Stochastic Structural Dynamics. Lecture-12

Size: px
Start display at page:

Download "Stochastic Structural Dynamics. Lecture-12"

Transcription

1 Sochasic Srucural Dynamics Lecure-1 Random vibraions of sdof sysems-4 Dr C S Manohar Deparmen of Civil Engineering Professor of Srucural Engineering Indian Insiue of Science Bangalore 56 1 India manohar@civil.iisc.erne.in 1

2 Recall In general, for LTI sysems, he knowledge of n h order momen of inpu is adequae o deermine he n h order momen of he response process. Sochasic seady sae Transiens: nonsaionariy Seady sae: saionariy Condiions o be saisfied for exisence of seady sae Sysem is damped Exciaion is saionary

3 Frequency Domain I/O relaions S ff S xx H Sff H 3 3

4 SDOF sysem under saionary random exciaion mx cx kx f x ; x f ; f f R 1 ff 1 x h f d x h f d 4

5 1 x x h ( ) f h ( ) f d d R, h ( ) h ( ) f f d d xx h ( ) h ( ) R, d d ff 1 1 h ( ) h ( ) R d d 1 1 ff 1 1 5

6 Recall XX exp S R i d XX 1 R exp XX SXX i d 1 R ff Sff cosd S ff : Physical PSD 6

7 xx 1, ( ) ( ) R h h R d d ff h ( 11) h ( ) Sff cos1dd1d 1 Sff h( 11) h( )cos1d1d d ff H,, S d 1 7

8 Time dependen frequency response funcion H 1,, ( ) ( )cos h h d d Quesions Wha is he naure of H,,? 1 1 lim H,,? 1 1 Do we recover seady sae I/O relaions? 8

9 Recall 1 h ( ) exp( )sin d m d H,, H [cos 1 1 exp cos sin cos sin sin 1 1 d 1 d 1 d 1 d exp1 cosd sin d cos1 sindsin 1 1 d exp 1cosd1cosd d 1 d 1 d d 1 H,, Time dependen ransfer funcion sin sin sin ] 1 H m 1 9

10 1 1 H lim H,, cos 1 1 lim xx 1 R S H cos d xx S H S ff ff This agrees wih he frequency domain I/O relaion obained earlier direcly using he definiion of PSD funcion. 1

11 xx xs xs S H S Example: S S xx H S d H ff I m ff m ff I ( I / ) Physical psd for whie noise process ( I / ) d 11

12 xs m ( I / ) d Exercise Use residue heorem and evaluae he above inegral and show ha he resul agrees wih he one obained already 1

13 Useful inegrals I H d n H n n n 1 B i B i B i B 1 n1 n A i A i A i A 1 B B n1 H I 1 1 A i A1 AA1 B i B1 AB AB n Hn I A i A i A AAA 1 B ib1i B n3 Hn I 3 3 A i A i A i A 1 3 n 1 1 AA BB B AAB AA AAAA A AB 13

14 Approximaion for broad band exciaions FRF*FRF* psd xs H S d ff psd,frf 1-3 H ff S H d n frequency rad/s 14

15 The approximaion would no be accepable here FRF*FRF* psd 1-3 psd,frf frequency rad/s 15

16 SDOF sysem under non-saionary random exciaion mx cx kx e() f x ; x f ; f f R 1 ff 1 e ( ) Deerminisic modulaing (envelope) funcion x h e( ) f d x h e( ) f d 16

17 1 ( ) ( ) x x h e f h e f d d xx 1, ( ) ( ) R h h e e f f d d h ( ) h ( ) e e R, d d ff 1 1 h ( ) h ( ) e e R d d ff

18 xx 1, ( ) ( ) R h h e e R d d ff h ( 11) h ( ) e1esff cos1dd1d 1 Sff h( 11) h( ) e1ecos1d1d d ff H,, S d 1 1 H,, h ( ) h ( ) e e cos d d H x H, S d, ( ) ( ) cos ff h h e e d d

19 H 1,, ( ) ( ) cos h h e e d d Behavior of H,, for, depends on behavior of e for large imes. 1 1 H Clearly, if lime, lim, No seady sae exiss. 19

20 SDOF sysems under random suppor moions Srucural vibraion during earhquakes Vehicles ravelling on rough roads

21 Vehicle axiing on rough road, a d mu c u y x v.5a ku y x v.5a d wih u() & u () specified. du d mu c ku c y x v.5a ky x v.5a d d f( ) 1

22 mz c z x k z x z z ; z z z z z x x n n n n z z x mz cz kz mx ; z z x z z x z z z x n n z z x Toal displacemen Relaive displacemen Suppor displacemen

23 Seady sae Random vibraion analysis Analysis of oal displacemen z z z x x z z z z n n n n ; ; exp cos sin z A B h x x d d d n n Seady sae 4 S H S S zz n n XX XX PSD of suppor displacemen x 4 z H n n S XX d 3

24 Seady sae Random vibraion analysis Analysis of relaive displacemen z z z x z z x z z x n n ; ; exp cos sin z A B h mx d Seady sae 4 S H m S H m S zz xx xx 4 z H m S d xx d d 4

25 Doubly suppored SDOF sysem under differenial ground moions Wha is relaive displacemen? Toal response=pseudo-dynamic response+dynamic response 5

26 c c k k mz z x z y z x z y x y x y mz c z k z Pseudo-dynamic response x y x y kzps zps Dynamic response x y z z zps z x y mz cz kz m 6

27 Descripion of inpu x & y are zero mean, saionary, Gaussian random processes wih PSD marix S. Sxy S Sxx S Syx yy 1 Sxx lim xt T T 1 * Sxy lim xt yt T T 1 S x y S T Sxy Sxy exp ixy S lim * * xy T T T yx yx Sxy cosxy isinxy * Sxy S cos isin xy xy xy 7

28 Force in he lef spring k F z x k x y z x k z( x y) 4 4F Define g ( ) z( x y) k Quesion Wha is he psd of g ( ) and wha is is variance? 8

29 z z z n n n x y 1 z T H xt yt H xt yt 1 H i n 9

30 S gg 1 T lim g T g z x y T T T T z H x y T T T T S S H S H S H gg xx 1 yy xy 3 3

31 H H H 1 1 n 1 4 n n n n 1 1 n 4 n n n n cos cos 8 sin xy xy n xy 3 4 n n n n H H f f H f g xx 1 yy xy 3 S H S H S H d 31

