Exploring Born-Infeld electrodynamics using plasmas

Size: px
Start display at page:

Download "Exploring Born-Infeld electrodynamics using plasmas"

Transcription

1 Exploring Born-Infeld electrodynamics using plasmas David A Burton & Haibao Wen (with Raoul MGM Trines 1, Adam Noble 2, Timothy J Walton) Department of Physics, Lancaster University and the Cockcroft Institute of Accelerator Science and Technology, UK XIX International Fall Workshop on Geometry and Physics Porto 6-9 September Central Laser Facility, Rutherford Appleton Laboratory, UK 2 SUPA, University of Strathclyde, UK

2 Abraham-Lorentz-Dirac equation What is the right equation of motion for a classical point charge? [Dirac, Proc. Roy. Soc. (1938)] ma a = qfab ext ẋ b + 1 6π q2 (η ab + ẋ a ẋ b ) DAb dτ (1) N.B. ε 0 = µ 0 = c = 1 Problems : Infinite negative bare mass to compensate for infinite self-energy of the electron Abraham-Lorentz-Dirac equation is third order in time derivatives of the electron s worldline Acceleration in regions where there is no external field Runaway solutions [Recent derivation of ALD equation : DAB, J Gratus, RW Tucker, Ann. Phys , 599 (2007)]

3 Constitutive equations In particular, D = ˆD[E, B], H = Ĥ[E, B] in the vacuum in classical Maxwell electrodynamics : D = E, H = B, (2) or G = F (3) non-linear when QED vacuum effects are included (Euler-Heisenberg electrodynamics)

4 Constitutive equations In particular, D = ˆD[E, B], H = Ĥ[E, B] in the vacuum in classical Maxwell electrodynamics : D = E, H = B, (2) or G = F (3) non-linear when QED vacuum effects are included (Euler-Heisenberg electrodynamics) Could electrodynamics be fundamentally non-linear?

5 Vacuum Born-Infeld equations df = 0, d G = 0, (4) ( ) 1 G = F κ2 Y F (5) 1 κ 2 X κ 4 Y 2 /4 2 X = (F F ), Y = (F F ) (6) κ is a new constant of nature [Born et al Proc. Roy. Soc. (1934)] The field of a point charge at rest is finite, and the charge s self energy is finite Appears in low-energy string field theory [Fradkin et al, PLB (1985)] Considerable interest from a string theory perspective [e.g. Gibbons et al] Investigations in waveguides and in background magnetic fields [e.g. Ferraro et al, PRL (2007); Tucker et al, EPL (2010)]

6 High intensity lasers Two examples : VULCAN (UK) : W/cm 2 (2016 upgrade to 10PW, intensity W/cm 2 ) ELI (2012, located in Hungary, Czech Republic, Romania, +1 EU) : intensity W/cm 2 or field strength V/m Motivation : Numerous applications : fast ignition, compact electron acceleration, material science,... Opportunity to test QED vacuum phenomena in a controllable environment (Schwinger limit V/m)

7 Plasma waves A sufficiently intense and short laser pulse with sufficiently high peak frequency propagating through a plasma creates a wave (wake behind the pulse) The wake contains a large longitudinal electric field ( V/m) = Laser Wakefield Accelerator. [Tajima et al, PRL (1979); Mangles et al, Nature (2004)] Image courtesy of W. Mori

8 Electric waves in a cold Born-Infeld plasma Maxwell s equations df = 0, d G = q( Ñ Ñion) where G = ( 1 F κ2 Y 1 κ 2 X κ 4 Y 2 /4 2 ) F Employing an action principle = Lorentz force equation V Ṽ = q m ι V F, g(v, V ) = 1

9 Electric waves in a cold Born-Infeld plasma Metric tensor g in ion rest frame (i.e. laboratory frame) g = dx 0 dx 0 + dx 1 dx 1 + dx 2 dx 2 + dx 3 dx 3 Seek solutions in ζ = x 3 v x 0 with F = E(ζ) dx 0 dx 3 (numerous simplifying assumptions...) Adapted basis in the wave frame e 1 = v dx 3 dx 0, e 2 = dx 3 v dx 0 = dζ and for electrons moving slower than wave where µ = µ(ζ) > 0 Ṽ = µe 1 (µ 2 γ 2 ) 1/2 e 2

10 Electric waves in a cold Maxwell plasma For example, when κ = 0 1 d 2 µ γ 2 dζ 2 = q2 m n ionγ 2 ( ) v µ µ 2 γ 1 2 and E = m/(qγ 2 )dµ/dζ, γ = 1/ 1 v 2, e.g. for v = 0.8 d µ d ζ µ

11 Cold Maxwell plasma wave-breaking limit E ζ Maximum amplitude oscillation for κ = 0 : Oscillation frequency for γ 1 Emax 0 = mω p 2(γ 1) q ω 0 π 2 2γ ω p [Akheizer et al, Sov. Phys. JETP 3 (1956)]

12 Cold Born-Infeld plasma wave-breaking limit Emax BI = 1 1 [κ κ 2 (Emax) 0 2 /2 + 1] 2 Note lim v 1 E BI max = 1/κ ( ) ω BI ω [1 0 κmωp c 2 γ] 2q [DAB, RMGM Trines, TJ Walton, H Wen, arxiv: [physics.plasm-ph] (submitted)]

13 Cold plasma on TM

14 Relativistic Vlasov equation Not in thermal equilibrium Vlasov equation for 1-particle distribution f (x, ẋ) Λ 0 (T M) Lf = 0 ( L = ẋ a x a ΓbV acẋ c ẋ b q ) m F bv a ẋ b Electron number 4-current N a [f ](x) = E x ẋ a f (x, ẋ) ν x where E x = {ẋ a R 4 g V ab (x, ẋ)ẋ a ẋ b = 1, ẋ 0 > 0} and ν x is a measure on E x

