Self-force in Bopp-Podolsky theory

Size: px
Start display at page:

Download "Self-force in Bopp-Podolsky theory"

Transcription

1 Self-force in Bopp-Podolsky theory Volker Perlick ZARM, Univ. Bremen, Germany Self-force of point particles in (a) standard Maxwell theory (b) Born-Infeld theory (c) Bopp-Podolsky theory Collaboration with Robin Tucker and Jonathan Gratus (Lancaster U)

2 Maxwell equations: df = 0, dh = 0 outside of sources. Constitutive equation in vacuo: (a) Standard Maxwell: H = F. (b) Born-Infeld theory: H = (F F) F 8b 2 F (F F) (F F) 1 + 8b 2 + 8b 4. M. Born, L. Infeld: Foundations of the new field theory Proc. Roy. Soc. London A 144, (1934) (c) Bopp-Podolsky theory: H = ( 1 l 2 ) F. F. Bopp: Eine lineare Theorie des Elektrons Annalen der Physik 430, (1940) B. Podolsky: A generalized electrodynamics. Part I: Non-quantum Phys. Rev. 62, (1942)

3 Field of a static point charge: (a) Standard Maxwell: E = 0, D = 0 for r 0. Constitutive equation: D = E. Solution is the standard Coulomb field: E = q 4πr 2 e r, D = q 4πr 2 e r. The field energy in a ball K R of radius R around the origin is infinite. W = K R 1 2 D Er 2 sinϑdrdϑdϕ = q2 8π R 0 r 2 dr r 2 r 2

4 (b) Born-Infeld theory: E = 0, D = 0 for r 0. Constitutive equation: D = E 1 1b 2 E 2. Solution is (Born and Infeld, 1934): E = q 4π r r 4 e r, D = q 4πr 2 e r, r 0 2 = q 4πb Hence E b for r 0. The field energy in a ball K R of radius R around the origin W = is finite. K R 1 2 D Er 2 sinϑdrdϑdϕ = q2 8π R 0 r 2 dr r r r 4

5 Plot of φ(r), where E = φ (r) e r : From M. Born, L. Infeld: Foundations of the new field theory Proc. Roy. Soc. London A 144, (1934)

6 (c) Bopp-Podolsky theory: Constitutive equation: E = 0, D = 0 for r 0. D = ( 1 l 2 ) E. Solution is (Bopp, 1940, Podolsky, 1942): E = q 4πr 2 { 1 Al(r + l)e r/l + Bl(r l)e r/l} e r, D = q 4πr 2 e r. E vanishing at infinity: B = 0. E finite everywhere: A = l 2, hence E q/(4πl 2 ) for r 0. Then the field energy in a ball K R of radius R around the origin 1 W = D K R 2 Er 2 sinϑdrdϑdϕ = q 2 8π R 0 { 1 r 2 e r/l r 2 e r/l rl }dr = q2 8π { 1 l + e R/l 1} R is finite.

7 Field of an accelerating point charge: Consider Minkowski space, g = η ab dx a dx b. Fix a timelike curve ξ a (τ) with η ab ξ a ξ b = 1 e 0 (τ) Choose a tetrad ( e0 (τ),e 1 (τ),e 2 (τ),e 3 (τ) ) along the worldline of the charged particle such that e a 0 (τ) = ξ a (τ), a(τ)e b 3 (τ) = ξ b (τ). ξ a (τ) e 3 (τ)

8 Retarded light-cone coordinates (τ, r, ϑ, ϕ): E. T. Newman and T. W. J. Unti: A class of null flat-space coordinate systems J. Math. Phys. 4, 1467 (1963). e 0 (τ) x x a = ξ a (τ) + r( ξ a (τ) + n a ) (τ,ϑ,ϕ) ξ a (τ) e 3 (τ) n a (τ,ϑ,ϕ) = cosϕsinϑe a 1 (τ) +sinϕsinϑe a 2 (τ) + cosϑea 3 (τ) (Advanced) light cone coordinates where first introduced in General Relativity by G. Temple: New system of normal co-ordinates for relativistic optics Proc. R. Soc. London, Ser. A 168, (1938)

9 Domain U of coordinate system (τ,r,ϑ,ϕ): x U = causal future of the worldline, with the worldline itself omitted ξ a (τ)

10 Associate orthonormal coframe θ 0,θ 1,θ 2,θ 3 with the light-cone coordinates (τ, r, ϑ, ϕ): θ 0 e 0 (τ) x a θ µ θ 0 = dτ + dr + ra(τ)cosϑdτ θ 1 = dr + ra(τ)cosϑdτ θ 2 = rdϑ ra(τ)sinϑdτ θ 3 = rsinϑdϕ ξ a (τ) e µ (τ)

11 Want to solve Maxwell s equations df = 0, dh = 0 on U and calculate the field energy in a ball around the charge. (a) Standard Maxwell: Solution is F = da, H = F, where A = qθ0 4πr = q 4π ( dτ + dr r ) + a(τ)cosϑdτ is the (retarded) Liénard-Wiechert potential.

12 A = qθ0 4πr θ 0 Write F = da as F = E µ θ µ θ Bρ ε ρµν θ µ θ ν, e 0 (τ) x a θ µ then E µ θ µ = q 4π { θ 1 r 2 + a(τ)sinϑθ2 r }, ξ a (τ) e µ (τ) B µ θ µ = q 4π a(τ)sinϑθ3 r hence the field energy in a ball (r R,τ = τ 0 ) is infinite.

13 (b) Born-Infeld theory: Want to solve Maxwell s equations, df = 0, dh = 0 on U with the Born-Infeld constitutive law (F F) F H = 8b 2 F (F F) (F F) 1 + 8b 2 + 8b 4. Can the analogue of the Liénard-Wiechert potential be calculated? Does the problem admit a solution that is regular everywhere away from the worldline of the charge? Does it behave near the worldline in the same way as in the static case?