32 Wha is he role played by H? f / f H f 1 / f 4 f / f An arefac o remove singulariy a = in he suppor displacemen. Typically f 5.5 rad/s;.53 f 4 3

33 H f 1 ransfer funcion frequency rad/s 33

34 I can be shown ha H H H n n 4 n n n n 4 4 n n 1 H & 1 H H f f g xx 1 yy xy 3 S H S H S H d 34

35 Exercise Deermine he naure of S which produce he highes g, he lowes g. Assume ha is specified. XY xy Noe : The opimal soluions are produced neiher by fully coheren nor by incoheren moions. 35

36 Exercise Show ha g ps d c wih 1 ps 4 xx yy xy xy f cos S S S H d 1 d cos Sxx Syy xy Sxy H f d n n 1 c n n wih ps d c nsxx yy 8 sin n xy xy f conribuion from pseudo-dynamic componen conribuion from dynamic componen S S H d conribuion from correlaion beween pseudo-dynamic and dynamic componens 36

37 Large mass concep Can we replace a given sysem wih suppor moions by a modified equivalen sysem in which suppor displacemens as exernal forces? 37

38 x exp i c c k k mz z x z z x z c k 1 mz cz kz x x ic k i lim z H i H exp 1 ick m i c k exp 38

39 x exp i x exp i c k Mu u v u vm expi c c k k mv v u v v u v M u c 1 1u k 1 1u M expi m v 1 v 1 v 39

40 M u.5.5u.5.5u M exp i c k m v.5 1 v.5 1 v u U lim exp v V i U M M i c k V m lim M V H 4

41 FRF sdof M=.5m M=m M=1E4m M=1E6m frequency rad/s 41

42 y lim M M 1 y z Conribuion from rigid body mode=pseudo-dynamic componen Conribuion from he elasic mode=dynamic componen. 4

43 pdf of he response process (inuive arguemen) mx cx kx f (); x() ; x () Le f( ) be a zero mean Gaussian random process x h f d N x h f n1 n n n x ( ) is obained as a sum of Gaussian random variables x () is Gaussian Noe Rigorous proof ha x ( ) is a Gaussian random process is possible using definiion of Gaussian random variables in erms of log-characerisic funcions and cumulans. 43

44 Exercise Consider dx X h X lim d h h Le X ( ) be a zero mean Gaussian random process Le Y X X 1 X h X () X & X1 h h Show ha Y is Gaussian and hence obain p y. Examine he limi of p y as h. Y Y 44

45 pdf of he response process mx cx kx f (); x() ; x () Le f( ) be a zero mean Gaussian random process x ( ) is also a Gaussian random process. 1 1x mx px x; exp ; x x x p xx x x1, x; 1, ~ N ; ~ R p x N 1, 1 xx 1,,, Rxx R Rxx R 1 xx 45

46 Problem of reliabiliy analysis Px, T? n Selec, T such ha i and n T. i i1 i Quesion: can we approximae he given probabiliy by px x dx ; where he inegraion is carried over he x1 x x n? region 46

47 enxwednewerdescripionsofno quie! May be yes, as n. Even if his were o be accepable, we sill need o evaluae a muli-fold inegral (wih dimension = n and se o become large) which by no means is a simple ask. How o proceed? (). 47

Stochastic Structural Dynamics. Lecture-6

Stochastic Structural Dynamics. Lecture-6 Sochasic Srucural Dynamics Lecure-6 Random processes- Dr C S Manohar Deparmen of Civil Engineering Professor of Srucural Engineering Indian Insiue of Science Bangalore 560 0 India manohar@civil.iisc.erne.in

More information

Structural Dynamics and Earthquake Engineering

Structural Dynamics and Earthquake Engineering Srucural Dynamics and Earhquae Engineering Course 1 Inroducion. Single degree of freedom sysems: Equaions of moion, problem saemen, soluion mehods. Course noes are available for download a hp://www.c.up.ro/users/aurelsraan/

More information

Finite element method for structural dynamic and stability analyses

Finite element method for structural dynamic and stability analyses Finie elemen mehod for srucural dynamic and sabiliy analyses Modules- & 3 Finie elemen analysis of dynamics of planar russes and frames. Analysis of equaions of moion. Lecure-7: FE modeling of planar srucures:

More information

Elements of Stochastic Processes Lecture II Hamid R. Rabiee

Elements of Stochastic Processes Lecture II Hamid R. Rabiee Sochasic Processes Elemens of Sochasic Processes Lecure II Hamid R. Rabiee Overview Reading Assignmen Chaper 9 of exbook Furher Resources MIT Open Course Ware S. Karlin and H. M. Taylor, A Firs Course

More information

Stochastic Structural Dynamics. Lecture-35. Probabilistic methods in earthquake engineering-4

Stochastic Structural Dynamics. Lecture-35. Probabilistic methods in earthquake engineering-4 Stochastic Structural Dynamics Lecture-35 Probabilistic methods in earthquake enineerin-4 Dr C S Manohar Department of Civil Enineerin Professor of Structural Enineerin Indian Institute of Science Banalore

More information

5. Response of Linear Time-Invariant Systems to Random Inputs

5. Response of Linear Time-Invariant Systems to Random Inputs Sysem: 5. Response of inear ime-invarian Sysems o Random Inpus 5.. Discree-ime linear ime-invarian (IV) sysems 5... Discree-ime IV sysem IV sysem xn ( ) yn ( ) [ xn ( )] Inpu Signal Sysem S Oupu Signal

More information

Finite element method for structural dynamic and stability analyses

Finite element method for structural dynamic and stability analyses Finie elemen mehod for srucural dynamic and sabiliy analyses Module- Nonlinear FE Models Lecure-39 Toal and updaed Lagrangian formulaions Prof C Manohar Deparmen of Civil Engineering IIc, Bangalore 56

More information

Some Basic Information about M-S-D Systems

Some Basic Information about M-S-D Systems Some Basic Informaion abou M-S-D Sysems 1 Inroducion We wan o give some summary of he facs concerning unforced (homogeneous) and forced (non-homogeneous) models for linear oscillaors governed by second-order,

