Wakefields and beam hosing instability in plasma wake acceleration (PWFA)

Size: px
Start display at page:

Download "Wakefields and beam hosing instability in plasma wake acceleration (PWFA)"

Transcription

1 1 Wakefields and beam hosing instability in plasma wake acceleration (PWFA) G. Stupakov, SLAC DESY/University of Hamburg accelerator physics seminar 21 November 2017

2 Introduction to PWFA Plasma wake excited by relativistic particle bunch Blow-out regime when nb /ne > 1 Acceleration and focusing by plasma Accelerating field scales as ne1/2 Typical: ne 1017 cm 3, kp 1 = 17 µm, E & 10 GV/m, G & MT/m C. Joshi, W.B. Mori, (2006) 1 m, 20 MV/m µm, 20 GV/m

3 Future applications 10 TeV PWFA-LC concept (J.P. Delahaye, et al. IPAC-2014). Using PWFA for free-electron lasers (M. Hogan, FACET-II Science Workshop October 17-20, 2017). 3 Also many others: FlashForward, Eupraxia,...

4 4 Are there principal limitations for plasma-based LC? The claim: In summary, we believe that the collider parameters, presented in Refs. [1,2], are not self-consistent. We would also like to note that our attempts to correct the above problems by adjusting the parameters while keeping the same overall performance (i.e., beamstrahlung, luminosity, and power consumption) were unsuccessful. See also V. Lebedev, A. Burov and S. Nagaitsev. Efficiency versus instability in plasma accelerators, arxiv:

5 Hosing instability in PWFA Courtesy of Weiming An from UCLA. Parameters of the simulations: the driver has σ z = µm, σ r = 3.65 µm, Q = 1.6 nc, (I peak = 15 ka); the witness has σ z = 6.38 µm, σ r = 3.65 µm, Q = 0.69 nc, (I peak = 13 ka). Plasma density cm 3. The distance between the bunches is a) 108 µm and b) 150 µm. To study the hosing (beam-breakup) instability in the blowout regime we need to know wakefields inside the bubble.

6 6 Plasma wakefields The terminology of wakefields in plasma can be confusing. The original meaning of the wake in plasma is the field generated by the driver that accelerates the witness beam. The driver is a beam of charged particles (PWFA) or a laser beam (LWFA). In this presentation, by wakefields I mean the fields (longitudinal and transverse) with which the witness bunch acts on itself. They are generated by the leading charges and act on the trailing charges of the witness bunch. In linear approximation, valid for n b n p, one can assume that the perturbation of the plasma density is small, δn e n e. The wakefield problem can be solved analytically for arbitrary charge distribution of the driver and witness bunches 1. This approach, unfortunately, does not work in the blowout regime. 1 T. Katsouleas et al., Particle Accelerators, 22, 81 (1987).

7 7 Plasma equations This is the system of equations (in dimensionless units) that governs the plasma dynamics in axisymmetric geometry. We assume beams moving with v = c, a steady state with everything depending on ξ = ct z and r = x 2 + y 2. Introduce ψ = φ A z, Eq. for ψ E z = ξ ψ, 1 r E r = r ψ r r r ψ = n e(1 v z ) 1 Eq. for B θ 1 r r rb θ = ξ n ev r r n ev z n d r Eqs. of motion for plasma electrons dp r dξ = γ 1 + ψ r ψ B θ, The continuity equation n w r dr dξ = p r 1 + ψ, 1 v z = 1 (1 + ψ) γ ξ [n e (1 v z )] + r rn ev r = 0 ω p = 4πne 2 /m ξ ξk 1 p E Emcω p /e

8 Relativistic point charge moving in free space γ v < c -1 v z = In wakefield theory for relativistic beams we assume v = c. When a point charge q is moving in vacuum, its field is E r = B θ = 2q δ(z ct) r What happens if the point charge is moving in uniform, cold plasma of density n 0?

9 Point charge moving through plasma = The remarkable result of Ref. 2 is the existence of the electromagnetic shock wave (EMSW) E r = B θ = 2qk p K 1 (k p r)δ(z ct) where k p = ω p /c = 4πn 0 e 2 /mc 2 and K 1 is the modified Bessel function. For r kp 1 we recover E r, B θ 2qδ(z ct)/r; for r kp 1 the field decays exponentially, E r, B θ e kpr / k p r. Remarkably, the fields in EMSW are linear functions of the charge. The only external dimensionless parameter in the problem is ν = q e r ek p = N d r e k p q n 0 For n 0 = cm 3, q = 1 nc we have k 1 p = 53 µm, ν = N. Barov et al., PRAB 7, (2004).

