A redefinition of Embedded Push-Down Automata

Size: px
Start display at page:

Download "A redefinition of Embedded Push-Down Automata"

Transcription

1 Workshop TAG+5, Pris, My 2000 A redefinition of Embedded Push-Down Automt Miguel A. Alonso y, Eric de l Clergerie z nd Mnuel Vilres y y Deprtmento de Computción, Universidd de L Coruñ Cmpus de Elviñ s/n, L Coruñ (Spin) {lonso,vilres}@dc.fi.udc.es z INRIA, Domine de Voluceu Rocquecourt, B.P. 105, Le Chesny (Frnce) Eric.De_L_Clergerie@inri.fr Abstrct A new definition of Embedded Push-Down Automt is provided. We prove this new definition preserves the equivlence with tree djoining lnguges nd we provide tbultion frmework to execute ny utomton in polynomil time with respect to the length of the input string. 1. Introduction Embedded Push-Down Automt (EPDA) were defined in (Vijy-Shnker, 1988) s n extension of Push-Down Automt tht ccept exctly the clss of Tree Adjoining Lnguges. They cn lso be seen s level-2 utomt in progression of liner iterted pushdowns involving nested stcks (Weir, 1994). An EPDA consists of finite stte control, n input tpe nd stck mde up of non-empty stcks contining stck symbols. A trnsition cn consult the stte, the input string nd the top element of the top stck nd then chnge the stte, red chrcter of the input string nd replce the top element by finite sequence of stck elements to give new top stck, nd new stcks cn be plced bove nd below the top stck. EPDA cn describe prsing strtegies for tree djoining grmmrs in which djunctions re recognized top-down. The sme kind of strtegies cn be described in strongly-driven 2-stck utomt (de l Clergerie & Alonso Prdo, 1998) nd liner indexed utomt (Nederhof, 1999), which hs ssocited tbultion frmeworks llowing those utomt to be executed in polynomil time with respect to the size of the input string. In this pper we propose redefinition of EPDA in order to provide tbultion frmework for this clss of utomt. 2. EPDA without sttes Finite-stte control is not fundmentl component of push-down utomt, s the current stte in configurtion cn be stored in the top element of the stck of the utomton (Lng, 1991). Finite-stte control cn lso be eliminted from EPDA, obtining new definition tht considers EPDA s tuple (V T ; V S ; ; $ 0 ; $ f ) where V T is finite set of terminl symbols, V S is finite set of stck symbols, $ 0 2 V S is the initil stck symbol, $ f 2 V S is the finl stck symbol nd is finite set of six types of trnsition: SWAP: Trnsitions of the form C 7?! F tht replce the top element of the top stck while scnning. The ppliction of such trnsition on stck B returns the stck C. This reserch ws prtilly supported by the FEDER of EU (Grnt 1FD C04-02) nd Xunt de Glici (Grnt PGIDT99XI10502B).

2 Miguel A. Alonso, Eric de l Clergerie & Mnuel Vilres PUSH: Trnsitions of the form C 7?! C F tht push F onto C. The ppliction of such trnsition on stck C returns the stck CF. POP: Trnsitions of the form C F 7?! G tht replce C nd F by G. The ppliction of such trnsition on CF returns the stck G. WRAP-A: Trnsitions wrp-bove of the form C 7?! C; F tht push new stck F on the top of the utomton stck. The ppliction of such trnsition on stck C returns the stck C F. WRAP-B: Trnsitions wrp-below of the form C 7?! C; F tht store new stck C just below the top stck, nd chnge from C to F the top element of the top stck. The ppliction of such trnsition on stck C returns the stck C F. UNWRAP: Trnsitions of the form C; F 7?! G tht delete the top stck F nd replce the new top element by G. The ppliction of such trnsition on stck C F returns the stck G. where C; F; G 2 V S, 2 ( V S, 2 V, ) S 2 V T [ fg nd 62 V S is new symbol used s stck seprtor. It cn be proved tht trnsitions of EPDA with sttes cn be emulted by trnsitions in nd vice vers. An instntneous configurtion is pir (; w), where represents the contents of the utomton stck nd w is the prt of the input string tht is yet to be red. A configurtion (; w) derives configurtion ( 0 ; w), denoted (; w) ( 0 ; w), if nd only if there exists trnsition tht pplied to gives 0 nd scns from the input string. We use to denote the reflexive nd trnsitive closure of. An input string is ccepted by n EPDA if ( $ 0 ; w) ( $ f ; ). The lnguge ccepted by n EPDA is the set of w 2 VT such tht ( $ 0; w) ( $ f ; ). 3. Compiling TAG into EPDA We consider ech elementry tree of TAG s formed by set of context-free productions P(): node N nd its g children N : : : N 1 g re represented by production N! N : : : N 1 g. The elements of the productions re the nodes of the tree, except for the cse of elements belonging to V T [ f"g in the right-hnd side of production. Those elements my hve no children nd cn not be djoined, so we identify such nodes lbeled by terminl with tht terminl. We use 2 dj(n ) to denote tht tree my be djoined t node N. If djunction is not mndtory t N, then nil 2 dj(n ). We consider the dditionl productions >! R, >! R nd F!? for ech initil tree 2 I nd ech uxiliry tree 2 A, where R is the root node of nd R nd F re the root node nd foot node of, respectively. After disbling > nd? s djunction nodes the genertive cpbility of the grmmr remins intct. Figure 1 shows the generic compiltion schem from TAG to EPDA, where symbols r hve r;s been introduced to denote dotted productions. The mening of ech compiltion rule is grphiclly shown in figure 2. This schem is prmeterized by?! N, the informtion propgted top-down w.r.t. the node N, nd by N?, the informtion propgted bottom-up. When the schem is used to implement top-down strtegy?! N = N nd N? =, where is fresh stck symbol. A bottom-up strtegy requires?! N = nd N? = N. For Erley-like prsing strtegy,?! N = N nd N? = N, where N nd N re used to distinguish the top-down prediction from the bottom-up propgtion of node. We cn observe in figure 1 tht ech stck stores pending djunctions with respect to the node plced on the top of the stck in top-down tretment of djunctions: when n djunction node

3 A redefinition of Embedded Push-Down Automt [INIT] $ 0 7?! $ 0 r 0;0 2 I [CALL] r r;s 7?! r r;s???! 62 spine(); nil 2 dj( ) [SCALL] r r;s 7?! r r;s ;???! 2 spine(); nil 2 dj( ) [SEL]??! N r;0 7?! r r;0 [TAB] r r;nr 7?!?? N r;0 [RET] r r;s ;??? 7?! r r;s+1 62 spine(); nil 2 dj( ) [SRET] r r;s ;??? 7?! r r;s+1 2 spine(); nil 2 dj( ) [SCAN]??! N r;0 7?! N?? r;0 N r;0! [ACALL-] r r;s 7?! r r;s ; r;s dj( ) 6= fnilg?! [ACALL-b] r;s 7?! r;s > 2 dj( )? [ARET] r r;s ; > 7?! r r;s+1 2 dj( ) [FCALL-] r 7?! f;0 r ; f;0? N f;0 = F [FCALL-b] r;s? 7?!???! [FRET] r ; f;0??? 7?! r f;1 N f;0 = F ; 2 dj( ) [FINAL] $ 0 r 0;1 7?! $ f 2 I Figure 1: Generic compiltion schem from TAG to EPDA γ ACALL ARET β SCALL SRET CALL RET FCALL FRET Figure 2: Mening of compiltion rules