15 Vlasov equation for a jump E = {(x, ẋ) T M g V ab (x, ẋ)ẋ a ẋ b = 1, ẋ 0 > 0} Lf = 0 = d(f ω) 0 (pulled back to unit hyperboloid E) where ω Λ 6 (T M), dω 0 and ι L ω = 0 d(f ω) 0 = B f ω = 0 = dλ [f ω] = 0 where λ = 0 is the interface between 1 and 2

16 Waterbag distributions ẋ 3 ẋ 1 ẋ 2

17 Waterbag distributions 1-particle distribution f described by Σ : M S 2 T M, (x, ξ) (x, ẋ = V ξ (x)) where dλ ω = 0 is satisfied by Vξ Ṽ ξ = q m ι V ξ F, g(v ξ, V ξ ) = 1 ẋ 3 ẋ 1 ẋ 2

18 Axisymmetric waterbags For electrons moving slower than the wave Ṽ ξ =[µ(ζ) + A(ξ 1 )] e 1 + ψ(ξ 1, ζ) e 2 + R sin(ξ 1 ) cos(ξ 2 )dx 1 + R sin(ξ 1 ) sin(ξ 2 )dx 2 with ψ = [µ + A(ξ 1 )] 2 γ 2 [1 + R 2 sin 2 (ξ 1 )] for 0 < ξ 1 < π, 0 ξ 2 < 2π and constant R

19 Electric waves in a warm Maxwell plasma 1 d 2 µ π γ 2 dζ 2 = q2 m n ionγ 2 q2 m 2πR2 α 0 ( [µ + A(ξ 1 )] 2 ) 1/2 γ 2 [1 + R 2 sin 2 (ξ 1 )] sin(ξ 1 ) cos(ξ 1 ) dξ 1 with π 2πR 2 and E = m/(qγ 2 )dµ/dζ 0 A(ξ 1 ) sin(ξ 1 ) cos(ξ 1 ) dξ 1 = n ionγ 2 v α

20 Maximum electric field ẋ 3 ẋ 1 ẋ 2 For width 1 height, and v 1 E 2 max m2 ω 2 p q 2 9mc 2 20k B T eq where T eq is an effective longitudinal temperature.

21 Maximum electric field ẋ 3 ẋ 1 ẋ 2 For width 1 height, and v 1 E 2 max m2 ω 2 p q 2 9mc 2 20k B T eq where T eq is an effective longitudinal temperature. Does the wave actually break? Only tip reaches v

22 Summary Understanding radiation reaction is important for contemporary and future acceleration concepts. Abraham-Lorentz-Dirac equation is pathological Could Born-Infeld electrodynamics be the answer? Test using forthcoming laser facilities and astrophysical systems? Explore large-amplitude waves in Born-Infeld plasmas Cold plasmas [DAB, RMGM Trines, TJ Walton, H Wen, arxiv: [physics.plasm-ph] (submitted)] Problems remain to be ironed out in warm plasmas [DAB, A Noble, arxiv: [physics.plasm-ph] J. Phys. A Math. Theor (2010)] We thank Robin Tucker for useful discussions.

Aspects of High Field Theory in Relativistic Plasmas. Haibao Wen

Aspects of High Field Theory in Relativistic Plasmas. Haibao Wen Aspects of High Field Theory in Relativistic Plasmas Haibao Wen BSc (Shanxi University, China) MSc (Graduate University of the Chinese Academy of Sciences, China) Date submitted March 2012 A thesis submitted

More information

Self-force in Bopp-Podolsky theory

Self-force in Bopp-Podolsky theory Self-force in Bopp-Podolsky theory Volker Perlick ZARM, Univ. Bremen, Germany Self-force of point particles in (a) standard Maxwell theory (b) Born-Infeld theory (c) Bopp-Podolsky theory Collaboration

More information

Elementary processes in the presence of super-intense laser fields; beyond perturbative QED

Elementary processes in the presence of super-intense laser fields; beyond perturbative QED Elementary processes in the presence of super- ; beyond perturbative QED University of Bucharest, Faculty of Physics madalina.boca@g.unibuc.ro 30 June 2016 CSSP 2016, June 26-July 09, Sinaia 1 Overview

More information

arxiv: v1 [hep-ph] 7 Dec 2017

arxiv: v1 [hep-ph] 7 Dec 2017 Unruh effect and Schwinger pair creation under extreme acceleration by ultraintense lasers arxiv:1712.02477v1 [hep-ph] 7 Dec 2017 Chul Min Kim Center for Relativistic Laser Science, Institute for Basic

More information

Cockcroft. Daresbury. John Dainton August 11th at CI and DL

Cockcroft. Daresbury. John Dainton August 11th at CI and DL Cockcroft John Dainton August 11th 2006 Sir Institute Keith O Nions at CI and DL Daresbury THE COCKCROFT INSTITUTE of ACCELERATOR SCIENCE and TECHNOLOGY http://www.lancs.ac.uk/cockcroft-institute/ Sir

More information

Unruh effect & Schwinger mechanism in strong lasers?