10 10 Plasma behind the relativistic point charge, ν 1 We normalize time to ω 1 p, length to kp 1 and fields to mcω p /e, with ξ = k p (ct z). / ν shock wave ξ Plasma flow behind a point charge with ν 1 has been analyzed in Ref. 3. Immediately behind the charge one can use ballistic approximation for the electron orbits. The bouble boundary, r b (ξ), is found as an envelope for the family of trajectories: r b (ξ) = 2 2νξ Outside of the bubble there are two electron streams at each point r, ξ, corresponding to two different trajectories passing through this point. The plasma density has a singularity n (r r b ) 1/2 as r r b. 3 G. Stupakov et al. PRAB, 19, (2016).

11 11 Trajectories and the bubble, ν 1 / ν E z ln ξ ξ The bubble radius r bm = 2.82 ν (the maximal value or r on the boundary) is at ξ m = The total bubble length is ξ b = 3.8. There are exactly two electron trajectories passing though each point (r, ξ) outside of the bubble. The bubble boundary before its maximum r bm (ξ < ξ m ) is comprised of many trajectories for which the boundary is an envelope. In Ref. 4 a differential equation for the bubble boundary was derived assuming that the boundary coincides with an electron trajectory. That model is satisfactory for drivers of finite size (σ z k p 1) and large charges (ν 1). It is not applicable to our case. 4 W. Lu et al., Physics of Plasmas 13, (2006).

12 12 Numerical solution of the bubble for arbitrary ν We developed a matlab code 5 that solves an axisymmetric plasma bubble generated by a Gaussian driver and witness bunches. The code uses a novel fast algorithm of solving the nonlinear plasma flow. Illustrations: the driver with Q = 1 nc, σ z = 13 µm, σ r = 5 µm, plasma density cm 3 (kp 1 = 26 µm). = = - - ξ - ξ Plots of the longitudinal electric field. One unit of electric field is 19.2 GV/m. 5 P. Baxevanis, G. Stupakov. arxiv: (2017).

13 13 Wakefields in accelerator physics w l w t z 0 z 0 w l (z) = 1 qq 1 F z, w t (z) = 1 qq 1 1 r 1 F r Here F z and F r are integrated forces with which the leading charge (q 1 ) acts on the trailing one (q). For relativistic beams (γ 1) we usually assume that v = c.

14 14 Wakefields in accelerator physics Due to the linearity of Maxwell s equations and the linearity of the boundary conditions, wakefields are linear functions of the charge q 1. We can calculate the wakefield of a bunch of particles by adding the wakes of its charges. It was observed that the wake inside a round pipe of radius a at a short distance behind the leading charge has a simple universal form (this is valid for resistive wall wake, a dielectric pipe, a periodic RF structure with a the minimal aperture) w l (z) = 4 a 2 h(z) w t(z) = 8z a 4 h(z) where h(z) is the step function (in SI system of units multiply by Z 0 c/4π). For a given wake we can start solving the beam stability problems.

15 Wakefields in the blowout regime z r b In the absence of theory some researchers 6 used for short-range wakefields formulas in which they replaced the pipe radius a by the bubble radius r b at the location of the source charge w l (z) = 4 rb 2 h(z) w t (z) = 8z rb 4 h(z) We developed wake theory based on an accurate solution of plasma equations immediately behind the source charge. In this theory both the longitudinal and transverse wakes can be calculated 7. 6 V. Lebedev, A. Burov, S. Nagaitsev, arxiv: (2017). 5 7 G. Stupakov. arxiv: (2017).

16 16 Longitudinal wake in the bubble = E z (0, ξ) - = = ξ - ξ There is a jump in E z immediately behind the witness charge, E z (r, ξ). Remarkably, the theory predicts that this jump is proportional to the (dimensionless) witness charge ν w (the charge has not to be small). So one can introduce the longitudinal wake is w l = E z (0, ξ)/ν w.