More information

Program: RFEM 5, RSTAB 8, RF-DYNAM Pro, DYNAM Pro. Category: Isotropic Linear Elasticity, Dynamics, Member

Program: RFEM 5, RSTAB 8, RF-DYNAM Pro, DYNAM Pro. Category: Isotropic Linear Elasticity, Dynamics, Member Verificaion Example Program: RFEM 5, RSTAB 8, RF-DYNAM Pro, DYNAM Pro Caegory: Isoropic Linear Elasiciy, Dynamics, Member Verificaion Example: 0104 Canilever Beam wih Periodic Exciaion 0104 Canilever Beam

More information

Finite Element Analysis of Structures

Finite Element Analysis of Structures KAIT OE5 Finie Elemen Analysis of rucures Mid-erm Exam, Fall 9 (p) m. As shown in Fig., we model a russ srucure of uniform area (lengh, Area Am ) subjeced o a uniform body force ( f B e x N / m ) using

More information

3 General forced response

3 General forced response 3 General forced response So far, all of he driving forces have been sine or cosine exciaions In his chaper we examine he response o any form of exciaion such as Impulse Sums of sines and cosines Any inegrable

More information

Institute for Mathematical Methods in Economics. University of Technology Vienna. Singapore, May Manfred Deistler

Institute for Mathematical Methods in Economics. University of Technology Vienna. Singapore, May Manfred Deistler MULTIVARIATE TIME SERIES ANALYSIS AND FORECASTING Manfred Deisler E O S Economerics and Sysems Theory Insiue for Mahemaical Mehods in Economics Universiy of Technology Vienna Singapore, May 2004 Inroducion

More information

Finite element method for structural dynamic and stability analyses

Finite element method for structural dynamic and stability analyses Finie elemen mehod for srucural dynamic and sabiliy analyses Module-3 Analysis of equaions of moion Lecure-8: FRF-s and Damping models Prof C S Manohar Deparmen of Civil Engineering IISc, Bangalore 56

More information

Physics 127b: Statistical Mechanics. Fokker-Planck Equation. Time Evolution

Physics 127b: Statistical Mechanics. Fokker-Planck Equation. Time Evolution Physics 7b: Saisical Mechanics Fokker-Planck Equaion The Langevin equaion approach o he evoluion of he velociy disribuion for he Brownian paricle migh leave you uncomforable. A more formal reamen of his

More information

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING EXAMINATIONS 2008

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING EXAMINATIONS 2008 [E5] IMPERIAL COLLEGE LONDON DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING EXAMINATIONS 008 EEE/ISE PART II MEng BEng and ACGI SIGNALS AND LINEAR SYSTEMS Time allowed: :00 hours There are FOUR quesions

More information

2 int T. is the Fourier transform of f(t) which is the inverse Fourier transform of f. i t e

2 int T. is the Fourier transform of f(t) which is the inverse Fourier transform of f. i t e PHYS67 Class 3 ourier Transforms In he limi T, he ourier series becomes an inegral ( nt f in T ce f n f f e d, has been replaced by ) where i f e d is he ourier ransform of f() which is he inverse ourier

More information

LAPLACE TRANSFORM AND TRANSFER FUNCTION

LAPLACE TRANSFORM AND TRANSFER FUNCTION CHBE320 LECTURE V LAPLACE TRANSFORM AND TRANSFER FUNCTION Professor Dae Ryook Yang Spring 2018 Dep. of Chemical and Biological Engineering 5-1 Road Map of he Lecure V Laplace Transform and Transfer funcions

More information

Nature Neuroscience: doi: /nn Supplementary Figure 1. Spike-count autocorrelations in time.

Nature Neuroscience: doi: /nn Supplementary Figure 1. Spike-count autocorrelations in time. Supplemenary Figure 1 Spike-coun auocorrelaions in ime. Normalized auocorrelaion marices are shown for each area in a daase. The marix shows he mean correlaion of he spike coun in each ime bin wih he spike

More information

Linear Surface Gravity Waves 3., Dispersion, Group Velocity, and Energy Propagation

Linear Surface Gravity Waves 3., Dispersion, Group Velocity, and Energy Propagation Chaper 4 Linear Surface Graviy Waves 3., Dispersion, Group Velociy, and Energy Propagaion 4. Descripion In many aspecs of wave evoluion, he concep of group velociy plays a cenral role. Mos people now i

More information

where the coordinate X (t) describes the system motion. X has its origin at the system static equilibrium position (SEP).

where the coordinate X (t) describes the system motion. X has its origin at the system static equilibrium position (SEP). Appendix A: Conservaion of Mechanical Energy = Conservaion of Linear Momenum Consider he moion of a nd order mechanical sysem comprised of he fundamenal mechanical elemens: ineria or mass (M), siffness

More information

( ) ( ) if t = t. It must satisfy the identity. So, bulkiness of the unit impulse (hyper)function is equal to 1. The defining characteristic is

( ) ( ) if t = t. It must satisfy the identity. So, bulkiness of the unit impulse (hyper)function is equal to 1. The defining characteristic is UNIT IMPULSE RESPONSE, UNIT STEP RESPONSE, STABILITY. Uni impulse funcion (Dirac dela funcion, dela funcion) rigorously defined is no sricly a funcion, bu disribuion (or measure), precise reamen requires

More information

Homework 10 (Stats 620, Winter 2017) Due Tuesday April 18, in class Questions are derived from problems in Stochastic Processes by S. Ross.