Unruh effect & Schwinger mechanism in strong lasers? Unruh effect & Schwinger mechanism in strong lasers? Ralf Schützhold Fachbereich Physik Universität Duisburg-Essen Unruh effect & Schwinger mechanism in strong lasers? p.1/14 Unruh Effect Uniformly accelerated

More information

Stable Propagating Waves and Wake Fields in Relativistic Electromagnetic Plasma

Stable Propagating Waves and Wake Fields in Relativistic Electromagnetic Plasma Commun. Theor. Phys. (Beijing, China) 49 (2008) pp. 753 758 c Chinese Physical Society Vol. 49, No. 3, March 15, 2008 Stable Propagating Waves and Wake Fields in Relativistic Electromagnetic Plasma XIE

More information

Calculation of wakefields for plasma-wakefield accelerators

Calculation of wakefields for plasma-wakefield accelerators 1 Calculation of wakefields for plasma-wakefield accelerators G. Stupakov, SLAC ICFA mini-workshop on Impedances and Beam Instabilities in Particle Accelerators 18-22 September 2017 2 Introduction to PWFA

More information

Wakefields and beam hosing instability in plasma wake acceleration (PWFA)

Wakefields and beam hosing instability in plasma wake acceleration (PWFA) 1 Wakefields and beam hosing instability in plasma wake acceleration (PWFA) G. Stupakov, SLAC DESY/University of Hamburg accelerator physics seminar 21 November 2017 Introduction to PWFA Plasma wake excited

More information

Laser-plasma particle accelerators. Zulfikar Najmudin

Laser-plasma particle accelerators. Zulfikar Najmudin Laserplasma particle accelerators Zulfikar Najmudin Vulcan: High Power Laser High intensity lasers 10 15 The evolution of Power of small diameter laser systems State of art e.g. Vulcan Petawatt, 400 J

More information

Coherent radiation of electron cloud.

Coherent radiation of electron cloud. SLAC-PUB-1784 October 5, 24 Coherent radiation of electron cloud. S. Heifets Stanford Linear Accelerator Center, Stanford University, Stanford, CA 9439 Abstract The electron cloud in positron storage rings

More information

Introduction to intense laser-matter interaction

Introduction to intense laser-matter interaction Pohang, 22 Aug. 2013 Introduction to intense laser-matter interaction Chul Min Kim Advanced Photonics Research Institute (APRI), Gwangju Institute of Science and Technology (GIST) & Center for Relativistic

More information

Recent developments in the Dutch Laser Wakefield Accelerators program at the University of Twente: New external bunch injection scheme.

Recent developments in the Dutch Laser Wakefield Accelerators program at the University of Twente: New external bunch injection scheme. Recent developments in the Dutch Laser Wakefield Accelerators program at the University of Twente: New external bunch injection scheme. A.G. Khachatryan, F.A. van Goor, J.W.J. Verschuur and K.-J. Boller

More information

Particle-in-Cell Codes for plasma-based particle acceleration

Particle-in-Cell Codes for plasma-based particle acceleration A. Pukhov Institute for Theoretical Physics I University of Dusseldorf, Germany Particle-in-Cell Codes for plasma-based particle acceleration Outline Relativistic plasmas, acceleration and the simulation

More information

A Lax Representation for the Born-Infeld Equation

A Lax Representation for the Born-Infeld Equation A Lax Representation for the Born-Infeld Equation J. C. Brunelli Universidade Federal de Santa Catarina Departamento de Física CFM Campus Universitário Trindade C.P. 476, CEP 88040-900 Florianópolis, SC

More information

IZEST Pair Plasma Physics and Application to Astrophysics

IZEST Pair Plasma Physics and Application to Astrophysics IZEST Pair Plasma Physics and Application to Astrophysics H. Takabe (Aki) ILE and GS of Science, Osaka University Collaborators: L. Baiotti, T. Moritaka, L. An, W. Li TN Kato, A. Hosaka, and A. Titov 1

More information

Strong-Field QED and High-Power Lasers

Strong-Field QED and High-Power Lasers LC2006 16-05-2006 with: O. Schröder (UoP science + computing, Tübingen) B. Liesfeld, K.-U. Amthor, H. Schwörer and A. Wipf (FSU Jena) R. Sauerbrey, FZ Rossendorf Outline Introduction 1. Introduction QED

More information

Intense laser-matter interaction: Probing the QED vacuum

Intense laser-matter interaction: Probing the QED vacuum Intense laser-matter interaction: Probing the QED vacuum Hartmut Ruhl Physics Department, LMU Munich, Germany ELI-NP, Bucharest March 11, 2011 Experimental configuration Two laser pulses (red) collide

More information

An Exploration of the Effects of Radiation. Reaction on Waves Propagating Through a. Warm Plasma

An Exploration of the Effects of Radiation. Reaction on Waves Propagating Through a. Warm Plasma An Exploration of the Effects of Radiation Reaction on Waves Propagating Through a Warm Plasma Anthony Carr MPhys Physics, Astrophysics and Cosmology Lancaster) Physics Department of Physics Lancaster

More information

Limits on Tunneling Theories of Strong-Field Ionization

Limits on Tunneling Theories of Strong-Field Ionization Limits on Tunneling Theories of Strong-Field Ionization H. R. Reiss Max Born Institute, 12489 Berlin, Germany American University, Washington, D.C. 20016-8058, USA (Received 6 March 2008; published 22

More information

Active Medium Acceleration

Active Medium Acceleration Active Medium Acceleration Levi Schächter Department of Electrical Engineering Technion - Israel Institute of Technology Haifa 3, ISRAEL Outline Acceleration concepts Wake in a medium Frank-Hertz, LASER

More information

Faraday Transport in a Curved Space-Time

Faraday Transport in a Curved Space-Time Commun. math. Phys. 38, 103 110 (1974) by Springer-Verlag 1974 Faraday Transport in a Curved Space-Time J. Madore Laboratoire de Physique Theorique, Institut Henri Poincare, Paris, France Received October

More information

Dynamically assisted Sauter-Schwinger effect

Dynamically assisted Sauter-Schwinger effect Dynamically assisted Sauter-Schwinger effect Ralf Schützhold Fachbereich Physik Universität Duisburg-ssen Dynamically assisted Sauter-Schwinger effect p.1/16 Dirac Sea Schrödinger equation (non-relativistic)

More information

Thomson Scattering from Nonlinear Electron Plasma Waves

Thomson Scattering from Nonlinear Electron Plasma Waves Thomson Scattering from Nonlinear Electron Plasma Waves A. DAVIES, 1 J. KATZ, 1 S. BUCHT, 1 D. HABERBERGER, 1 J. BROMAGE, 1 J. D. ZUEGEL, 1 J. D. SADLER, 2 P. A. NORREYS, 3 R. BINGHAM, 4 R. TRINES, 5 L.O.