4 Miguel A. Alonso, Eric de l Clergerie & Mnuel Vilres Trnsition EPDA L-LIA SWAP C 7?! F C[] 7?! F [] PUSH C 7?! CF C[] 7?! F [C] POP CF 7?! G F [C] 7?! G[] WRAP-A C 7?! C; F C[] 7?! C[] F [ ] WRAP-B C 7?! C; F C[] 7?! C[ ] F [] UNWRAP C; F 7?! G WRAP-B+PUSH C 7?! C; X F C[] 7?! C[ ] F [X] WRAP-B+POP X C 7?! C; F C[X] 7?! C[ ] F [] Figure 3: Equivlence between EPDA nd L-LIA is reched, the djunction node is stored on the top of the stck ([ACALL-]) nd the trversl of the uxiliry tree is strted ([ACALL-b]); the djunction stck is propgted through the spine ([SCALL]) down to the foot node, where the trversl of the uxiliry tree is suspended to resume the trversl of the subtree rooted by the djunction node ([FCALL-]), which is eliminted of the stck ([FCALL-b]). To void confusion, we store r;s insted of r r;s to indicte tht n djunction ws strted t node. A symbol cn be seen s symbol r witing n djunction to be completed. 4. EPDA nd Left-oriented Liner Indexed Automt Left-oriented Liner Indexed Automt (L-LIA) is clss of utomt defined by Nederhof (1999) tht cn be used to implement prsing strtegies for TAG in which djunctions re recognized in top-down wy. Given EPDA, the equivlent L-LIA is obtined by mens of simple chnge in the nottions: if we consider the top element of stck s stck symbol, nd the rest of the stck s the indices list ssocited to them, we obtin the correspondence shown in figure 3. This chnge in nottion is lso useful to show tht EPDA ccept exctly the clss of tree djoining lnguges. Tht tree djoining lnguges re ccepted by EPDA is shown by the compiltion schem defined previously. To prove tht the lnguges ccepted by EPDA re tree djoined lnguges, we exhibit procedure tht, given n EPDA A = (V T ; V S ; ; $ 0 ; $ f ), builds liner indexed grmmr (Gzdr, 1987) G = (V T ; V N ; V I ; S; P ) tht recognizes the lnguge ccepted by A. Non-terminls in V N re pirs ha; Bi, where A; B 2 V S, nd V I = V S. Productions in P re obtined from trnsitions in s follows: For ech trnsition C hf; Ei[] is creted. 7?! F nd for ech E 2 V S, production hc; Ei[]! For ech trnsition C 7?! CF nd for ech E 2 V S, production hc; Ei[]! hf; Ei[C] is creted. For ech trnsition C F hg; Ei[] is creted. 7?! G nd for ech E 2 V S, production hf; Ei[C]!

5 A redefinition of Embedded Push-Down Automt For ech pir of trnsitions C 7?! b C; F 0 nd C; F 7?! G, nd for ech E 2 V S, production hc; Ei[]! b hf 0 ; F i[ ] hg; Ei[] is creted. For ech pir of trnsitions C 7?! b C; F 0 nd C; F 7?! G, nd for ech E 2 V S, production hc; Ei[]! b hf 0 ; F i[] hg; Ei[ ] is creted. For ech E 2 V S, production he; Ei[ ]! is creted. The xiom of the grmmr is S = h$ 0 ; $ f i. Applying induction in the length of derivtions, we cn prove tht hc; Ei[] ) w if nd only if ( C; w) ( E; ). 5. Tbultion The direct execution of EPDA my be exponentil with respect to the length of the input string nd my even loop. To get polynomil complexity, we must void duplicting computtions by tbulting trces of configurtions clled items. The mount of informtion to keep in n item is the crucil point to determine to get efficient executions. The tbultion of EPDA using PUSH nd POP trnsitions without restrictions seems to be difficult. By studying the compiltion schem of figure 1, we observe tht the compiltion rules [ACALL-] nd [ACALL-b] cn be combined to form single rule [ACALL] generting trnsitions WRAP-B+PUSH of the form C 7?! C; X F : [ACALL] r r;s 7?! r r;s ; r;s > such tht 2 dj( ). The [FCALL-] nd [FCALL-b] cn be combined to form single rule generting trnsitions WRAP-B+POP of the form X C 7?! C; F : [FCALL] r;s r f;0 7?! r f;0 ; such tht N f;0 = F nd 2 dj( ). In this section, we consider the tbultion of subset of EPDA consisting of trnsitions SWAP, WRAP-A, WRAP-B, UNWRAP, WRAP-B+PUSH nd WRAP-B+POP. In order to define items nd ttending to the form of the trnsitions, we clssify derivtions of EPDA into the following types: Cll derivtions. Correspond to the propgtion of stck by mens of WRAP-B, WRAP-B+PUSH nd WRAP-B+POP trnsitions: ( A; h+1 : : : n ) ( A 1 XB; i+1 : : : n ) ( A 1 XC; j+1 : : : n ) where A; B; C; X 2 V S, 2 V S nd ; 1 2 ( V S ). The two occurrences of denote the sme stck in the sense tht is neither consulted nor modified through the derivtion. These derivtions re independent of nd, so they cn be represented by items

6 Miguel A. Alonso, Eric de l Clergerie & Mnuel Vilres Return derivtions. Correspond to the bottom-up propgtion of unitry stck by mens of UNWRAP trnsitions: ( A; h+1 : : : n ) ( A 1 XB; i+1 : : : n ) ( A 1 B 2 D; p+1 : : : n ) ( A 1 B 2 E; q+1 : : : n ) ( A 1 C; j+1 : : : n ) where A; B; C; D; E; X 2 V S, 2 V, S ; 1; 2 2 ( V S nd is pssed unffected ) through derivtion. These derivtions re independent of but not with respect to the subderivtion ( D; p+1 : : : n ) ( E; q+1 : : : n ), so they re be represented in compct form by items Specil point derivtions. When X = we hve prticulr cse of previous derivtions: ( B; i+1 : : : n ) ( C; j+1 : : : n ) where B; C 2 V S, nd 2 ( V S ). These derivtions cn be represented by items [?;? j B; i;?; C; j;? j?;?;?;?] To combine items, we use the set of inference rules shown in figures 4 nd 5. Ech rule is of the form 1;:::; k trns, mening tht if ll ntecedents i re tbulted items nd 0 there exist the trnsitions trns, then the consequent item 0 should be creted. In order to simplify the inference rules, but without loss of generlity, we hve considered tht scnning is only performed by SWAP trnsitions. The computtion strts with the initil item [?;? j $ 0 ; 0;?; $ 0 ; 0;? j?;?;?;?]. An input string 1 : : : n hs been recognized if the finl item [?;? j $ 0 ; 0;?; $ f ; n;? j?;?;?;?] is present. It cn be proved tht hndling items with the inference rules is equivlent to pplying the trnsitions on the whole stcks. To illustrte the reltion between EPDA nd L-LIA, figures 4 nd 5 show the trnsitions of both models of utomt tht must be considered to pply given inference rule. Therefore, the proposed tbulted technique cn be lso pplied to L-LIA working with trnsitions SWAP, WRAP-A, WRAP-B, UNWRAP, WRAP-B+PUSH nd WRAP-B+POP. 6. Conclusion Embedded Push-Down Automt hve been redefined: finite-stte control hs been eliminted nd severl kinds of trnsition hve been defined. We hve lso shown tht the new definition preserves the equivlence with tree djoining lnguges nd tht tbultion techniques re possible to execute these utomt in polynomil time with respect to the length of the input string. References DE LA CLERGERIE E. & ALONSO PARDO M. (1998). A tbulr interprettion of clss of 2-Stck Automt. In COLING-ACL 98, 36th Annul Meeting of the Assocition for Computtionl Linguistics nd 17th Interntionl Conference on Computtionl Linguistics, Proceedings of the Conference, volume II, p , Montrel, Quebec, Cnd: ACL.