Homework 10 (Stats 620, Winter 2017) Due Tuesday April 18, in class Questions are derived from problems in Stochastic Processes by S. Ross. Homework (Sas 6, Winer 7 Due Tuesday April 8, in class Quesions are derived from problems in Sochasic Processes by S. Ross.. A sochasic process {X(, } is said o be saionary if X(,..., X( n has he same

More information

14 Autoregressive Moving Average Models

14 Autoregressive Moving Average Models 14 Auoregressive Moving Average Models In his chaper an imporan parameric family of saionary ime series is inroduced, he family of he auoregressive moving average, or ARMA, processes. For a large class

More information

ψ ( t) = c n ( t) t n ( )ψ( ) t ku t,t 0 ψ I V kn

ψ ( t) = c n ( t) t n ( )ψ( ) t ku t,t 0 ψ I V kn MIT Deparmen of Chemisry 5.74, Spring 4: Inroducory Quanum Mechanics II p. 33 Insrucor: Prof. Andrei Tokmakoff PERTURBATION THEORY Given a Hamilonian H ( ) = H + V ( ) where we know he eigenkes for H H

More information

Electrical Circuits. 1. Circuit Laws. Tools Used in Lab 13 Series Circuits Damped Vibrations: Energy Van der Pol Circuit

Electrical Circuits. 1. Circuit Laws. Tools Used in Lab 13 Series Circuits Damped Vibrations: Energy Van der Pol Circuit V() R L C 513 Elecrical Circuis Tools Used in Lab 13 Series Circuis Damped Vibraions: Energy Van der Pol Circui A series circui wih an inducor, resisor, and capacior can be represened by Lq + Rq + 1, a

More information

( ) = b n ( t) n " (2.111) or a system with many states to be considered, solving these equations isn t. = k U I ( t,t 0 )! ( t 0 ) (2.

( ) = b n ( t) n  (2.111) or a system with many states to be considered, solving these equations isn t. = k U I ( t,t 0 )! ( t 0 ) (2. Andrei Tokmakoff, MIT Deparmen of Chemisry, 3/14/007-6.4 PERTURBATION THEORY Given a Hamilonian H = H 0 + V where we know he eigenkes for H 0 : H 0 n = E n n, we can calculae he evoluion of he wavefuncion

More information

Math Final Exam Solutions

Math Final Exam Solutions Mah 246 - Final Exam Soluions Friday, July h, 204 () Find explici soluions and give he inerval of definiion o he following iniial value problems (a) ( + 2 )y + 2y = e, y(0) = 0 Soluion: In normal form,

More information

f t te e = possesses a Laplace transform. Exercises for Module-III (Transform Calculus)

f t te e = possesses a Laplace transform. Exercises for Module-III (Transform Calculus) Exercises for Module-III (Transform Calculus) ) Discuss he piecewise coninuiy of he following funcions: =,, +, > c) e,, = d) sin,, = ) Show ha he funcion ( ) sin ( ) f e e = possesses a Laplace ransform.

More information

10. State Space Methods

10. State Space Methods . Sae Space Mehods. Inroducion Sae space modelling was briefly inroduced in chaper. Here more coverage is provided of sae space mehods before some of heir uses in conrol sysem design are covered in he

More information

Voltage/current relationship Stored Energy. RL / RC circuits Steady State / Transient response Natural / Step response

Voltage/current relationship Stored Energy. RL / RC circuits Steady State / Transient response Natural / Step response Review Capaciors/Inducors Volage/curren relaionship Sored Energy s Order Circuis RL / RC circuis Seady Sae / Transien response Naural / Sep response EE4 Summer 5: Lecure 5 Insrucor: Ocavian Florescu Lecure

More information

Cumulative Damage Evaluation based on Energy Balance Equation

Cumulative Damage Evaluation based on Energy Balance Equation Cumulaive Damage Evaluaion based on Energy Balance Equaion K. Minagawa Saiama Insiue of Technology, Saiama S. Fujia Tokyo Denki Universiy, Tokyo! SUMMARY: This paper describes an evaluaion mehod for cumulaive

More information

ψ ( t) = c n ( t ) n

ψ ( t) = c n ( t ) n p. 31 PERTURBATION THEORY Given a Hamilonian H ( ) = H + V( ) where we know he eigenkes for H H n = En n we ofen wan o calculae changes in he ampliudes of n induced by V( ) : where ψ ( ) = c n ( ) n n

More information

INDEX. Transient analysis 1 Initial Conditions 1

INDEX. Transient analysis 1 Initial Conditions 1 INDEX Secion Page Transien analysis 1 Iniial Condiions 1 Please inform me of your opinion of he relaive emphasis of he review maerial by simply making commens on his page and sending i o me a: Frank Mera

More information

On a Fractional Stochastic Landau-Ginzburg Equation

On a Fractional Stochastic Landau-Ginzburg Equation Applied Mahemaical Sciences, Vol. 4, 1, no. 7, 317-35 On a Fracional Sochasic Landau-Ginzburg Equaion Nguyen Tien Dung Deparmen of Mahemaics, FPT Universiy 15B Pham Hung Sree, Hanoi, Vienam dungn@fp.edu.vn

More information

The expectation value of the field operator.

The expectation value of the field operator. The expecaion value of he field operaor. Dan Solomon Universiy of Illinois Chicago, IL dsolom@uic.edu June, 04 Absrac. Much of he mahemaical developmen of quanum field heory has been in suppor of deermining

More information

ψ(t) = V x (0)V x (t)

ψ(t) = V x (0)V x (t) .93 Home Work Se No. (Professor Sow-Hsin Chen Spring Term 5. Due March 7, 5. This problem concerns calculaions of analyical expressions for he self-inermediae scaering funcion (ISF of he es paricle in

More information

Unsteady Mass- Transfer Models

Unsteady Mass- Transfer Models See T&K Chaper 9 Unseady Mass- Transfer Models ChEn 6603 Wednesday, April 4, Ouline Conex for he discussion Soluion for ransien binary diffusion wih consan c, N. Soluion for mulicomponen diffusion wih

More information

Solutions to Assignment 1

Solutions to Assignment 1 MA 2326 Differenial Equaions Insrucor: Peronela Radu Friday, February 8, 203 Soluions o Assignmen. Find he general soluions of he following ODEs: (a) 2 x = an x Soluion: I is a separable equaion as we

More information

HOMEWORK # 2: MATH 211, SPRING Note: This is the last solution set where I will describe the MATLAB I used to make my pictures.