14 There are no regularity results on Born-Infeld field with timedependent sources. For time-independent regular sources ρ and j, regularity of the solution has been proven only recently: M. Kiessling: Convergent perturbative power series solution of the stationary Born-Infeld field equations with regular sources J. Math. Phys. 52, (2011) The proof uses series expansions in 1/b. The hard part is in the proof of convergence.

15 Behaviour of the fields near the worldline was discussed in D. Chruściński: Point charge in the Born-Infeld electrodynamics Phys. Lett. A 240, 8 14 (1998) based on ideas taken from J. Kijowski: Electrodynamics of moving particles Gen. Rel. Grav. 26, (1994) But no proof of boundedness of the electric field strength is given.

16 Write F = da as a power series w.r.t. 1/b 2 : F = N=0 F N b 2N = F 0 + F 1 b , F N = da N Insert into constitutive law: H = N=0 1 b 2N ( F N + W N ( F0,...,F N 1 )) = The F N = da N are determined by dh = 0. Solve this order by order:

17 Solution to zeroth order is known: A 0 is the Liénard-Wiechert potential: A 0 = qθ0 4πr = q 4π ( dτ + dr r ) + a(τ)cosϑdτ Higher order solutions can be determined iteratively: d ( dan + W N ( da0,...,da N 1 )) = 0 In the Lorenz gauge: A N can be written in terms of retarded potentials. This gives the solution F = da as a formal power series. Does this series converge? Don t know. We do know that in the case of vanishing acceleration, a(τ) = 0, it does converge. One might conjecture that the same is true for small acceleration. However, it is not unlikely that for large acceleration singularities (e.g. shock waves ) may form, or the field may diverge too strongly towards the worldline.

18 (c) Bopp-Podolsky theory: Want to solve Maxwell s equations, df = 0, dh = 0 on U with the Bopp-Podolsky constitutive law ( H = 1 l ) 2 F. Can the analogue of the Liénard-Wiechert potential be calculated? Is it regular everywhere away from the worldline of the charge? Does it behave near the worldline in the same way as in the static case?

19 With F = da and choosing the Lorenz gauge, d A = 0, the field equation reads ( 1 l 2 ) A = 4πj. ( ) The Green function of 1 l 2 is known, see A.Landé, L.Thomas: Finite self-energies in radiation theory. II Phys. Rev. 60, (1941) Retarded solution for charge on worldline ξ a (τ) is where A a (x) = q τ J 1 ( z/l ) lz ξ a (τ )dτ ξ a (τ) e 0 (τ) x e 1 (τ) z 2 = ( x a ξ a (τ ) )( x a ξ a (τ ) ). ξ a (τ )

20 q τ F ab (x) = A b(x) x a A a(x) x b = q ) ( ξ 2l 2 a (τ)n b (τ,ϑ,ϕ) ξ b (τ)n a (τ,ϑ,ϕ) ( J zl ) ( 2 (xb z 2 l 2 ξ b (τ ) ) ξ a (τ ) ( x a ξ a (τ ) ) ξ b (τ ) ) dτ, F stays finite for r 0, for a large class of worldlines. The energy in a sphere around the charge is finite.

21 Lorentz force on charge q at x with 4-velocity U: f a (x) = qf ab (x)u b e 0 (τ) x Self-force: x ξ(τ) with q = q and U b = ξ b (τ) ξ a (τ) e 1 (τ) f s a (τ) = ξ a (τ ) q 2 τ ( J ζ ) 2 l ξ b ( (ξb ζ 2 l 2 (τ) (τ) ξ b (τ ) ) ξ a (τ ) ( ξ a (τ) ξ a (τ ) ) ξ b (τ )) dτ where ζ 2 = ( ξ a (τ) ξ a (τ ) )( ξ a (τ) ξ a (τ ) ).

22 The self-force is finite for a large class of timelike curve ξ. There is no need (and no justification) for mass renormalisation. The equation of motion is m 0 ξ a (τ) = f s a (τ) + fe a (τ) with a (bare) mass m 0. This is an integro-differential equation for ξ(τ). For l 0 and after mass renormalisation one gets the Lorentz- Dirac equation.

23 Example: Rindler motion (hyperbolic motion) ξ(τ) = 1 a sinh(aτ) cosh(aτ) 0 0 fa s q2 (τ) = al 2 I ( 1 (al) 1 ) ( K 1 (al) 1 ) ξ a (τ). ξ(τ) ξ(τ) m 0 ξ a (τ) = f s a (τ) + fe a (τ) Cf. A. E. Zayats: Self-interaction in the Bopp-Podolsky electrodynamics: Can the observable mass of a charged particle depend on its acceleration? arxiv:

Exploring Born-Infeld electrodynamics using plasmas

Exploring Born-Infeld electrodynamics using plasmas Exploring Born-Infeld electrodynamics using plasmas David A Burton & Haibao Wen (with Raoul MGM Trines 1, Adam Noble 2, Timothy J Walton) Department of Physics, Lancaster University and the Cockcroft Institute

More information

THE DYNAMICS OF A CHARGED PARTICLE

THE DYNAMICS OF A CHARGED PARTICLE 1. THE DYNAMICS OF A CHARGED PARTICLE Fritz Rohrlich* Syracuse University, Syracuse, New York 1344-113 Using physical arguments, I derive the physically correct equations of motion for a classical charged

More information

The Conservation of Matter in General Relativity

The Conservation of Matter in General Relativity Commun. math. Phys. 18, 301 306 (1970) by Springer-Verlag 1970 The Conservation of Matter in General Relativity STEPHEN HAWKING Institute of Theoretical Astronomy, Cambridge, England Received June 1, 1970

More information

arxiv: v1 [gr-qc] 9 Jan 2008

arxiv: v1 [gr-qc] 9 Jan 2008 Acceleration and Classical Electromagnetic Radiation E.N. Glass Department of Physics, University of Michigan, Ann Arbor, Michgan; Department of Physics, University of Windsor, Windsor, Ontario (Dated:

More information

arxiv:gr-qc/ v1 29 Jun 1998

arxiv:gr-qc/ v1 29 Jun 1998 Uniformly accelerated sources in electromagnetism and gravity V. Pravda and A. Pravdová Department of Theoretical Physics, Faculty of Mathematics and Physics, Charles University, V Holešovičkıach, 18 Prague

More information

Equations of Motion from Field Equations and a Gauge-invariant Variational Principle for the Motion of Charged Particles

Equations of Motion from Field Equations and a Gauge-invariant Variational Principle for the Motion of Charged Particles Equations of Motion from Field Equations and a Gauge-invariant Variational Principle for the Motion of Charged Particles Dariusz Chruściński Institute of Physics, Nicholas Copernicus University ul. Grudzi

More information

A Summary of the Black Hole Perturbation Theory. Steven Hochman

A Summary of the Black Hole Perturbation Theory. Steven Hochman A Summary of the Black Hole Perturbation Theory Steven Hochman Introduction Many frameworks for doing perturbation theory The two most popular ones Direct examination of the Einstein equations -> Zerilli-Regge-Wheeler

More information

On the shadows of black holes and of other compact objects

On the shadows of black holes and of other compact objects On the shadows of black holes and of other compact objects Volker Perlick ( ZARM, Univ. Bremen, Germany) 1. Schwarzschild spacetime mass m photon sphere at r = 3m shadow ( escape cones ): J. Synge, 1966

More information

1. (16) A point charge e moves with velocity v(t) on a trajectory r(t), where t is the time in some lab frame.

1. (16) A point charge e moves with velocity v(t) on a trajectory r(t), where t is the time in some lab frame. Electrodynamics II Exam 3. Part A (120 pts.) Closed Book Radiation from Acceleration Name KSU 2016/05/10 14:00-15:50 Instructions: Some small derivations here, state your responses clearly, define your

More information

Comment about Didactical formulation of the

Comment about Didactical formulation of the Comment about Didactical formulation of the Ampère law Hendrik van Hees Institute for Theoretical Physics, Goethe University Frankfurt, Max-von-Laue-Str. 1, D-60438 Frankfurt, Germany Frankfurt Institute

More information

New Non-Diagonal Singularity-Free Cosmological Perfect-Fluid Solution

New Non-Diagonal Singularity-Free Cosmological Perfect-Fluid Solution New Non-Diagonal Singularity-Free Cosmological Perfect-Fluid Solution arxiv:gr-qc/0201078v1 23 Jan 2002 Marc Mars Departament de Física Fonamental, Universitat de Barcelona, Diagonal 647, 08028 Barcelona,

More information

Special Relativity and Electromagnetism

Special Relativity and Electromagnetism 1/32 Special Relativity and Electromagnetism Jonathan Gratus Cockcroft Postgraduate Lecture Series October 2016 Introduction 10:30 11:40 14:00? Monday SR EM Tuesday SR EM Seminar Four lectures is clearly

More information

Quantum Black Hole and Information. Lecture (1): Acceleration, Horizon, Black Hole

Quantum Black Hole and Information. Lecture (1): Acceleration, Horizon, Black Hole Quantum Black Hole and Information Soo-Jong Rey @ copyright Lecture (1): Acceleration, Horizon, Black Hole [Convention: c = 1. This can always be reinstated from dimensional analysis.] Today, we shall

More information

On the existence of magnetic monopoles

On the existence of magnetic monopoles On the existence of magnetic monopoles Ali R. Hadjesfandiari Department of Mechanical and Aerospace Engineering State University of New York at Buffalo Buffalo, NY 146 USA ah@buffalo.edu September 4, 13

More information

Cockcroft. Daresbury. John Dainton August 11th at CI and DL

Cockcroft. Daresbury. John Dainton August 11th at CI and DL Cockcroft John Dainton August 11th 2006 Sir Institute Keith O Nions at CI and DL Daresbury THE COCKCROFT INSTITUTE of ACCELERATOR SCIENCE and TECHNOLOGY http://www.lancs.ac.uk/cockcroft-institute/ Sir

More information

Self-Force on a Classical Point Charge. Robert M. Wald (with Sam Gralla and Abe Harte, Phys.Rev. D (2009); arxiv:0905.

Self-Force on a Classical Point Charge. Robert M. Wald (with Sam Gralla and Abe Harte, Phys.Rev. D (2009); arxiv:0905. Self-Force on a Classical Point Charge Robert M. Wald (with Sam Gralla and Abe Harte, Phys.Rev. D80 024031 (2009); arxiv:0905.2391) The Basic Issue An accelerating point charge radiates electromagnetic

More information

Green s function for the wave equation

Green s function for the wave equation Green s function for the wave equation Non-relativistic case January 2018 1 The wave equations In the Lorentz Gauge, the wave equations for the potentials are (Notes 1 eqns 44 and 43): 1 2 2 2 2 0 (1)

More information

Aspects of integrability in classical and quantum field theories

Aspects of integrability in classical and quantum field theories Aspects of integrability in classical and quantum field theories Second year seminar Riccardo Conti Università degli Studi di Torino and INFN September 26, 2018 Plan of the talk PART 1 Supersymmetric 3D

More information

Predictability of subluminal and superluminal wave equations

Predictability of subluminal and superluminal wave equations Predictability of subluminal and superluminal wave equations Felicity C. Eperon and Harvey S. Reall Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road,

More information

On the quantum theory of rotating electrons

On the quantum theory of rotating electrons Zur Quantentheorie des rotierenden Elektrons Zeit. f. Phys. 8 (98) 85-867. On the quantum theory of rotating electrons By Friedrich Möglich in Berlin-Lichterfelde. (Received on April 98.) Translated by

More information

Exercise 1 Classical Bosonic String

Exercise 1 Classical Bosonic String Exercise 1 Classical Bosonic String 1. The Relativistic Particle The action describing a free relativistic point particle of mass m moving in a D- dimensional Minkowski spacetime is described by ) 1 S

More information

Image by MIT OpenCourseWare.

