Lars Nesheim. 17 January Last lecture solved the consumer choice problem.

Size: px
Start display at page:

Download "Lars Nesheim. 17 January Last lecture solved the consumer choice problem."

Transcription

1 Lecure 4 Locaional Equilibrium Coninued Lars Nesheim 17 January 28 1 Inroducory remarks Las lecure solved he consumer choice problem. Compued condiional demand funcions: C (I x; p; r (x)) and x; p; r (x)) : Also, derived expression for opimal locaion L (I x; p; r (x)) = Also, compued uiliy as a funcion of locaion: L (C ; L ; ; x) = u (C (x) ; L (x)) Use hese o sudy locaional equilibrium De niion of locaional equilibrium 1. All consumers maximise uiliy. 2. Locaional equilibrium (a) No one wans o move. (b) Land goes o highes bidder. 3. Equilibrium in land marke. 1

2 1.1 Equilibrium condiion 1: consumer s opimise 1. This deermines consumer demand for C and L and consumer locaion choice. 2. Condiional demand funcions. If a consumer chooses locaion x; hen his demand for C and L condiional on ha choice of x can be expressed as: C (p; r (x) ; I x) and L (p; r (x) ; I x) 3. These are called condiional demand funcions, because hey express he demand condiional on choice of locaion. 4. Given he condiional demand funcions, he consumer s locaion choice sasi es x; p; r (x) + = : (a) Each person chooses opimal locaion x so ha marginal cos of moving equals marginal bene. (b) This deermines consumer s opimal locaion choice x : (c) This does no deermine r (x) : Need addiional condiions o deermine r (x) : 2 Equilibrium condiion 2: locaional equilibrium 1. Locaional equilibrium condiion. (a) In equilibrium, no one wans o move. (b) An equilibrium ren funcion sais es he condiion ha no one wans o move. 2. Implicaions. (a) N idenical people. 2

3 (b) If all idenical, and none wan o move, hen all locaions ha are inhabied mus yield he same uiliy. Oherwise, if some live a locaion 1 and some live a locaion 2 bu locaion 1 provides lower uiliy, hen all he people a locaion 1 would wan o move o locaion 2. (c) In an equilibrium in which all people are idenical and some people live a all locaions x x B, all locaions x x B yield idenical uiliy. (d) People spread ou across locaions x x B. (e) For his o be rue, i mus be he case ha (1) holds a every locaion x x B. This means = x; p; r (x)) for all x 2 [; x B] : (f) Locaional equilibrium condiion resuls in a condiion on he slope of he ren funcion. (g) x B is he boundary of he ciy. The value of x B is ye o be deermined. 3. Equilibrium condiion is a di erenial = x; p; r (x)) : (2) (a) Under sandard condiions, a soluion exiss. calculaed using a compuer. Usually mus be (b) The slope of he ren funcion depends on ranspor coss and on he demand for land. i. If ranpor coss are high, he slope will be seep. ii. If demand for land is low, he slope will be seep. 4. Le r be he ren a he cenre. A soluion o (2) will be of he form r (x; r ) = r + = r Z x Z x ds s; p; r (s; r )) ds:

4 This equaion saes ha he ren a a locaion x is equal o he ren a he cenre plus he change in ren beween and x: Because he change in ren is negaive, r (x) < r for all x: The ren funcion will depend on r. The variable s is a dummy inegraion variable ha akes on values beween and x: 5. Furher implicaion of locaional equilibrium. (a) Recall ha x B is he boundary of he ciy. (b) Locaional equilibrium implies ha he level of ren a he boundary equals r A : Why? (c) Since he urban boundary is x B : The ren a he boundary mus saisfy r (x B ) = r A : r A = r Zx B s; p; r (s; r )) ds: 6. In hese equaions, p, ; I and r A are known parameers whose values are xed ouside he model. The funcion L is a known funcion derived from he soluion of he consumer s maximisaion problem. The variable r is an unknown variable whose value is o be deermined in equilibrium. Once r is known, he funcion r (x; r ) can be calculaed using a compuer. In his class we will ask qualiaive quesions like: 1) How do changes in (p; ; I; r A ; N) a ec r (x) and r? 2) Given values for (p; ; I; r A ; N) ; wha is he welfare ha consumers obain? 2.1 Wha we have so far. 1. Locaional equilibrium among = : x;p;r(x)) (b) r = r (x; r ) = r (c) r A = r (x; r ) : ds: s;p;r(s;r )) 2. Consumer choices (maximisaion). 4

5 (a) Demand for food and land. 3. Review. i. x; p; r (x; r )) ; C (I x ; p; r (x; r )) : ii. L and C can be shown on he sandard picure of consumer maximisaion subjec o a budge consrain. iii. Draw picure showing budge consrain, angency of indi erence curve, and opimal choice of C and L: (a) Each consumer maximises. i. Consumer chooses (C; L; x) o maximise uiliy subjec o budge consrain. ii. Condiional demand funcions A. C (I x ; p; r (x )) : B. x ; p; r (x )) : iii. Opimal locaion choice: x (I; ; p; r (x)) : (b) Equilibrium in urban spaial economy. i. Level and slope of ren funcion. ii. Number of people in ciy or level of welfare. iii. Radius of ciy or level of ren. (c) Locaional equilibrium. i. All idenical consumers obain same uiliy regardless of where hey choose o live dr (x) dx L (I x; p; r (x)) = dr (x) dx = x; p; r (x)) : ii. Land is used in highes value use. A. Land goes o highes bidder r (x) = r Z x s; p; r (s; r )) ds: 5

6 B. r (x; r ) > r A for x < x B ; urban (residenial and commuing). C. r (x; r ) = r A for x x B ; rural (farming). In equilibrium r (x; r ) r A for all x: Why? D. r (x) > r A land goes o housing, r (x) = r A land goes o farming. E. Hence, he value of r is deermined by r A = r Zx B s; p; r (s; r )) ds: iii. Wha s missing? A. Wha deermines x B? B. Supply and demand for land mus be equaed. 3 Equilibrium condiion 3: supply and demand for land are equal 1. Equilibrium in land marke. (a) Supply of land a disance x is S L (x) = 2x; draw picure. (b) How many people live a disance x? N (x) (c) Toal demand for land in housing a disance x is D L (x) = N (x) x; p; r (x; r )) if x x B : (d) N (x) is unknown bu if supply equals demand a locaion x hen N (x) is deermined by for all x x B : N (x) = 2x x; p; r (x; r )) (e) x B is sill unknown. Bu, we know ha he oal populaion in he ciy is N: 6

