print): ID number (Last 4 digits): Section: DO NOT TURN THIS PAGE UNTIL YOU ARE TOLD TO DO SO Problem Weight Score 1 25 2 25 3 25 4 25 Total

More information

Structured Uncertainty. Block diagonal

Structured Uncertainty. Block diagonal Structured Uncertainty Block diagonal Example 5.8 0.1 δ 0.1, 1 δ 1 1 2 error : N yw ( s) Example 5.9 The Structured Singular Value and Stability Robustness Assume nominal closed-loop system N(s) is

More information

DSP. Chapter-3 : Filter Design. Marc Moonen. Dept. E.E./ESAT-STADIUS, KU Leuven

DSP. Chapter-3 : Filter Design. Marc Moonen. Dept. E.E./ESAT-STADIUS, KU Leuven DSP Chapter-3 : Filter Design Marc Moonen Dept. E.E./ESAT-STADIUS, KU Leuven marc.moonen@esat.kuleuven.be www.esat.kuleuven.be/stadius/ Filter Design Process Step-1 : Define filter specs Pass-band, stop-band,

More information

CHAPTER 8 FREQUENCY RESPONSE: MODAL FORM

CHAPTER 8 FREQUENCY RESPONSE: MODAL FORM 8. Introduction CHAPTER 8 FREQUENCY RESPONSE: MODAL FORM Now that the theory behind the modal analysis method has been covered, we will solve our tdof problem for its frequency response. z F z F z F k

More information

FREQUENCY-RESPONSE DESIGN

FREQUENCY-RESPONSE DESIGN ECE45/55: Feedback Control Systems. 9 FREQUENCY-RESPONSE DESIGN 9.: PD and lead compensation networks The frequency-response methods we have seen so far largely tell us about stability and stability margins

More information

2nd-order filters. EE 230 second-order filters 1

2nd-order filters. EE 230 second-order filters 1 nd-order filters Second order filters: Have second order polynomials in the denominator of the transfer function, and can have zeroth-, first-, or second-order polyinomials in the numerator. Use two reactive

More information

Integrating Circuit Simulation with EIT FEM Models

Integrating Circuit Simulation with EIT FEM Models Integrating Circuit Simulation with EIT FEM Models Alistair Boyle and Andy Adler University of Ottawa Carleton University Ottawa, Canada EIT2018, June 11 13, 2018 Circuits and FEM + Step 1: forward solution

More information

Today. 1/25/11 Physics 262 Lecture 2 Filters. Active Components and Filters. Homework. Lab 2 this week

Today. 1/25/11 Physics 262 Lecture 2 Filters. Active Components and Filters. Homework. Lab 2 this week /5/ Physics 6 Lecture Filters Today Basics: Analog versus Digital; Passive versus Active Basic concepts and types of filters Passband, Stopband, Cut-off, Slope, Knee, Decibels, and Bode plots Active Components

More information

2.161 Signal Processing: Continuous and Discrete

2.161 Signal Processing: Continuous and Discrete MIT OpenCourseWare http://ocw.mit.edu 2.161 Signal Processing: Continuous and Discrete Fall 28 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. MASSACHUSETTS

More information

Entering Matrices

Entering Matrices MATLAB Basic Entering Matrices Transpose Subscripts The Colon Operator Operators Generating Matrices Element-by-element operation Creating a Plot Multiple Data Sets in One Graph Line Styles and Colors

More information

EECE 301 Signals & Systems Prof. Mark Fowler

EECE 301 Signals & Systems Prof. Mark Fowler EECE 301 Signals & Systems Prof. Mark Fowler C-T Systems: Bode Plots Note Set #36 1/14 What are Bode Plots? Bode Plot = Freq. Resp. plotted with H() in db on a log frequency axis. Its easy to use computers

More information

Poles and Zeros and Transfer Functions

Poles and Zeros and Transfer Functions Poles and Zeros and Transfer Functions Transfer Function: Considerations: Factorization: A transfer function is defined as the ratio of the Laplace transform of the output to the input with all initial

More information

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists 3,500 108,500 1.7 M Open access books available International authors and editors Downloads Our