Image by MIT OpenCourseWare. 8.07 Lecture 37: December 12, 2012 (THE LAST!) RADIATION Radiation: infinity. Electromagnetic fields that carry energy off to At large distances, E ~ and B ~ fall off only as 1=r, so the Poynting vector

More information

EXTREMELY CHARGED STATIC DUST DISTRIBUTIONS IN GENERAL RELATIVITY

EXTREMELY CHARGED STATIC DUST DISTRIBUTIONS IN GENERAL RELATIVITY arxiv:gr-qc/9806038v1 8 Jun 1998 EXTREMELY CHARGED STATIC DUST DISTRIBUTIONS IN GENERAL RELATIVITY METÍN GÜRSES Mathematics department, Bilkent University, 06533 Ankara-TURKEY E-mail: gurses@fen.bilkent.edu.tr

More information

The Maxwell Dirac Equations, Some Non-Perturbative Results

The Maxwell Dirac Equations, Some Non-Perturbative Results Proceedings of Institute of Mathematics of NAS of Ukraine 00, Vol. 43, Part, 666 671 The Maxwell Dirac Equations, Some Non-Perturbative Results Chris RADFORD School of Mathematical and Computer Sciences,

More information

Black Strings and Classical Hair

Black Strings and Classical Hair UCSBTH-97-1 hep-th/97177 Black Strings and Classical Hair arxiv:hep-th/97177v1 17 Jan 1997 Gary T. Horowitz and Haisong Yang Department of Physics, University of California, Santa Barbara, CA 9316, USA

More information

arxiv: v1 [gr-qc] 19 Jun 2009

arxiv: v1 [gr-qc] 19 Jun 2009 SURFACE DENSITIES IN GENERAL RELATIVITY arxiv:0906.3690v1 [gr-qc] 19 Jun 2009 L. FERNÁNDEZ-JAMBRINA and F. J. CHINEA Departamento de Física Teórica II, Facultad de Ciencias Físicas Ciudad Universitaria,

More information

Black Holes and Thermodynamics I: Classical Black Holes

Black Holes and Thermodynamics I: Classical Black Holes Black Holes and Thermodynamics I: Classical Black Holes Robert M. Wald General references: R.M. Wald General Relativity University of Chicago Press (Chicago, 1984); R.M. Wald Living Rev. Rel. 4, 6 (2001).

More information

Helicity conservation in Born-Infeld theory

Helicity conservation in Born-Infeld theory Helicity conservation in Born-Infeld theory A.A.Rosly and K.G.Selivanov ITEP, Moscow, 117218, B.Cheryomushkinskaya 25 Abstract We prove that the helicity is preserved in the scattering of photons in the

More information

Black holes, Holography and Thermodynamics of Gauge Theories

Black holes, Holography and Thermodynamics of Gauge Theories Black holes, Holography and Thermodynamics of Gauge Theories N. Tetradis University of Athens Duality between a five-dimensional AdS-Schwarzschild geometry and a four-dimensional thermalized, strongly

More information

The Continuity Equation in ECE Theory

The Continuity Equation in ECE Theory 23 The Continuity Equation in ECE Theory by Myron W. Evans, Alpha Institute for Advanced Study, Civil List Scientist. (emyrone@aol.com and www.aias.us) Abstract In Einstein Cartan Evans (ECE) field theory

More information

On the paper Role of potentials in the Aharonov-Bohm effect. A. M. Stewart

On the paper Role of potentials in the Aharonov-Bohm effect. A. M. Stewart On the paper Role of potentials in the Aharonov-Bohm effect A. M. Stewart Emeritus Faculty, The Australian National University, Canberra, ACT 0200, Australia. http://www.anu.edu.au/emeritus/members/pages/a_stewart/

More information

CLASSICAL ELECTRICITY

CLASSICAL ELECTRICITY CLASSICAL ELECTRICITY AND MAGNETISM by WOLFGANG K. H. PANOFSKY Stanford University and MELBA PHILLIPS Washington University SECOND EDITION ADDISON-WESLEY PUBLISHING COMPANY Reading, Massachusetts Menlo

More information

Pair production in classical Stueckelberg-Horwitz- Piron electrodynamics

Pair production in classical Stueckelberg-Horwitz- Piron electrodynamics Journal of Physics: Conference Series PAPER OPEN ACCESS Pair production in classical Stueckelberg-Horwitz- Piron electrodynamics To cite this article: Martin Land 205 J. Phys.: Conf. Ser. 65 02007 View

More information

Gravitation: Tensor Calculus

Gravitation: Tensor Calculus An Introduction to General Relativity Center for Relativistic Astrophysics School of Physics Georgia Institute of Technology Notes based on textbook: Spacetime and Geometry by S.M. Carroll Spring 2013

More information

A rotating charged black hole solution in f (R) gravity

A rotating charged black hole solution in f (R) gravity PRAMANA c Indian Academy of Sciences Vol. 78, No. 5 journal of May 01 physics pp. 697 703 A rotating charged black hole solution in f R) gravity ALEXIS LARRAÑAGA National Astronomical Observatory, National

More information

Contact Transformations in Classical Mechanics

Contact Transformations in Classical Mechanics Nonlinear Mathematical Physics 1997, V.4, N 1 2, 117 123. Contact Transformations in Classical Mechanics Yurij YAREMKO Institute for Condensed Matter Physics of the Ukrainian National Academy of Sciences,

More information

General boundary field theory, thermality, and entanglement

General boundary field theory, thermality, and entanglement General boundary field theory, thermality, and entanglement Hal Haggard In collaboration with: Eugenio Bianchi and Carlo Rovelli July 23rd, 2013 Loops 13, Perimeter Institute gr-qc/1306.5206 Questions

