Geometric intuition of least squares Consider the vector x = (1, 2) A point in a two-dimensional space

Size: px
Start display at page:

Download "Geometric intuition of least squares Consider the vector x = (1, 2) A point in a two-dimensional space"

Transcription

1 Geometric intuition of least squares Consider the vector x = (1, 2) A point in a two-dimensional space x 1 1 x 1 2 x 2

2 Linear combinations of x: multiply x with a constant β generate a line that passes trough x and the origin (0, 0). x 1 1 x = (1, 2) (0, 0) 1 2 x 2

3 The line: the span of x. What is regression? Point y in the same space. Model y as a linear function of x y = xβ Find a number ˆβ that explains best observations of x and y. x 1 y = (1, 1) 1 x = (1, 2)

4 Choose the xβ that is closest to the observed y. Criterion: The usual (Euclidean) distance between y and xβ. Minimize the distance with respect to β ˆβ = argmin β y xβ, x 1 y =(1,1) 1 x = (1, 2) (0, 0) 1 2 x 2

5 OLS estimate ˆβ: The point on xβ with the minimum distance to y. To find the minimum distance minimize (y xβ) (y xβ) Optimization problem First order condition: β = 2x (y xβ) Set equal to zero and solve for β. x (y xβ) = 0 x y x xβ = 0 x y = x [ xβ x x ] 1 x y = β The famed OLS (ordinary least squares) estimate of a linear regression model: ˆβ = [ x x ] 1 x y

6 In the example x = (1, 2) y = (1, 1) What is the value of β? x x = 5 [x x] 1 = 1 5 x y = 3 ˆβ = 3 5 The closest point to y on the line xβ is x ˆβ = (1 2) 3 ( ) 3 5 = 6 5 5

7 Normal equation x (y xβ) = 0 is called the normal equation. What does this mean in terms of the model y = xβ + e Solve for e: e = y xβ In other words, the first order condition x (y xβ) = 0 can be written as x e = 0 or, the fitted errors are orthogonal to the data x.

8 This can also be thought about intuitively y x ˆβ = ê is the unexplained part of the regression. We have used the data x to find ˆβ. What is left to explain is ê = y x ˆβ If we have used x optimally to find β, x should have nothing left to explain of ê, that is, x is orthogonal to ê, or x (y xβ) = x e = 0 The normal equation x (y xβ) = 0 has thus the interpretation that we use the information in x optimally to find ˆβ

9 Measuring the fit of a regression. Consider the picture with two y observations, y 1 and y 2 x 1 y 1 = (1, 1) 1 x = (1, 2) y2 = ( 1 2, 3 2 ) (0, 0) 1 2 x 2

10 Can we conclude that y 2 is closer than y 1 to xβ? Need a measure of the distance that is not sensitive to scaling. Such a measure is the R-squared of a regression. In geometric terms, look at the two points y 1 and y 2 above. To compare the distance to Xβ of these two in a unit-free way: compare the angles that the line from the origin to y 1 and y 2 forms with Xβ. The angle θ between two vectors x and y was cos θ = (x, y) x y In a OLS problem the angle between y and the line Xβ is measured as cos θ = y ˆβ y Taking the square of this, we find the (uncentered) R 2 of the regression, R 2 = cos 2 θ

11 Alternative way of interpreting R 2 : The fraction of the errors explained by the regression. If R 2 = 1, then y is totally explained by the regression. If R 2 = 0, the regression explains nothing. x 1 1 R 2 = 0 R 2 = 1-1 (0, 0) 1 2 x 2 1 2

12 Probably better known interpretation of R 2 : R 2 = Explained square sum of errors Total square sum of errors R 2 is one when everything is explained, since the sum of squares is also our criterion function.

13 Geometry of multivariate regressions y = a + b 1 x 1 + b 2 x b k x k + e The dependent variable y is now a linear function of k independent variables x 1, x 2,...x k. The factors b i have the same interpretation as b in the univariate regressions: They measure the marginal effect of a change in one of the explanatory variables, holding everyting else constant dy = d(a + b 1x 1 + b 2 x b i x i b k x k + e) = b i dx i dx i

14 This is written in matrix form where ỹ i = a + bx 1i + bx 2i + + b k x ki + ẽ i ỹ = Xb + ẽ X = 1 x 11 x x 1k 1 x 21 x x 2k... 1 x n1 x n2... x nk The regression is formulated as y = Xb + e b = a b 1. b k e = e 1 e 2. e n

15 Geometrically Regression line is a solution to minium distance problems - in several dimenstions. Bivariate regression, y is a function of two variables (x 1, x 2 ) A three-dimensional picture, with data a bunch of points (x 1, x 2 ) in this space

16 Regression is then drawing the best fitting line in this space.

17 Calculation of estimates The minimum inference problem is b = argmin b (y Xb) (y Xb) Calculation: Step 1: the Normal Equation X (y Xb) = 0 Step 2: The analytical solution ˆb = (X X) 1 X y

18 Estimation using octave y = Xb We explain y as a linear function of X. Suppose we have two explanatory variables. Then b is a 2 1 matrix. We simulate 100 observations of the model. In simulating, we need to add some noise e to the data, to avoid a perfect fit. y = Xb + e

19 Simulating the model X=rand(100,2); b = [2;1] e = 0.25*randn(100,1); y = X*b + e;

20 Estimating the model > bhat = inv(x *X)*X *y results in > bhat = inverse(x *X)*X *y bhat = Alternatively > ols(y,x) ans =

21 Forecasting > bhat bhat = > new_x = [1 1] new_x = 1 1 > forecast_y = new_x * bhat forecast_y =

22 Residuals ehat = y - X*bhat; plot (ehat);

23 Remove lines, plots instead >> plot(ehat,"*");

24 Detecting deviations from the assumed linear relationship Residual ê = y â ˆbx. Plot residuals against other variables. Should be: Centered at zero, No obvious relationships.