17 7 Calculation of the longitudinal wake First, one needs to calculate the strength of the EMSW, D(r, ξ), at the location of the witness charge: E r (r, ξ) = D(r, ξ 0 )δ(ξ ξ 0 ) (here ξ 0 is the position of the source charge in the bubble). It satisfies the following equations 1 r r r rd = n e0(r, ξ 0 ) γ 0 (r, ξ 0 ) D Here n e0 and γ 0 are the quantities in the bubble without the witness charge. Then E z = 1 r r rd This result can be benchmarked against the wakefields in a hollow plasma channel.

18 18 Wakefields in a hollow plasma channel Wakefields for a hollow plasma channel were calculated in 8 in linear approximation (small charge limit). Longitudinal and transverse wakes at short distance w l (+0) = 4 a 2 K 0 (ak p ) K 2 (ak p ) w t (+0) = 8 a 4 K 1 (ak p ) K 3 (ak p ) This wake is reproduced by solving equations from the previous slide with n e0 (r) = n 0 h(r a) and γ 0 (r) = 1. The wakes w l (+0) and w t (+0) are valid not only in the linear, but in nonlinear regime as well. 8 C. Schroeder, D. Whittum, J. Wurtele. PRL, 82, 1177 (1999).

19 19 Longitudinal wake as a function of ξ (//) w l = 4/r 2 b ξ (μ) This wake is in good agreement with the simulated jump in E z of a witness charge on the axis of the bubble. Red dashed line is a fit w l = 4 (r b (ξ) + 0.8k 1 p ) 2

20 0 Transverse wake in the bubble ξ 1 The source charge is now off axis, the offset is assumed small. The shock wave is not axisymmetric, E r ^D(r, ξ) cos θ, E θ ^D(r, ξ) sin θ. Behind the wave E z (r, ξ, θ) = ^E z (r, ξ) cos θ. The fields satisfy the following equations rr ^D + 1 r r ^D 4 ^D r 2 = n e0(r, ξ 0 ) γ 0 (r, ξ 0 ) ^D ξ ^E z = r ^D 2 ^D r The transverse wake is w t is found from the Panofsky-Wenzel relation and it is a linear function of the distance between the source and the witness, w t = w t (ξ 1 ξ). Our result agrees with the linear approximation of the transverse wake in a plasma channel calculated by Schroeder et al.

21 21 Transverse wake as a function of ξ / (/// ) w t = 8/r 4 b ξ (μ) Red dashed line is a fit w t = 8 [r b (ξ) k 1 p ] 4

22 22 The fit works well for different charges of driver (//) ξ (μ) / (/// ) ξ (μ) Longitudinal wake (left panel) and the slope of the transverse wake (right panel) for 2 nc (label 1) and 4 nc (label 2) driver bunches. The red dot-dashed lines are fitted curves.

23 23 BBU instability of the witness bunch Having found wakefields in the plasma bubble, we can use them to study the beam-breakup instability of the witness bunch 9. z X (s, z) X (s, z) is the transverse offset of the slice, z is the coordinate in the bunch, s is the distance along the accelerator: [ s γ(s) ] s + γ(s)k2 β(s) X (s, z) = N b r e ζ f w (z )w t (z z)x (s, z )dz Here γ(s) is the energy increase with distance due to acceleration, k β (s) is the focusing, f w is the longitudinal distribution in the bunch. Assume γ(s) = γ 0 + gs, k β (s) = k 0 γ0 /γ(s). If the focusing is due to plasma ions, then k 0 = k p / 2γ 0. For simple models, there are analytical solutions to this equation. 9 A. Chao. Physics of Collective Beam Instabilities in High Energy Accelerators (1993).

24 24 Solution for a flat current profile Assume a uniform current in the beam I and a strong focusing (the betatron wavelength is shorter than the gain length of the instability) ( ) X (s, z) 1/4 ( 31/4 γ0 exp(λ) X 0 2 3/2 π 1/2 γ(s) Λ 1/2 cos θ β Λ 3 1/2 + π ) 12 where ( Λ(s, z) = 33/2 I 2 5/3 w z 2 ) 1/3 ( γ(s) t I A gk 0 γ 0 ) 1/6 An alternative approach is to solve the BBU equation numerically. This can be done for an arbitrary distribution function.