HOMEWORK # 2: MATH 211, SPRING Note: This is the last solution set where I will describe the MATLAB I used to make my pictures. HOMEWORK # 2: MATH 2, SPRING 25 TJ HITCHMAN Noe: This is he las soluion se where I will describe he MATLAB I used o make my picures.. Exercises from he ex.. Chaper 2.. Problem 6. We are o show ha y() =

More information

Vehicle Arrival Models : Headway

Vehicle Arrival Models : Headway Chaper 12 Vehicle Arrival Models : Headway 12.1 Inroducion Modelling arrival of vehicle a secion of road is an imporan sep in raffic flow modelling. I has imporan applicaion in raffic flow simulaion where

More information

CHBE320 LECTURE IV MATHEMATICAL MODELING OF CHEMICAL PROCESS. Professor Dae Ryook Yang

CHBE320 LECTURE IV MATHEMATICAL MODELING OF CHEMICAL PROCESS. Professor Dae Ryook Yang CHBE320 LECTURE IV MATHEMATICAL MODELING OF CHEMICAL PROCESS Professor Dae Ryook Yang Spring 208 Dep. of Chemical and Biological Engineering CHBE320 Process Dynamics and Conrol 4- Road Map of he Lecure

More information

Linear Quadratic Regulator (LQR) - State Feedback Design

Linear Quadratic Regulator (LQR) - State Feedback Design Linear Quadrai Regulaor (LQR) - Sae Feedbak Design A sysem is expressed in sae variable form as x = Ax + Bu n m wih x( ) R, u( ) R and he iniial ondiion x() = x A he sabilizaion problem using sae variable

More information

2 Some Property of Exponential Map of Matrix

2 Some Property of Exponential Map of Matrix Soluion Se for Exercise Session No8 Course: Mahemaical Aspecs of Symmeries in Physics, ICFP Maser Program for M 22nd, January 205, a Room 235A Lecure by Amir-Kian Kashani-Poor email: kashani@lpensfr Exercise

More information

Simulation-Solving Dynamic Models ABE 5646 Week 2, Spring 2010

Simulation-Solving Dynamic Models ABE 5646 Week 2, Spring 2010 Simulaion-Solving Dynamic Models ABE 5646 Week 2, Spring 2010 Week Descripion Reading Maerial 2 Compuer Simulaion of Dynamic Models Finie Difference, coninuous saes, discree ime Simple Mehods Euler Trapezoid

More information

Lecture 20: Riccati Equations and Least Squares Feedback Control

Lecture 20: Riccati Equations and Least Squares Feedback Control 34-5 LINEAR SYSTEMS Lecure : Riccai Equaions and Leas Squares Feedback Conrol 5.6.4 Sae Feedback via Riccai Equaions A recursive approach in generaing he marix-valued funcion W ( ) equaion for i for he

More information

Section 3.8, Mechanical and Electrical Vibrations

Section 3.8, Mechanical and Electrical Vibrations Secion 3.8, Mechanical and Elecrical Vibraions Mechanical Unis in he U.S. Cusomary and Meric Sysems Disance Mass Time Force g (Earh) Uni U.S. Cusomary MKS Sysem CGS Sysem fee f slugs seconds sec pounds

More information

Relaxation. T1 Values. Longitudinal Relaxation. dm z dt. = " M z T 1. (1" e "t /T 1 ) M z. (t) = M 0

Relaxation. T1 Values. Longitudinal Relaxation. dm z dt. =  M z T 1. (1 e t /T 1 ) M z. (t) = M 0 Relaxaion Bioengineering 28A Principles of Biomedical Imaging Fall Quarer 21 MRI Lecure 2 An exciaion pulse roaes he magneiaion vecor away from is equilibrium sae (purely longiudinal). The resuling vecor

More information

Chapter #1 EEE8013 EEE3001. Linear Controller Design and State Space Analysis

Chapter #1 EEE8013 EEE3001. Linear Controller Design and State Space Analysis Chaper EEE83 EEE3 Chaper # EEE83 EEE3 Linear Conroller Design and Sae Space Analysis Ordinary Differenial Equaions.... Inroducion.... Firs Order ODEs... 3. Second Order ODEs... 7 3. General Maerial...

More information

Let us start with a two dimensional case. We consider a vector ( x,

Let us start with a two dimensional case. We consider a vector ( x, Roaion marices We consider now roaion marices in wo and hree dimensions. We sar wih wo dimensions since wo dimensions are easier han hree o undersand, and one dimension is a lile oo simple. However, our

More information

Lecture 13 RC/RL Circuits, Time Dependent Op Amp Circuits

Lecture 13 RC/RL Circuits, Time Dependent Op Amp Circuits Lecure 13 RC/RL Circuis, Time Dependen Op Amp Circuis RL Circuis The seps involved in solving simple circuis conaining dc sources, resisances, and one energy-sorage elemen (inducance or capaciance) are:

More information

GEM4 Summer School OpenCourseWare

GEM4 Summer School OpenCourseWare GEM4 Summer School OpenCourseWare hp://gem4.educommons.ne/ hp://www.gem4.org/ Lecure: Thermal Forces and Brownian Moion by Ju Li. Given Augus 11, 2006 during he GEM4 session a MIT in Cambridge, MA. Please

More information

Fractional Method of Characteristics for Fractional Partial Differential Equations

Fractional Method of Characteristics for Fractional Partial Differential Equations Fracional Mehod of Characerisics for Fracional Parial Differenial Equaions Guo-cheng Wu* Modern Teile Insiue, Donghua Universiy, 188 Yan-an ilu Road, Shanghai 51, PR China Absrac The mehod of characerisics

More information

d 1 = c 1 b 2 - b 1 c 2 d 2 = c 1 b 3 - b 1 c 3

d 1 = c 1 b 2 - b 1 c 2 d 2 = c 1 b 3 - b 1 c 3 and d = c b - b c c d = c b - b c c This process is coninued unil he nh row has been compleed. The complee array of coefficiens is riangular. Noe ha in developing he array an enire row may be divided or

More information

Summary of shear rate kinematics (part 1)

Summary of shear rate kinematics (part 1) InroToMaFuncions.pdf 4 CM465 To proceed o beer-designed consiuive equaions, we need o know more abou maerial behavior, i.e. we need more maerial funcions o predic, and we need measuremens of hese maerial

More information

Problem Set on Differential Equations

Problem Set on Differential Equations Problem Se on Differenial Equaions 1. Solve he following differenial equaions (a) x () = e x (), x () = 3/ 4. (b) x () = e x (), x (1) =. (c) xe () = + (1 x ()) e, x () =.. (An asse marke model). Le p()

More information

Dynamic Effects of Feedback Control!