More information

Recollision processes in strong-field QED

Recollision processes in strong-field QED Recollision processes in strong-field QED Antonino Di Piazza Program on Frontiers of Intense Laser Physics Santa Barbara, California, August 21st 2014 Outline Introduction to recollision processes in atomic

More information

arxiv:gr-qc/ v1 29 Jun 1998

arxiv:gr-qc/ v1 29 Jun 1998 Uniformly accelerated sources in electromagnetism and gravity V. Pravda and A. Pravdová Department of Theoretical Physics, Faculty of Mathematics and Physics, Charles University, V Holešovičkıach, 18 Prague

More information

Breakdown of the KLN Theorem for Charged Particles in Condensed Matter

Breakdown of the KLN Theorem for Charged Particles in Condensed Matter Breakdown of the KLN Theorem for Charged Particles in Condensed Matter Y. N. Srivastava, and A. Widom Department of Physics & INFN, University of Perugia, Perugia, Italy Department of Physics, Northeastern

More information

Interaction of an Intense Electromagnetic Pulse with a Plasma

Interaction of an Intense Electromagnetic Pulse with a Plasma Interaction of an Intense Electromagnetic Pulse with a Plasma S. Poornakala Thesis Supervisor Prof. P. K. Kaw Research collaborators Prof. A. Sen & Dr.Amita Das. v B Force is negligible Electrons are non-relativistic

More information

Moving Weakly Relativistic Electromagnetic Solitons in Laser-Plasmas

Moving Weakly Relativistic Electromagnetic Solitons in Laser-Plasmas Moving Weakly Relativistic Electromagnetic Solitons in Laser-Plasmas Lj. Hadžievski, A. Mančić and M.M. Škorić Department of Physics, Faculty of Sciences and Mathematics, University of Niš, P.O. Box 4,

More information

Milano 18. January 2007

Milano 18. January 2007 Birefringence in Theoretisch-Physikalisches Institut, FSU Jena with T. Heinzl (University Plymouth) B. Liesfeld, K. Amthor, H. Schwörer (FS-University Jena) R. Sauerbrey FZ Dresden-Rossendorf Optics Communications

More information

Relativistic Strong Field Ionization and Compton Harmonics Generation

Relativistic Strong Field Ionization and Compton Harmonics Generation Relativistic Strong Field Ionization and Compton Harmonics Generation Farhad Faisal Fakultaet fuer Physik Universitiaet Bielefeld Germany Collaborators: G. Schlegel, U. Schwengelbeck, Sujata Bhattacharyya,

More information

Radiation Reaction in Quantum Vacuum

Radiation Reaction in Quantum Vacuum arxiv: 15. 736v Radiation Reaction in Quantum Vacuum Keita Seto ELI-NP, Horia Hulubei National Institute of Physics and Nuclear Engineering, Str. Atomistilor, nr.7, localitatea agurele, jud. Ilfov, 7715,

More information

V.G. Baryshevsky. Institute for Nuclear Problems, Belarusian State University, Minsk, Belarus

V.G. Baryshevsky. Institute for Nuclear Problems, Belarusian State University, Minsk, Belarus The phenomena of spin rotation and depolarization of highenergy particles in bent and straight crystals at Large Hadron Collider (LHC) and Future Circular Collider (FCC) energies and the possibility to

More information

On the existence of magnetic monopoles

On the existence of magnetic monopoles On the existence of magnetic monopoles Ali R. Hadjesfandiari Department of Mechanical and Aerospace Engineering State University of New York at Buffalo Buffalo, NY 146 USA ah@buffalo.edu September 4, 13

More information

J10M.1 - Rod on a Rail (M93M.2)

J10M.1 - Rod on a Rail (M93M.2) Part I - Mechanics J10M.1 - Rod on a Rail (M93M.2) J10M.1 - Rod on a Rail (M93M.2) s α l θ g z x A uniform rod of length l and mass m moves in the x-z plane. One end of the rod is suspended from a straight

More information

PONDEROMOTIVE ION ACCELERATION AND FAST ION IGNITION WITH ULTRAINTENSE LASER PULSES

PONDEROMOTIVE ION ACCELERATION AND FAST ION IGNITION WITH ULTRAINTENSE LASER PULSES PONDEROMOTIVE ION ACCELERATION AND FAST ION IGNITION WITH ULTRAINTENSE LASER PULSES V.Tikhonchuk Centre Lasers Intenses et Applications Université Bordeaux 1, France Senigallia, June 15, 2009 COULOMB 09

More information

THE DYNAMICS OF A CHARGED PARTICLE

THE DYNAMICS OF A CHARGED PARTICLE 1. THE DYNAMICS OF A CHARGED PARTICLE Fritz Rohrlich* Syracuse University, Syracuse, New York 1344-113 Using physical arguments, I derive the physically correct equations of motion for a classical charged

More information

Polarisation of high-energy emission in a pulsar striped wind

Polarisation of high-energy emission in a pulsar striped wind Polarisation of high-energy emission in a pulsar striped wind Jérôme Pétri Observatoire Astronomique de Strasbourg, Université de Strasbourg, France. X-ray polarimetry, November 2017, Strasbourg Jérôme

More information

Laser Plasma Wakefield Acceleration : Concepts, Tests and Premises

Laser Plasma Wakefield Acceleration : Concepts, Tests and Premises Laser Plasma Wakefield Acceleration : Concepts, Tests and Premises J. Faure, Y. Glinec, A. Lifschitz, A. Norlin, C. Réchatin, V.Malka Laboratoire d Optique Appliquée ENSTA-Ecole Polytechnique, CNRS 91761