25 Simulated example: Linear model True model: x = [1, 2, 3,...100] y = a + bx + e a = 1 b = 1 e N(0, 10 2 )

26 Plot data

27 Simulated example: Linear model Fitted regression b =

28 Plot residuals. Against x

29 Plot residuals against y

30 Simulated example: nonlinear model True model: y = a + b ln(x) + e x = [1, 2, 3,..., 100] a = 1 b = 1 Simulate series,

31 Plot observations

32 Fitted regression y = a + bx + e b =

33 What do the residuals look like? vs x

34 Residuals vs y Aha, there is a problem.

35 Solving this problem: Linearizing it. Define x = log(x) and run regression with x instead Fitted regression bhat =

36 Correct model

37 Residuals: against x (ln x)

38 Residuals: against y

39 Plotting the estimated relationship against x instead of ln(x).

40 Alternative nonlinear model y = a + b sin(0.1x) + e a = 1 b = 1 Fitted regression y = a + bx + e b = e e-04

41 Fitted regression

42 Residuals against x. Problem

43 Residuals outliers are not always errors... One are not always justified in simply throwing out any observations considered an outlier.

44 Difference the previous picture

45 Prediction example y = Xb Given an estimated set of parmeters b, use it for prediction

46 Prediction example At a large state university seven undergraduate students who are majoring in economics were randomly selected and surveyed. Two of the survey questions asked were: What was your grade-point average (GPA) in the preceding term? What was the average number of hours spent per week last term in the Orange and Brew? The Orange and Brew is a favorite and only watering hole on campus. Using the data below, estimate with ordinary least squares the equation G = α + βh where G is GPA and H is hours per week in Orange and Brew. (The GPA is a numerical summary of grades with 4 as the largest number.) What is the expected sign for β? Does the data support your expectations?

47 Hours per week in Student GPA (G) Orange and Brew (H) Suppose that a freshman economics student has been spending 15 hours per week in the Orange and Brew during the first two weeks of class. Predict his GPA for this year.

48 Solution Data = [1, 3.6, 3 ; \ 2, 2.2, 15 ; \ 3, 3.1, 8 ; \ 4, 3.5, 9 ; \ 5, 2.7, 12 ; \ 6, 2.6, 12 ; \ 7, 3.9, 4 ] y=data(:,2); x=data(:,3); X=[ones(7,1),x]; b=ols(y,x) b = Thus, we estimated the parameters as α = and β =

49 Now for prediction: >> predicted=[1 15]*b predicted = prediction = α + β15 = = What if number of hours is 4? >> predicted=[1 4]*b predicted = A bit better

50 You want to find the risk of the stock IBM. To do so you think the market model r it = α i + β i r mt + e it is a reasonable description of the risk return relationship. To estimate the parameters α i and β i you need a history of stock returns and index returns. Collect monthly returns for IBM and a broad based US stock market index, for example the S&P 500. Take data for 1995:1 to 2006:12. Estimate the model. What is the R 2 in your estimation?

51 Plotting one against the other

52 Running the regression >> r=ibm(:,2); >> rm=sp500(:,2); >> X=[ones(144,1) rm]; >> b=x\r b = We estimate the parameters as â = ˆb =

53 Next, plotting the observations and comparing it to the actual regrssion. >> plot(rm,r,"*",rm,x*b)

54 Check for any obvious problems by calculating the residuals and plotting them against r m : >> plot(rm,e,"*");

55 Calculate the R 2 >> SSR=e *e SSR = >> TSS=(r-mean(r)) *(r-mean(r)) TSS = >> R2=1-SSR/TSS R2 = The R 2 of the regression is

56 It is all optimization... So far, all our analysis has actually solved an optimization problem to find the parameter estimates in a regression. (minimum distance problem). Remaining issue: Probability statements. How can we evaluate an estimated coefficient how confident are we that the true coefficient is close to what we have estimated. To make such statements: Need additional assumptions.

OLS-parameter estimation

OLS-parameter estimation OLS-parameter estimation Bernt Arne Ødegaard 29 May 2018 Contents 1 The geometry of Least Squares. 2 1.1 Introduction........................................................... 2 1.2 OLS estimation, simplest

More information

Quantitative Analysis of Financial Markets. Summary of Part II. Key Concepts & Formulas. Christopher Ting. November 11, 2017

Quantitative Analysis of Financial Markets. Summary of Part II. Key Concepts & Formulas. Christopher Ting. November 11, 2017 Summary of Part II Key Concepts & Formulas Christopher Ting November 11, 2017 christopherting@smu.edu.sg http://www.mysmu.edu/faculty/christophert/ Christopher Ting 1 of 16 Why Regression Analysis? Understand

More information

Statistics II Exercises Chapter 5

Statistics II Exercises Chapter 5 Statistics II Exercises Chapter 5 1. Consider the four datasets provided in the transparencies for Chapter 5 (section 5.1) (a) Check that all four datasets generate exactly the same LS linear regression