25 25 Numerical solution for a Gaussian bunch Parameters of Weiming An simulations: the driver has σ z = µm, σ r = 3.65 µm, Q = 1.6 nc, (I peak = 15 ka); the witness has σ z = 6.38 µm, σ r = 3.65 µm, Q = 0.69 nc, (I peak = 13 ka). Plasma density cm 3. The distance between the bunches is a) 108 µm and b) 150 µm. 150 µm 150 µm (/) 108 µm - - ξ (μ) / (/// ) 108 µm ξ (μ)

26 26 Numerical solution for a Gaussian witness bunch 108 µm 150 µm One way to characterize BBU is to calculate the projected emittance: 2proj (s) = h(x X )2 ih(x 0 X 0 )2 i h(x X )(X 0 X 0 )i where the averaging means Z h...i = dz(...)fw (z)

27 7 BBU instability projected emittance ϵ/ 108 µm 150 µm ϵ/ () () For a particular application this result can be translated into the jitter tolerance for the witness bunch.

28 28 Summary We used a combination of numerical and analytical tools to calculate the short-range wakefields inside a plasma bubble in the blowout regime of PWFA in axisymmetric geometry. For the wake calculation one needs to know the energy-density radial distribution in the bubble, which can be taken from 2D simulations of PWFA. These wakes are linear functions of the charge. They are stronger in the region of higher accelerating fields (closer to the end of the bubble). Simple fitting formulas for the wakes are derived. The wakes can be used in the standard formalism for the study of the beam breakup instabilities. We developed a matlab code that solves axisymmetric plasma bubble excited by a driver (runs a few minutes on a desktop computer).

Calculation of wakefields for plasma-wakefield accelerators

Calculation of wakefields for plasma-wakefield accelerators 1 Calculation of wakefields for plasma-wakefield accelerators G. Stupakov, SLAC ICFA mini-workshop on Impedances and Beam Instabilities in Particle Accelerators 18-22 September 2017 2 Introduction to PWFA

More information

Power efficiency vs instability (or, emittance vs beam loading) Sergei Nagaitsev, Valeri Lebedev, and Alexey Burov Fermilab/UChicago Oct 18, 2017

Power efficiency vs instability (or, emittance vs beam loading) Sergei Nagaitsev, Valeri Lebedev, and Alexey Burov Fermilab/UChicago Oct 18, 2017 Power efficiency vs instability (or, emittance vs beam loading) Sergei Nagaitsev, Valeri Lebedev, and Alexey Burov Fermilab/UChicago Oct 18, 2017 Acknowledgements We would like to thank our UCLA colleagues

More information

Short-range wakefields generated in the blowout regime of plasma-wakefield acceleration

Short-range wakefields generated in the blowout regime of plasma-wakefield acceleration PHYSICAL REVIEW ACCELERATORS AND BEAMS 21, 041301 (2018) Short-range wakefields generated in the blowout regime of plasma-wakefield acceleration G. Stupakov SLAC National Accelerator Laboratory, Menlo

More information

First results from the plasma wakefield acceleration transverse studies at FACET

First results from the plasma wakefield acceleration transverse studies at FACET First results from the plasma wakefield acceleration transverse studies at FACET Erik Adli (University of Oslo, Norway and SLAC) For the FACET E200 collaboration : M.J. Hogan, S. Corde, R.J. England, J.

More information

Electron Acceleration in a Plasma Wakefield Accelerator E200 FACET, SLAC

Electron Acceleration in a Plasma Wakefield Accelerator E200 FACET, SLAC Electron Acceleration in a Plasma Wakefield Accelerator E200 Collaboration @ FACET, SLAC Chan Joshi UCLA Making Big Science Small : Moving Toward a TeV Accelerator Using Plasmas Work Supported by DOE Compact

More information

Plasma-based Acceleration at SLAC

Plasma-based Acceleration at SLAC Plasmabased Acceleration at SLAC Patric Muggli University of Southern California muggli@usc.edu for the E167 collaboration E167 Collaboration: I. Blumenfeld, F.J. Decker, P. Emma, M. J. Hogan, R. Iverson,

More information

External Injection in Plasma Accelerators. R. Pompili, S. Li, F. Massimo, L. Volta, J. Yang

External Injection in Plasma Accelerators. R. Pompili, S. Li, F. Massimo, L. Volta, J. Yang External Injection in Plasma Accelerators R. Pompili, S. Li, F. Massimo, L. Volta, J. Yang Why Plasma Accelerators? Conventional RF cavities: 50-100 MV/m due to electrical breakdown Plasma: E>100 GV/m