Dynamic Effects of Feedback Control! Dynamic Effecs of Feedback Conrol! Rober Sengel! Roboics and Inelligen Sysems MAE 345, Princeon Universiy, 2017 Inner, Middle, and Ouer Feedback Conrol Loops Sep Response of Linear, Time- Invarian (LTI)

More information

Chapter #1 EEE8013 EEE3001. Linear Controller Design and State Space Analysis

Chapter #1 EEE8013 EEE3001. Linear Controller Design and State Space Analysis Chaper EEE83 EEE3 Chaper # EEE83 EEE3 Linear Conroller Design and Sae Space Analysis Ordinary Differenial Equaions.... Inroducion.... Firs Order ODEs... 3. Second Order ODEs... 7 3. General Maerial...

More information

Finite element method for structural dynamic and stability analyses

Finite element method for structural dynamic and stability analyses Finie elemen mehod for srucural dynamic and sabiliy analyses Module- Approximae mehods and FEM Lecure- Equaions of moion using Hamilon s principle Prof C S Manohar Deparmen of Civil Engineering IISc, Bangalore

More information

Lecture 9: Advanced DFT concepts: The Exchange-correlation functional and time-dependent DFT

Lecture 9: Advanced DFT concepts: The Exchange-correlation functional and time-dependent DFT Lecure 9: Advanced DFT conceps: The Exchange-correlaion funcional and ime-dependen DFT Marie Curie Tuorial Series: Modeling Biomolecules December 6-11, 2004 Mark Tuckerman Dep. of Chemisry and Couran Insiue

More information

Math 23 Spring Differential Equations. Final Exam Due Date: Tuesday, June 6, 5pm

Math 23 Spring Differential Equations. Final Exam Due Date: Tuesday, June 6, 5pm Mah Spring 6 Differenial Equaions Final Exam Due Dae: Tuesday, June 6, 5pm Your name (please prin): Insrucions: This is an open book, open noes exam. You are free o use a calculaor or compuer o check your

More information

6. Stochastic calculus with jump processes

6. Stochastic calculus with jump processes A) Trading sraegies (1/3) Marke wih d asses S = (S 1,, S d ) A rading sraegy can be modelled wih a vecor φ describing he quaniies invesed in each asse a each insan : φ = (φ 1,, φ d ) The value a of a porfolio

More information

Inventory Analysis and Management. Multi-Period Stochastic Models: Optimality of (s, S) Policy for K-Convex Objective Functions

Inventory Analysis and Management. Multi-Period Stochastic Models: Optimality of (s, S) Policy for K-Convex Objective Functions Muli-Period Sochasic Models: Opimali of (s, S) Polic for -Convex Objecive Funcions Consider a seing similar o he N-sage newsvendor problem excep ha now here is a fixed re-ordering cos (> 0) for each (re-)order.

More information

KEY. Math 334 Midterm III Winter 2008 section 002 Instructor: Scott Glasgow

KEY. Math 334 Midterm III Winter 2008 section 002 Instructor: Scott Glasgow KEY Mah 334 Miderm III Winer 008 secion 00 Insrucor: Sco Glasgow Please do NOT wrie on his exam. No credi will be given for such work. Raher wrie in a blue book, or on your own paper, preferably engineering

More information

Lecture 2-1 Kinematics in One Dimension Displacement, Velocity and Acceleration Everything in the world is moving. Nothing stays still.

Lecture 2-1 Kinematics in One Dimension Displacement, Velocity and Acceleration Everything in the world is moving. Nothing stays still. Lecure - Kinemaics in One Dimension Displacemen, Velociy and Acceleraion Everyhing in he world is moving. Nohing says sill. Moion occurs a all scales of he universe, saring from he moion of elecrons in

More information

Lars Nesheim. 17 January Last lecture solved the consumer choice problem.

Lars Nesheim. 17 January Last lecture solved the consumer choice problem. Lecure 4 Locaional Equilibrium Coninued Lars Nesheim 17 January 28 1 Inroducory remarks Las lecure solved he consumer choice problem. Compued condiional demand funcions: C (I x; p; r (x)) and x; p; r (x))

More information

An Introduction to Backward Stochastic Differential Equations (BSDEs) PIMS Summer School 2016 in Mathematical Finance.

An Introduction to Backward Stochastic Differential Equations (BSDEs) PIMS Summer School 2016 in Mathematical Finance. 1 An Inroducion o Backward Sochasic Differenial Equaions (BSDEs) PIMS Summer School 2016 in Mahemaical Finance June 25, 2016 Chrisoph Frei cfrei@ualbera.ca This inroducion is based on Touzi [14], Bouchard

More information

EECE 301 Signals & Systems Prof. Mark Fowler

EECE 301 Signals & Systems Prof. Mark Fowler EECE 31 Signals & Sysems Prof. Mark Fowler Noe Se #1 C-T Sysems: Convoluion Represenaion Reading Assignmen: Secion 2.6 of Kamen and Heck 1/11 Course Flow Diagram The arrows here show concepual flow beween

More information

u(x) = e x 2 y + 2 ) Integrate and solve for x (1 + x)y + y = cos x Answer: Divide both sides by 1 + x and solve for y. y = x y + cos x

u(x) = e x 2 y + 2 ) Integrate and solve for x (1 + x)y + y = cos x Answer: Divide both sides by 1 + x and solve for y. y = x y + cos x . 1 Mah 211 Homework #3 February 2, 2001 2.4.3. y + (2/x)y = (cos x)/x 2 Answer: Compare y + (2/x) y = (cos x)/x 2 wih y = a(x)x + f(x)and noe ha a(x) = 2/x. Consequenly, an inegraing facor is found wih

More information

Stochastic Model for Cancer Cell Growth through Single Forward Mutation

Stochastic Model for Cancer Cell Growth through Single Forward Mutation Journal of Modern Applied Saisical Mehods Volume 16 Issue 1 Aricle 31 5-1-2017 Sochasic Model for Cancer Cell Growh hrough Single Forward Muaion Jayabharahiraj Jayabalan Pondicherry Universiy, jayabharahi8@gmail.com