More information

Notes 6: Multivariate regression ECO 231W - Undergraduate Econometrics

Notes 6: Multivariate regression ECO 231W - Undergraduate Econometrics Notes 6: Multivariate regression ECO 231W - Undergraduate Econometrics Prof. Carolina Caetano 1 Notation and language Recall the notation that we discussed in the previous classes. We call the outcome

More information

Simple Linear Regression

Simple Linear Regression Simple Linear Regression Christopher Ting Christopher Ting : christophert@smu.edu.sg : 688 0364 : LKCSB 5036 January 7, 017 Web Site: http://www.mysmu.edu/faculty/christophert/ Christopher Ting QF 30 Week

More information

Ma 3/103: Lecture 24 Linear Regression I: Estimation

Ma 3/103: Lecture 24 Linear Regression I: Estimation Ma 3/103: Lecture 24 Linear Regression I: Estimation March 3, 2017 KC Border Linear Regression I March 3, 2017 1 / 32 Regression analysis Regression analysis Estimate and test E(Y X) = f (X). f is the

More information

Regression: Ordinary Least Squares

Regression: Ordinary Least Squares Regression: Ordinary Least Squares Mark Hendricks Autumn 2017 FINM Intro: Regression Outline Regression OLS Mathematics Linear Projection Hendricks, Autumn 2017 FINM Intro: Regression: Lecture 2/32 Regression

More information

Estadística II Chapter 5. Regression analysis (second part)

Estadística II Chapter 5. Regression analysis (second part) Estadística II Chapter 5. Regression analysis (second part) Chapter 5. Regression analysis (second part) Contents Diagnostic: Residual analysis The ANOVA (ANalysis Of VAriance) decomposition Nonlinear

More information

The geometry of least squares

The geometry of least squares The geometry of least squares We can think of a vector as a point in space, where the elements of the vector are the coordinates of the point. Consider for example, the following vector s: t = ( 4, 0),

More information

Peter Hoff Linear and multilinear models April 3, GLS for multivariate regression 5. 3 Covariance estimation for the GLM 8

Peter Hoff Linear and multilinear models April 3, GLS for multivariate regression 5. 3 Covariance estimation for the GLM 8 Contents 1 Linear model 1 2 GLS for multivariate regression 5 3 Covariance estimation for the GLM 8 4 Testing the GLH 11 A reference for some of this material can be found somewhere. 1 Linear model Recall

More information

The Simple Linear Regression Model

The Simple Linear Regression Model The Simple Linear Regression Model Lesson 3 Ryan Safner 1 1 Department of Economics Hood College ECON 480 - Econometrics Fall 2017 Ryan Safner (Hood College) ECON 480 - Lesson 3 Fall 2017 1 / 77 Bivariate

More information

Section 3: Simple Linear Regression

Section 3: Simple Linear Regression Section 3: Simple Linear Regression Carlos M. Carvalho The University of Texas at Austin McCombs School of Business http://faculty.mccombs.utexas.edu/carlos.carvalho/teaching/ 1 Regression: General Introduction

More information

Lecture 3: Multiple Regression

Lecture 3: Multiple Regression Lecture 3: Multiple Regression R.G. Pierse 1 The General Linear Model Suppose that we have k explanatory variables Y i = β 1 + β X i + β 3 X 3i + + β k X ki + u i, i = 1,, n (1.1) or Y i = β j X ji + u

More information

2 Regression Analysis

2 Regression Analysis FORK 1002 Preparatory Course in Statistics: 2 Regression Analysis Genaro Sucarrat (BI) http://www.sucarrat.net/ Contents: 1 Bivariate Correlation Analysis 2 Simple Regression 3 Estimation and Fit 4 T -Test:

More information

Correlation and Regression

Correlation and Regression Correlation and Regression October 25, 2017 STAT 151 Class 9 Slide 1 Outline of Topics 1 Associations 2 Scatter plot 3 Correlation 4 Regression 5 Testing and estimation 6 Goodness-of-fit STAT 151 Class

More information

Bivariate Regression Analysis. The most useful means of discerning causality and significance of variables

Bivariate Regression Analysis. The most useful means of discerning causality and significance of variables Bivariate Regression Analysis The most useful means of discerning causality and significance of variables Purpose of Regression Analysis Test causal hypotheses Make predictions from samples of data Derive

More information

Review of Econometrics

Review of Econometrics Review of Econometrics Zheng Tian June 5th, 2017 1 The Essence of the OLS Estimation Multiple regression model involves the models as follows Y i = β 0 + β 1 X 1i + β 2 X 2i + + β k X ki + u i, i = 1,...,

More information

The Geometry of Linear Regression

The Geometry of Linear Regression Chapter 2 The Geometry of Linear Regression 21 Introduction In Chapter 1, we introduced regression models, both linear and nonlinear, and discussed how to estimate linear regression models by using the

More information

Lectures on Simple Linear Regression Stat 431, Summer 2012

Lectures on Simple Linear Regression Stat 431, Summer 2012 Lectures on Simple Linear Regression Stat 43, Summer 0 Hyunseung Kang July 6-8, 0 Last Updated: July 8, 0 :59PM Introduction Previously, we have been investigating various properties of the population

More information

ECON3150/4150 Spring 2015

ECON3150/4150 Spring 2015 ECON3150/4150 Spring 2015 Lecture 3&4 - The linear regression model Siv-Elisabeth Skjelbred University of Oslo January 29, 2015 1 / 67 Chapter 4 in S&W Section 17.1 in S&W (extended OLS assumptions) 2