7 (f) In equilibrium, everyone mus live somewhere. Therefore, N = Zx B N (s) ds (3) = x B Z 2s s; p; r (s; r )) ds: (g) This nal equaion pins down x B : The variable x B mus saisfy equaion (3) (h) To compue an equilibrium: i. Guess a value for x B : ii. Compue he value of he righ side of equaion (3) : iii. If he righ side of (3) is less han he lef side, increase x B : Why? iv. If he righ side of (3) is larger han he lef side, reduce x B : Why? v. If he righ side of equaion (3) equals he lef side, hen x B is an equilibrium value. vi. Repea seps i.-, iv. unil v. is rue. 2. Equilibrium in consumpion good marke rivial. (a) Demand for he consumpion good is: D C = B N (s)c (I (b) Supply of consumpion good is in niely elasic a price p: Tha is supply of C adjuss so ha supply equals demand a price p: (c) Wha would he equilibrium condiion be if he supply were no in niely elasic? 3. Equilibrium equaions. s; p; r (s; r )) ds: (a) r (x; r ) = r (b) r A = r B ds: s;p;r(s;r )) ds: s;p;r(s;r )) 7

8 B (c) N = N (s) ds = B 2s ds: s;p;r(s;;r )) 3.1 Reprise of equilibrium condiions 1. Equilibrium. (a) Condiion 1: consumer maximizes uiliy. (b) Condiion 2: locaional equilibrium. i. For idenical people, changes in ren across space compensae exacly for changes in ranspor coss dr (x) dx = x; p; r (x)) : ii. For non-idenical people, land goes o he highes bidder. A. If r (x) > r A ; consumers bid more. B. If r A > willingness o pay of consumers; farmers bid more. C. r (x) = r A ; urban boundary. (c) Condiion 3: land marke equilibrium: A every locaion x; supply equals demand for land. (d) Condiion 4: consumpion good marke equilibrium: Supply equals demand for he consumpion good. 4 Summarise 1. Equilibrium. (a) Inpus o equilibrium: ; N; r A ; U (; ) ; I; p: These are he parameers of he problem. They are xed, speci ed ouside he model. (b) Oupus: C ; L ; r () ; r ; x B ; V = U (C ; L ) : These are deermined in equilibrium. (c) By choosing di eren values for he parameers, we can analyse how he oupus of he problem vary. 8

HOTELLING LOCATION MODEL

HOTELLING LOCATION MODEL HOTELLING LOCATION MODEL THE LINEAR CITY MODEL The Example of Choosing only Locaion wihou Price Compeiion Le a be he locaion of rm and b is he locaion of rm. Assume he linear ransporaion cos equal o d,

More information

Economics 6130 Cornell University Fall 2016 Macroeconomics, I - Part 2

Economics 6130 Cornell University Fall 2016 Macroeconomics, I - Part 2 Economics 6130 Cornell Universiy Fall 016 Macroeconomics, I - Par Problem Se # Soluions 1 Overlapping Generaions Consider he following OLG economy: -period lives. 1 commodiy per period, l = 1. Saionary

More information

Lecture Notes 3: Quantitative Analysis in DSGE Models: New Keynesian Model

Lecture Notes 3: Quantitative Analysis in DSGE Models: New Keynesian Model Lecure Noes 3: Quaniaive Analysis in DSGE Models: New Keynesian Model Zhiwei Xu, Email: xuzhiwei@sju.edu.cn The moneary policy plays lile role in he basic moneary model wihou price sickiness. We now urn

More information

1. Consider a pure-exchange economy with stochastic endowments. The state of the economy

1. Consider a pure-exchange economy with stochastic endowments. The state of the economy Answer 4 of he following 5 quesions. 1. Consider a pure-exchange economy wih sochasic endowmens. The sae of he economy in period, 0,1,..., is he hisory of evens s ( s0, s1,..., s ). The iniial sae is given.

More information

Macroeconomic Theory Ph.D. Qualifying Examination Fall 2005 ANSWER EACH PART IN A SEPARATE BLUE BOOK. PART ONE: ANSWER IN BOOK 1 WEIGHT 1/3

Macroeconomic Theory Ph.D. Qualifying Examination Fall 2005 ANSWER EACH PART IN A SEPARATE BLUE BOOK. PART ONE: ANSWER IN BOOK 1 WEIGHT 1/3 Macroeconomic Theory Ph.D. Qualifying Examinaion Fall 2005 Comprehensive Examinaion UCLA Dep. of Economics You have 4 hours o complee he exam. There are hree pars o he exam. Answer all pars. Each par has

More information

T. J. HOLMES AND T. J. KEHOE INTERNATIONAL TRADE AND PAYMENTS THEORY FALL 2011 EXAMINATION

T. J. HOLMES AND T. J. KEHOE INTERNATIONAL TRADE AND PAYMENTS THEORY FALL 2011 EXAMINATION ECON 841 T. J. HOLMES AND T. J. KEHOE INTERNATIONAL TRADE AND PAYMENTS THEORY FALL 211 EXAMINATION This exam has wo pars. Each par has wo quesions. Please answer one of he wo quesions in each par for a

More information

Economics 8105 Macroeconomic Theory Recitation 6

Economics 8105 Macroeconomic Theory Recitation 6 Economics 8105 Macroeconomic Theory Reciaion 6 Conor Ryan Ocober 11h, 2016 Ouline: Opimal Taxaion wih Governmen Invesmen 1 Governmen Expendiure in Producion In hese noes we will examine a model in which

More information

Solutions Problem Set 3 Macro II (14.452)

Solutions Problem Set 3 Macro II (14.452) Soluions Problem Se 3 Macro II (14.452) Francisco A. Gallego 04/27/2005 1 Q heory of invesmen in coninuous ime and no uncerainy Consider he in nie horizon model of a rm facing adjusmen coss o invesmen.