More information

ECE 3793 Matlab Project 3

ECE 3793 Matlab Project 3 ECE 3793 Matlab Project 3 Spring 2017 Dr. Havlicek DUE: 04/25/2017, 11:59 PM What to Turn In: Make one file that contains your solution for this assignment. It can be an MS WORD file or a PDF file. Make

More information

Homework 6. April 11, H(s) = Y (s) X(s) = s 1. s 2 + 3s + 2

Homework 6. April 11, H(s) = Y (s) X(s) = s 1. s 2 + 3s + 2 Homework 6 April, 6 Problem Steady state of LTI systems The transfer function of an LTI system is H(s) = Y (s) X(s) = s s + 3s + If the input to this system is x(t) = + cos(t + π/4), < t

More information

Overview of Bode Plots Transfer function review Piece-wise linear approximations First-order terms Second-order terms (complex poles & zeros)

Overview of Bode Plots Transfer function review Piece-wise linear approximations First-order terms Second-order terms (complex poles & zeros) Overview of Bode Plots Transfer function review Piece-wise linear approximations First-order terms Second-order terms (complex poles & zeros) J. McNames Portland State University ECE 222 Bode Plots Ver.

More information

EE nd Order Time and Frequency Response (Using MatLab)

EE nd Order Time and Frequency Response (Using MatLab) EE 2302 2 nd Order Time and Frequency Response (Using MatLab) Objective: The student should become acquainted with time and frequency domain analysis of linear systems using Matlab. In addition, the student

More information

MAE 143B - Homework 7

MAE 143B - Homework 7 MAE 143B - Homework 7 6.7 Multiplying the first ODE by m u and subtracting the product of the second ODE with m s, we get m s m u (ẍ s ẍ i ) + m u b s (ẋ s ẋ u ) + m u k s (x s x u ) + m s b s (ẋ s ẋ u

More information

Appendix A Butterworth Filtering Transfer Function

Appendix A Butterworth Filtering Transfer Function Appendix A Butterworth Filtering Transfer Function A.1 Continuous-Time Low-Pass Butterworth Transfer Function In order to obtain the values for the components in a filter, using the circuits transfer function,

More information

2.161 Signal Processing: Continuous and Discrete Fall 2008

2.161 Signal Processing: Continuous and Discrete Fall 2008 MIT OpenCourseWare http://ocw.mit.edu.6 Signal Processing: Continuous and Discrete Fall 8 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Introduction

More information

Analogue Filters Design and Simulation by Carsten Kristiansen Napier University. November 2004

Analogue Filters Design and Simulation by Carsten Kristiansen Napier University. November 2004 Analogue Filters Design and Simulation by Carsten Kristiansen Napier University November 2004 Title page Author: Carsten Kristiansen. Napier No: 04007712. Assignment title: Analogue Filters Design and

More information

Problem 1 Matlab code

Problem 1 Matlab code Problem 1 Matlab code x=[.5377 1.8339-2.2588.8622.3188-1.377 -.4336.3426 3.5784 2.7694-1.3499 3.349.7254 -.631.7147 -.25]; X=fft(x) fs=1;n=16;dt=1/fs;t=n*dt; f=[ 1/T 2/T 3/T 4/T 5/T 6/T 7/T 8/T]' N=16

More information

Active Filters an Introduction

Active Filters an Introduction Active Filter an Introduction + Vin() - Filter circuit G() + Vout() - Active Filter. Continuou-time or Sampled-data. Employ active element (e.g. tranitor, amplifier, op-amp) a. inductor-le (continuou-time)

More information

CHAPTER 11 FREQUENCY RESPONSE: MODAL STATE SPACE FORM

CHAPTER 11 FREQUENCY RESPONSE: MODAL STATE SPACE FORM CHAPTER 11 FREQUENCY RESPONSE: MODAL STATE SPACE FORM 11.1 Introduction In Chapter 1 we constructed the modal form of the state equations for the overall frequency response as well as for the individual

More information

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder . W. Erickson Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder 8.1.7. The low-q approximation Given a second-order denominator polynomial, of the form G(s)= 1

More information

Problem Weight Total 100

Problem Weight Total 100 EE 350 Problem Set 3 Cover Sheet Fall 2016 Last Name (Print): First Name (Print): ID number (Last 4 digits): Section: Submission deadlines: Turn in the written solutions by 4:00 pm on Tuesday September