More information

Block Diagram of a DCS in 411

Block Diagram of a DCS in 411 Informaion source Forma A/D From oher sources Pulse modu. Muliplex Bandpass modu. X M h: channel impulse response m i g i s i Digial inpu Digial oupu iming and synchronizaion Digial baseband/ bandpass

More information

Optimal Path Planning for Flexible Redundant Robot Manipulators

Optimal Path Planning for Flexible Redundant Robot Manipulators 25 WSEAS In. Conf. on DYNAMICAL SYSEMS and CONROL, Venice, Ialy, November 2-4, 25 (pp363-368) Opimal Pah Planning for Flexible Redundan Robo Manipulaors H. HOMAEI, M. KESHMIRI Deparmen of Mechanical Engineering

More information

R.#W.#Erickson# Department#of#Electrical,#Computer,#and#Energy#Engineering# University#of#Colorado,#Boulder#

R.#W.#Erickson# Department#of#Electrical,#Computer,#and#Energy#Engineering# University#of#Colorado,#Boulder# .#W.#Erickson# Deparmen#of#Elecrical,#Compuer,#and#Energy#Engineering# Universiy#of#Colorado,#Boulder# Chaper 2 Principles of Seady-Sae Converer Analysis 2.1. Inroducion 2.2. Inducor vol-second balance,

More information

KEY. Math 334 Midterm III Fall 2008 sections 001 and 003 Instructor: Scott Glasgow

KEY. Math 334 Midterm III Fall 2008 sections 001 and 003 Instructor: Scott Glasgow KEY Mah 334 Miderm III Fall 28 secions and 3 Insrucor: Sco Glasgow Please do NOT wrie on his exam. No credi will be given for such work. Raher wrie in a blue book, or on your own paper, preferably engineering

More information

MTH Feburary 2012 Final term PAPER SOLVED TODAY s Paper

MTH Feburary 2012 Final term PAPER SOLVED TODAY s Paper MTH401 7 Feburary 01 Final erm PAPER SOLVED TODAY s Paper Toal Quesion: 5 Mcqz: 40 Subjecive quesion: 1 4 q of 5 marks 4 q of 3 marks 4 q of marks Guidelines: Prepare his file as I included all pas papers

More information

Signals and Systems Linear Time-Invariant (LTI) Systems

Signals and Systems Linear Time-Invariant (LTI) Systems Signals and Sysems Linear Time-Invarian (LTI) Sysems Chang-Su Kim Discree-Time LTI Sysems Represening Signals in Terms of Impulses Sifing propery 0 x[ n] x[ k] [ n k] k x[ 2] [ n 2] x[ 1] [ n1] x[0] [

More information

Sensors, Signals and Noise

Sensors, Signals and Noise Sensors, Signals and Noise COURSE OUTLINE Inroducion Signals and Noise: 1) Descripion Filering Sensors and associaed elecronics rv 2017/02/08 1 Noise Descripion Noise Waveforms and Samples Saisics of Noise

More information

Announcements: Warm-up Exercise:

Announcements: Warm-up Exercise: Fri Apr 13 7.1 Sysems of differenial equaions - o model muli-componen sysems via comparmenal analysis hp//en.wikipedia.org/wiki/muli-comparmen_model Announcemens Warm-up Exercise Here's a relaively simple

More information

Robotics I. April 11, The kinematics of a 3R spatial robot is specified by the Denavit-Hartenberg parameters in Tab. 1.

Robotics I. April 11, The kinematics of a 3R spatial robot is specified by the Denavit-Hartenberg parameters in Tab. 1. Roboics I April 11, 017 Exercise 1 he kinemaics of a 3R spaial robo is specified by he Denavi-Harenberg parameers in ab 1 i α i d i a i θ i 1 π/ L 1 0 1 0 0 L 3 0 0 L 3 3 able 1: able of DH parameers of

More information

MATH 4330/5330, Fourier Analysis Section 6, Proof of Fourier s Theorem for Pointwise Convergence

MATH 4330/5330, Fourier Analysis Section 6, Proof of Fourier s Theorem for Pointwise Convergence MATH 433/533, Fourier Analysis Secion 6, Proof of Fourier s Theorem for Poinwise Convergence Firs, some commens abou inegraing periodic funcions. If g is a periodic funcion, g(x + ) g(x) for all real x,

More information

MA 214 Calculus IV (Spring 2016) Section 2. Homework Assignment 1 Solutions

MA 214 Calculus IV (Spring 2016) Section 2. Homework Assignment 1 Solutions MA 14 Calculus IV (Spring 016) Secion Homework Assignmen 1 Soluions 1 Boyce and DiPrima, p 40, Problem 10 (c) Soluion: In sandard form he given firs-order linear ODE is: An inegraing facor is given by

More information

OBJECTIVES OF TIME SERIES ANALYSIS

OBJECTIVES OF TIME SERIES ANALYSIS OBJECTIVES OF TIME SERIES ANALYSIS Undersanding he dynamic or imedependen srucure of he observaions of a single series (univariae analysis) Forecasing of fuure observaions Asceraining he leading, lagging

More information

Application of variational iteration method for solving the nonlinear generalized Ito system

Application of variational iteration method for solving the nonlinear generalized Ito system Applicaion of variaional ieraion mehod for solving he nonlinear generalized Io sysem A.M. Kawala *; Hassan A. Zedan ** *Deparmen of Mahemaics, Faculy of Science, Helwan Universiy, Cairo, Egyp **Deparmen

More information

Differential Equations

Differential Equations Mah 21 (Fall 29) Differenial Equaions Soluion #3 1. Find he paricular soluion of he following differenial equaion by variaion of parameer (a) y + y = csc (b) 2 y + y y = ln, > Soluion: (a) The corresponding

More information

An Introduction to Malliavin calculus and its applications

An Introduction to Malliavin calculus and its applications An Inroducion o Malliavin calculus and is applicaions Lecure 5: Smoohness of he densiy and Hörmander s heorem David Nualar Deparmen of Mahemaics Kansas Universiy Universiy of Wyoming Summer School 214

More information

Diebold, Chapter 7. Francis X. Diebold, Elements of Forecasting, 4th Edition (Mason, Ohio: Cengage Learning, 2006). Chapter 7. Characterizing Cycles