More information

Macroeconomics I, UPF Professor Antonio Ciccone SOLUTIONS PROBLEM SET 1

Macroeconomics I, UPF Professor Antonio Ciccone SOLUTIONS PROBLEM SET 1 Macroeconomics I, UPF Professor Anonio Ciccone SOUTIONS PROBEM SET. (from Romer Advanced Macroeconomics Chaper ) Basic properies of growh raes which will be used over and over again. Use he fac ha he growh

More information

Problem Set 5. Graduate Macro II, Spring 2017 The University of Notre Dame Professor Sims

Problem Set 5. Graduate Macro II, Spring 2017 The University of Notre Dame Professor Sims Problem Se 5 Graduae Macro II, Spring 2017 The Universiy of Nore Dame Professor Sims Insrucions: You may consul wih oher members of he class, bu please make sure o urn in your own work. Where applicable,

More information

Product differentiation

Product differentiation differeniaion Horizonal differeniaion Deparmen of Economics, Universiy of Oslo ECON480 Spring 010 Las modified: 010.0.16 The exen of he marke Differen producs or differeniaed varians of he same produc

More information

Solutions from Chapter 9.1 and 9.2

Solutions from Chapter 9.1 and 9.2 Soluions from Chaper 9 and 92 Secion 9 Problem # This basically boils down o an exercise in he chain rule from calculus We are looking for soluions of he form: u( x) = f( k x c) where k x R 3 and k is

More information

Lecture 2D: Rank-Size Rule

Lecture 2D: Rank-Size Rule Econ 460 Urban Economics Lecure 2D: Rank-Size Rule Insrucor: Hiroki Waanabe Summer 2012 2012 Hiroki Waanabe 1 / 56 1 Rank-Size Rule 2 Eeckhou 3 Now We Know 2012 Hiroki Waanabe 2 / 56 1 Rank-Size Rule US

More information

Problem Set #3: AK models

Problem Set #3: AK models Universiy of Warwick EC9A2 Advanced Macroeconomic Analysis Problem Se #3: AK models Jorge F. Chavez December 3, 2012 Problem 1 Consider a compeiive economy, in which he level of echnology, which is exernal

More information

3.1.3 INTRODUCTION TO DYNAMIC OPTIMIZATION: DISCRETE TIME PROBLEMS. A. The Hamiltonian and First-Order Conditions in a Finite Time Horizon

3.1.3 INTRODUCTION TO DYNAMIC OPTIMIZATION: DISCRETE TIME PROBLEMS. A. The Hamiltonian and First-Order Conditions in a Finite Time Horizon 3..3 INRODUCION O DYNAMIC OPIMIZAION: DISCREE IME PROBLEMS A. he Hamilonian and Firs-Order Condiions in a Finie ime Horizon Define a new funcion, he Hamilonian funcion, H. H he change in he oal value of

More information

Seminar 4: Hotelling 2

Seminar 4: Hotelling 2 Seminar 4: Hoelling 2 November 3, 211 1 Exercise Par 1 Iso-elasic demand A non renewable resource of a known sock S can be exraced a zero cos. Demand for he resource is of he form: D(p ) = p ε ε > A a

More information

Linear Response Theory: The connection between QFT and experiments

Linear Response Theory: The connection between QFT and experiments Phys540.nb 39 3 Linear Response Theory: The connecion beween QFT and experimens 3.1. Basic conceps and ideas Q: How do we measure he conduciviy of a meal? A: we firs inroduce a weak elecric field E, and

More information

Logistic growth rate. Fencing a pen. Notes. Notes. Notes. Optimization: finding the biggest/smallest/highest/lowest, etc.

Logistic growth rate. Fencing a pen. Notes. Notes. Notes. Optimization: finding the biggest/smallest/highest/lowest, etc. Opimizaion: finding he bigges/smalles/highes/lowes, ec. Los of non-sandard problems! Logisic growh rae 7.1 Simple biological opimizaion problems Small populaions AND large populaions grow slowly N: densiy

More information

V L. DT s D T s t. Figure 1: Buck-boost converter: inductor current i(t) in the continuous conduction mode.

V L. DT s D T s t. Figure 1: Buck-boost converter: inductor current i(t) in the continuous conduction mode. ECE 445 Analysis and Design of Power Elecronic Circuis Problem Se 7 Soluions Problem PS7.1 Erickson, Problem 5.1 Soluion (a) Firs, recall he operaion of he buck-boos converer in he coninuous conducion

More information

Lecture Notes 5: Investment

Lecture Notes 5: Investment Lecure Noes 5: Invesmen Zhiwei Xu (xuzhiwei@sju.edu.cn) Invesmen decisions made by rms are one of he mos imporan behaviors in he economy. As he invesmen deermines how he capials accumulae along he ime,

More information

The general Solow model

The general Solow model The general Solow model Back o a closed economy In he basic Solow model: no growh in GDP per worker in seady sae This conradics he empirics for he Wesern world (sylized fac #5) In he general Solow model:

More information

Lecture 2D: Rank-Size Rule

Lecture 2D: Rank-Size Rule Econ 4935 Urban Economics Lecure 2D: Rank-Size Rule Insrucor: Hiroki Waanabe Fall 2012 Waanabe Econ 4935 2D Rank-Size Rule 1 / 58 1 Rank-Size Rule 2 Eeckhou 3 Now We Know Waanabe Econ 4935 2D Rank-Size

More information

Reserves measures have an economic component eg. what could be extracted at current prices?

Reserves measures have an economic component eg. what could be extracted at current prices? 3.2 Non-renewable esources A. Are socks of non-renewable resources fixed? eserves measures have an economic componen eg. wha could be exraced a curren prices? - Locaion and quaniies of reserves of resources

More information

Comparing Means: t-tests for One Sample & Two Related Samples

Comparing Means: t-tests for One Sample & Two Related Samples Comparing Means: -Tess for One Sample & Two Relaed Samples Using he z-tes: Assumpions -Tess for One Sample & Two Relaed Samples The z-es (of a sample mean agains a populaion mean) is based on he assumpion

More information

E β t log (C t ) + M t M t 1. = Y t + B t 1 P t. B t 0 (3) v t = P tc t M t Question 1. Find the FOC s for an optimum in the agent s problem.