More information

Speaker: Arthur Williams Chief Scientist Telebyte Inc. Thursday November 20 th 2008 INTRODUCTION TO ACTIVE AND PASSIVE ANALOG

Speaker: Arthur Williams Chief Scientist Telebyte Inc. Thursday November 20 th 2008 INTRODUCTION TO ACTIVE AND PASSIVE ANALOG INTRODUCTION TO ACTIVE AND PASSIVE ANALOG FILTER DESIGN INCLUDING SOME INTERESTING AND UNIQUE CONFIGURATIONS Speaker: Arthur Williams Chief Scientist Telebyte Inc. Thursday November 20 th 2008 TOPICS Introduction

More information

Mechanical Systems Part A: State-Space Systems Lecture AL12

Mechanical Systems Part A: State-Space Systems Lecture AL12 AL: 436-433 Mechanical Systems Part A: State-Space Systems Lecture AL Case study Case study AL: Design of a satellite attitude control system see Franklin, Powell & Emami-Naeini, Ch. 9. Requirements: accurate

More information

Problem Set 9 Solutions

Problem Set 9 Solutions Problem Set 9 Solutions EE23: Digital Signal Processing. From Figure below, we see that the DTFT of the windowed sequence approaches the actual DTFT as the window size increases. Gibb s phenomenon is absent

More information

MAE143A Signals & Systems - Homework 1, Winter 2014 due by the end of class Thursday January 16, 2014.

MAE143A Signals & Systems - Homework 1, Winter 2014 due by the end of class Thursday January 16, 2014. MAE43A Signals & Systems - Homework, Winter 4 due by the end of class Thursday January 6, 4. Question Time shifting [Chaparro Question.5] Consider a finite-support signal and zero everywhere else. Part

More information

DSP-CIS. Chapter-4: FIR & IIR Filter Design. Marc Moonen

DSP-CIS. Chapter-4: FIR & IIR Filter Design. Marc Moonen DSP-CIS Chapter-4: FIR & IIR Filter Design Marc Moonen Dept. E.E./ESAT-STADIUS, KU Leuven marc.moonen@esat.kuleuven.be www.esat.kuleuven.be/stadius/ PART-II : Filter Design/Realization Step-1 : Define

More information

Switched Capacitor: Sampled Data Systems

Switched Capacitor: Sampled Data Systems Switched Capacitor: Sampled Data Systems Basic switched capacitor theory How has Anadigm utilised this. Theory-Basic SC and Anadigm-1 Resistor & Charge Relationship I + V - I Resistance is defined in terms

More information

Stability of CL System

Stability of CL System Stability of CL System Consider an open loop stable system that becomes unstable with large gain: At the point of instability, K( j) G( j) = 1 0dB K( j) G( j) K( j) G( j) K( j) G( j) =± 180 o 180 o Closed

More information

( s) N( s) ( ) The transfer function will take the form. = s = 2. giving ωo = sqrt(1/lc) = 1E7 [rad/s] ω 01 := R 1. α 1 2 L 1.

( s) N( s) ( ) The transfer function will take the form. = s = 2. giving ωo = sqrt(1/lc) = 1E7 [rad/s] ω 01 := R 1. α 1 2 L 1. Problem ) RLC Parallel Circuit R L C E-4 E-0 V a. What is the resonant frequency of the circuit? The transfer function will take the form N ( ) ( s) N( s) H s R s + α s + ω s + s + o L LC giving ωo sqrt(/lc)

More information

Time Varying Circuit Analysis

Time Varying Circuit Analysis MAS.836 Sensor Systems for Interactive Environments th Distributed: Tuesday February 16, 2010 Due: Tuesday February 23, 2010 Problem Set # 2 Time Varying Circuit Analysis The purpose of this problem set

More information

Assignment 6, Math 575A

Assignment 6, Math 575A Assignment 6, Math 575A Part I Matlab Section: MATLAB has special functions to deal with polynomials. Using these commands is usually recommended, since they make the code easier to write and understand

More information

Problem 3 (i): H(e jω ) 2 4 Magnitude (db) 6 8 1 12 14 16.1.2.3.4.5.6.7.8.9 1 Normalized Frequency ( π rad/sample) 2 15 1 Phase (degrees) 5 5 1 15 2.1.2.3.4.5.6.7.8.9 1 Normalized Frequency ( π rad/sample)