7 A redefinition of Embedded Push-Down Automt Rule EPDA trnsition L-LIA trnsition [A; h j B; i; X; F; k; X j?;?;?;?] where k = j if = nd k = j + 1 if 2 V T [A; h j B; i; X; F; k;? j D; p; E; q] where k = j if = nd k = j + 1 if 2 V T [?;? j F; j;?; F; j;? j?;?;?;?] [?;? j F; j;?; F; j;? j?;?;?;?] C C 7?! F C[] 7?! F [] 7?! F C[] 7?! F [] C 7?! C; F C[] 7?! C[] F [ ] C 7?! C; F C[] 7?! C[] F [ ] [A; h j F; j; X; F; j; X j?;?;?;?] [?;? j F; j;?; F; j;? j?;?;?;?] C 7?! C; F C 7?! C; F C[] 7?! C[ ] F [] C[] 7?! C[ ] F [] [C; j j F; j; X 0 ; F; j; X 0 j?;?;?;?] [C; j j F; j; X 0 ; F; j; X 0 j?;?;?;?] C 7?! C; X 0 F C[] 7?! C[ ] F [X 0 ] C 7?! C; X 0 F C[] 7?! C[ ] F [X 0 ] [M; m j N; t; X 0 ; A; h; X 0 j?;?;?;?] [M; m j F; j; X 0 ; F; j; X 0 j?;?;?;?] [M; m j N; t; X 0 ; A; h;? j D; p; E; q] [?;? j F; j;?; F; j;? j?;?;?;?] XC 7?! C; F XC 7?! C; F C[X] 7?! C[ ] F [] C[X] 7?! C[ ] F [] Figure 4: Tbultion rules GAZDAR G. (1987). Applicbility of indexed grmmrs to nturl lnguges. In U. REYLE & C. ROHRER, Eds., Nturl Lnguge Prsing nd Linguistic Theories, p D. Reidel Publishing Compny. LANG B. (1991). Towrds uniform forml frmework for prsing. In M. TOMITA, Ed., Current Issues in Prsing Technology, p Norwell, MA, USA: Kluwer Acdemic Publishers. NEDERHOF M.-J. (1999). Models of tbultion for TAG prsing. In Proc. of the Sixth Meeting on Mthemtics of Lnguge (MOL 6), p , Orlndo, Florid, USA. VIJAY-SHANKER K. (1988). A Study of Tree Adjoining Grmmrs. PhD thesis, University of Pennsylvni. Avilble s Technicl Report MS-CIS LINC LAB 95 of the Deprtment of Computer nd Informtion Science, University of Pennsylvni. WEIR D. J. (1994). Liner iterted pushdowns. Computtionl Intelligence, 10 (4), p

8 Miguel A. Alonso, Eric de l Clergerie & Mnuel Vilres Rule EPDA trnsition L-LIA trnsition [?;? j F 0 ; j;?; F; k;? j?;?;?;?] [A; h j B; i; X; G; k; X j?;?;?;?] C 7?! C; F 0 C[] 7?! C[] F 0 [ ] [?;? j F 0 ; j;?; F; k;? j?;?;?;?] [A; h j B; i; X; G; k;? j D; p; E; q] C 7?! C; F 0 C[] 7?! C[] F 0 [ ] [A; h j F 0 ; j; X; F; k;? j D; p; E; q] [A; h j B; i; X; G; k;? j D; p; E; q] C 7?! C; F 0 C[] 7?! C[ ] F 0 [] [?;? j F 0 ; j;?; F; k;? j?;?;?;?] [A; h j B; i; X; G; k;? j D; p; E; q] C 7?! C; F 0 C[] 7?! C[ ] F 0 [] [C; j j F 0 ; j; X 0 ; F; k;? j D; p; E; q] [A; h j D; p; X; E; q;? j O; u; P; v] [A; h j B; i; X; G; k;? j O; u; P; v] C 7?! C; X 0 F 0 C[] 7?! C[ ] F 0 [X 0 ] [C; j j F 0 ; j; X 0 ; F; k;? j O; u; P; v] [?;? j O; u;?; P; v;? j?;?;?;?] [A; h j B; i; X; G; k;? j D; p; E; q] C 7?! C; X 0 F 0 C[] 7?! C[ ] F 0 [X 0 ] [M; m j F 0 ; j; X 0 ; F; k;? j D; p; E; q] [M; m j N; t; X 0 ; A; h; X 0 j?;?;?;?] [A; h j B; i; X; G; k;? j F 0 ; j; F; k] XC 7?! C; F 0 C[X] 7?! C[ ] F 0 [] [?;? j F 0 ; j;?; F; k;? j?;?;?;?] [M; m j N; t; X 0 ; A; h;? j D; p; E; q] [A; h j B; i; X; G; k;? j F 0 ; j; F; k] XC 7?! C; F 0 C[X] 7?! C[ ] F 0 [] Figure 5: Tbultion rules

A formal definition of Bottom-up Embedded Push-Down Automata and their tabulation technique

A formal definition of Bottom-up Embedded Push-Down Automata and their tabulation technique A forml definition of Bottom-up Embedded Push-Down Automt nd their tbultion technique Miguel A. Alonso 1, Eric de l Clergerie 2 nd Mnuel Vilres 3 1 Deprtmento de Computción, Universidd de L Coruñ Cmpus

More information

CS 275 Automata and Formal Language Theory

CS 275 Automata and Formal Language Theory CS 275 Automt nd Forml Lnguge Theory Course Notes Prt II: The Recognition Problem (II) Chpter II.6.: Push Down Automt Remrk: This mteril is no longer tught nd not directly exm relevnt Anton Setzer (Bsed

More information

1.4 Nonregular Languages

1.4 Nonregular Languages 74 1.4 Nonregulr Lnguges The number of forml lnguges over ny lphbet (= decision/recognition problems) is uncountble On the other hnd, the number of regulr expressions (= strings) is countble Hence, ll

More information

AUTOMATA AND LANGUAGES. Definition 1.5: Finite Automaton

AUTOMATA AND LANGUAGES. Definition 1.5: Finite Automaton 25. Finite Automt AUTOMATA AND LANGUAGES A system of computtion tht only hs finite numer of possile sttes cn e modeled using finite utomton A finite utomton is often illustrted s stte digrm d d d. d q

More information

Assignment 1 Automata, Languages, and Computability. 1 Finite State Automata and Regular Languages

Assignment 1 Automata, Languages, and Computability. 1 Finite State Automata and Regular Languages Deprtment of Computer Science, Austrlin Ntionl University COMP2600 Forml Methods for Softwre Engineering Semester 2, 206 Assignment Automt, Lnguges, nd Computility Smple Solutions Finite Stte Automt nd

More information

Convert the NFA into DFA

Convert the NFA into DFA Convert the NF into F For ech NF we cn find F ccepting the sme lnguge. The numer of sttes of the F could e exponentil in the numer of sttes of the NF, ut in prctice this worst cse occurs rrely. lgorithm:

More information

FABER Formal Languages, Automata and Models of Computation

FABER Formal Languages, Automata and Models of Computation DVA337 FABER Forml Lnguges, Automt nd Models of Computtion Lecture 5 chool of Innovtion, Design nd Engineering Mälrdlen University 2015 1 Recp of lecture 4 y definition suset construction DFA NFA stte

More information

Minimal DFA. minimal DFA for L starting from any other

Minimal DFA. minimal DFA for L starting from any other Miniml DFA Among the mny DFAs ccepting the sme regulr lnguge L, there is exctly one (up to renming of sttes) which hs the smllest possile numer of sttes. Moreover, it is possile to otin tht miniml DFA

More information

CS 275 Automata and Formal Language Theory

CS 275 Automata and Formal Language Theory CS 275 Automt nd Forml Lnguge Theory Course Notes Prt II: The Recognition Problem (II) Chpter II.5.: Properties of Context Free Grmmrs (14) Anton Setzer (Bsed on book drft by J. V. Tucker nd K. Stephenson)

More information

Finite Automata. Informatics 2A: Lecture 3. John Longley. 22 September School of Informatics University of Edinburgh

Finite Automata. Informatics 2A: Lecture 3. John Longley. 22 September School of Informatics University of Edinburgh Lnguges nd Automt Finite Automt Informtics 2A: Lecture 3 John Longley School of Informtics University of Edinburgh jrl@inf.ed.c.uk 22 September 2017 1 / 30 Lnguges nd Automt 1 Lnguges nd Automt Wht is

More information

a,b a 1 a 2 a 3 a,b 1 a,b a,b 2 3 a,b a,b a 2 a,b CS Determinisitic Finite Automata 1

a,b a 1 a 2 a 3 a,b 1 a,b a,b 2 3 a,b a,b a 2 a,b CS Determinisitic Finite Automata 1 CS4 45- Determinisitic Finite Automt -: Genertors vs. Checkers Regulr expressions re one wy to specify forml lnguge String Genertor Genertes strings in the lnguge Deterministic Finite Automt (DFA) re nother

More information

CS375: Logic and Theory of Computing

CS375: Logic and Theory of Computing CS375: Logic nd Theory of Computing Fuhu (Frnk) Cheng Deprtment of Computer Science University of Kentucky 1 Tble of Contents: Week 1: Preliminries (set lgebr, reltions, functions) (red Chpters 1-4) Weeks

More information

Normal Forms for Context-free Grammars

Normal Forms for Context-free Grammars Norml Forms for Context-free Grmmrs 1 Linz 6th, Section 6.2 wo Importnt Norml Forms, pges 171--178 2 Chomsky Norml Form All productions hve form: A BC nd A vrile vrile terminl 3 Exmples: S AS S AS S S

More information

5.1 Definitions and Examples 5.2 Deterministic Pushdown Automata

5.1 Definitions and Examples 5.2 Deterministic Pushdown Automata CSC4510 AUTOMATA 5.1 Definitions nd Exmples 5.2 Deterministic Pushdown Automt Definitions nd Exmples A lnguge cn be generted by CFG if nd only if it cn be ccepted by pushdown utomton. A pushdown utomton

More information

Non-deterministic Finite Automata

Non-deterministic Finite Automata Non-deterministic Finite Automt Eliminting non-determinism Rdoud University Nijmegen Non-deterministic Finite Automt H. Geuvers nd T. vn Lrhoven Institute for Computing nd Informtion Sciences Intelligent

More information

Theory of Computation Regular Languages. (NTU EE) Regular Languages Fall / 38

Theory of Computation Regular Languages. (NTU EE) Regular Languages Fall / 38 Theory of Computtion Regulr Lnguges (NTU EE) Regulr Lnguges Fll 2017 1 / 38 Schemtic of Finite Automt control 0 0 1 0 1 1 1 0 Figure: Schemtic of Finite Automt A finite utomton hs finite set of control

More information

1.3 Regular Expressions

1.3 Regular Expressions 56 1.3 Regulr xpressions These hve n importnt role in describing ptterns in serching for strings in mny pplictions (e.g. wk, grep, Perl,...) All regulr expressions of lphbet re 1.Ønd re regulr expressions,

More information

CSCI 340: Computational Models. Kleene s Theorem. Department of Computer Science

CSCI 340: Computational Models. Kleene s Theorem. Department of Computer Science CSCI 340: Computtionl Models Kleene s Theorem Chpter 7 Deprtment of Computer Science Unifiction In 1954, Kleene presented (nd proved) theorem which (in our version) sttes tht if lnguge cn e defined y ny

More information

Lecture 6 Regular Grammars

Lecture 6 Regular Grammars Lecture 6 Regulr Grmmrs COT 4420 Theory of Computtion Section 3.3 Grmmr A grmmr G is defined s qudruple G = (V, T, S, P) V is finite set of vribles T is finite set of terminl symbols S V is specil vrible

More information

Finite Automata. Informatics 2A: Lecture 3. Mary Cryan. 21 September School of Informatics University of Edinburgh

Finite Automata. Informatics 2A: Lecture 3. Mary Cryan. 21 September School of Informatics University of Edinburgh Finite Automt Informtics 2A: Lecture 3 Mry Cryn School of Informtics University of Edinburgh mcryn@inf.ed.c.uk 21 September 2018 1 / 30 Lnguges nd Automt Wht is lnguge? Finite utomt: recp Some forml definitions

More information

CS 314 Principles of Programming Languages

CS 314 Principles of Programming Languages C 314 Principles of Progrmming Lnguges Lecture 6: LL(1) Prsing Zheng (Eddy) Zhng Rutgers University Ferury 5, 2018 Clss Informtion Homework 2 due tomorrow. Homework 3 will e posted erly next week. 2 Top

More information

5. (±±) Λ = fw j w is string of even lengthg [ 00 = f11,00g 7. (11 [ 00)± Λ = fw j w egins with either 11 or 00g 8. (0 [ ffl)1 Λ = 01 Λ [ 1 Λ 9.

5. (±±) Λ = fw j w is string of even lengthg [ 00 = f11,00g 7. (11 [ 00)± Λ = fw j w egins with either 11 or 00g 8. (0 [ ffl)1 Λ = 01 Λ [ 1 Λ 9. Regulr Expressions, Pumping Lemm, Right Liner Grmmrs Ling 106 Mrch 25, 2002 1 Regulr Expressions A regulr expression descries or genertes lnguge: it is kind of shorthnd for listing the memers of lnguge.