Diebold, Chapter 7. Francis X. Diebold, Elements of Forecasting, 4th Edition (Mason, Ohio: Cengage Learning, 2006). Chapter 7. Characterizing Cycles Diebold, Chaper 7 Francis X. Diebold, Elemens of Forecasing, 4h Ediion (Mason, Ohio: Cengage Learning, 006). Chaper 7. Characerizing Cycles Afer compleing his reading you should be able o: Define covariance

More information

4.6 One Dimensional Kinematics and Integration

4.6 One Dimensional Kinematics and Integration 4.6 One Dimensional Kinemaics and Inegraion When he acceleraion a( of an objec is a non-consan funcion of ime, we would like o deermine he ime dependence of he posiion funcion x( and he x -componen of

More information

EECS 2602 Winter Laboratory 3 Fourier series, Fourier transform and Bode Plots in MATLAB

EECS 2602 Winter Laboratory 3 Fourier series, Fourier transform and Bode Plots in MATLAB EECS 6 Winer 7 Laboraory 3 Fourier series, Fourier ransform and Bode Plos in MATLAB Inroducion: The objecives of his lab are o use MATLAB:. To plo periodic signals wih Fourier series represenaion. To obain

More information

LECTURE 1: GENERALIZED RAY KNIGHT THEOREM FOR FINITE MARKOV CHAINS

LECTURE 1: GENERALIZED RAY KNIGHT THEOREM FOR FINITE MARKOV CHAINS LECTURE : GENERALIZED RAY KNIGHT THEOREM FOR FINITE MARKOV CHAINS We will work wih a coninuous ime reversible Markov chain X on a finie conneced sae space, wih generaor Lf(x = y q x,yf(y. (Recall ha q

More information

2.4 Cuk converter example

2.4 Cuk converter example 2.4 Cuk converer example C 1 Cuk converer, wih ideal swich i 1 i v 1 2 1 2 C 2 v 2 Cuk converer: pracical realizaion using MOSFET and diode C 1 i 1 i v 1 2 Q 1 D 1 C 2 v 2 28 Analysis sraegy This converer

More information

20. Applications of the Genetic-Drift Model

20. Applications of the Genetic-Drift Model 0. Applicaions of he Geneic-Drif Model 1) Deermining he probabiliy of forming any paricular combinaion of genoypes in he nex generaion: Example: If he parenal allele frequencies are p 0 = 0.35 and q 0

More information

Wall. x(t) f(t) x(t = 0) = x 0, t=0. which describes the motion of the mass in absence of any external forcing.

Wall. x(t) f(t) x(t = 0) = x 0, t=0. which describes the motion of the mass in absence of any external forcing. MECHANICS APPLICATIONS OF SECOND-ORDER ODES 7 Mechanics applicaions of second-order ODEs Second-order linear ODEs wih consan coefficiens arise in many physical applicaions. One physical sysems whose behaviour

More information

Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation

Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation Course Noes for EE7C Spring 018: Convex Opimizaion and Approximaion Insrucor: Moriz Hard Email: hard+ee7c@berkeley.edu Graduae Insrucor: Max Simchowiz Email: msimchow+ee7c@berkeley.edu Ocober 15, 018 3

More information

Calculus and Seismic Analysis November Ken Mark Bechtel Project Manager

Calculus and Seismic Analysis November Ken Mark Bechtel Project Manager Calculus and Seismic Analysis November 2007 Ken Mark Bechel Projec Manager BART Today 5 Lines 104 Miles Underground 37 Miles Aerial 23 Miles Surface 44 Miles 43 Saions 330,000 Daily Ridership 150,000 Daily

More information

Linear Response Theory: The connection between QFT and experiments

Linear Response Theory: The connection between QFT and experiments Phys540.nb 39 3 Linear Response Theory: The connecion beween QFT and experimens 3.1. Basic conceps and ideas Q: How do we measure he conduciviy of a meal? A: we firs inroduce a weak elecric field E, and

More information

Chapter 6. Systems of First Order Linear Differential Equations

Chapter 6. Systems of First Order Linear Differential Equations Chaper 6 Sysems of Firs Order Linear Differenial Equaions We will only discuss firs order sysems However higher order sysems may be made ino firs order sysems by a rick shown below We will have a sligh

More information

EECE 301 Signals & Systems Prof. Mark Fowler

EECE 301 Signals & Systems Prof. Mark Fowler EECE 3 Signals & Sysems Prof. Mark Fowler Noe Se #2 Wha are Coninuous-Time Signals??? Reading Assignmen: Secion. of Kamen and Heck /22 Course Flow Diagram The arrows here show concepual flow beween ideas.

More information

f(s)dw Solution 1. Approximate f by piece-wise constant left-continuous non-random functions f n such that (f(s) f n (s)) 2 ds 0.

f(s)dw Solution 1. Approximate f by piece-wise constant left-continuous non-random functions f n such that (f(s) f n (s)) 2 ds 0. Advanced Financial Models Example shee 3 - Michaelmas 217 Michael Tehranchi Problem 1. Le f : [, R be a coninuous (non-random funcion and W a Brownian moion, and le σ 2 = f(s 2 ds and assume σ 2

More information

AP CALCULUS AB 2003 SCORING GUIDELINES (Form B)

AP CALCULUS AB 2003 SCORING GUIDELINES (Form B) SCORING GUIDELINES (Form B) Quesion A blood vessel is 6 millimeers (mm) long Disance wih circular cross secions of varying diameer. x (mm) 6 8 4 6 Diameer The able above gives he measuremens of he B(x)

More information

dt = C exp (3 ln t 4 ). t 4 W = C exp ( ln(4 t) 3) = C(4 t) 3.

dt = C exp (3 ln t 4 ). t 4 W = C exp ( ln(4 t) 3) = C(4 t) 3. Mah Rahman Exam Review Soluions () Consider he IVP: ( 4)y 3y + 4y = ; y(3) = 0, y (3) =. (a) Please deermine he longes inerval for which he IVP is guaraneed o have a unique soluion. Soluion: The disconinuiies

More information

Chapter 2. First Order Scalar Equations

Chapter 2. First Order Scalar Equations Chaper. Firs Order Scalar Equaions We sar our sudy of differenial equaions in he same way he pioneers in his field did. We show paricular echniques o solve paricular ypes of firs order differenial equaions.

More information