More information

Non-neutral fireball and possibilities for accelerating positrons with plasma

Non-neutral fireball and possibilities for accelerating positrons with plasma Instituto Superior Técnico GoLP/IPFN Non-neutral fireball and possibilities for accelerating positrons with plasma J.Vieira GoLP / Instituto de Plasmas e Fusão Nuclear Instituto Superior Técnico, Lisbon

More information

Chan Joshi UCLA With help from Weiming An, Chris Clayton, Xinlu Xu, Ken Marsh and Warren Mori

Chan Joshi UCLA With help from Weiming An, Chris Clayton, Xinlu Xu, Ken Marsh and Warren Mori E-doubling with emittance preservation and pump depletion Generation of Ultra-low Emittance Electrons Testing a new concept for a novel positron source Chan Joshi UCLA With help from Weiming An, Chris

More information

The status and evolution of plasma wakefield particle accelerators

The status and evolution of plasma wakefield particle accelerators The status and evolution of plasma wakefield particle accelerators C Joshi and W.B Mori Phil. Trans. R. Soc. A 2006 364, 577-585 doi: 10.1098/rsta.2005.1723 References Rapid response Email alerting service

More information

Measurement of wakefields in hollow plasma channels Carl A. Lindstrøm (University of Oslo)

Measurement of wakefields in hollow plasma channels Carl A. Lindstrøm (University of Oslo) Measurement of wakefields in hollow plasma channels Carl A. Lindstrøm (University of Oslo) in collaboration with Spencer Gessner (CERN) presented by Erik Adli (University of Oslo) FACET-II Science Workshop

More information

Laser wakefield electron acceleration to multi-gev energies

Laser wakefield electron acceleration to multi-gev energies Laser wakefield electron acceleration to multi-gev energies N.E. Andreev Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow, Russia Moscow Institute of Physics and Technology, Russia

More information

High quality electron beam generation in a proton-driven hollow plasma wakefield accelerator

High quality electron beam generation in a proton-driven hollow plasma wakefield accelerator High quality electron beam generation in a proton-driven hollow plasma wakefield accelerator Authors: Y. Li 1,2,a), G. Xia 1,2, K. V. Lotov 3,4, A. P. Sosedkin 3,4, K. Hanahoe 1,2, O. Mete-Apsimon 1,2

More information

Using Surface Impedance for Calculating Wakefields in Flat Geometry

Using Surface Impedance for Calculating Wakefields in Flat Geometry Using Surface Impedance for Calculating Wakefields in Flat Geometry 1/20/2015 K. Bane and G. Stupakov January 20, 2015 LCLSII-TN-13-01 L C L S - I I T E C H N I C A L N O T E January 20, 2015 LCLSII-TN-XXXX

More information

Recent developments in the Dutch Laser Wakefield Accelerators program at the University of Twente: New external bunch injection scheme.

Recent developments in the Dutch Laser Wakefield Accelerators program at the University of Twente: New external bunch injection scheme. Recent developments in the Dutch Laser Wakefield Accelerators program at the University of Twente: New external bunch injection scheme. A.G. Khachatryan, F.A. van Goor, J.W.J. Verschuur and K.-J. Boller

More information

E-157: A Plasma Wakefield Acceleration Experiment

E-157: A Plasma Wakefield Acceleration Experiment SLAC-PUB-8656 October 2 E-157: A Plasma Wakefield Acceleration Experiment P. Muggli et al. Invited talk presented at the 2th International Linac Conference (Linac 2), 8/21/2 8/25/2, Monterey, CA, USA Stanford

More information

Longitudinal Laser Shaping in Laser Wakefield Accelerators

Longitudinal Laser Shaping in Laser Wakefield Accelerators SLAC-PUB-898 August physics:/86 Longitudinal Laser Shaping in Laser Wakefield Accelerators Anatoly Spitkovsky ( and Pisin Chen ( ( Department of Physics, University of California, Berkeley, CA 97 ( Stanford

More information

Plasma Wakefield Acceleration of. Positron Bunches. Jorge Vieira

Plasma Wakefield Acceleration of. Positron Bunches. Jorge Vieira GoLP/IPFN Instituto Superior Técnico Plasma Wakefield Acceleration of Jorge Vieira! Instituto de Plasmas e Fusão Nuclear Instituto Superior Técnico Lisbon, Portugal http://epp.ist.utl.pt[/jorgevieira]