More information

CHAPTER 1 Regular Languages. Contents

CHAPTER 1 Regular Languages. Contents Finite Automt (FA or DFA) CHAPTE 1 egulr Lnguges Contents definitions, exmples, designing, regulr opertions Non-deterministic Finite Automt (NFA) definitions, euivlence of NFAs nd DFAs, closure under regulr

More information

NFAs and Regular Expressions. NFA-ε, continued. Recall. Last class: Today: Fun:

NFAs and Regular Expressions. NFA-ε, continued. Recall. Last class: Today: Fun: CMPU 240 Lnguge Theory nd Computtion Spring 2019 NFAs nd Regulr Expressions Lst clss: Introduced nondeterministic finite utomt with -trnsitions Tody: Prove n NFA- is no more powerful thn n NFA Introduce

More information

Theory of Computation Regular Languages

Theory of Computation Regular Languages Theory of Computtion Regulr Lnguges Bow-Yw Wng Acdemi Sinic Spring 2012 Bow-Yw Wng (Acdemi Sinic) Regulr Lnguges Spring 2012 1 / 38 Schemtic of Finite Automt control 0 0 1 0 1 1 1 0 Figure: Schemtic of

More information

Finite Automata Theory and Formal Languages TMV027/DIT321 LP4 2018

Finite Automata Theory and Formal Languages TMV027/DIT321 LP4 2018 Finite Automt Theory nd Forml Lnguges TMV027/DIT321 LP4 2018 Lecture 10 An Bove April 23rd 2018 Recp: Regulr Lnguges We cn convert between FA nd RE; Hence both FA nd RE ccept/generte regulr lnguges; More

More information

Formal languages, automata, and theory of computation

Formal languages, automata, and theory of computation Mälrdlen University TEN1 DVA337 2015 School of Innovtion, Design nd Engineering Forml lnguges, utomt, nd theory of computtion Thursdy, Novemer 5, 14:10-18:30 Techer: Dniel Hedin, phone 021-107052 The exm

More information

Deterministic Finite Automata

Deterministic Finite Automata Finite Automt Deterministic Finite Automt H. Geuvers nd J. Rot Institute for Computing nd Informtion Sciences Version: fll 2016 J. Rot Version: fll 2016 Tlen en Automten 1 / 21 Outline Finite Automt Finite

More information

Lecture 08: Feb. 08, 2019

Lecture 08: Feb. 08, 2019 4CS4-6:Theory of Computtion(Closure on Reg. Lngs., regex to NDFA, DFA to regex) Prof. K.R. Chowdhry Lecture 08: Fe. 08, 2019 : Professor of CS Disclimer: These notes hve not een sujected to the usul scrutiny

More information

Chapter 2 Finite Automata

Chapter 2 Finite Automata Chpter 2 Finite Automt 28 2.1 Introduction Finite utomt: first model of the notion of effective procedure. (They lso hve mny other pplictions). The concept of finite utomton cn e derived y exmining wht

More information

For convenience, we rewrite m2 s m2 = m m m ; where m is repeted m times. Since xyz = m m m nd jxyj»m, we hve tht the string y is substring of the fir

For convenience, we rewrite m2 s m2 = m m m ; where m is repeted m times. Since xyz = m m m nd jxyj»m, we hve tht the string y is substring of the fir CSCI 2400 Models of Computtion, Section 3 Solutions to Homework 4 Problem 1. ll the solutions below refer to the Pumping Lemm of Theorem 4.8, pge 119. () L = f n b l k : k n + lg Let's ssume for contrdiction

More information

Context-Free Grammars and Languages

Context-Free Grammars and Languages Context-Free Grmmrs nd Lnguges (Bsed on Hopcroft, Motwni nd Ullmn (2007) & Cohen (1997)) Introduction Consider n exmple sentence: A smll ct ets the fish English grmmr hs rules for constructing sentences;

More information

More on automata. Michael George. March 24 April 7, 2014

More on automata. Michael George. March 24 April 7, 2014 More on utomt Michel George Mrch 24 April 7, 2014 1 Automt constructions Now tht we hve forml model of mchine, it is useful to mke some generl constructions. 1.1 DFA Union / Product construction Suppose

More information

Finite Automata-cont d

Finite Automata-cont d Automt Theory nd Forml Lnguges Professor Leslie Lnder Lecture # 6 Finite Automt-cont d The Pumping Lemm WEB SITE: http://ingwe.inghmton.edu/ ~lnder/cs573.html Septemer 18, 2000 Exmple 1 Consider L = {ww

More information

Speech Recognition Lecture 2: Finite Automata and Finite-State Transducers

Speech Recognition Lecture 2: Finite Automata and Finite-State Transducers Speech Recognition Lecture 2: Finite Automt nd Finite-Stte Trnsducers Eugene Weinstein Google, NYU Cournt Institute eugenew@cs.nyu.edu Slide Credit: Mehryr Mohri Preliminries Finite lphet, empty string.

More information

Non-Deterministic Finite Automata. Fall 2018 Costas Busch - RPI 1

Non-Deterministic Finite Automata. Fall 2018 Costas Busch - RPI 1 Non-Deterministic Finite Automt Fll 2018 Costs Busch - RPI 1 Nondeterministic Finite Automton (NFA) Alphbet ={} q q2 1 q 0 q 3 Fll 2018 Costs Busch - RPI 2 Nondeterministic Finite Automton (NFA) Alphbet

More information

Talen en Automaten Test 1, Mon 7 th Dec, h45 17h30

Talen en Automaten Test 1, Mon 7 th Dec, h45 17h30 Tlen en Automten Test 1, Mon 7 th Dec, 2015 15h45 17h30 This test consists of four exercises over 5 pges. Explin your pproch, nd write your nswer to ech exercise on seprte pge. You cn score mximum of 100

More information

Chapter Five: Nondeterministic Finite Automata. Formal Language, chapter 5, slide 1

Chapter Five: Nondeterministic Finite Automata. Formal Language, chapter 5, slide 1 Chpter Five: Nondeterministic Finite Automt Forml Lnguge, chpter 5, slide 1 1 A DFA hs exctly one trnsition from every stte on every symol in the lphet. By relxing this requirement we get relted ut more

More information

Fundamentals of Computer Science

Fundamentals of Computer Science Fundmentls of Computer Science Chpter 3: NFA nd DFA equivlence Regulr expressions Henrik Björklund Umeå University Jnury 23, 2014 NFA nd DFA equivlence As we shll see, it turns out tht NFA nd DFA re equivlent,

More information

Java II Finite Automata I

Java II Finite Automata I Jv II Finite Automt I Bernd Kiefer Bernd.Kiefer@dfki.de Deutsches Forschungszentrum für künstliche Intelligenz Finite Automt I p.1/13 Processing Regulr Expressions We lredy lerned out Jv s regulr expression

More information

Overview HC9. Parsing: Top-Down & LL(1) Context-Free Grammars (1) Introduction. CFGs (3) Context-Free Grammars (2) Vertalerbouw HC 9: Ch.

Overview HC9. Parsing: Top-Down & LL(1) Context-Free Grammars (1) Introduction. CFGs (3) Context-Free Grammars (2) Vertalerbouw HC 9: Ch. Overview H9 Vertlerouw H 9: Prsing: op-down & LL(1) do 3 mei 2001 56 heo Ruys h. 8 - Prsing 8.1 ontext-free Grmmrs 8.2 op-down Prsing 8.3 LL(1) Grmmrs See lso [ho, Sethi & Ullmn 1986] for more thorough

More information

Closure Properties of Regular Languages

Closure Properties of Regular Languages Closure Properties of Regulr Lnguges Regulr lnguges re closed under mny set opertions. Let L 1 nd L 2 e regulr lnguges. (1) L 1 L 2 (the union) is regulr. (2) L 1 L 2 (the conctention) is regulr. (3) L

More information

CS:4330 Theory of Computation Spring Regular Languages. Equivalences between Finite automata and REs. Haniel Barbosa

CS:4330 Theory of Computation Spring Regular Languages. Equivalences between Finite automata and REs. Haniel Barbosa CS:4330 Theory of Computtion Spring 208 Regulr Lnguges Equivlences between Finite utomt nd REs Hniel Brbos Redings for this lecture Chpter of [Sipser 996], 3rd edition. Section.3. Finite utomt nd regulr

More information

Formal Languages and Automata

Formal Languages and Automata Moile Computing nd Softwre Engineering p. 1/5 Forml Lnguges nd Automt Chpter 2 Finite Automt Chun-Ming Liu cmliu@csie.ntut.edu.tw Deprtment of Computer Science nd Informtion Engineering Ntionl Tipei University