E β t log (C t ) + M t M t 1. = Y t + B t 1 P t. B t 0 (3) v t = P tc t M t Question 1. Find the FOC s for an optimum in the agent s problem. Noes, M. Krause.. Problem Se 9: Exercise on FTPL Same model as in paper and lecure, only ha one-period govenmen bonds are replaced by consols, which are bonds ha pay one dollar forever. I has curren marke

More information

The Brock-Mirman Stochastic Growth Model

The Brock-Mirman Stochastic Growth Model c December 3, 208, Chrisopher D. Carroll BrockMirman The Brock-Mirman Sochasic Growh Model Brock and Mirman (972) provided he firs opimizing growh model wih unpredicable (sochasic) shocks. The social planner

More information

Final Spring 2007

Final Spring 2007 .615 Final Spring 7 Overview The purpose of he final exam is o calculae he MHD β limi in a high-bea oroidal okamak agains he dangerous n = 1 exernal ballooning-kink mode. Effecively, his corresponds o

More information

Math 333 Problem Set #2 Solution 14 February 2003

Math 333 Problem Set #2 Solution 14 February 2003 Mah 333 Problem Se #2 Soluion 14 February 2003 A1. Solve he iniial value problem dy dx = x2 + e 3x ; 2y 4 y(0) = 1. Soluion: This is separable; we wrie 2y 4 dy = x 2 + e x dx and inegrae o ge The iniial

More information

Cooperative Ph.D. Program in School of Economic Sciences and Finance QUALIFYING EXAMINATION IN MACROECONOMICS. August 8, :45 a.m. to 1:00 p.m.

Cooperative Ph.D. Program in School of Economic Sciences and Finance QUALIFYING EXAMINATION IN MACROECONOMICS. August 8, :45 a.m. to 1:00 p.m. Cooperaive Ph.D. Program in School of Economic Sciences and Finance QUALIFYING EXAMINATION IN MACROECONOMICS Augus 8, 213 8:45 a.m. o 1: p.m. THERE ARE FIVE QUESTIONS ANSWER ANY FOUR OUT OF FIVE PROBLEMS.

More information

2.1: What is physics? Ch02: Motion along a straight line. 2.2: Motion. 2.3: Position, Displacement, Distance

2.1: What is physics? Ch02: Motion along a straight line. 2.2: Motion. 2.3: Position, Displacement, Distance Ch: Moion along a sraigh line Moion Posiion and Displacemen Average Velociy and Average Speed Insananeous Velociy and Speed Acceleraion Consan Acceleraion: A Special Case Anoher Look a Consan Acceleraion

More information

Simulation-Solving Dynamic Models ABE 5646 Week 2, Spring 2010

Simulation-Solving Dynamic Models ABE 5646 Week 2, Spring 2010 Simulaion-Solving Dynamic Models ABE 5646 Week 2, Spring 2010 Week Descripion Reading Maerial 2 Compuer Simulaion of Dynamic Models Finie Difference, coninuous saes, discree ime Simple Mehods Euler Trapezoid

More information

Optima and Equilibria for Traffic Flow on a Network

Optima and Equilibria for Traffic Flow on a Network Opima and Equilibria for Traffic Flow on a Nework Albero Bressan Deparmen of Mahemaics, Penn Sae Universiy bressan@mah.psu.edu Albero Bressan (Penn Sae) Opima and equilibria for raffic flow 1 / 1 A Traffic

More information

UCLA: Math 3B Problem set 3 (solutions) Fall, 2018

UCLA: Math 3B Problem set 3 (solutions) Fall, 2018 UCLA: Mah 3B Problem se 3 (soluions) Fall, 28 This problem se concenraes on pracice wih aniderivaives. You will ge los of pracice finding simple aniderivaives as well as finding aniderivaives graphically

More information

Vehicle Arrival Models : Headway

Vehicle Arrival Models : Headway Chaper 12 Vehicle Arrival Models : Headway 12.1 Inroducion Modelling arrival of vehicle a secion of road is an imporan sep in raffic flow modelling. I has imporan applicaion in raffic flow simulaion where

More information

1 1 + x 2 dx. tan 1 (2) = ] ] x 3. Solution: Recall that the given integral is improper because. x 3. 1 x 3. dx = lim dx.

1 1 + x 2 dx. tan 1 (2) = ] ] x 3. Solution: Recall that the given integral is improper because. x 3. 1 x 3. dx = lim dx. . Use Simpson s rule wih n 4 o esimae an () +. Soluion: Since we are using 4 seps, 4 Thus we have [ ( ) f() + 4f + f() + 4f 3 [ + 4 4 6 5 + + 4 4 3 + ] 5 [ + 6 6 5 + + 6 3 + ]. 5. Our funcion is f() +.

More information

Problem Set #1 - Answers

Problem Set #1 - Answers Fall Term 24 Page of 7. Use indifference curves and a curved ransformaion curve o illusrae a free rade equilibrium for a counry facing an exogenous inernaional price. Then show wha happens if ha exogenous

More information

Introduction to Probability and Statistics Slides 4 Chapter 4

Introduction to Probability and Statistics Slides 4 Chapter 4 Inroducion o Probabiliy and Saisics Slides 4 Chaper 4 Ammar M. Sarhan, asarhan@mahsa.dal.ca Deparmen of Mahemaics and Saisics, Dalhousie Universiy Fall Semeser 8 Dr. Ammar Sarhan Chaper 4 Coninuous Random

More information

Lecture 20: Riccati Equations and Least Squares Feedback Control

Lecture 20: Riccati Equations and Least Squares Feedback Control 34-5 LINEAR SYSTEMS Lecure : Riccai Equaions and Leas Squares Feedback Conrol 5.6.4 Sae Feedback via Riccai Equaions A recursive approach in generaing he marix-valued funcion W ( ) equaion for i for he

More information

Problem set 3: Endogenous Innovation - Solutions

Problem set 3: Endogenous Innovation - Solutions Problem se 3: Endogenous Innovaion - Soluions Loïc Baé Ocober 25, 22 Opimaliy in he R & D based endogenous growh model Imporan feaure of his model: he monopoly markup is exogenous, so ha here is no need