More information

Problem 1, Lorentz transformations of electric and magnetic

Problem 1, Lorentz transformations of electric and magnetic Problem 1, Lorentz transformations of electric and magnetic fields We have that where, F µν = F µ ν = L µ µ Lν ν F µν, 0 B 3 B 2 ie 1 B 3 0 B 1 ie 2 B 2 B 1 0 ie 3 ie 2 ie 2 ie 3 0. Note that we use the

More information

8.821/8.871 Holographic duality

8.821/8.871 Holographic duality Lecture 3 8.81/8.871 Holographic duality Fall 014 8.81/8.871 Holographic duality MIT OpenCourseWare Lecture Notes Hong Liu, Fall 014 Lecture 3 Rindler spacetime and causal structure To understand the spacetime

More information

Classical and Quantum Dynamics in a Black Hole Background. Chris Doran

Classical and Quantum Dynamics in a Black Hole Background. Chris Doran Classical and Quantum Dynamics in a Black Hole Background Chris Doran Thanks etc. Work in collaboration with Anthony Lasenby Steve Gull Jonathan Pritchard Alejandro Caceres Anthony Challinor Ian Hinder

More information

A Further Analysis of the Blackbody Radiation

A Further Analysis of the Blackbody Radiation Apeiron, Vol. 17, No. 2, April 2010 59 A Further Analysis of the Blackbody Radiation G. Ares de Parga and F. Gutiérrez-Mejía Dept. de Física, Escuela Superior de Física y Matemáticas, Instituto Politécnico

More information

Stationarity of non-radiating spacetimes

Stationarity of non-radiating spacetimes University of Warwick April 4th, 2016 Motivation Theorem Motivation Newtonian gravity: Periodic solutions for two-body system. Einstein gravity: Periodic solutions? At first Post-Newtonian order, Yes!

More information

arxiv: v1 [hep-th] 11 Sep 2008

arxiv: v1 [hep-th] 11 Sep 2008 The Hubble parameters in the D-brane models arxiv:009.1997v1 [hep-th] 11 Sep 200 Pawel Gusin University of Silesia, Institute of Physics, ul. Uniwersytecka 4, PL-40007 Katowice, Poland, e-mail: pgusin@us.edu.pl

More information

Vectors in Special Relativity

Vectors in Special Relativity Chapter 2 Vectors in Special Relativity 2.1 Four - vectors A four - vector is a quantity with four components which changes like spacetime coordinates under a coordinate transformation. We will write the

More information

Mutual Information in Conformal Field Theories in Higher Dimensions

Mutual Information in Conformal Field Theories in Higher Dimensions Mutual Information in Conformal Field Theories in Higher Dimensions John Cardy University of Oxford Conference on Mathematical Statistical Physics Kyoto 2013 arxiv:1304.7985; J. Phys. : Math. Theor. 46

More information

Gravitational wave memory and gauge invariance. David Garfinkle Solvay workshop, Brussels May 18, 2018

Gravitational wave memory and gauge invariance. David Garfinkle Solvay workshop, Brussels May 18, 2018 Gravitational wave memory and gauge invariance David Garfinkle Solvay workshop, Brussels May 18, 2018 Talk outline Gravitational wave memory Gauge invariance in perturbation theory Perturbative and gauge

More information

Vooludünaamika laiendatud geomeetrias

Vooludünaamika laiendatud geomeetrias Vooludünaamika laiendatud geomeetrias Manuel Hohmann Teoreetilise Füüsika Labor Füüsika Instituut Tartu Ülikool 28. oktoober 2014 Manuel Hohmann (Tartu Ülikool) Vooludünaamika 28. oktoober 2014 1 / 25

More information

Horizontal Charge Excitation of Supertranslation and Superrotation

Horizontal Charge Excitation of Supertranslation and Superrotation Horizontal Charge Excitation of Supertranslation and Superrotation Masahiro Hotta Tohoku University Based on M. Hotta, J. Trevison and K. Yamaguchi arxiv:1606.02443. M. Hotta, K. Sasaki and T. Sasaki,

More information

An Introduction to Kaluza-Klein Theory

An Introduction to Kaluza-Klein Theory An Introduction to Kaluza-Klein Theory A. Garrett Lisi nd March Department of Physics, University of California San Diego, La Jolla, CA 993-39 gar@lisi.com Introduction It is the aim of Kaluza-Klein theory

More information

Bachelor Thesis. General Relativity: An alternative derivation of the Kruskal-Schwarzschild solution

Bachelor Thesis. General Relativity: An alternative derivation of the Kruskal-Schwarzschild solution Bachelor Thesis General Relativity: An alternative derivation of the Kruskal-Schwarzschild solution Author: Samo Jordan Supervisor: Prof. Markus Heusler Institute of Theoretical Physics, University of

More information

κ = f (r 0 ) k µ µ k ν = κk ν (5)

κ = f (r 0 ) k µ µ k ν = κk ν (5) 1. Horizon regularity and surface gravity Consider a static, spherically symmetric metric of the form where f(r) vanishes at r = r 0 linearly, and g(r 0 ) 0. Show that near r = r 0 the metric is approximately

More information

A RULE FOR THE EQUILIBRIUM OF FORCES IN THE HERMITIAN THEORY OF RELATIVITY

A RULE FOR THE EQUILIBRIUM OF FORCES IN THE HERMITIAN THEORY OF RELATIVITY A RULE FOR THE EQUILIBRIUM OF FORCES IN THE HERMITIAN THEORY OF RELATIVITY S. ANTOCI Abstract. When the behaviour of the singularities, which are used to represent masses, charges or currents in exact

More information

Radiation Reaction, Renormalization and Poincaré Symmetry

Radiation Reaction, Renormalization and Poincaré Symmetry Symmetry, Integrability and Geometry: Methods and Applications Vol. 1 (2005), Paper 012, 10 pages Radiation Reaction, Renormalization and Poincaré Symmetry Yurij YAREMKO Institute for Condensed Matter