More information

Introduction to Estimation Methods for Time Series models. Lecture 1

Introduction to Estimation Methods for Time Series models. Lecture 1 Introduction to Estimation Methods for Time Series models Lecture 1 Fulvio Corsi SNS Pisa Fulvio Corsi Introduction to Estimation () Methods for Time Series models Lecture 1 SNS Pisa 1 / 19 Estimation

More information

Regression. ECO 312 Fall 2013 Chris Sims. January 12, 2014

Regression. ECO 312 Fall 2013 Chris Sims. January 12, 2014 ECO 312 Fall 2013 Chris Sims Regression January 12, 2014 c 2014 by Christopher A. Sims. This document is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License What

More information

Linear Regression Spring 2014

Linear Regression Spring 2014 Linear Regression 18.05 Spring 2014 Agenda Fitting curves to bivariate data Measuring the goodness of fit The fit vs. complexity tradeoff Regression to the mean Multiple linear regression January 1, 2017

More information

9. Linear Regression and Correlation

9. Linear Regression and Correlation 9. Linear Regression and Correlation Data: y a quantitative response variable x a quantitative explanatory variable (Chap. 8: Recall that both variables were categorical) For example, y = annual income,

More information

3. For a given dataset and linear model, what do you think is true about least squares estimates? Is Ŷ always unique? Yes. Is ˆβ always unique? No.

3. For a given dataset and linear model, what do you think is true about least squares estimates? Is Ŷ always unique? Yes. Is ˆβ always unique? No. 7. LEAST SQUARES ESTIMATION 1 EXERCISE: Least-Squares Estimation and Uniqueness of Estimates 1. For n real numbers a 1,...,a n, what value of a minimizes the sum of squared distances from a to each of

More information

M & M Project. Think! Crunch those numbers! Answer!

M & M Project. Think! Crunch those numbers! Answer! M & M Project Think! Crunch those numbers! Answer! Chapters 1-2 Exploring Data and Describing Location in a Distribution Univariate Data: Length Stemplot and Frequency Table Stem (Units Digit) 0 1 1 Leaf

More information

Xβ is a linear combination of the columns of X: Copyright c 2010 Dan Nettleton (Iowa State University) Statistics / 25 X =

Xβ is a linear combination of the columns of X: Copyright c 2010 Dan Nettleton (Iowa State University) Statistics / 25 X = The Gauss-Markov Linear Model y Xβ + ɛ y is an n random vector of responses X is an n p matrix of constants with columns corresponding to explanatory variables X is sometimes referred to as the design

More information

ECON3150/4150 Spring 2016

ECON3150/4150 Spring 2016 ECON3150/4150 Spring 2016 Lecture 4 - The linear regression model Siv-Elisabeth Skjelbred University of Oslo Last updated: January 26, 2016 1 / 49 Overview These lecture slides covers: The linear regression

More information

Linear Models in Econometrics

Linear Models in Econometrics Linear Models in Econometrics Nicky Grant At the most fundamental level econometrics is the development of statistical techniques suited primarily to answering economic questions and testing economic theories.

More information

Regression #2. Econ 671. Purdue University. Justin L. Tobias (Purdue) Regression #2 1 / 24

Regression #2. Econ 671. Purdue University. Justin L. Tobias (Purdue) Regression #2 1 / 24 Regression #2 Econ 671 Purdue University Justin L. Tobias (Purdue) Regression #2 1 / 24 Estimation In this lecture, we address estimation of the linear regression model. There are many objective functions

More information

ECON The Simple Regression Model

ECON The Simple Regression Model ECON 351 - The Simple Regression Model Maggie Jones 1 / 41 The Simple Regression Model Our starting point will be the simple regression model where we look at the relationship between two variables In

More information

Greene, Econometric Analysis (7th ed, 2012)

Greene, Econometric Analysis (7th ed, 2012) EC771: Econometrics, Spring 2012 Greene, Econometric Analysis (7th ed, 2012) Chapters 2 3: Classical Linear Regression The classical linear regression model is the single most useful tool in econometrics.

More information

STAT 111 Recitation 7

STAT 111 Recitation 7 STAT 111 Recitation 7 Xin Lu Tan xtan@wharton.upenn.edu October 25, 2013 1 / 13 Miscellaneous Please turn in homework 6. Please pick up homework 7 and the graded homework 5. Please check your grade and

More information

The Simple Regression Model. Part II. The Simple Regression Model

The Simple Regression Model. Part II. The Simple Regression Model Part II The Simple Regression Model As of Sep 22, 2015 Definition 1 The Simple Regression Model Definition Estimation of the model, OLS OLS Statistics Algebraic properties Goodness-of-Fit, the R-square

More information

Week 3: Simple Linear Regression

Week 3: Simple Linear Regression Week 3: Simple Linear Regression Marcelo Coca Perraillon University of Colorado Anschutz Medical Campus Health Services Research Methods I HSMP 7607 2017 c 2017 PERRAILLON ALL RIGHTS RESERVED 1 Outline

More information

Regression Review. Statistics 149. Spring Copyright c 2006 by Mark E. Irwin

Regression Review. Statistics 149. Spring Copyright c 2006 by Mark E. Irwin Regression Review Statistics 149 Spring 2006 Copyright c 2006 by Mark E. Irwin Matrix Approach to Regression Linear Model: Y i = β 0 + β 1 X i1 +... + β p X ip + ɛ i ; ɛ i iid N(0, σ 2 ), i = 1,..., n

More information

Chapter 12 Summarizing Bivariate Data Linear Regression and Correlation

Chapter 12 Summarizing Bivariate Data Linear Regression and Correlation Chapter 1 Summarizing Bivariate Data Linear Regression and Correlation This chapter introduces an important method for making inferences about a linear correlation (or relationship) between two variables,

More information

Chapter 2: simple regression model

Chapter 2: simple regression model Chapter 2: simple regression model Goal: understand how to estimate and more importantly interpret the simple regression Reading: chapter 2 of the textbook Advice: this chapter is foundation of econometrics.