More information

Intermediate Macro In-Class Problems

Intermediate Macro In-Class Problems Inermediae Macro In-Class Problems Exploring Romer Model June 14, 016 Today we will explore he mechanisms of he simply Romer model by exploring how economies described by his model would reac o exogenous

More information

SOLUTIONS TO ECE 3084

SOLUTIONS TO ECE 3084 SOLUTIONS TO ECE 384 PROBLEM 2.. For each sysem below, specify wheher or no i is: (i) memoryless; (ii) causal; (iii) inverible; (iv) linear; (v) ime invarian; Explain your reasoning. If he propery is no

More information

Supplementary Materials for Asset Bubbles, Collateral, and Policy Analysis

Supplementary Materials for Asset Bubbles, Collateral, and Policy Analysis Supplemenary Maerials for Asse Bubbles, Collaeral, and Policy Analysis Jianjun Miao Pengfei Wang y Jing hou z Augus 20, 205 Secion A provides proofs of all proposiions in he main ex. Secion B provides

More information

Lecture 2-1 Kinematics in One Dimension Displacement, Velocity and Acceleration Everything in the world is moving. Nothing stays still.

Lecture 2-1 Kinematics in One Dimension Displacement, Velocity and Acceleration Everything in the world is moving. Nothing stays still. Lecure - Kinemaics in One Dimension Displacemen, Velociy and Acceleraion Everyhing in he world is moving. Nohing says sill. Moion occurs a all scales of he universe, saring from he moion of elecrons in

More information

Solutions to Assignment 1

Solutions to Assignment 1 MA 2326 Differenial Equaions Insrucor: Peronela Radu Friday, February 8, 203 Soluions o Assignmen. Find he general soluions of he following ODEs: (a) 2 x = an x Soluion: I is a separable equaion as we

More information

Chapter 7: Solving Trig Equations

Chapter 7: Solving Trig Equations Haberman MTH Secion I: The Trigonomeric Funcions Chaper 7: Solving Trig Equaions Le s sar by solving a couple of equaions ha involve he sine funcion EXAMPLE a: Solve he equaion sin( ) The inverse funcions

More information

t is a basis for the solution space to this system, then the matrix having these solutions as columns, t x 1 t, x 2 t,... x n t x 2 t...

t is a basis for the solution space to this system, then the matrix having these solutions as columns, t x 1 t, x 2 t,... x n t x 2 t... Mah 228- Fri Mar 24 5.6 Marix exponenials and linear sysems: The analogy beween firs order sysems of linear differenial equaions (Chaper 5) and scalar linear differenial equaions (Chaper ) is much sronger

More information

Predator - Prey Model Trajectories and the nonlinear conservation law

Predator - Prey Model Trajectories and the nonlinear conservation law Predaor - Prey Model Trajecories and he nonlinear conservaion law James K. Peerson Deparmen of Biological Sciences and Deparmen of Mahemaical Sciences Clemson Universiy Ocober 28, 213 Ouline Drawing Trajecories

More information

HOMEWORK # 2: MATH 211, SPRING Note: This is the last solution set where I will describe the MATLAB I used to make my pictures.

HOMEWORK # 2: MATH 211, SPRING Note: This is the last solution set where I will describe the MATLAB I used to make my pictures. HOMEWORK # 2: MATH 2, SPRING 25 TJ HITCHMAN Noe: This is he las soluion se where I will describe he MATLAB I used o make my picures.. Exercises from he ex.. Chaper 2.. Problem 6. We are o show ha y() =

More information

A Dynamic Model of Economic Fluctuations

A Dynamic Model of Economic Fluctuations CHAPTER 15 A Dynamic Model of Economic Flucuaions Modified for ECON 2204 by Bob Murphy 2016 Worh Publishers, all righs reserved IN THIS CHAPTER, OU WILL LEARN: how o incorporae dynamics ino he AD-AS model

More information

FINM 6900 Finance Theory

FINM 6900 Finance Theory FINM 6900 Finance Theory Universiy of Queensland Lecure Noe 4 The Lucas Model 1. Inroducion In his lecure we consider a simple endowmen economy in which an unspecified number of raional invesors rade asses

More information

Dynamics of Firms and Trade in General Equilibrium. Robert Dekle, Hyeok Jeong and Nobuhiro Kiyotaki USC, KDI School and Princeton

Dynamics of Firms and Trade in General Equilibrium. Robert Dekle, Hyeok Jeong and Nobuhiro Kiyotaki USC, KDI School and Princeton Dynamics of Firms and Trade in General Equilibrium Rober Dekle, Hyeok Jeong and Nobuhiro Kiyoaki USC, KDI School and Princeon real exchange rae.5 2 Figure. Aggregae Exchange Rae Disconnec in Japan 98 99

More information

Instructor: Barry McQuarrie Page 1 of 5

Instructor: Barry McQuarrie Page 1 of 5 Procedure for Solving radical equaions 1. Algebraically isolae one radical by iself on one side of equal sign. 2. Raise each side of he equaion o an appropriae power o remove he radical. 3. Simplify. 4.

More information

Essential Microeconomics : OPTIMAL CONTROL 1. Consider the following class of optimization problems

Essential Microeconomics : OPTIMAL CONTROL 1. Consider the following class of optimization problems Essenial Microeconomics -- 6.5: OPIMAL CONROL Consider he following class of opimizaion problems Max{ U( k, x) + U+ ( k+ ) k+ k F( k, x)}. { x, k+ } = In he language of conrol heory, he vecor k is he vecor

More information

3.6 Derivatives as Rates of Change

3.6 Derivatives as Rates of Change 3.6 Derivaives as Raes of Change Problem 1 John is walking along a sraigh pah. His posiion a he ime >0 is given by s = f(). He sars a =0from his house (f(0) = 0) and he graph of f is given below. (a) Describe

More information

! ln 2xdx = (x ln 2x - x) 3 1 = (3 ln 6-3) - (ln 2-1)