More information

Near horizon geometry, Brick wall model and the Entropy of a scalar field in the Reissner-Nordstrom black hole backgrounds

Near horizon geometry, Brick wall model and the Entropy of a scalar field in the Reissner-Nordstrom black hole backgrounds Near horizon geometry, Brick wall model and the Entropy of a scalar field in the Reissner-Nordstrom black hole backgrounds Kaushik Ghosh 1 Department of Physics, St. Xavier s College, 30, Mother Teresa

More information

The Particle-Field Hamiltonian

The Particle-Field Hamiltonian The Particle-Field Hamiltonian For a fundamental understanding of the interaction of a particle with the electromagnetic field we need to know the total energy of the system consisting of particle and

More information

Shadows of black holes

Shadows of black holes Shadows of black holes Volker Perlick ZARM Center of Applied Space Technology and Microgravity, U Bremen, Germany. 00 11 000 111 000 111 0000 1111 000 111 000 111 0000 1111 000 111 000 000 000 111 111

More information

Accelerated Observers

Accelerated Observers Accelerated Observers In the last few lectures, we ve been discussing the implications that the postulates of special relativity have on the physics of our universe. We ve seen how to compute proper times

More information

Analysis of inter-quark interactions in classical chromodynamics

Analysis of inter-quark interactions in classical chromodynamics Cent. Eur. J. Phys. 3 3 336-344 DOI:.478/s534-3-7-y Central European Journal of Physics Analysis of inter-quark interactions in classical chromodynamics Research Article Jurij W. Darewych, Askold Duviryak

More information

Traversable wormholes: Some simple examples

Traversable wormholes: Some simple examples Traversable wormholes: Some simple examples arxiv:08090907v1 [gr-qc] 4 Sep 2008 Matt Visser Theoretical Division T 8, Mail Stop B 285 Los Alamos National Laboratory Los Alamos, New Mexico 87545 Present

More information

Maxwell's Equations and Conservation Laws

Maxwell's Equations and Conservation Laws Maxwell's Equations and Conservation Laws 1 Reading: Jackson 6.1 through 6.4, 6.7 Ampère's Law, since identically. Although for magnetostatics, generally Maxwell suggested: Use Gauss's Law to rewrite continuity

More information

Relativistic integro-differential form of the Lorentz-Dirac equation in 3D without runaways.

Relativistic integro-differential form of the Lorentz-Dirac equation in 3D without runaways. Relativistic integro-differential form of the Lorentz-Dirac equation in 3D without runaways Michael Ibison, Harold E. Puthoff Institute for Advanced Studies at Austin 43 Braker Lane West, Suite 3 Austin,

More information

arxiv: v2 [gr-qc] 27 Apr 2013

arxiv: v2 [gr-qc] 27 Apr 2013 Free of centrifugal acceleration spacetime - Geodesics arxiv:1303.7376v2 [gr-qc] 27 Apr 2013 Hristu Culetu Ovidius University, Dept.of Physics and Electronics, B-dul Mamaia 124, 900527 Constanta, Romania

More information

Field Theory exam II Solutions

Field Theory exam II Solutions Field Theory exam II Solutions Problem 1 (a) Consider point charges, one with charge q located at x 1 = (1, 0, 1), and the other one with charge q at x = (1, 0, 1). Compute the multipole moments q lm in

More information

Alternative method of developing Maxwell s fields

Alternative method of developing Maxwell s fields Apeiron, Vol. 14, No. 4, October 2007 464 Alternative method of developing Maxwell s fields Krzysztof Rȩbilas Zak lad Fizyki. Akademia Rolnicza im. Hugona Ko l l ataja Al. Mickiewicza 21, 31-120 Kraków.

More information

PHYS 532 Lecture 8 Page GAUGE TRANSFORMATIONS E =!" #A B =! " A (6.7) #(! A) = $/% o A A + Λ (6.12) Φ Φ!"

PHYS 532 Lecture 8 Page GAUGE TRANSFORMATIONS E =! #A B =!  A (6.7) #(! A) = $/% o A A + Λ (6.12) Φ Φ! PHYS 532 Lecture 8 Page 1 6.3 GAUGE TRANSFORMATIONS Results for scalar and vector potentials: E =!" #A #t (6.9) Inhomogeneous Maxwell equations in terms of A, Φ B =! " A (6.7)! 2 " + #(! A) #t = $/% o

More information

arxiv:gr-qc/ v4 23 Feb 1999

arxiv:gr-qc/ v4 23 Feb 1999 gr-qc/9802042 Mod. Phys. Lett. A 3 (998) 49-425 Mass of perfect fluid black shells Konstantin G. Zloshchastiev arxiv:gr-qc/9802042v4 23 Feb 999 Department of Theoretical Physics, Dnepropetrovsk State University,

More information

AXISYMMETRIC ASYMPTOTICALLY FLAT RADIATIVE SPACE-TIMES WITH ANOTHER SYMMETRY: THE GENERAL DEFINITION AND COMMENTS

AXISYMMETRIC ASYMPTOTICALLY FLAT RADIATIVE SPACE-TIMES WITH ANOTHER SYMMETRY: THE GENERAL DEFINITION AND COMMENTS 1 AXISYMMETRIC ASYMPTOTICALLY FLAT RADIATIVE SPACE-TIMES WITH ANOTHER SYMMETRY: THE GENERAL DEFINITION AND COMMENTS Jir Bicak The title of my talk at the conference referred directly to the boost-rotation

More information

Topologically Massive Yang-Mills field on the Null-Plane: A Hamilton-Jacobi approach

Topologically Massive Yang-Mills field on the Null-Plane: A Hamilton-Jacobi approach Topologically Massive Yang-Mills field on the Null-Plane: A Hamilton-Jacobi approach M. C. Bertin, B. M. Pimentel, C. E. Valcárcel and G. E. R. Zambrano Instituto de Física Teórica, UNESP - São Paulo State

More information

The Quadrupole Moment of Rotating Fluid Balls

The Quadrupole Moment of Rotating Fluid Balls The Quadrupole Moment of Rotating Fluid Balls Michael Bradley, Umeå University, Sweden Gyula Fodor, KFKI, Budapest, Hungary Current topics in Exact Solutions, Gent, 8- April 04 Phys. Rev. D 79, 04408 (009)

More information

Faraday Tensor & Maxwell Spinor (Part I)

Faraday Tensor & Maxwell Spinor (Part I) February 2015 Volume 6 Issue 2 pp. 88-97 Faraday Tensor & Maxwell Spinor (Part I) A. Hernández-Galeana #, R. López-Vázquez #, J. López-Bonilla * & G. R. Pérez-Teruel & 88 Article # Escuela Superior de

More information

Is the Energy Balance Paradox Solved?