More information

Estimation of the Response Mean. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 27

Estimation of the Response Mean. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 27 Estimation of the Response Mean Copyright c 202 Dan Nettleton (Iowa State University) Statistics 5 / 27 The Gauss-Markov Linear Model y = Xβ + ɛ y is an n random vector of responses. X is an n p matrix

More information

Statistics 910, #5 1. Regression Methods

Statistics 910, #5 1. Regression Methods Statistics 910, #5 1 Overview Regression Methods 1. Idea: effects of dependence 2. Examples of estimation (in R) 3. Review of regression 4. Comparisons and relative efficiencies Idea Decomposition Well-known

More information

MIT Spring 2015

MIT Spring 2015 Regression Analysis MIT 18.472 Dr. Kempthorne Spring 2015 1 Outline Regression Analysis 1 Regression Analysis 2 Multiple Linear Regression: Setup Data Set n cases i = 1, 2,..., n 1 Response (dependent)

More information

Fitting a regression model

Fitting a regression model Fitting a regression model We wish to fit a simple linear regression model: y = β 0 + β 1 x + ɛ. Fitting a model means obtaining estimators for the unknown population parameters β 0 and β 1 (and also for

More information

Bivariate Data: Graphical Display The scatterplot is the basic tool for graphically displaying bivariate quantitative data.

Bivariate Data: Graphical Display The scatterplot is the basic tool for graphically displaying bivariate quantitative data. Bivariate Data: Graphical Display The scatterplot is the basic tool for graphically displaying bivariate quantitative data. Example: Some investors think that the performance of the stock market in January

More information

Basic Probability Reference Sheet

Basic Probability Reference Sheet February 27, 2001 Basic Probability Reference Sheet 17.846, 2001 This is intended to be used in addition to, not as a substitute for, a textbook. X is a random variable. This means that X is a variable

More information

NATCOR Regression Modelling for Time Series

NATCOR Regression Modelling for Time Series Universität Hamburg Institut für Wirtschaftsinformatik Prof. Dr. D.B. Preßmar Professor Robert Fildes NATCOR Regression Modelling for Time Series The material presented has been developed with the substantial

More information

Econometrics I KS. Module 2: Multivariate Linear Regression. Alexander Ahammer. This version: April 16, 2018

Econometrics I KS. Module 2: Multivariate Linear Regression. Alexander Ahammer. This version: April 16, 2018 Econometrics I KS Module 2: Multivariate Linear Regression Alexander Ahammer Department of Economics Johannes Kepler University of Linz This version: April 16, 2018 Alexander Ahammer (JKU) Module 2: Multivariate

More information

Applied Econometrics (QEM)

Applied Econometrics (QEM) Applied Econometrics (QEM) based on Prinicples of Econometrics Jakub Mućk Department of Quantitative Economics Jakub Mućk Applied Econometrics (QEM) Meeting #3 1 / 42 Outline 1 2 3 t-test P-value Linear

More information

Intro to Linear Regression

Intro to Linear Regression Intro to Linear Regression Introduction to Regression Regression is a statistical procedure for modeling the relationship among variables to predict the value of a dependent variable from one or more predictor

More information

Do not copy, post, or distribute

Do not copy, post, or distribute 14 CORRELATION ANALYSIS AND LINEAR REGRESSION Assessing the Covariability of Two Quantitative Properties 14.0 LEARNING OBJECTIVES In this chapter, we discuss two related techniques for assessing a possible

More information

Introduction to Econometrics

Introduction to Econometrics Introduction to Econometrics Lecture 3 : Regression: CEF and Simple OLS Zhaopeng Qu Business School,Nanjing University Oct 9th, 2017 Zhaopeng Qu (Nanjing University) Introduction to Econometrics Oct 9th,

More information

The scatterplot is the basic tool for graphically displaying bivariate quantitative data.

The scatterplot is the basic tool for graphically displaying bivariate quantitative data. Bivariate Data: Graphical Display The scatterplot is the basic tool for graphically displaying bivariate quantitative data. Example: Some investors think that the performance of the stock market in January

More information

assumes a linear relationship between mean of Y and the X s with additive normal errors the errors are assumed to be a sample from N(0, σ 2 )

assumes a linear relationship between mean of Y and the X s with additive normal errors the errors are assumed to be a sample from N(0, σ 2 ) Multiple Linear Regression is used to relate a continuous response (or dependent) variable Y to several explanatory (or independent) (or predictor) variables X 1, X 2,, X k assumes a linear relationship

More information

Tvestlanka Karagyozova University of Connecticut

Tvestlanka Karagyozova University of Connecticut September, 005 CALCULUS REVIEW Tvestlanka Karagyozova University of Connecticut. FUNCTIONS.. Definition: A function f is a rule that associates each value of one variable with one and only one value of