More information

Nonlinear Waves: Woods Hole GFD Program 2009

Nonlinear Waves: Woods Hole GFD Program 2009 Nonlinear Waves: Woods Hole GFD Program 2009 Roger Grimshaw Loughborough University, UK July 13, 2009 Lecture 10: Wave-Mean Flow Interaction, Part II The Great Wave at Kanagawa 929 (JP1847) The Great Wave

More information

Theory & Computation

Theory & Computation Theory & Computation Rate coefficients in a degenerate plasma produced by short wavelength lasers V. Aslanyan, G. J. Tallents (York Plasma Institute, University of York, UK) THEORY & COMPUTATION We have

More information

Charged Particle in a Constant, Uniform Electric Field with Radiation Reaction

Charged Particle in a Constant, Uniform Electric Field with Radiation Reaction Adv. Studies Theor. Phys., Vol. 5, 2011, no. 6, 275-282 Charged Particle in a Constant, Uniform Electric Field with Radiation Reaction Richard T. Hammond Department of Physics University of North Carolina

More information

Study of Laser Plasma Interactions Using an Eulerian Vlasov Code

Study of Laser Plasma Interactions Using an Eulerian Vlasov Code PSFC/JA-04-6 Study of Laser Plasma Interactions Using an Eulerian Vlasov Code D. J. Strozzi, M. M. Shoucri*, and A. Bers March 2004 Plasma Science and Fusion Center Massachusetts Institute of Technology

More information

Observations on the ponderomotive force

Observations on the ponderomotive force Observations on the ponderomotive force D.A. Burton a, R.A. Cairns b, B. Ersfeld c, A. Noble c, S. Yoffe c, and D.A. Jaroszynski c a University of Lancaster, Physics Department, Lancaster LA1 4YB, UK b

More information

The Radia)ng Electron

The Radia)ng Electron The Radia)ng Electron R. F. O Connell, Department of Physics and Astronomy Louisiana State University, Baton Rouge, LA 70803-4001 USA Based on work carried out in collaboramon with Professor G. W. Ford.

More information

6. QED. Particle and Nuclear Physics. Dr. Tina Potter. Dr. Tina Potter 6. QED 1

6. QED. Particle and Nuclear Physics. Dr. Tina Potter. Dr. Tina Potter 6. QED 1 6. QED Particle and Nuclear Physics Dr. Tina Potter Dr. Tina Potter 6. QED 1 In this section... Gauge invariance Allowed vertices + examples Scattering Experimental tests Running of alpha Dr. Tina Potter

More information

Vooludünaamika laiendatud geomeetrias

Vooludünaamika laiendatud geomeetrias Vooludünaamika laiendatud geomeetrias Manuel Hohmann Teoreetilise Füüsika Labor Füüsika Instituut Tartu Ülikool 28. oktoober 2014 Manuel Hohmann (Tartu Ülikool) Vooludünaamika 28. oktoober 2014 1 / 25

More information

Simulating experiments for ultra-intense laser-vacuum interaction

Simulating experiments for ultra-intense laser-vacuum interaction Simulating experiments for ultra-intense laser-vacuum interaction Nina Elkina LMU München, Germany March 11, 2011 Simulating experiments for ultra-intense laser-vacuum interaction March 11, 2011 1 / 23

More information

Electron Acceleration by Microwave Radiation Inside a Rectangular Waveguide

Electron Acceleration by Microwave Radiation Inside a Rectangular Waveguide Plasma Science and Technology, Vol.13, No.3, Jun. 2011 Electron Acceleration by Microwave Radiation Inside a Rectangular Waveguide B. F. MOHAMED, A. M. GOUDA Plasma Physics Department, N.R.C., Atomic Energy

More information

Back to basics : Maxwell equations & propagation equations

Back to basics : Maxwell equations & propagation equations The step index planar waveguide Back to basics : Maxwell equations & propagation equations Maxwell equations Propagation medium : Notations : linear Real fields : isotropic Real inductions : non conducting

More information

Using Pipe With Corrugated Walls for a Sub-Terahertz FEL

Using Pipe With Corrugated Walls for a Sub-Terahertz FEL 1 Using Pipe With Corrugated Walls for a Sub-Terahertz FEL Gennady Stupakov SLAC National Accelerator Laboratory, Menlo Park, CA 94025 37th International Free Electron Conference Daejeon, Korea, August

More information

2/8/16 Dispersive Media, Lecture 5 - Thomas Johnson 1. Waves in plasmas. T. Johnson

2/8/16 Dispersive Media, Lecture 5 - Thomas Johnson 1. Waves in plasmas. T. Johnson 2/8/16 Dispersive Media, Lecture 5 - Thomas Johnson 1 Waves in plasmas T. Johnson Introduction to plasma physics Magneto-Hydro Dynamics, MHD Plasmas without magnetic fields Cold plasmas Transverse waves

More information

Unruh effect and Holography

Unruh effect and Holography nd Mini Workshop on String Theory @ KEK Unruh effect and Holography Shoichi Kawamoto (National Taiwan Normal University) with Feng-Li Lin(NTNU), Takayuki Hirayama(NCTS) and Pei-Wen Kao (Keio, Dept. of

More information

Bose-Einstein Condensation and Intermediate State of the. Photon Gas. Abstract

Bose-Einstein Condensation and Intermediate State of the. Photon Gas. Abstract Bose-Einstein Condensation and Intermediate State of the Photon Gas Levan N. Tsintsadze Venture Business Laboratory, Hiroshima University, Higashi-Hiroshima, Japan (July 19, 2002) Abstract Possibility

More information

THE INTERACTION OF FREE ELECTRONS WITH INTENSE ELECTROMAGNETIC RADIATION

THE INTERACTION OF FREE ELECTRONS WITH INTENSE ELECTROMAGNETIC RADIATION THE ITERACTIO OF FREE ELECTROS WITH ITESE ELECTROMAGETIC RADIATIO M. BOCA, V. FLORESCU Department of Physics and Centre for Advanced Quantum Physics University of Bucharest, MG-11, Bucharest-Mãgurele,