Is the Energy Balance Paradox Solved? 1 Is the Energy Balance Paradox Solved? Amos Harpaz(1) and Noam Soker(2) 1. Institute of Theoretical Physics, Technion, Haifa, ISRAEL 2. Department of Physics, Oranim, Tivon 36006, ISRAEL phr89ah@tx.technion.ac.il

More information

arxiv: v1 [gr-qc] 12 Sep 2018

arxiv: v1 [gr-qc] 12 Sep 2018 The gravity of light-waves arxiv:1809.04309v1 [gr-qc] 1 Sep 018 J.W. van Holten Nikhef, Amsterdam and Leiden University Netherlands Abstract Light waves carry along their own gravitational field; for simple

More information

Spin and charge from space and time

Spin and charge from space and time Vienna University of Technology Manfried Faber Spin and charge from space and time in cooperation with Roman Bertle, Roman Höllwieser, Markus Jech, Alexander Kobushkin, Mario Pitschmann, Lukas Schrangl,

More information

Electromagnetic Energy for a Charged Kerr Black Hole. in a Uniform Magnetic Field. Abstract

Electromagnetic Energy for a Charged Kerr Black Hole. in a Uniform Magnetic Field. Abstract Electromagnetic Energy for a Charged Kerr Black Hole in a Uniform Magnetic Field Li-Xin Li Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (December 12, 1999) arxiv:astro-ph/0001494v1

More information

A simple and compact approach to hydrodynamic using geometric algebra. Abstract

A simple and compact approach to hydrodynamic using geometric algebra. Abstract A simple and compact approach to hydrodynamic using geometric algebra Xiong Wang (a) Center for Chaos and Complex Networks (b) Department of Electronic Engineering, City University of Hong Kong, Hong Kong

More information

arxiv: v1 [gr-qc] 1 Aug 2007

arxiv: v1 [gr-qc] 1 Aug 2007 arxiv:78.29v [gr-qc] Aug 27 Sharp bounds on the critical stability radius for relativistic charged spheres: I Håkan Andréasson Mathematical Sciences Chalmers and Göteborg University S-4296 Göteborg, Sweden

More information

Non-Abelian Einstein-Born-Infeld Black Holes

Non-Abelian Einstein-Born-Infeld Black Holes Non-Abelian Einstein-Born-Infeld Black Holes arxiv:hep-th/0004130v1 18 Apr 2000 Marion Wirschins, Abha Sood and Jutta Kunz Fachbereich Physik, Universität Oldenburg, Postfach 2503 D-26111 Oldenburg, Germany

More information

Potential Energy in Quantum Gravity.

Potential Energy in Quantum Gravity. MPI-PhT/94-53 August 1994 Potential Energy in Quantum Gravity. arxiv:hep-th/9408103v1 18 Aug 1994 Giovanni Modanese Max-Planck-Institut für Physik Werner-Heisenberg-Institut Föhringer Ring 6, D 80805 München

More information

r,t r R Z j ³ 0 1 4π² 0 r,t) = 4π

r,t r R Z j ³ 0 1 4π² 0 r,t) = 4π 5.4 Lienard-Wiechert Potential and Consequent Fields 5.4.1 Potential and Fields (chapter 10) Lienard-Wiechert potential In the previous section, we studied the radiation from an electric dipole, a λ/2

More information

Stability of Thick Spherical Shells

Stability of Thick Spherical Shells Continuum Mech. Thermodyn. (1995) 7: 249-258 Stability of Thick Spherical Shells I-Shih Liu 1 Instituto de Matemática, Universidade Federal do Rio de Janeiro Caixa Postal 68530, Rio de Janeiro 21945-970,

More information

Classical membranes. M. Groeneveld Introduction. 2. The principle of least action

Classical membranes. M. Groeneveld Introduction. 2. The principle of least action Classical membranes M. Groeneveld 398253 With the use of the principle of least action the equation of motion of a relativistic particle can be derived. With the Nambu-Goto action, we are able to derive

More information

Retarded Potentials and Radiation

Retarded Potentials and Radiation Retarded Potentials and Radiation No, this isn t about potentials that were held back a grade :). Retarded potentials are needed because at a given location in space, a particle feels the fields or potentials

More information

Rampada Misra 1, Mukul Chandra Das 2

Rampada Misra 1, Mukul Chandra Das 2 2017 IJSRSET Volume 3 Issue 6 Print ISSN: 2395-1990 Online ISSN : 2394-4099 Themed Section: Engineering and Technology Metric - A Review Rampada Misra 1, Mukul Chandra Das 2 1 Department of Physics (P.G.),

More information

APPLICATION OF THE MAGNETIC FIELD INTEGRAL EQUATION TO DIFFRACTION AND REFLECTION BY A CONDUCTING SHEET

APPLICATION OF THE MAGNETIC FIELD INTEGRAL EQUATION TO DIFFRACTION AND REFLECTION BY A CONDUCTING SHEET In: International Journal of Theoretical Physics, Group Theory... ISSN: 1525-4674 Volume 14, Issue 3 pp. 1 12 2011 Nova Science Publishers, Inc. APPLICATION OF THE MAGNETIC FIELD INTEGRAL EQUATION TO DIFFRACTION