More information

Lecture 7, ATIK. Continuous-time filters 2 Discrete-time filters

Lecture 7, ATIK. Continuous-time filters 2 Discrete-time filters Lecture 7, ATIK Continuous-time filters 2 Discrete-time filters What did we do last time? Switched capacitor circuits with nonideal effects in mind What should we look out for? What is the impact on system

More information

Chapter 3 HW Solution

Chapter 3 HW Solution ME 48/58 Chapter 3 HW February 6, Chapter 3 HW Solution Problem. Here you re given a lead network often used in control systems to improve the transient response which adds around 6 of phase angle at about

More information

Fig. 2.0: SPICE Loop Gain Test

Fig. 2.0: SPICE Loop Gain Test Operational Amplifier Stability Part 2 of 15: Op Amp Networks, SPICE Analysis by Tim Green Strategic Development Engineer, BurrBrown Products from Texas Instruments Incorporated Part 2 of this series focuses

More information

Discrete Time Fourier Transform (DTFT) Digital Signal Processing, 2011 Robi Polikar, Rowan University

Discrete Time Fourier Transform (DTFT) Digital Signal Processing, 2011 Robi Polikar, Rowan University Discrete Time Fourier Transform (DTFT) Digital Signal Processing, 2 Robi Polikar, Rowan University Sinusoids & Exponentials Signals Phasors Frequency Impulse, step, rectangular Characterization Power /

More information

Thursday, October 29, LPC Analysis

Thursday, October 29, LPC Analysis LPC Analysis Prediction & Regression We hypothesize that there is some systematic relation between the values of two variables, X and Y. If this hypothesis is true, we can (partially) predict the observed

More information

Lecture 4&5 MATLAB applications In Signal Processing. Dr. Bedir Yousif

Lecture 4&5 MATLAB applications In Signal Processing. Dr. Bedir Yousif Lecture 4&5 MATLAB applications In Signal Processing Dr. Bedir Yousif Signal Analysis Fourier Series and Fourier Transform Trigonometric Fourier Series Where w0=2*pi/tp and the Fourier coefficients a n

More information

Section Kamen and Heck And Harman. Fourier Transform

Section Kamen and Heck And Harman. Fourier Transform s Section 3.4-3.7 Kamen and Heck And Harman 1 3.4 Definition (Equation 3.30) Exists if integral converges (Equation 3.31) Example 3.7 Constant Signal Does not have a Fourier transform in the ordinary sense.

More information

2.161 Signal Processing: Continuous and Discrete

2.161 Signal Processing: Continuous and Discrete MIT OpenCourseWare http://ocw.mit.edu.6 Signal Processing: Continuous and Discrete Fall 8 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. MASSACHUSETTS

More information

ECSE First order low pass filter First order high pass filter. As ω : Z 0; v = 0. Let's look at this in the s-domain. V (s) Find H(s) = + AC + C

ECSE First order low pass filter First order high pass filter. As ω : Z 0; v = 0. Let's look at this in the s-domain. V (s) Find H(s) = + AC + C ESE- First order low pass filter First order high pass filter Leture 4 ontinued sawyes@rpi.edu www.rpi.edu/~sawyes A v in v A v in v As (D): Z ; v = vin As : Z ; v = Let's look at this in the s-domain

More information

Control System Engineering

Control System Engineering Control System Engineering Matlab Exmaples Youngshik Kim, Ph.D. Mechanical Engineering youngshik@hanbat.ac.kr Partial Fraction: residue >> help residue RESIDUE Partial-fraction expansion (residues). [R,P,K]

More information

2D Plotting with Matlab

2D Plotting with Matlab GEEN 1300 Introduction to Engineering Computing Class Meeting #22 Monday, Nov. 9 th Engineering Computing and Problem Solving with Matlab 2-D plotting with Matlab Script files User-defined functions Matlab

More information

GRAPHIC WEEK 7 DR. USMAN ULLAH SHEIKH DR. MUSA MOHD MOKJI DR. MICHAEL TAN LOONG PENG DR. AMIRJAN NAWABJAN DR. MOHD ADIB SARIJARI