More information

Ordinary Least Squares Regression Explained: Vartanian

Ordinary Least Squares Regression Explained: Vartanian Ordinary Least Squares Regression Explained: Vartanian When to Use Ordinary Least Squares Regression Analysis A. Variable types. When you have an interval/ratio scale dependent variable.. When your independent

More information

Data Analysis and Statistical Methods Statistics 651

Data Analysis and Statistical Methods Statistics 651 y 1 2 3 4 5 6 7 x Data Analysis and Statistical Methods Statistics 651 http://www.stat.tamu.edu/~suhasini/teaching.html Lecture 32 Suhasini Subba Rao Previous lecture We are interested in whether a dependent

More information

STAT 540: Data Analysis and Regression

STAT 540: Data Analysis and Regression STAT 540: Data Analysis and Regression Wen Zhou http://www.stat.colostate.edu/~riczw/ Email: riczw@stat.colostate.edu Department of Statistics Colorado State University Fall 205 W. Zhou (Colorado State

More information

Chapter 7. Scatterplots, Association, and Correlation

Chapter 7. Scatterplots, Association, and Correlation Chapter 7 Scatterplots, Association, and Correlation Bin Zou (bzou@ualberta.ca) STAT 141 University of Alberta Winter 2015 1 / 29 Objective In this chapter, we study relationships! Instead, we investigate

More information

The BLP Method of Demand Curve Estimation in Industrial Organization

The BLP Method of Demand Curve Estimation in Industrial Organization The BLP Method of Demand Curve Estimation in Industrial Organization 9 March 2006 Eric Rasmusen 1 IDEAS USED 1. Instrumental variables. We use instruments to correct for the endogeneity of prices, the

More information

Chapter 12 - Lecture 2 Inferences about regression coefficient

Chapter 12 - Lecture 2 Inferences about regression coefficient Chapter 12 - Lecture 2 Inferences about regression coefficient April 19th, 2010 Facts about slope Test Statistic Confidence interval Hypothesis testing Test using ANOVA Table Facts about slope In previous

More information

Linear regression COMS 4771

Linear regression COMS 4771 Linear regression COMS 4771 1. Old Faithful and prediction functions Prediction problem: Old Faithful geyser (Yellowstone) Task: Predict time of next eruption. 1 / 40 Statistical model for time between

More information

Inferences for Regression

Inferences for Regression Inferences for Regression An Example: Body Fat and Waist Size Looking at the relationship between % body fat and waist size (in inches). Here is a scatterplot of our data set: Remembering Regression In

More information

Linear Regression with one Regressor

Linear Regression with one Regressor 1 Linear Regression with one Regressor Covering Chapters 4.1 and 4.2. We ve seen the California test score data before. Now we will try to estimate the marginal effect of STR on SCORE. To motivate these

More information

4 Multiple Linear Regression

4 Multiple Linear Regression 4 Multiple Linear Regression 4. The Model Definition 4.. random variable Y fits a Multiple Linear Regression Model, iff there exist β, β,..., β k R so that for all (x, x 2,..., x k ) R k where ε N (, σ

More information

P1.T2. Stock & Watson Chapters 4 & 5. Bionic Turtle FRM Video Tutorials. By: David Harper CFA, FRM, CIPM

P1.T2. Stock & Watson Chapters 4 & 5. Bionic Turtle FRM Video Tutorials. By: David Harper CFA, FRM, CIPM P1.T2. Stock & Watson Chapters 4 & 5 Bionic Turtle FRM Video Tutorials By: David Harper CFA, FRM, CIPM Note: This tutorial is for paid members only. You know who you are. Anybody else is using an illegal

More information

Chapter 14 Stein-Rule Estimation

Chapter 14 Stein-Rule Estimation Chapter 14 Stein-Rule Estimation The ordinary least squares estimation of regression coefficients in linear regression model provides the estimators having minimum variance in the class of linear and unbiased

More information

The linear model is the most fundamental of all serious statistical models encompassing:

The linear model is the most fundamental of all serious statistical models encompassing: Linear Regression Models: A Bayesian perspective Ingredients of a linear model include an n 1 response vector y = (y 1,..., y n ) T and an n p design matrix (e.g. including regressors) X = [x 1,..., x

More information

MATH11400 Statistics Homepage

MATH11400 Statistics Homepage MATH11400 Statistics 1 2010 11 Homepage http://www.stats.bris.ac.uk/%7emapjg/teach/stats1/ 4. Linear Regression 4.1 Introduction So far our data have consisted of observations on a single variable of interest.

More information

x 1 x 2. x 1, x 2,..., x n R. x n

x 1 x 2. x 1, x 2,..., x n R. x n WEEK In general terms, our aim in this first part of the course is to use vector space theory to study the geometry of Euclidean space A good knowledge of the subject matter of the Matrix Applications

More information

The Simple Regression Model. Simple Regression Model 1

The Simple Regression Model. Simple Regression Model 1 The Simple Regression Model Simple Regression Model 1 Simple regression model: Objectives Given the model: - where y is earnings and x years of education - Or y is sales and x is spending in advertising

More information

Regression analysis is a tool for building mathematical and statistical models that characterize relationships between variables Finds a linear

Regression analysis is a tool for building mathematical and statistical models that characterize relationships between variables Finds a linear Regression analysis is a tool for building mathematical and statistical models that characterize relationships between variables Finds a linear relationship between: - one independent variable X and -

More information

Multivariate Regression (Chapter 10)