More information

CS 275 Automata and Formal Language Theory

CS 275 Automata and Formal Language Theory CS 275 utomt nd Forml Lnguge Theory Course Notes Prt II: The Recognition Prolem (II) Chpter II.5.: Properties of Context Free Grmmrs (14) nton Setzer (Bsed on ook drft y J. V. Tucker nd K. Stephenson)

More information

Nondeterminism and Nodeterministic Automata

Nondeterminism and Nodeterministic Automata Nondeterminism nd Nodeterministic Automt 61 Nondeterminism nd Nondeterministic Automt The computtionl mchine models tht we lerned in the clss re deterministic in the sense tht the next move is uniquely

More information

Coalgebra, Lecture 15: Equations for Deterministic Automata

Coalgebra, Lecture 15: Equations for Deterministic Automata Colger, Lecture 15: Equtions for Deterministic Automt Julin Slmnc (nd Jurrin Rot) Decemer 19, 2016 In this lecture, we will study the concept of equtions for deterministic utomt. The notes re self contined

More information

a b b a pop push read unread

a b b a pop push read unread A Finite Automton A Pushdown Automton 0000 000 red unred b b pop red unred push 2 An Exmple A Pushdown Automton Recll tht 0 n n not regulr. cn push symbols onto the stck cn pop them (red them bck) lter

More information

How to simulate Turing machines by invertible one-dimensional cellular automata

How to simulate Turing machines by invertible one-dimensional cellular automata How to simulte Turing mchines by invertible one-dimensionl cellulr utomt Jen-Christophe Dubcq Déprtement de Mthémtiques et d Informtique, École Normle Supérieure de Lyon, 46, llée d Itlie, 69364 Lyon Cedex

More information

Non-deterministic Finite Automata

Non-deterministic Finite Automata Non-deterministic Finite Automt From Regulr Expressions to NFA- Eliminting non-determinism Rdoud University Nijmegen Non-deterministic Finite Automt H. Geuvers nd J. Rot Institute for Computing nd Informtion

More information

Speech Recognition Lecture 2: Finite Automata and Finite-State Transducers. Mehryar Mohri Courant Institute and Google Research

Speech Recognition Lecture 2: Finite Automata and Finite-State Transducers. Mehryar Mohri Courant Institute and Google Research Speech Recognition Lecture 2: Finite Automt nd Finite-Stte Trnsducers Mehryr Mohri Cournt Institute nd Google Reserch mohri@cims.nyu.com Preliminries Finite lphet Σ, empty string. Set of ll strings over

More information

1 Nondeterministic Finite Automata

1 Nondeterministic Finite Automata 1 Nondeterministic Finite Automt Suppose in life, whenever you hd choice, you could try oth possiilities nd live your life. At the end, you would go ck nd choose the one tht worked out the est. Then you

More information

CS 330 Formal Methods and Models Dana Richards, George Mason University, Spring 2016 Quiz Solutions

CS 330 Formal Methods and Models Dana Richards, George Mason University, Spring 2016 Quiz Solutions CS 330 Forml Methods nd Models Dn Richrds, George Mson University, Spring 2016 Quiz Solutions Quiz 1, Propositionl Logic Dte: Ferury 9 1. (4pts) ((p q) (q r)) (p r), prove tutology using truth tles. p

More information

Non Deterministic Automata. Linz: Nondeterministic Finite Accepters, page 51

Non Deterministic Automata. Linz: Nondeterministic Finite Accepters, page 51 Non Deterministic Automt Linz: Nondeterministic Finite Accepters, pge 51 1 Nondeterministic Finite Accepter (NFA) Alphbet ={} q 1 q2 q 0 q 3 2 Nondeterministic Finite Accepter (NFA) Alphbet ={} Two choices

More information

Automata and Languages

Automata and Languages Automt nd Lnguges Prof. Mohmed Hmd Softwre Engineering Lb. The University of Aizu Jpn Grmmr Regulr Grmmr Context-free Grmmr Context-sensitive Grmmr Regulr Lnguges Context Free Lnguges Context Sensitive

More information

Parse trees, ambiguity, and Chomsky normal form

Parse trees, ambiguity, and Chomsky normal form Prse trees, miguity, nd Chomsky norml form In this lecture we will discuss few importnt notions connected with contextfree grmmrs, including prse trees, miguity, nd specil form for context-free grmmrs

More information

Regular expressions, Finite Automata, transition graphs are all the same!!

Regular expressions, Finite Automata, transition graphs are all the same!! CSI 3104 /Winter 2011: Introduction to Forml Lnguges Chpter 7: Kleene s Theorem Chpter 7: Kleene s Theorem Regulr expressions, Finite Automt, trnsition grphs re ll the sme!! Dr. Neji Zgui CSI3104-W11 1

More information

This lecture covers Chapter 8 of HMU: Properties of CFLs

This lecture covers Chapter 8 of HMU: Properties of CFLs This lecture covers Chpter 8 of HMU: Properties of CFLs Turing Mchine Extensions of Turing Mchines Restrictions of Turing Mchines Additionl Reding: Chpter 8 of HMU. Turing Mchine: Informl Definition B

More information

CMPSCI 250: Introduction to Computation. Lecture #31: What DFA s Can and Can t Do David Mix Barrington 9 April 2014

CMPSCI 250: Introduction to Computation. Lecture #31: What DFA s Can and Can t Do David Mix Barrington 9 April 2014 CMPSCI 250: Introduction to Computtion Lecture #31: Wht DFA s Cn nd Cn t Do Dvid Mix Brrington 9 April 2014 Wht DFA s Cn nd Cn t Do Deterministic Finite Automt Forml Definition of DFA s Exmples of DFA

More information

11.1 Finite Automata. CS125 Lecture 11 Fall Motivation: TMs without a tape: maybe we can at least fully understand such a simple model?

11.1 Finite Automata. CS125 Lecture 11 Fall Motivation: TMs without a tape: maybe we can at least fully understand such a simple model? CS125 Lecture 11 Fll 2016 11.1 Finite Automt Motivtion: TMs without tpe: mybe we cn t lest fully understnd such simple model? Algorithms (e.g. string mtching) Computing with very limited memory Forml verifiction

More information

Regular Expressions (RE) Regular Expressions (RE) Regular Expressions (RE) Regular Expressions (RE) Kleene-*

Regular Expressions (RE) Regular Expressions (RE) Regular Expressions (RE) Regular Expressions (RE) Kleene-* Regulr Expressions (RE) Regulr Expressions (RE) Empty set F A RE denotes the empty set Opertion Nottion Lnguge UNIX Empty string A RE denotes the set {} Alterntion R +r L(r ) L(r ) r r Symol Alterntion

More information

7 Automata and formal languages. 7.1 Formal languages

7 Automata and formal languages. 7.1 Formal languages 7 Automt nd forml lnguges This exposition ws developed by Clemens Gröpl nd Knut Reinert. It is bsed on the following references, ll of which re recommended reding: 1. Uwe Schöning: Theoretische Informtik

More information

Harvard University Computer Science 121 Midterm October 23, 2012

Harvard University Computer Science 121 Midterm October 23, 2012 Hrvrd University Computer Science 121 Midterm Octoer 23, 2012 This is closed-ook exmintion. You my use ny result from lecture, Sipser, prolem sets, or section, s long s you quote it clerly. The lphet is

More information

Designing finite automata II

Designing finite automata II Designing finite utomt II Prolem: Design DFA A such tht L(A) consists of ll strings of nd which re of length 3n, for n = 0, 1, 2, (1) Determine wht to rememer out the input string Assign stte to ech of

More information

CS 373, Spring Solutions to Mock midterm 1 (Based on first midterm in CS 273, Fall 2008.)