More information

Relativistic Electron Heating in Focused Multimode Laser Fields with Stochastic Phase Purturbations

Relativistic Electron Heating in Focused Multimode Laser Fields with Stochastic Phase Purturbations 1 Relativistic Electron Heating in Focused Multimode Laser Fields with Stochastic Phase Purturbations Yu.A.Mikhailov, L.A.Nikitina, G.V.Sklizkov, A.N.Starodub, M.A.Zhurovich P.N.Lebedev Physical Institute,

More information

Laser Ion Acceleration: Status and Perspectives for Fusion

Laser Ion Acceleration: Status and Perspectives for Fusion Laser Ion Acceleration: Status and Perspectives for Fusion Peter G. Thirolf, LMU Munich Outline: laser-particle acceleration fission-fusion mechanism: with ultra-dense ion beams towards r-process path

More information

A Tunable (1100-nm to 1500-nm) 50-mJ Laser Enables a Pump-Depleting Plasma-Wave Amplifier

A Tunable (1100-nm to 1500-nm) 50-mJ Laser Enables a Pump-Depleting Plasma-Wave Amplifier A Tunable (1100-nm to 1500-nm) 50-mJ Laser Enables a Pump-Depleting Plasma-Wave Amplifier Focused intensity (W/cm 2 ) 10 30 10 25 10 20 10 15 10 10 Nonlinear quantum electrodynamics (QED) Ultrarelativistic

More information

Longitudinal Laser Shaping in Laser Wakefield Accelerators

Longitudinal Laser Shaping in Laser Wakefield Accelerators SLAC-PUB-898 August physics:/86 Longitudinal Laser Shaping in Laser Wakefield Accelerators Anatoly Spitkovsky ( and Pisin Chen ( ( Department of Physics, University of California, Berkeley, CA 97 ( Stanford

More information

Electron-Positron Pair Production in Strong Electric Fields

Electron-Positron Pair Production in Strong Electric Fields Electron-Positron Pair Production in Strong Electric Fields Christian Kohlfürst PhD Advisor: Reinhard Alkofer University of Graz Institute of Physics Dissertantenseminar Graz, November 21, 2012 Outline

More information

Part III. Interaction with Single Electrons - Plane Wave Orbits

Part III. Interaction with Single Electrons - Plane Wave Orbits Part III - Orbits 52 / 115 3 Motion of an Electron in an Electromagnetic 53 / 115 Single electron motion in EM plane wave Electron momentum in electromagnetic wave with fields E and B given by Lorentz

More information

TOWARDS THE PHYSICAL SIGNIFICANCE OF THE (k 2 + A) u METRIC.

TOWARDS THE PHYSICAL SIGNIFICANCE OF THE (k 2 + A) u METRIC. Tensor, N. S. Vol. 71 2009, no. 2, p. 109 113. TOWARDS THE PHYSICAL SIGNIFICANCE OF THE k 2 + A u METRIC. By Roman Matsyuk Abstract We offer an example of the second order Kawaguchi metric function the

More information

Synergistic Direct/Wakefield Acceleration In the Plasma Bubble Regime Using Tailored Laser Pulses. Gennady Shvets, The University of Texas at Austin

Synergistic Direct/Wakefield Acceleration In the Plasma Bubble Regime Using Tailored Laser Pulses. Gennady Shvets, The University of Texas at Austin Synergistic Direct/Wakefield Acceleration In the Plasma Bubble Regime Using Tailored Laser Pulses Gennady Shvets, The University of Texas at Austin John Adams Institute for Accelerator Science, Oxford,

More information

Simulation of Relativistic Jet-Plasma Interactions

Simulation of Relativistic Jet-Plasma Interactions Simulation of Relativistic Jet-Plasma Interactions Robert Noble and Johnny Ng Stanford Linear Accelerator Center SABER Workshop, Laboratory Astrophysics WG SLAC, March 15-16, 2006 Motivations High energy

More information

Classification theorem for the static and asymptotically flat Einstein-Maxwell-dilaton spacetimes possessing a photon sphere

Classification theorem for the static and asymptotically flat Einstein-Maxwell-dilaton spacetimes possessing a photon sphere Classification theorem for the static and asymptotically flat Einstein-Maxwell-dilaton spacetimes possessing a photon sphere Boian Lazov and Stoytcho Yazadjiev Varna, 2017 Outline 1 Motivation 2 Preliminaries

More information

On the origin of radiation and electromagnetic inertia

On the origin of radiation and electromagnetic inertia Sur l origine des radiation et l inertie électromagnétique, J. de Phys. theor. appl. (4) 4 (1905), 165-183. On the origin of radiation and electromagnetic inertia By P. LANGEVIN Translated by D. H. Delphenich

More information

Overthrows a basic assumption of classical physics - that lengths and time intervals are absolute quantities, i.e., the same for all observes.

Overthrows a basic assumption of classical physics - that lengths and time intervals are absolute quantities, i.e., the same for all observes. Relativistic Electrodynamics An inertial frame = coordinate system where Newton's 1st law of motion - the law of inertia - is true. An inertial frame moves with constant velocity with respect to any other

More information

The relativistic Doppler effect: when a zero frequency shift or a red shift exists for sources approaching the observer

The relativistic Doppler effect: when a zero frequency shift or a red shift exists for sources approaching the observer The relativistic Doppler effect: when a zero frequency shift or a red shift exists for sources approaching the observer Changbiao Wang * ShangGang Group, 70 Huntington Road, Apartment, New Haven, CT 065,

More information

arxiv: v1 [physics.plasm-ph] 3 Aug 2017

arxiv: v1 [physics.plasm-ph] 3 Aug 2017 Generation of Low Frequency Plasma Waves After Wave-Breaking Prabal Singh Verma CNRS/Université d Aix-Marseille Centre saint Jérôme, case, F-97 Marseille cedex, France arxiv:78.99v [physics.plasm-ph] Aug