Multivariate Regression (Chapter 10) Multivariate Regression (Chapter 10) This week we ll cover multivariate regression and maybe a bit of canonical correlation. Today we ll mostly review univariate multivariate regression. With multivariate

More information

Lecture 6: Geometry of OLS Estimation of Linear Regession

Lecture 6: Geometry of OLS Estimation of Linear Regession Lecture 6: Geometry of OLS Estimation of Linear Regession Xuexin Wang WISE Oct 2013 1 / 22 Matrix Algebra An n m matrix A is a rectangular array that consists of nm elements arranged in n rows and m columns

More information

Coffee Hour Problems and Solutions

Coffee Hour Problems and Solutions Coffee Hour Problems and Solutions Edited by Matthew McMullen Fall 01 Week 1. Proposed by Matthew McMullen. Find all pairs of positive integers x and y such that 0x + 17y = 017. Solution. By inspection,

More information

Linear models. Linear models are computationally convenient and remain widely used in. applied econometric research

Linear models. Linear models are computationally convenient and remain widely used in. applied econometric research Linear models Linear models are computationally convenient and remain widely used in applied econometric research Our main focus in these lectures will be on single equation linear models of the form y

More information

Correlation and Linear Regression

Correlation and Linear Regression Correlation and Linear Regression Correlation: Relationships between Variables So far, nearly all of our discussion of inferential statistics has focused on testing for differences between group means

More information

Applied Regression Modeling: A Business Approach Chapter 3: Multiple Linear Regression Sections

Applied Regression Modeling: A Business Approach Chapter 3: Multiple Linear Regression Sections Applied Regression Modeling: A Business Approach Chapter 3: Multiple Linear Regression Sections 3.1 3.3.2 by Iain Pardoe 3.1 Probability model for (X 1, X 2,...) and Y 2 Multiple linear regression................................................

More information

Homoskedasticity. Var (u X) = σ 2. (23)

Homoskedasticity. Var (u X) = σ 2. (23) Homoskedasticity How big is the difference between the OLS estimator and the true parameter? To answer this question, we make an additional assumption called homoskedasticity: Var (u X) = σ 2. (23) This

More information

Advanced Econometrics I

Advanced Econometrics I Lecture Notes Autumn 2010 Dr. Getinet Haile, University of Mannheim 1. Introduction Introduction & CLRM, Autumn Term 2010 1 What is econometrics? Econometrics = economic statistics economic theory mathematics

More information

REVIEW (MULTIVARIATE LINEAR REGRESSION) Explain/Obtain the LS estimator () of the vector of coe cients (b)

REVIEW (MULTIVARIATE LINEAR REGRESSION) Explain/Obtain the LS estimator () of the vector of coe cients (b) REVIEW (MULTIVARIATE LINEAR REGRESSION) Explain/Obtain the LS estimator () of the vector of coe cients (b) Explain/Obtain the variance-covariance matrix of Both in the bivariate case (two regressors) and

More information

Simple Linear Regression

Simple Linear Regression Simple Linear Regression OI CHAPTER 7 Important Concepts Correlation (r or R) and Coefficient of determination (R 2 ) Interpreting y-intercept and slope coefficients Inference (hypothesis testing and confidence

More information

:Effects of Data Scaling We ve already looked at the effects of data scaling on the OLS statistics, 2, and R 2. What about test statistics?

:Effects of Data Scaling We ve already looked at the effects of data scaling on the OLS statistics, 2, and R 2. What about test statistics? MRA: Further Issues :Effects of Data Scaling We ve already looked at the effects of data scaling on the OLS statistics, 2, and R 2. What about test statistics? 1. Scaling the explanatory variables Suppose

More information

The cover page of the Encyclopedia of Health Economics (2014) Introduction to Econometric Application in Health Economics

The cover page of the Encyclopedia of Health Economics (2014) Introduction to Econometric Application in Health Economics PHPM110062 Teaching Demo The cover page of the Encyclopedia of Health Economics (2014) Introduction to Econometric Application in Health Economics Instructor: Mengcen Qian School of Public Health What

More information

DIMENSION REDUCTION OF THE EXPLANATORY VARIABLES IN MULTIPLE LINEAR REGRESSION. P. Filzmoser and C. Croux

DIMENSION REDUCTION OF THE EXPLANATORY VARIABLES IN MULTIPLE LINEAR REGRESSION. P. Filzmoser and C. Croux Pliska Stud. Math. Bulgar. 003), 59 70 STUDIA MATHEMATICA BULGARICA DIMENSION REDUCTION OF THE EXPLANATORY VARIABLES IN MULTIPLE LINEAR REGRESSION P. Filzmoser and C. Croux Abstract. In classical multiple

More information

2. A Review of Some Key Linear Models Results. Copyright c 2018 Dan Nettleton (Iowa State University) 2. Statistics / 28

2. A Review of Some Key Linear Models Results. Copyright c 2018 Dan Nettleton (Iowa State University) 2. Statistics / 28 2. A Review of Some Key Linear Models Results Copyright c 2018 Dan Nettleton (Iowa State University) 2. Statistics 510 1 / 28 A General Linear Model (GLM) Suppose y = Xβ + ɛ, where y R n is the response

More information

Lecture 1: OLS derivations and inference

Lecture 1: OLS derivations and inference Lecture 1: OLS derivations and inference Econometric Methods Warsaw School of Economics (1) OLS 1 / 43 Outline 1 Introduction Course information Econometrics: a reminder Preliminary data exploration 2