! ln 2xdx = (x ln 2x - x) 3 1 = (3 ln 6-3) - (ln 2-1) 7. e - d Le u = and dv = e - d. Then du = d and v = -e -. e - d = (-e - ) - (-e - )d = -e - + e - d = -e - - e - 9. e 2 d = e 2 2 2 d = 2 e 2 2d = 2 e u du Le u = 2, hen du = 2 d. = 2 eu = 2 e2.! ( - )e

More information

2.7. Some common engineering functions. Introduction. Prerequisites. Learning Outcomes

2.7. Some common engineering functions. Introduction. Prerequisites. Learning Outcomes Some common engineering funcions 2.7 Inroducion This secion provides a caalogue of some common funcions ofen used in Science and Engineering. These include polynomials, raional funcions, he modulus funcion

More information

The average rate of change between two points on a function is d t

The average rate of change between two points on a function is d t SM Dae: Secion: Objecive: The average rae of change beween wo poins on a funcion is d. For example, if he funcion ( ) represens he disance in miles ha a car has raveled afer hours, hen finding he slope

More information

ANSWERS TO EVEN NUMBERED EXERCISES IN CHAPTER 6 SECTION 6.1: LIFE CYCLE CONSUMPTION AND WEALTH T 1. . Let ct. ) is a strictly concave function of c

ANSWERS TO EVEN NUMBERED EXERCISES IN CHAPTER 6 SECTION 6.1: LIFE CYCLE CONSUMPTION AND WEALTH T 1. . Let ct. ) is a strictly concave function of c John Riley December 00 S O EVEN NUMBERED EXERCISES IN CHAPER 6 SECION 6: LIFE CYCLE CONSUMPION AND WEALH Eercise 6-: Opimal saving wih more han one commodiy A consumer has a period uiliy funcion δ u (

More information

= ( ) ) or a system of differential equations with continuous parametrization (T = R

= ( ) ) or a system of differential equations with continuous parametrization (T = R XIII. DIFFERENCE AND DIFFERENTIAL EQUATIONS Ofen funcions, or a sysem of funcion, are paramerized in erms of some variable, usually denoed as and inerpreed as ime. The variable is wrien as a funcion of

More information

Math 105 Second Midterm March 16, 2017

Math 105 Second Midterm March 16, 2017 Mah 105 Second Miderm March 16, 2017 UMID: Insrucor: Iniials: Secion: 1. Do no open his exam unil you are old o do so. 2. Do no wrie your name anywhere on his exam. 3. This exam has 9 pages including his

More information

Fishing limits and the Logistic Equation. 1

Fishing limits and the Logistic Equation. 1 Fishing limis and he Logisic Equaion. 1 1. The Logisic Equaion. The logisic equaion is an equaion governing populaion growh for populaions in an environmen wih a limied amoun of resources (for insance,

More information

IMPLICIT AND INVERSE FUNCTION THEOREMS PAUL SCHRIMPF 1 OCTOBER 25, 2013

IMPLICIT AND INVERSE FUNCTION THEOREMS PAUL SCHRIMPF 1 OCTOBER 25, 2013 IMPLICI AND INVERSE FUNCION HEOREMS PAUL SCHRIMPF 1 OCOBER 25, 213 UNIVERSIY OF BRIISH COLUMBIA ECONOMICS 526 We have exensively sudied how o solve sysems of linear equaions. We know how o check wheher

More information

Lecture 23: I. Data Dependence II. Dependence Testing: Formulation III. Dependence Testers IV. Loop Parallelization V.

Lecture 23: I. Data Dependence II. Dependence Testing: Formulation III. Dependence Testers IV. Loop Parallelization V. Lecure 23: Array Dependence Analysis & Parallelizaion I. Daa Dependence II. Dependence Tesing: Formulaion III. Dependence Tesers IV. Loop Parallelizaion V. Loop Inerchange [ALSU 11.6, 11.7.8] Phillip B.

More information

Lecture 10 Estimating Nonlinear Regression Models

Lecture 10 Estimating Nonlinear Regression Models Lecure 0 Esimaing Nonlinear Regression Models References: Greene, Economeric Analysis, Chaper 0 Consider he following regression model: y = f(x, β) + ε =,, x is kx for each, β is an rxconsan vecor, ε is

More information

This document was generated at 1:04 PM, 09/10/13 Copyright 2013 Richard T. Woodward. 4. End points and transversality conditions AGEC

This document was generated at 1:04 PM, 09/10/13 Copyright 2013 Richard T. Woodward. 4. End points and transversality conditions AGEC his documen was generaed a 1:4 PM, 9/1/13 Copyrigh 213 Richard. Woodward 4. End poins and ransversaliy condiions AGEC 637-213 F z d Recall from Lecure 3 ha a ypical opimal conrol problem is o maimize (,,

More information

2.4 Cuk converter example

2.4 Cuk converter example 2.4 Cuk converer example C 1 Cuk converer, wih ideal swich i 1 i v 1 2 1 2 C 2 v 2 Cuk converer: pracical realizaion using MOSFET and diode C 1 i 1 i v 1 2 Q 1 D 1 C 2 v 2 28 Analysis sraegy This converer

More information

( ) a system of differential equations with continuous parametrization ( T = R + These look like, respectively:

( ) a system of differential equations with continuous parametrization ( T = R + These look like, respectively: XIII. DIFFERENCE AND DIFFERENTIAL EQUATIONS Ofen funcions, or a sysem of funcion, are paramerized in erms of some variable, usually denoed as and inerpreed as ime. The variable is wrien as a funcion of

More information

Physics 235 Chapter 2. Chapter 2 Newtonian Mechanics Single Particle

Physics 235 Chapter 2. Chapter 2 Newtonian Mechanics Single Particle Chaper 2 Newonian Mechanics Single Paricle In his Chaper we will review wha Newon s laws of mechanics ell us abou he moion of a single paricle. Newon s laws are only valid in suiable reference frames,

More information

Dealing with the Trilemma: Optimal Capital Controls with Fixed Exchange Rates

Dealing with the Trilemma: Optimal Capital Controls with Fixed Exchange Rates Dealing wih he Trilemma: Opimal Capial Conrols wih Fixed Exchange Raes by Emmanuel Farhi and Ivan Werning June 15 Ricardo Reis Columbia Universiy Porugal s challenge risk premium Porugal s challenge sudden