GRAPHIC WEEK 7 DR. USMAN ULLAH SHEIKH DR. MUSA MOHD MOKJI DR. MICHAEL TAN LOONG PENG DR. AMIRJAN NAWABJAN DR. MOHD ADIB SARIJARI GRAPHIC SKEE1022 SCIENTIFIC PROGRAMMING WEEK 7 DR. USMAN ULLAH SHEIKH DR. MUSA MOHD MOKJI DR. MICHAEL TAN LOONG PENG DR. AMIRJAN NAWABJAN DR. MOHD ADIB SARIJARI 1 OBJECTIVE 2-dimensional line plot function

More information

Lab 3: Poles, Zeros, and Time/Frequency Domain Response

Lab 3: Poles, Zeros, and Time/Frequency Domain Response ECEN 33 Linear Systems Spring 2 2-- P. Mathys Lab 3: Poles, Zeros, and Time/Frequency Domain Response of CT Systems Introduction Systems that are used for signal processing are very often characterized

More information

Discrete-Time David Johns and Ken Martin University of Toronto

Discrete-Time David Johns and Ken Martin University of Toronto Discrete-Time David Johns and Ken Martin University of Toronto (johns@eecg.toronto.edu) (martin@eecg.toronto.edu) University of Toronto 1 of 40 Overview of Some Signal Spectra x c () t st () x s () t xn

More information

As f and g are differentiable functions such that. f (x) = 20e 2x, g (x) = 4e 2x + 4xe 2x,

As f and g are differentiable functions such that. f (x) = 20e 2x, g (x) = 4e 2x + 4xe 2x, srinivasan (rs7) Sample Midterm srinivasan (690) This print-out should have 0 questions. Multiple-choice questions may continue on the next column or page find all choices before answering. Determine if

More information

ENGR-4300 Spring 2009 Test 2. Name: SOLUTION. Section: 1(MR 8:00) 2(TF 2:00) 3(MR 6:00) (circle one) Question I (20 points): Question II (20 points):

ENGR-4300 Spring 2009 Test 2. Name: SOLUTION. Section: 1(MR 8:00) 2(TF 2:00) 3(MR 6:00) (circle one) Question I (20 points): Question II (20 points): ENGR43 Test 2 Spring 29 ENGR43 Spring 29 Test 2 Name: SOLUTION Section: 1(MR 8:) 2(TF 2:) 3(MR 6:) (circle one) Question I (2 points): Question II (2 points): Question III (17 points): Question IV (2 points):

More information

2007 Syllabus: Decimation, Interpolation, Sampling rate conversion, Filter design and Implementation of sampling rate conversion.

2007 Syllabus: Decimation, Interpolation, Sampling rate conversion, Filter design and Implementation of sampling rate conversion. Digital Signal Processing 7 November 6, 9 7. ultirate DSP (Deleted in 7 Syllabus). 7 Syllabus: Decimation, Interpolation, Sampling rate conversion, Filter design and Implementation of sampling rate conversion.

More information

Today (10/23/01) Today. Reading Assignment: 6.3. Gain/phase margin lead/lag compensator Ref. 6.4, 6.7, 6.10

Today (10/23/01) Today. Reading Assignment: 6.3. Gain/phase margin lead/lag compensator Ref. 6.4, 6.7, 6.10 Today Today (10/23/01) Gain/phase margin lead/lag compensator Ref. 6.4, 6.7, 6.10 Reading Assignment: 6.3 Last Time In the last lecture, we discussed control design through shaping of the loop gain GK:

More information

CHAPTER 2 TRANSFER FUNCTION ANALYSIS

CHAPTER 2 TRANSFER FUNCTION ANALYSIS . Introduction CHAPTER TRANSFER FUNCTION ANALYSIS The purpose of this chapter is to illustrate how to derive equations of motion for Multi Degree of Freedom (mdof) systems and how to solve for their transfer

More information

EE 313 Linear Signals & Systems (Fall 2018) Solution Set for Homework #7 on Infinite Impulse Response (IIR) Filters CORRECTED

EE 313 Linear Signals & Systems (Fall 2018) Solution Set for Homework #7 on Infinite Impulse Response (IIR) Filters CORRECTED EE 33 Linear Signals & Systems (Fall 208) Solution Set for Homework #7 on Infinite Impulse Response (IIR) Filters CORRECTED By: Mr. Houshang Salimian and Prof. Brian L. Evans Prolog for the Solution Set.