More information

arxiv:gr-qc/ v1 11 Oct 1999

arxiv:gr-qc/ v1 11 Oct 1999 NIKHEF/99-026 Killing-Yano tensors, non-standard supersymmetries and an index theorem J.W. van Holten arxiv:gr-qc/9910035 v1 11 Oct 1999 Theoretical Physics Group, NIKHEF P.O. Box 41882, 1009 DB Amsterdam

More information

Acceleration and Entanglement: a Deteriorating Relationship

Acceleration and Entanglement: a Deteriorating Relationship Acceleration and Entanglement: a Deteriorating Relationship R.B. Mann Phys. Rev. Lett. 95 120404 (2005) Phys. Rev. A74 032326 (2006) Phys. Rev. A79 042333 (2009) Phys. Rev. A80 02230 (2009) D. Ahn P. Alsing

More information

General Relativity (j µ and T µν for point particles) van Nieuwenhuizen, Spring 2018

General Relativity (j µ and T µν for point particles) van Nieuwenhuizen, Spring 2018 Consistency of conservation laws in SR and GR General Relativity j µ and for point particles van Nieuwenhuizen, Spring 2018 1 Introduction The Einstein equations for matter coupled to gravity read Einstein

More information

PHY752, Fall 2016, Assigned Problems

PHY752, Fall 2016, Assigned Problems PHY752, Fall 26, Assigned Problems For clarification or to point out a typo (or worse! please send email to curtright@miami.edu [] Find the URL for the course webpage and email it to curtright@miami.edu

More information

Lorentzian Geometry from Discrete Causal Structure

Lorentzian Geometry from Discrete Causal Structure Lorentzian Geometry from Discrete Causal Structure Sumati Surya Raman Research Institute FTAG Sept 2013 (RRI) March 2013 1 / 25 Outline An Introduction to the Causal Set Approach to Quantum Gravity LBombelli,

More information

Dirac equation for dummies or theory of elasticity for the seriously advanced

Dirac equation for dummies or theory of elasticity for the seriously advanced Dirac equation for dummies or theory of elasticity for the seriously advanced James Burnett, Olga Chervova and Dmitri Vassiliev 30 January 2009 KCL Colloquium Dirac s equation is a model for (a) electron

More information

A Lax Representation for the Born-Infeld Equation

A Lax Representation for the Born-Infeld Equation A Lax Representation for the Born-Infeld Equation J. C. Brunelli Universidade Federal de Santa Catarina Departamento de Física CFM Campus Universitário Trindade C.P. 476, CEP 88040-900 Florianópolis, SC

More information

The Motion of Point Particles in Curved Spacetime

The Motion of Point Particles in Curved Spacetime The Motion of Point Particles in Curved Spacetime Eric Poisson Department of Physics University of Guelph Guelph, Ontario Canada N1G 2W1 and Perimeter Institute for Theoretical Physics 35 King Street North

More information

Synchrotron Radiation An Introduction. L. Rivkin Swiss Light Source

Synchrotron Radiation An Introduction. L. Rivkin Swiss Light Source Synchrotron Radiation An Introduction L. Rivkin Swiss Light Source Some references CAS Proceedings CAS - CERN Accelerator School: Synchrotron Radiation and Free Electron Lasers, Grenoble, France, 22-27

More information

Level sets of the lapse function in static GR

Level sets of the lapse function in static GR Level sets of the lapse function in static GR Carla Cederbaum Mathematisches Institut Universität Tübingen Auf der Morgenstelle 10 72076 Tübingen, Germany September 4, 2014 Abstract We present a novel

More information

BLACK HOLES (ADVANCED GENERAL RELATIV- ITY)

BLACK HOLES (ADVANCED GENERAL RELATIV- ITY) Imperial College London MSc EXAMINATION May 2015 BLACK HOLES (ADVANCED GENERAL RELATIV- ITY) For MSc students, including QFFF students Wednesday, 13th May 2015: 14:00 17:00 Answer Question 1 (40%) and

More information

Radiation Reaction and the Vacuum Gauge Electron. June 10, 2016

Radiation Reaction and the Vacuum Gauge Electron. June 10, 2016 Radiation Reaction and the Vacuum Gauge Electron June 10, 016 ...This tremendous edifice which is such a beautiful success in explaining so many phenomena, ultimately falls on its face. R.P. Feynman, The

More information

arxiv:gr-qc/ v1 31 Dec 2005

arxiv:gr-qc/ v1 31 Dec 2005 On the differential geometry of curves in Minkowski space arxiv:gr-qc/0601002v1 31 Dec 2005 J. B. Formiga and C. Romero Departamento de Física, Universidade Federal da Paraíba, C.Postal 5008, 58051-970

More information

Lecturer: Bengt E W Nilsson

Lecturer: Bengt E W Nilsson 9 3 19 Lecturer: Bengt E W Nilsson Last time: Relativistic physics in any dimension. Light-cone coordinates, light-cone stuff. Extra dimensions compact extra dimensions (here we talked about fundamental

More information

Classical Physics. SpaceTime Algebra

Classical Physics. SpaceTime Algebra Classical Physics with SpaceTime Algebra David Hestenes Arizona State University x x(τ ) x 0 Santalo 2016 Objectives of this talk To introduce SpaceTime Algebra (STA) as a unified, coordinate-free mathematical

More information

arxiv:gr-qc/ v1 10 Jun 2000

arxiv:gr-qc/ v1 10 Jun 2000 Published in: Found. Phys. Lett. (1999) vol. 12, no. 5, p.p. 427 439. EQUIVALENCE PRINCIPLE AND RADIATION BY A UNIFORMLY ACCELERATED CHARGE A. Shariati, M. Khorrami arxiv:gr-qc/0006037v1 10 Jun 2000 Institute

More information