More information

KINEMATICS IN ONE DIMENSION

KINEMATICS IN ONE DIMENSION KINEMATICS IN ONE DIMENSION PREVIEW Kinemaics is he sudy of how hings move how far (disance and displacemen), how fas (speed and velociy), and how fas ha how fas changes (acceleraion). We say ha an objec

More information

Two Coupled Oscillators / Normal Modes

Two Coupled Oscillators / Normal Modes Lecure 3 Phys 3750 Two Coupled Oscillaors / Normal Modes Overview and Moivaion: Today we ake a small, bu significan, sep owards wave moion. We will no ye observe waves, bu his sep is imporan in is own

More information

Homework sheet Exercises done during the lecture of March 12, 2014

Homework sheet Exercises done during the lecture of March 12, 2014 EXERCISE SESSION 2A FOR THE COURSE GÉOMÉTRIE EUCLIDIENNE, NON EUCLIDIENNE ET PROJECTIVE MATTEO TOMMASINI Homework shee 3-4 - Exercises done during he lecure of March 2, 204 Exercise 2 Is i rue ha he parameerized

More information

Introduction to Physical Oceanography Homework 5 - Solutions

Introduction to Physical Oceanography Homework 5 - Solutions Laure Zanna //5 Inroducion o Phsical Oceanograph Homework 5 - Soluions. Inerial oscillaions wih boom fricion non-selecive scale: The governing equaions for his problem are This ssem can be wrien as where

More information

LAPLACE TRANSFORM AND TRANSFER FUNCTION

LAPLACE TRANSFORM AND TRANSFER FUNCTION CHBE320 LECTURE V LAPLACE TRANSFORM AND TRANSFER FUNCTION Professor Dae Ryook Yang Spring 2018 Dep. of Chemical and Biological Engineering 5-1 Road Map of he Lecure V Laplace Transform and Transfer funcions

More information

Linear Dynamic Models

Linear Dynamic Models Linear Dnamic Models and Forecasing Reference aricle: Ineracions beween he muliplier analsis and he principle of acceleraion Ouline. The sae space ssem as an approach o working wih ssems of difference

More information

( ) (, ) F K L = F, Y K N N N N. 8. Economic growth 8.1. Production function: Capital as production factor

( ) (, ) F K L = F, Y K N N N N. 8. Economic growth 8.1. Production function: Capital as production factor 8. Economic growh 8.. Producion funcion: Capial as producion facor Y = α N Y (, ) = F K N Diminishing marginal produciviy of capial and labor: (, ) F K L F K 2 ( K, L) K 2 (, ) F K L F L 2 ( K, L) L 2

More information

Online Convex Optimization Example And Follow-The-Leader

Online Convex Optimization Example And Follow-The-Leader CSE599s, Spring 2014, Online Learning Lecure 2-04/03/2014 Online Convex Opimizaion Example And Follow-The-Leader Lecurer: Brendan McMahan Scribe: Sephen Joe Jonany 1 Review of Online Convex Opimizaion

More information

Section 4.4 Logarithmic Properties

Section 4.4 Logarithmic Properties Secion. Logarihmic Properies 59 Secion. Logarihmic Properies In he previous secion, we derived wo imporan properies of arihms, which allowed us o solve some asic eponenial and arihmic equaions. Properies

More information

COMPETITIVE GROWTH MODEL

COMPETITIVE GROWTH MODEL COMPETITIVE GROWTH MODEL I Assumpions We are going o now solve he compeiive version of he opimal growh moel. Alhough he allocaions are he same as in he social planning problem, i will be useful o compare

More information

EECE 301 Signals & Systems Prof. Mark Fowler

EECE 301 Signals & Systems Prof. Mark Fowler EECE 31 Signals & Sysems Prof. Mark Fowler Noe Se #1 C-T Sysems: Convoluion Represenaion Reading Assignmen: Secion 2.6 of Kamen and Heck 1/11 Course Flow Diagram The arrows here show concepual flow beween

More information

Online Appendix for "Customer Recognition in. Experience versus Inspection Good Markets"

Online Appendix for Customer Recognition in. Experience versus Inspection Good Markets Online Appendix for "Cusomer Recogniion in Experience versus Inspecion Good Markes" Bing Jing Cheong Kong Graduae School of Business Beijing, 0078, People s Republic of China, bjing@ckgsbeducn November

More information

Module 2 F c i k c s la l w a s o s f dif di fusi s o i n

Module 2 F c i k c s la l w a s o s f dif di fusi s o i n Module Fick s laws of diffusion Fick s laws of diffusion and hin film soluion Adolf Fick (1855) proposed: d J α d d d J (mole/m s) flu (m /s) diffusion coefficien and (mole/m 3 ) concenraion of ions, aoms

More information

dy dx = xey (a) y(0) = 2 (b) y(1) = 2.5 SOLUTION: See next page

dy dx = xey (a) y(0) = 2 (b) y(1) = 2.5 SOLUTION: See next page Assignmen 1 MATH 2270 SOLUTION Please wrie ou complee soluions for each of he following 6 problems (one more will sill be added). You may, of course, consul wih your classmaes, he exbook or oher resources,

More information

Examples of Dynamic Programming Problems

Examples of Dynamic Programming Problems M.I.T. 5.450-Fall 00 Sloan School of Managemen Professor Leonid Kogan Examples of Dynamic Programming Problems Problem A given quaniy X of a single resource is o be allocaed opimally among N producion

More information

Review - Quiz # 1. 1 g(y) dy = f(x) dx. y x. = u, so that y = xu and dy. dx (Sometimes you may want to use the substitution x y

Review - Quiz # 1. 1 g(y) dy = f(x) dx. y x. = u, so that y = xu and dy. dx (Sometimes you may want to use the substitution x y Review - Quiz # 1 (1) Solving Special Tpes of Firs Order Equaions I. Separable Equaions (SE). d = f() g() Mehod of Soluion : 1 g() d = f() (The soluions ma be given implicil b he above formula. Remember,

More information

, where P is the number of bears at time t in years. dt (a) If 0 100, lim Pt. Is the solution curve increasing or decreasing?