CS 373, Spring Solutions to Mock midterm 1 (Based on first midterm in CS 273, Fall 2008.) CS 373, Spring 29. Solutions to Mock midterm (sed on first midterm in CS 273, Fll 28.) Prolem : Short nswer (8 points) The nswers to these prolems should e short nd not complicted. () If n NF M ccepts

More information

Lecture 09: Myhill-Nerode Theorem

Lecture 09: Myhill-Nerode Theorem CS 373: Theory of Computtion Mdhusudn Prthsrthy Lecture 09: Myhill-Nerode Theorem 16 Ferury 2010 In this lecture, we will see tht every lnguge hs unique miniml DFA We will see this fct from two perspectives

More information

I. Theory of Automata II. Theory of Formal Languages III. Theory of Turing Machines

I. Theory of Automata II. Theory of Formal Languages III. Theory of Turing Machines CI 3104 /Winter 2011: Introduction to Forml Lnguges Chter 13: Grmmticl Formt Chter 13: Grmmticl Formt I. Theory of Automt II. Theory of Forml Lnguges III. Theory of Turing Mchines Dr. Neji Zgui CI3104-W11

More information

CS5371 Theory of Computation. Lecture 20: Complexity V (Polynomial-Time Reducibility)

CS5371 Theory of Computation. Lecture 20: Complexity V (Polynomial-Time Reducibility) CS5371 Theory of Computtion Lecture 20: Complexity V (Polynomil-Time Reducibility) Objectives Polynomil Time Reducibility Prove Cook-Levin Theorem Polynomil Time Reducibility Previously, we lernt tht if

More information

CMSC 330: Organization of Programming Languages. DFAs, and NFAs, and Regexps (Oh my!)

CMSC 330: Organization of Programming Languages. DFAs, and NFAs, and Regexps (Oh my!) CMSC 330: Orgniztion of Progrmming Lnguges DFAs, nd NFAs, nd Regexps (Oh my!) CMSC330 Spring 2018 Types of Finite Automt Deterministic Finite Automt (DFA) Exctly one sequence of steps for ech string All

More information

Tutorial Automata and formal Languages

Tutorial Automata and formal Languages Tutoril Automt nd forml Lnguges Notes for to the tutoril in the summer term 2017 Sestin Küpper, Christine Mik 8. August 2017 1 Introduction: Nottions nd sic Definitions At the eginning of the tutoril we

More information

Introduction to Lexicalized Tree Adjoining Grammar (LTAG)

Introduction to Lexicalized Tree Adjoining Grammar (LTAG) Introduction to Lexiclized Tree Adjoining Grmmr (LTAG) Mchine Lnguge Processing eminr Jnury 29, 2008 1 Tble of Contents 1.The forml relevnce of LTAG: From CFG to LTAG - Context-Free Grmmrs (CFG) - Lexicliztion,

More information

Anatomy of a Deterministic Finite Automaton. Deterministic Finite Automata. A machine so simple that you can understand it in less than one minute

Anatomy of a Deterministic Finite Automaton. Deterministic Finite Automata. A machine so simple that you can understand it in less than one minute Victor Admchik Dnny Sletor Gret Theoreticl Ides In Computer Science CS 5-25 Spring 2 Lecture 2 Mr 3, 2 Crnegie Mellon University Deterministic Finite Automt Finite Automt A mchine so simple tht you cn

More information

XPath Node Selection over Grammar-Compressed Trees

XPath Node Selection over Grammar-Compressed Trees XPth Node Selection over Grmmr-Compressed Trees Sebstin Mneth University of Edinburgh with Tom Sebstin (INRIA Lille) XPth Node Selection Given: XPth query Q nd tree T Question: wc-time to evlute Q over

More information

Grammar. Languages. Content 5/10/16. Automata and Languages. Regular Languages. Regular Languages

Grammar. Languages. Content 5/10/16. Automata and Languages. Regular Languages. Regular Languages 5//6 Grmmr Automt nd Lnguges Regulr Grmmr Context-free Grmmr Context-sensitive Grmmr Prof. Mohmed Hmd Softwre Engineering L. The University of Aizu Jpn Regulr Lnguges Context Free Lnguges Context Sensitive

More information

CS415 Compilers. Lexical Analysis and. These slides are based on slides copyrighted by Keith Cooper, Ken Kennedy & Linda Torczon at Rice University

CS415 Compilers. Lexical Analysis and. These slides are based on slides copyrighted by Keith Cooper, Ken Kennedy & Linda Torczon at Rice University CS415 Compilers Lexicl Anlysis nd These slides re sed on slides copyrighted y Keith Cooper, Ken Kennedy & Lind Torczon t Rice University First Progrmming Project Instruction Scheduling Project hs een posted

More information

Section: Other Models of Turing Machines. Definition: Two automata are equivalent if they accept the same language.

Section: Other Models of Turing Machines. Definition: Two automata are equivalent if they accept the same language. Section: Other Models of Turing Mchines Definition: Two utomt re equivlent if they ccept the sme lnguge. Turing Mchines with Sty Option Modify δ, Theorem Clss of stndrd TM s is equivlent to clss of TM

More information

CS 330 Formal Methods and Models

CS 330 Formal Methods and Models CS 330 Forml Methods nd Models Dn Richrds, George Mson University, Spring 2017 Quiz Solutions Quiz 1, Propositionl Logic Dte: Ferury 2 1. Prove ((( p q) q) p) is tutology () (3pts) y truth tle. p q p q

More information

TREE AUTOMATA AND TREE GRAMMARS

TREE AUTOMATA AND TREE GRAMMARS TREE AUTOMATA AND TREE GRAMMARS rxiv:1510.02036v1 [cs.fl] 7 Oct 2015 by Joost Engelfriet DAIMI FN-10 April 1975 Institute of Mthemtics, University of Arhus DEPARTMENT OF COMPUTER SCIENCE Ny Munkegde, 8000

More information

Compiler Design. Fall Lexical Analysis. Sample Exercises and Solutions. Prof. Pedro C. Diniz

Compiler Design. Fall Lexical Analysis. Sample Exercises and Solutions. Prof. Pedro C. Diniz University of Southern Cliforni Computer Science Deprtment Compiler Design Fll Lexicl Anlysis Smple Exercises nd Solutions Prof. Pedro C. Diniz USC / Informtion Sciences Institute 4676 Admirlty Wy, Suite

More information

Handout: Natural deduction for first order logic

Handout: Natural deduction for first order logic MATH 457 Introduction to Mthemticl Logic Spring 2016 Dr Json Rute Hndout: Nturl deduction for first order logic We will extend our nturl deduction rules for sententil logic to first order logic These notes

More information

PART 2. REGULAR LANGUAGES, GRAMMARS AND AUTOMATA

PART 2. REGULAR LANGUAGES, GRAMMARS AND AUTOMATA PART 2. REGULAR LANGUAGES, GRAMMARS AND AUTOMATA RIGHT LINEAR LANGUAGES. Right Liner Grmmr: Rules of the form: A α B, A α A,B V N, α V T + Left Liner Grmmr: Rules of the form: A Bα, A α A,B V N, α V T