More information

Aspects of electromagnetic radiation reaction in strong fields

Aspects of electromagnetic radiation reaction in strong fields Aspects of electromagnetic radiation reaction in strong fields David A. Burton Adam Noble January 18, 2014 Abstract With the recent advances in laser technology, experimental investigation of radiation

More information

4 Electric Fields in Matter

4 Electric Fields in Matter 4 Electric Fields in Matter 4.1 Parity and Time Reversal: Lecture 10 (a) We discussed how fields transform under parity and time reversal. A useful table is Quantity Parity Time Reversal t Even Odd r Odd

More information

Schwinger effect of QED in strong fields

Schwinger effect of QED in strong fields Schwinger effect of QED in strong fields 谢柏松 bsxie@bnu.edu.cn 北京师范大学核科学与技术学院 2011-12-01 中国科学技术大学交叉学科理论研究中心 Contents 1 Introduction 2 Semiclassical treatment 3 Quantum kinetic methods 4 Summary and outlook

More information

Casimir and Casimir-Polder forces in chiral and non-reciprocal media

Casimir and Casimir-Polder forces in chiral and non-reciprocal media Casimir and Casimir-Polder forces in chiral and non-reciprocal media Stefan Yoshi Buhmann, Stefan Scheel, David Butcher Quantum Optics and Laser Science Blackett Laboratory, Imperial College London, UK

More information

arxiv: v1 [physics.class-ph] 8 Apr 2019

arxiv: v1 [physics.class-ph] 8 Apr 2019 Representation Independent Boundary Conditions for a Piecewise-Homogeneous Linear Magneto-dielectric Medium arxiv:1904.04679v1 [physics.class-ph] 8 Apr 019 Michael E. Crenshaw 1 Charles M. Bowden Research

More information

arxiv:gr-qc/ v1 13 May 2000

arxiv:gr-qc/ v1 13 May 2000 Light propagation in non-linear electrodynamics V. A. De Lorenci 1, R. Klippert 2,3, M. Novello 2 and J. M. Salim 2 1 Instituto de Ciências - Escola Federal de Engenharia de Itajubá Av. BPS 1303 Pinheirinho,

More information

arxiv:gr-qc/ v1 11 Oct 1999

arxiv:gr-qc/ v1 11 Oct 1999 NIKHEF/99-026 Killing-Yano tensors, non-standard supersymmetries and an index theorem J.W. van Holten arxiv:gr-qc/9910035 v1 11 Oct 1999 Theoretical Physics Group, NIKHEF P.O. Box 41882, 1009 DB Amsterdam

More information

Radiation reaction in classical and quantum electrodynamics

Radiation reaction in classical and quantum electrodynamics Radiation reaction in classical and quantum electrodynamics Antonino Di Piazza Program on Frontiers of Intense Laser Physics Santa Barbara, California, August 12th 2014 OUTLINE Introduction to classical

More information

Chapter 1. Introduction to Nonlinear Space Plasma Physics

Chapter 1. Introduction to Nonlinear Space Plasma Physics Chapter 1. Introduction to Nonlinear Space Plasma Physics The goal of this course, Nonlinear Space Plasma Physics, is to explore the formation, evolution, propagation, and characteristics of the large

More information

2.3 Calculus of variations

2.3 Calculus of variations 2.3 Calculus of variations 2.3.1 Euler-Lagrange equation The action functional S[x(t)] = L(x, ẋ, t) dt (2.3.1) which maps a curve x(t) to a number, can be expanded in a Taylor series { S[x(t) + δx(t)]

More information

Lorentz-squeezed Hadrons and Hadronic Temperature

Lorentz-squeezed Hadrons and Hadronic Temperature Lorentz-squeezed Hadrons and Hadronic Temperature D. Han, National Aeronautics and Space Administration, Code 636 Greenbelt, Maryland 20771 Y. S. Kim, Department of Physics and Astronomy, University of

More information

New Homoclinic and Heteroclinic Solutions for Zakharov System

New Homoclinic and Heteroclinic Solutions for Zakharov System Commun. Theor. Phys. 58 (2012) 749 753 Vol. 58, No. 5, November 15, 2012 New Homoclinic and Heteroclinic Solutions for Zakharov System WANG Chuan-Jian ( ), 1 DAI Zheng-De (à ), 2, and MU Gui (½ ) 3 1 Department

More information

κ = f (r 0 ) k µ µ k ν = κk ν (5)

κ = f (r 0 ) k µ µ k ν = κk ν (5) 1. Horizon regularity and surface gravity Consider a static, spherically symmetric metric of the form where f(r) vanishes at r = r 0 linearly, and g(r 0 ) 0. Show that near r = r 0 the metric is approximately

More information

Dispersive Media, Lecture 7 - Thomas Johnson 1. Waves in plasmas. T. Johnson

Dispersive Media, Lecture 7 - Thomas Johnson 1. Waves in plasmas. T. Johnson 2017-02-14 Dispersive Media, Lecture 7 - Thomas Johnson 1 Waves in plasmas T. Johnson Introduction to plasmas as a coupled system Magneto-Hydro Dynamics, MHD Plasmas without magnetic fields Cold plasmas

More information

Landau-Lifshitz equation of motion for a charged particle revisited

Landau-Lifshitz equation of motion for a charged particle revisited Annales de la Fondation Louis de Broglie, Volume 30 no 3-4, 2005 283 Landau-Lifshitz equation of motion for a charged particle revisited G. Ares de Parga, R. Mares and S. Dominguez Escuela Superior de

More information

Physics PhD Qualifying Examination Part I Wednesday, August 26, 2015

Physics PhD Qualifying Examination Part I Wednesday, August 26, 2015 Physics PhD Qualifying Examination Part I Wednesday, August 26, 2015 Name: (please print) Identification Number: STUDENT: Designate the problem numbers that you are handing in for grading in the appropriate