More information

Georgia Institute of Technology School of Electrical and Computer Engineering. Midterm-1 Exam (Solution)

Georgia Institute of Technology School of Electrical and Computer Engineering. Midterm-1 Exam (Solution) Georgia Institute of Technology School of Electrical and Computer Engineering Midterm-1 Exam (Solution) ECE-6414 Spring 2012 Friday, Feb. 17, 2012 Duration: 50min First name Solutions Last name Solutions

More information

ECE382/ME482 Spring 2005 Homework 6 Solution April 17, (s/2 + 1) s(2s + 1)[(s/8) 2 + (s/20) + 1]

ECE382/ME482 Spring 2005 Homework 6 Solution April 17, (s/2 + 1) s(2s + 1)[(s/8) 2 + (s/20) + 1] ECE382/ME482 Spring 25 Homework 6 Solution April 17, 25 1 Solution to HW6 P8.17 We are given a system with open loop transfer function G(s) = 4(s/2 + 1) s(2s + 1)[(s/8) 2 + (s/2) + 1] (1) and unity negative

More information

ELEC 202 Electric Circuit Analysis II Lecture 10(a) Complex Arithmetic and Rectangular/Polar Forms

ELEC 202 Electric Circuit Analysis II Lecture 10(a) Complex Arithmetic and Rectangular/Polar Forms Dr. Gregory J. Mazzaro Spring 2016 ELEC 202 Electric Circuit Analysis II Lecture 10(a) Complex Arithmetic and Rectangular/Polar Forms THE CITADEL, THE MILITARY COLLEGE OF SOUTH CAROLINA 171 Moultrie Street,

More information

Discrete Time Signals and Switched Capacitor Circuits (rest of chapter , 10.2)

Discrete Time Signals and Switched Capacitor Circuits (rest of chapter , 10.2) Discrete Time Signals and Switched Capacitor Circuits (rest of chapter 9 + 0., 0.2) Tuesday 6th of February, 200, 9:5 :45 Snorre Aunet, sa@ifi.uio.no Nanoelectronics Group, Dept. of Informatics Office

More information

sinc function T=1 sec T=2 sec angle(f(w)) angle(f(w))

sinc function T=1 sec T=2 sec angle(f(w)) angle(f(w)) T=1 sec sinc function 3 angle(f(w)) T=2 sec angle(f(w)) 1 A quick script to plot mag & phase in MATLAB w=0:0.2:50; Real exponential func b=5; Fourier transform (filter) F=1.0./(b+j*w); subplot(211), plot(w,

More information

Recursive, Infinite Impulse Response (IIR) Digital Filters:

Recursive, Infinite Impulse Response (IIR) Digital Filters: Recursive, Infinite Impulse Response (IIR) Digital Filters: Filters defined by Laplace Domain transfer functions (analog devices) can be easily converted to Z domain transfer functions (digital, sampled

More information

EE-202 Exam III April 10, 2008

EE-202 Exam III April 10, 2008 EE-202 Exam III April 10, 2008 Name: (Please print clearly) Student ID: CIRCLE YOUR DIVISION Morning 8:30 MWF Afternoon 12:30 MWF INSTRUCTIONS There are 13 multiple choice worth 5 points each and there

More information

Design IIR Filters Using Cascaded Biquads

Design IIR Filters Using Cascaded Biquads Design IIR Filters Using Cascaded Biquads This article shows how to implement a Butterworth IIR lowpass filter as a cascade of second-order IIR filters, or biquads. We ll derive how to calculate the coefficients

More information

Homework 6 AERE355 Fall 2017 Due 11/27 (M) Name. is called the. 3dB bandwidth.

Homework 6 AERE355 Fall 2017 Due 11/27 (M) Name. is called the. 3dB bandwidth. 1 Homeork 6 AERE355 Fall 17 Due 11/7 (M) Name PROBLEM 1(3pt The transfer function of a first order Lo Pass Filter (LPF) is frequency rane [, BW ] is called the filter 3dB bandidth (BW) (a)(8pt The dc (ie

More information