More information

Quick Review on Linear Multiple Regression

Quick Review on Linear Multiple Regression Quick Review on Linear Multiple Regression Mei-Yuan Chen Department of Finance National Chung Hsing University March 6, 2007 Introduction for Conditional Mean Modeling Suppose random variables Y, X 1,

More information

Regression Analysis: Basic Concepts

Regression Analysis: Basic Concepts The simple linear model Regression Analysis: Basic Concepts Allin Cottrell Represents the dependent variable, y i, as a linear function of one independent variable, x i, subject to a random disturbance

More information

So far our focus has been on estimation of the parameter vector β in the. y = Xβ + u

So far our focus has been on estimation of the parameter vector β in the. y = Xβ + u Interval estimation and hypothesis tests So far our focus has been on estimation of the parameter vector β in the linear model y i = β 1 x 1i + β 2 x 2i +... + β K x Ki + u i = x iβ + u i for i = 1, 2,...,

More information

Applied Regression Analysis. Section 4: Diagnostics and Transformations

Applied Regression Analysis. Section 4: Diagnostics and Transformations Applied Regression Analysis Section 4: Diagnostics and Transformations 1 Regression Model Assumptions Y i = β 0 + β 1 X i + ɛ Recall the key assumptions of our linear regression model: (i) The mean of

More information

Key Algebraic Results in Linear Regression

Key Algebraic Results in Linear Regression Key Algebraic Results in Linear Regression James H. Steiger Department of Psychology and Human Development Vanderbilt University James H. Steiger (Vanderbilt University) 1 / 30 Key Algebraic Results in

More information

Conjugate Analysis for the Linear Model

Conjugate Analysis for the Linear Model Conjugate Analysis for the Linear Model If we have good prior knowledge that can help us specify priors for β and σ 2, we can use conjugate priors. Following the procedure in Christensen, Johnson, Branscum,

More information

Monday, November 26: Explanatory Variable Explanatory Premise, Bias, and Large Sample Properties

Monday, November 26: Explanatory Variable Explanatory Premise, Bias, and Large Sample Properties Amherst College Department of Economics Economics 360 Fall 2012 Monday, November 26: Explanatory Variable Explanatory Premise, Bias, and Large Sample Properties Chapter 18 Outline Review o Regression Model

More information

STAT 450: Statistical Theory. Distribution Theory. Reading in Casella and Berger: Ch 2 Sec 1, Ch 4 Sec 1, Ch 4 Sec 6.

STAT 450: Statistical Theory. Distribution Theory. Reading in Casella and Berger: Ch 2 Sec 1, Ch 4 Sec 1, Ch 4 Sec 6. STAT 45: Statistical Theory Distribution Theory Reading in Casella and Berger: Ch 2 Sec 1, Ch 4 Sec 1, Ch 4 Sec 6. Basic Problem: Start with assumptions about f or CDF of random vector X (X 1,..., X p

More information

Linear Algebra Review

Linear Algebra Review Linear Algebra Review Yang Feng http://www.stat.columbia.edu/~yangfeng Yang Feng (Columbia University) Linear Algebra Review 1 / 45 Definition of Matrix Rectangular array of elements arranged in rows and

More information

MA 575 Linear Models: Cedric E. Ginestet, Boston University Midterm Review Week 7

MA 575 Linear Models: Cedric E. Ginestet, Boston University Midterm Review Week 7 MA 575 Linear Models: Cedric E. Ginestet, Boston University Midterm Review Week 7 1 Random Vectors Let a 0 and y be n 1 vectors, and let A be an n n matrix. Here, a 0 and A are non-random, whereas y is

More information

TESTING FOR CO-INTEGRATION

TESTING FOR CO-INTEGRATION Bo Sjö 2010-12-05 TESTING FOR CO-INTEGRATION To be used in combination with Sjö (2008) Testing for Unit Roots and Cointegration A Guide. Instructions: Use the Johansen method to test for Purchasing Power

More information

Heteroskedasticity. y i = β 0 + β 1 x 1i + β 2 x 2i β k x ki + e i. where E(e i. ) σ 2, non-constant variance.

Heteroskedasticity. y i = β 0 + β 1 x 1i + β 2 x 2i β k x ki + e i. where E(e i. ) σ 2, non-constant variance. Heteroskedasticity y i = β + β x i + β x i +... + β k x ki + e i where E(e i ) σ, non-constant variance. Common problem with samples over individuals. ê i e ˆi x k x k AREC-ECON 535 Lec F Suppose y i =

More information

Introduction to Simple Linear Regression

Introduction to Simple Linear Regression Introduction to Simple Linear Regression 1. Regression Equation A simple linear regression (also known as a bivariate regression) is a linear equation describing the relationship between an explanatory

More information

Regression Analysis. BUS 735: Business Decision Making and Research. Learn how to detect relationships between ordinal and categorical variables.

Regression Analysis. BUS 735: Business Decision Making and Research. Learn how to detect relationships between ordinal and categorical variables. Regression Analysis BUS 735: Business Decision Making and Research 1 Goals of this section Specific goals Learn how to detect relationships between ordinal and categorical variables. Learn how to estimate

More information

Reference: Davidson and MacKinnon Ch 2. In particular page

Reference: Davidson and MacKinnon Ch 2. In particular page RNy, econ460 autumn 03 Lecture note Reference: Davidson and MacKinnon Ch. In particular page 57-8. Projection matrices The matrix M I X(X X) X () is often called the residual maker. That nickname is easy

More information