More information

E-162: Positron and Electron Dynamics in a Plasma Wakefield Accelerator

E-162: Positron and Electron Dynamics in a Plasma Wakefield Accelerator E-162: Positron and Electron Dynamics in a Plasma Wakefield Accelerator Presented by Mark Hogan for the E-162 Collaboration K. Baird, F.-J. Decker, M. J. Hogan*, R.H. Iverson, P. Raimondi, R.H. Siemann,

More information

External injection of electron bunches into plasma wakefields

External injection of electron bunches into plasma wakefields External injection of electron bunches into plasma wakefields Studies on emittance growth and bunch compression p x x Timon Mehrling, Julia Grebenyuk and Jens Osterhoff FLA, Plasma Acceleration Group (http://plasma.desy.de)

More information

Using Pipe With Corrugated Walls for a Sub-Terahertz FEL

Using Pipe With Corrugated Walls for a Sub-Terahertz FEL 1 Using Pipe With Corrugated Walls for a Sub-Terahertz FEL Gennady Stupakov SLAC National Accelerator Laboratory, Menlo Park, CA 94025 37th International Free Electron Conference Daejeon, Korea, August

More information

Wakefield Effects of Collimators in LCLS-II

Wakefield Effects of Collimators in LCLS-II Wakefield Effects of Collimators in LCLS-II LCLS-II TN-15-38 10/7/2015 K. Bane SLAC, Menlo Park, CA 94025, USA October 7, 2015 LCLSII-TN-15-38 L C L S - I I T E C H N I C A L N O T E LCLS-TN-15-38 October

More information

arxiv: v1 [physics.plasm-ph] 12 Nov 2014

arxiv: v1 [physics.plasm-ph] 12 Nov 2014 Plasma wakefield acceleration studies using the quasi-static code WAKE Neeraj Jain, 1, a) John Palastro, 2, a) T. M. Antonsen Jr., 3 Warren B. Mori, 4 and Weiming An 4 1) Max Planck Institute for Solar

More information

E200: Plasma Wakefield Accelera3on

E200: Plasma Wakefield Accelera3on E200: Plasma Wakefield Accelera3on Status and Plans Chan Joshi University of California Los Angeles For the E200 Collabora3on SAREC Mee3ng, SLAC : Sept 15-17 th 2014 Work Supported by DOE Experimental

More information

The AWAKE Experiment: Beam-Plasma Interaction Simulations

The AWAKE Experiment: Beam-Plasma Interaction Simulations The AWAKE Experiment: Beam-Plasma Interaction Simulations IOP HEPP/APP Annual Meeting Tuesday 8 th April 2014 Scott Mandry University College London Max-Planck-Institut für Physik, München (Werner-Heisenberg-Institut)

More information

Emittance preservation in TESLA

Emittance preservation in TESLA Emittance preservation in TESLA R.Brinkmann Deutsches Elektronen-Synchrotron DESY,Hamburg, Germany V.Tsakanov Yerevan Physics Institute/CANDLE, Yerevan, Armenia The main approaches to the emittance preservation

More information

γmy =F=-2πn α e 2 y or y +ω β2 y=0 (1)

γmy =F=-2πn α e 2 y or y +ω β2 y=0 (1) Relativistic Weibel Instability Notes from a tutorial at the UCLA Winter School, January 11, 2008 Tom Katsouleas USC Viterbi School of Engineering, LA, CA 90089-0271 Motivation: Weibel instability of relativistic

More information

Geometrical Wake of a Smooth Taper*

Geometrical Wake of a Smooth Taper* SLAC-PUB-95-786 December 995 Geometrical Wake of a Smooth Taper* G. V. Stupakov Stanford Linear Accelerator Center Stanford University, Stanford, CA 9439 Abstract A transverse geometrical wake generated

More information

Demonstration of Energy Gain Larger than 10GeV in a Plasma Wakefield Accelerator

Demonstration of Energy Gain Larger than 10GeV in a Plasma Wakefield Accelerator Demonstration of Energy Gain Larger than 10GeV in a Plasma Wakefield Accelerator Patric Muggli University of Southern California Los Angeles, USA muggli@usc.edu THANK YOU to my colleagues of the E167 Collaboration:

More information

Overview of accelerator science opportunities with FACET ASF

Overview of accelerator science opportunities with FACET ASF Overview of accelerator science opportunities with FACET ASF Bob Siemann DOE FACET Review, February 19-20, 2008 OUTLINE I. Plasma Wakefield Acceleration II. Plasma Wakefield Based Linear Colliders III.