, where P is the number of bears at time t in years. dt (a) If 0 100, lim Pt. Is the solution curve increasing or decreasing? CALCULUS BC WORKSHEET 1 ON LOGISTIC GROWTH Work he following on noebook paper. Use your calculaor on 4(b) and 4(c) only. 1. Suppose he populaion of bears in a naional park grows according o he logisic

More information

Different assumptions in the literature: Wages/prices set one period in advance and last for one period

Different assumptions in the literature: Wages/prices set one period in advance and last for one period Øisein Røisland, 5.3.7 Lecure 8: Moneary policy in New Keynesian models: Inroducing nominal rigidiies Differen assumpions in he lieraure: Wages/prices se one period in advance and las for one period Saggering

More information

Math 111 Midterm I, Lecture A, version 1 -- Solutions January 30 th, 2007

Math 111 Midterm I, Lecture A, version 1 -- Solutions January 30 th, 2007 NAME: Suden ID #: QUIZ SECTION: Mah 111 Miderm I, Lecure A, version 1 -- Soluions January 30 h, 2007 Problem 1 4 Problem 2 6 Problem 3 20 Problem 4 20 Toal: 50 You are allowed o use a calculaor, a ruler,

More information

dt = C exp (3 ln t 4 ). t 4 W = C exp ( ln(4 t) 3) = C(4 t) 3.

dt = C exp (3 ln t 4 ). t 4 W = C exp ( ln(4 t) 3) = C(4 t) 3. Mah Rahman Exam Review Soluions () Consider he IVP: ( 4)y 3y + 4y = ; y(3) = 0, y (3) =. (a) Please deermine he longes inerval for which he IVP is guaraneed o have a unique soluion. Soluion: The disconinuiies

More information

d 1 = c 1 b 2 - b 1 c 2 d 2 = c 1 b 3 - b 1 c 3

d 1 = c 1 b 2 - b 1 c 2 d 2 = c 1 b 3 - b 1 c 3 and d = c b - b c c d = c b - b c c This process is coninued unil he nh row has been compleed. The complee array of coefficiens is riangular. Noe ha in developing he array an enire row may be divided or

More information

Midterm Exam. Macroeconomic Theory (ECON 8105) Larry Jones. Fall September 27th, Question 1: (55 points)

Midterm Exam. Macroeconomic Theory (ECON 8105) Larry Jones. Fall September 27th, Question 1: (55 points) Quesion 1: (55 poins) Macroeconomic Theory (ECON 8105) Larry Jones Fall 2016 Miderm Exam Sepember 27h, 2016 Consider an economy in which he represenaive consumer lives forever. There is a good in each

More information

Problem 1 / 25 Problem 2 / 20 Problem 3 / 10 Problem 4 / 15 Problem 5 / 30 TOTAL / 100

Problem 1 / 25 Problem 2 / 20 Problem 3 / 10 Problem 4 / 15 Problem 5 / 30 TOTAL / 100 eparmen of Applied Economics Johns Hopkins Universiy Economics 602 Macroeconomic Theory and Policy Miderm Exam Suggesed Soluions Professor Sanjay hugh Fall 2008 NAME: The Exam has a oal of five (5) problems

More information

T L. t=1. Proof of Lemma 1. Using the marginal cost accounting in Equation(4) and standard arguments. t )+Π RB. t )+K 1(Q RB

T L. t=1. Proof of Lemma 1. Using the marginal cost accounting in Equation(4) and standard arguments. t )+Π RB. t )+K 1(Q RB Elecronic Companion EC.1. Proofs of Technical Lemmas and Theorems LEMMA 1. Le C(RB) be he oal cos incurred by he RB policy. Then we have, T L E[C(RB)] 3 E[Z RB ]. (EC.1) Proof of Lemma 1. Using he marginal

More information

Chapter 8 The Complete Response of RL and RC Circuits

Chapter 8 The Complete Response of RL and RC Circuits Chaper 8 The Complee Response of RL and RC Circuis Seoul Naional Universiy Deparmen of Elecrical and Compuer Engineering Wha is Firs Order Circuis? Circuis ha conain only one inducor or only one capacior

More information

SMT 2014 Calculus Test Solutions February 15, 2014 = 3 5 = 15.

SMT 2014 Calculus Test Solutions February 15, 2014 = 3 5 = 15. SMT Calculus Tes Soluions February 5,. Le f() = and le g() =. Compue f ()g (). Answer: 5 Soluion: We noe ha f () = and g () = 6. Then f ()g () =. Plugging in = we ge f ()g () = 6 = 3 5 = 5.. There is a

More information

Displacement ( x) x x x

Displacement ( x) x x x Kinemaics Kinemaics is he branch of mechanics ha describes he moion of objecs wihou necessarily discussing wha causes he moion. 1-Dimensional Kinemaics (or 1- Dimensional moion) refers o moion in a sraigh

More information

Module 4: Time Response of discrete time systems Lecture Note 2

Module 4: Time Response of discrete time systems Lecture Note 2 Module 4: Time Response of discree ime sysems Lecure Noe 2 1 Prooype second order sysem The sudy of a second order sysem is imporan because many higher order sysem can be approimaed by a second order model

More information

Hamilton Jacobi equations

Hamilton Jacobi equations Hamilon Jacobi equaions Inoducion o PDE The rigorous suff from Evans, mosly. We discuss firs u + H( u = 0, (1 where H(p is convex, and superlinear a infiniy, H(p lim p p = + This by comes by inegraion

More information

5.1 - Logarithms and Their Properties

5.1 - Logarithms and Their Properties Chaper 5 Logarihmic Funcions 5.1 - Logarihms and Their Properies Suppose ha a populaion grows according o he formula P 10, where P is he colony size a ime, in hours. When will he populaion be 2500? We

More information

20. Applications of the Genetic-Drift Model

20. Applications of the Genetic-Drift Model 0. Applicaions of he Geneic-Drif Model 1) Deermining he probabiliy of forming any paricular combinaion of genoypes in he nex generaion: Example: If he parenal allele frequencies are p 0 = 0.35 and q 0

More information