More information

More general families of infinite graphs

More general families of infinite graphs More generl fmilies of infinite grphs Antoine Meyer Forml Methods Updte 2006 IIT Guwhti Prefix-recognizle grphs Theorem Let G e grph, the following sttements re equivlent: G is defined y reltions of the

More information

CS 310 (sec 20) - Winter Final Exam (solutions) SOLUTIONS

CS 310 (sec 20) - Winter Final Exam (solutions) SOLUTIONS CS 310 (sec 20) - Winter 2003 - Finl Exm (solutions) SOLUTIONS 1. (Logic) Use truth tles to prove the following logicl equivlences: () p q (p p) (q q) () p q (p q) (p q) () p q p q p p q q (q q) (p p)

More information

Nondeterminism. Nondeterministic Finite Automata. Example: Moves on a Chessboard. Nondeterminism (2) Example: Chessboard (2) Formal NFA

Nondeterminism. Nondeterministic Finite Automata. Example: Moves on a Chessboard. Nondeterminism (2) Example: Chessboard (2) Formal NFA Nondeterminism Nondeterministic Finite Automt Nondeterminism Subset Construction A nondeterministic finite utomton hs the bility to be in severl sttes t once. Trnsitions from stte on n input symbol cn

More information

Automata Theory 101. Introduction. Outline. Introduction Finite Automata Regular Expressions ω-automata. Ralf Huuck.

Automata Theory 101. Introduction. Outline. Introduction Finite Automata Regular Expressions ω-automata. Ralf Huuck. Outline Automt Theory 101 Rlf Huuck Introduction Finite Automt Regulr Expressions ω-automt Session 1 2006 Rlf Huuck 1 Session 1 2006 Rlf Huuck 2 Acknowledgement Some slides re sed on Wolfgng Thoms excellent

More information

12.1 Nondeterminism Nondeterministic Finite Automata. a a b ε. CS125 Lecture 12 Fall 2016

12.1 Nondeterminism Nondeterministic Finite Automata. a a b ε. CS125 Lecture 12 Fall 2016 CS125 Lecture 12 Fll 2016 12.1 Nondeterminism The ide of nondeterministic computtions is to llow our lgorithms to mke guesses, nd only require tht they ccept when the guesses re correct. For exmple, simple

More information

Jim Lambers MAT 169 Fall Semester Lecture 4 Notes

Jim Lambers MAT 169 Fall Semester Lecture 4 Notes Jim Lmbers MAT 169 Fll Semester 2009-10 Lecture 4 Notes These notes correspond to Section 8.2 in the text. Series Wht is Series? An infinte series, usully referred to simply s series, is n sum of ll of

More information

1 From NFA to regular expression

1 From NFA to regular expression Note 1: How to convert DFA/NFA to regulr expression Version: 1.0 S/EE 374, Fll 2017 Septemer 11, 2017 In this note, we show tht ny DFA cn e converted into regulr expression. Our construction would work

More information

Turing Machines Part One

Turing Machines Part One Turing Mchines Prt One Wht problems cn we solve with computer? Regulr Lnguges CFLs Lnguges recognizble by ny fesible computing mchine All Lnguges Tht sme drwing, to scle. All Lnguges The Problem Finite

More information

Non Deterministic Automata. Formal Languages and Automata - Yonsei CS 1

Non Deterministic Automata. Formal Languages and Automata - Yonsei CS 1 Non Deterministic Automt Forml Lnguges nd Automt - Yonsei CS 1 Nondeterministic Finite Accepter (NFA) We llow set of possible moves insted of A unique move. Alphbet = {} Two choices q 1 q2 Forml Lnguges

More information

Non-Deterministic Finite Automata

Non-Deterministic Finite Automata Non-Deterministic Finite Automt http://users.comlb.ox.c.uk/luke. ong/teching/moc/nf2up.pdf 1 Nondeterministic Finite Automton (NFA) Alphbet ={} q1 q2 2 Alphbet ={} Two choices q1 q2 3 Alphbet ={} Two choices

More information

CS103B Handout 18 Winter 2007 February 28, 2007 Finite Automata

CS103B Handout 18 Winter 2007 February 28, 2007 Finite Automata CS103B ndout 18 Winter 2007 Ferury 28, 2007 Finite Automt Initil text y Mggie Johnson. Introduction Severl childrens gmes fit the following description: Pieces re set up on plying ord; dice re thrown or

More information

Let's start with an example:

Let's start with an example: Finite Automt Let's strt with n exmple: Here you see leled circles tht re sttes, nd leled rrows tht re trnsitions. One of the sttes is mrked "strt". One of the sttes hs doule circle; this is terminl stte

More information

1. For each of the following theorems, give a two or three sentence sketch of how the proof goes or why it is not true.

1. For each of the following theorems, give a two or three sentence sketch of how the proof goes or why it is not true. York University CSE 2 Unit 3. DFA Clsses Converting etween DFA, NFA, Regulr Expressions, nd Extended Regulr Expressions Instructor: Jeff Edmonds Don t chet y looking t these nswers premturely.. For ech

More information

CSE : Exam 3-ANSWERS, Spring 2011 Time: 50 minutes

CSE : Exam 3-ANSWERS, Spring 2011 Time: 50 minutes CSE 260-002: Exm 3-ANSWERS, Spring 20 ime: 50 minutes Nme: his exm hs 4 pges nd 0 prolems totling 00 points. his exm is closed ook nd closed notes.. Wrshll s lgorithm for trnsitive closure computtion is

More information

Worked out examples Finite Automata

Worked out examples Finite Automata Worked out exmples Finite Automt Exmple Design Finite Stte Automton which reds inry string nd ccepts only those tht end with. Since we re in the topic of Non Deterministic Finite Automt (NFA), we will

More information

Some Theory of Computation Exercises Week 1

Some Theory of Computation Exercises Week 1 Some Theory of Computtion Exercises Week 1 Section 1 Deterministic Finite Automt Question 1.3 d d d d u q 1 q 2 q 3 q 4 q 5 d u u u u Question 1.4 Prt c - {w w hs even s nd one or two s} First we sk whether

More information

Thoery of Automata CS402

Thoery of Automata CS402 Thoery of Automt C402 Theory of Automt Tle of contents: Lecture N0. 1... 4 ummry... 4 Wht does utomt men?... 4 Introduction to lnguges... 4 Alphets... 4 trings... 4 Defining Lnguges... 5 Lecture N0. 2...

More information

C. C^mpenu, K. Slom, S. Yu upper boun of mn. So our result is tight only for incomplete DF's. For restricte vlues of m n n we present exmples of DF's

C. C^mpenu, K. Slom, S. Yu upper boun of mn. So our result is tight only for incomplete DF's. For restricte vlues of m n n we present exmples of DF's Journl of utomt, Lnguges n Combintorics u (v) w, x{y c OttovonGuerickeUniversitt Mgeburg Tight lower boun for the stte complexity of shue of regulr lnguges Cezr C^mpenu, Ki Slom Computing n Informtion

More information

12.1 Nondeterminism Nondeterministic Finite Automata. a a b ε. CS125 Lecture 12 Fall 2014

12.1 Nondeterminism Nondeterministic Finite Automata. a a b ε. CS125 Lecture 12 Fall 2014 CS125 Lecture 12 Fll 2014 12.1 Nondeterminism The ide of nondeterministic computtions is to llow our lgorithms to mke guesses, nd only require tht they ccept when the guesses re correct. For exmple, simple

More information