More information

Electron acceleration behind self-modulating proton beam in plasma with a density gradient. Alexey Petrenko

Electron acceleration behind self-modulating proton beam in plasma with a density gradient. Alexey Petrenko Electron acceleration behind self-modulating proton beam in plasma with a density gradient Alexey Petrenko Outline AWAKE experiment Motivation Baseline parameters Longitudinal motion of electrons Effect

More information

Accelerators Beyond LHC and ILC

Accelerators Beyond LHC and ILC Accelerators Beyond LHC and ILC Rasmus Ischebeck, Stanford Linear Accelerator Center Accelerators for TeV-Energy electrons Present Technologies Advanced Accelerator Research at SLAC Electron beam driven

More information

Modeling of Space Charge Effects and Coherent Synchrotron Radiation in Bunch Compression Systems. Martin Dohlus DESY, Hamburg

Modeling of Space Charge Effects and Coherent Synchrotron Radiation in Bunch Compression Systems. Martin Dohlus DESY, Hamburg Modeling of Space Charge Effects and Coherent Synchrotron Radiation in Bunch Compression Systems Martin Dohlus DESY, Hamburg SC and CSR effects are crucial for design & simulation of BC systems CSR and

More information

( ( )) + w ( ) 3 / 2

( ( )) + w ( ) 3 / 2 K K DA!NE TECHNICAL NOTE INFN - LNF, Accelerator Division Frascati, March 4, 1 Note: G-7 SYNCHROTRON TUNE SHIFT AND TUNE SPREAD DUE TO BEAM-BEAM COLLISIONS WITH A CROSSING ANGLE M. Zobov and D. Shatilov

More information

Wakefields in the LCLS Undulator Transitions. Abstract

Wakefields in the LCLS Undulator Transitions. Abstract SLAC-PUB-11388 LCLS-TN-05-24 August 2005 Wakefields in the LCLS Undulator Transitions Karl L.F. Bane Stanford Linear Accelerator Center SLAC, Stanford, CA 94309, USA Igor A. Zagorodnov Deutsches Electronen-Synchrotron

More information

An Introduction to Plasma Accelerators

An Introduction to Plasma Accelerators An Introduction to Plasma Accelerators Humboldt University Research Seminar > Role of accelerators > Working of plasma accelerators > Self-modulation > PITZ Self-modulation experiment > Application Gaurav

More information

Results of the Energy Doubler Experiment at SLAC

Results of the Energy Doubler Experiment at SLAC Results of the Energy Doubler Experiment at SLAC Mark Hogan 22nd Particle Accelerator Conference 2007 June 27, 2007 Work supported by Department of Energy contracts DE-AC02-76SF00515 (SLAC), DE-FG03-92ER40745,

More information

Γ f Σ z Z R

Γ f Σ z Z R SLACPUB866 September Ponderomotive Laser Acceleration and Focusing in Vacuum for Generation of Attosecond Electron Bunches Λ G. V. Stupakov Stanford Linear Accelerator Center Stanford University, Stanford,

More information

CERN Accelerator School Wakefields. Prof. Dr. Ursula van Rienen, Franziska Reimann University of Rostock

CERN Accelerator School Wakefields. Prof. Dr. Ursula van Rienen, Franziska Reimann University of Rostock CERN Accelerator School Wakefields Prof. Dr. Ursula van Rienen, Franziska Reimann University of Rostock Contents The Term Wakefield and Some First Examples Basic Concept of Wakefields Basic Definitions

More information

Ionization Injection and Acceleration of Electrons in a Plasma Wakefield Accelerator at FACET

Ionization Injection and Acceleration of Electrons in a Plasma Wakefield Accelerator at FACET Ionization Injection and Acceleration of Electrons in a Plasma Wakefield Accelerator at FACET N. Vafaei-Najafabadi 1, a), C.E. Clayton 1, K.A. Marsh 1, W. An 1, W. Lu 1,, W.B. Mori 1, C. Joshi 1, E. Adli

More information

Problems of Chapter 1: Introduction

Problems of Chapter 1: Introduction Chapter 1 Problems of Chapter 1: Introduction 1.1 Problem 1 1: Luminosity of Gaussian bunches a) If the bunches can be described by Gaussian ellipsoids with ( ( )) x 2 ρ exp 2σx 2 + y2 2σy 2 + z2 2σz 2,

More information

What limits the gap in a flat dechirper for an X-ray FEL?