More information

arxiv: v1 [gr-qc] 12 Sep 2018

arxiv: v1 [gr-qc] 12 Sep 2018 The gravity of light-waves arxiv:1809.04309v1 [gr-qc] 1 Sep 018 J.W. van Holten Nikhef, Amsterdam and Leiden University Netherlands Abstract Light waves carry along their own gravitational field; for simple

More information

MHD Linear Stability Analysis Using a Full Wave Code

MHD Linear Stability Analysis Using a Full Wave Code US-Japan JIFT Workshop on Progress of Extended MHD Models NIFS, Toki,Japan 2007/03/27 MHD Linear Stability Analysis Using a Full Wave Code T. Akutsu and A. Fukuyama Department of Nuclear Engineering, Kyoto

More information

E & M Qualifier. January 11, To insure that the your work is graded correctly you MUST:

E & M Qualifier. January 11, To insure that the your work is graded correctly you MUST: E & M Qualifier 1 January 11, 2017 To insure that the your work is graded correctly you MUST: 1. use only the blank answer paper provided, 2. use only the reference material supplied (Schaum s Guides),

More information

Laser Wakefield Acceleration. Presented by Derek Schaeffer For Advanced Optics, Physics 545 Professor Sergio Mendes

Laser Wakefield Acceleration. Presented by Derek Schaeffer For Advanced Optics, Physics 545 Professor Sergio Mendes Laser Wakefield Acceleration Pioneering Studies Conducted by the Lasers, Optical Accelerator Systems Integrated Studies (L OASIS) Program at Lawrence Berkeley National Laboratory Presented by Derek Schaeffer

More information

arxiv:hep-th/ v1 22 Jan 2000

arxiv:hep-th/ v1 22 Jan 2000 arxiv:hep-th/0001149v1 22 Jan 2000 TUW 00-03 hep-th/0001149 2000, January 20, ON ACTION FUNCTIONALS FOR INTERACTING BRANE SYSTEMS I. BANDOS Institute for Theoretical Physics, NSC Kharkov Institute of Physics

More information

Helicity conservation in Born-Infeld theory

Helicity conservation in Born-Infeld theory Helicity conservation in Born-Infeld theory A.A.Rosly and K.G.Selivanov ITEP, Moscow, 117218, B.Cheryomushkinskaya 25 Abstract We prove that the helicity is preserved in the scattering of photons in the

More information

Vacuum Birefringence in Strong Magnetic Fields

Vacuum Birefringence in Strong Magnetic Fields Vacuum Birefringence in Strong Magnetic Fields Walter Dittrich and Holger Gies Institut für theoretische Physik, Universität Tübingen, Auf der Morgenstelle 14, 72076 Tübingen, Germany Abstract Table of

More information

QED processes in intense laser fields

QED processes in intense laser fields QED processes in intense laser fields Anton Ilderton Dept. Physics, Umeå, Sweden 22 September, QFEXT 2011, Benasque Phys.Rev.Lett. 106 (2011) 020404. Phys. Lett. B692 (2010) 250. With C. Harvey, F. Hebenstreit,

More information

4/13/2015. Outlines CHAPTER 12 ELECTRODYNAMICS & RELATIVITY. 1. The special theory of relativity. 2. Relativistic Mechanics

4/13/2015. Outlines CHAPTER 12 ELECTRODYNAMICS & RELATIVITY. 1. The special theory of relativity. 2. Relativistic Mechanics CHAPTER 12 ELECTRODYNAMICS & RELATIVITY Lee Chow Department of Physics University of Central Florida Orlando, FL 32816 Outlines 1. The special theory of relativity 2. Relativistic Mechanics 3. Relativistic

More information

Space Charge Mi-ga-on

Space Charge Mi-ga-on Space Charge Mi-ga-on Massimo.Ferrario@LNF.INFN.IT Hamburg June nd 016 OUTLINE The rms emicance concept rms envelope equa-on Space charge forces Space charge induced emicance oscilla-ons Matching condi-ons

More information

Covariant electrodynamics

Covariant electrodynamics Lecture 9 Covariant electrodynamics WS2010/11: Introduction to Nuclear and Particle Physics 1 Consider Lorentz transformations pseudo-orthogonal transformations in 4-dimentional vector space (Minkowski

More information

1 Why laser acceleration?

1 Why laser acceleration? Quantum Field Theory of the Laser Acceleration Miroslav Pardy Department of Theoretical Physics and Astrophysics, Masaryk University, Faculty of Science, Kotlářská, 611 37 Brno, Czech Republic e-mail:pamir@physics.muni.cz

More information

arxiv:physics/ v1 [physics.plasm-ph] 16 Jan 2007

arxiv:physics/ v1 [physics.plasm-ph] 16 Jan 2007 The Effect of Laser Focusing Conditions on Propagation and Monoenergetic Electron Production in Laser Wakefield Accelerators arxiv:physics/0701186v1 [physics.plasm-ph] 16 Jan 2007 A. G. R. Thomas 1, Z.

More information

BEAM INSTABILITIES IN LINEAR MACHINES 1.

BEAM INSTABILITIES IN LINEAR MACHINES 1. BEAM INSTABILITIES IN LINEAR MACHINES 1 Massimo.Ferrario@LNF.INFN.IT CERN 4 November 2015 SELF FIELDS AND WAKE FIELDS The realm of collecdve effects Direct self fields Image self fields Space Charge Wake

More information

arxiv:hep-ph/ v1 27 Nov 2001

arxiv:hep-ph/ v1 27 Nov 2001 CONSTRAINING LORENTZ VIOLATION USING SPECTROPOLARIMETRY OF COSMOLOGICAL SOURCES arxiv:hep-ph/0111347v1 27 Nov 2001 MATTHEW MEWES Physics Department, Indiana University, Bloomington, IN 47405, U.S.A. E-mail:

More information