What limits the gap in a flat dechirper for an X-ray FEL? What limits the gap in a flat dechirper for an X-ray FEL? LCLS-II TN-13-01 12/9/2013 K.L.F. Bane and G. Stupakov December 9, 2013 LCLSII-TN-13-01 SLAC-PUB-15852 LCLS-II-TN-13-01 December 2013 What limits

More information

Analysis of Slice Transverse Emittance Evolution in a Photocathode RF Gun. Abstract

Analysis of Slice Transverse Emittance Evolution in a Photocathode RF Gun. Abstract SLAC PUB 868 October 7 Analysis of Slice Transverse Emittance Evolution in a Photocathode RF Gun Z. Huang, Y. Ding Stanford Linear Accelerator Center, Stanford, CA 9439 J. Qiang Lawrence Berkeley National

More information

Emittance Compensation. J.B. Rosenzweig ERL Workshop, Jefferson Lab 3/20/05

Emittance Compensation. J.B. Rosenzweig ERL Workshop, Jefferson Lab 3/20/05 Emittance Compensation J.B. Rosenzweig ERL Workshop, Jefferson Lab 3//5 Emittance minimization in the RF photoinjector Thermal emittance limit Small transverse beam size Avoid metal cathodes? " n,th #

More information

High quality beam genera1on in density downramp injec1on and its early applica1ons

High quality beam genera1on in density downramp injec1on and its early applica1ons 2017 FEACT-II Science Workshop 17-20 October, 2017 SLAC, Menlo Park, CA High quality beam genera1on in density downramp injec1on and its early applica1ons Xinlu Xu, Thamine Dalichaouch, Weiming An, Shiyu

More information

II) Experimental Design

II) Experimental Design SLAC Experimental Advisory Committee --- September 12 th, 1997 II) Experimental Design Theory and simulations Great promise of significant scientific and technological achievements! How to realize this

More information

Quasi-static Modeling of Beam-Plasma and Laser-Plasma Interactions

Quasi-static Modeling of Beam-Plasma and Laser-Plasma Interactions University of California Los Angeles Quasi-static Modeling of Beam-Plasma and Laser-Plasma Interactions A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy

More information

INSTABILITIES IN LINACS

INSTABILITIES IN LINACS INSTABILITIES IN LINACS Massimo Ferrario INFN-LNF Trieste, 2-142 October 2005 Introduction to Wake Fields Instability in Linacs:Beam Break Up Circular Perfectly Conducting Pipe - Beam at Center- Static

More information

BEAM INSTABILITIES IN LINEAR MACHINES 2

BEAM INSTABILITIES IN LINEAR MACHINES 2 BEAM INSTABILITIES IN LINEAR MACHINES 2 Massimo.Ferrario@LNF.INFN.IT CERN 5 November 215 ( ) σ " + k 2 s σ = k sc s,γ σ Equilibrium solution: ( ) = k sc( s,γ ) σ eq s,γ k s Single Component Relativistic

More information

arxiv: v1 [physics.acc-ph] 8 Nov 2017

arxiv: v1 [physics.acc-ph] 8 Nov 2017 THE IMPEDANCE OF FLAT METALLIC PLATES WITH SMALL CORRUGATIONS K. Bane, SLAC National Accelerator Laboratory, Menlo Park, CA, USA arxiv:1711.321v1 [physics.acc-ph] 8 Nov 217 INTRODUCTION The RadiaBeam/SLAC

More information

Echo-Enabled Harmonic Generation

Echo-Enabled Harmonic Generation Echo-Enabled Harmonic Generation G. Stupakov SLAC NAL, Stanford, CA 94309 IPAC 10, Kyoto, Japan, May 23-28, 2010 1/29 Outline of the talk Generation of microbunching in the beam using the echo effect mechanism

More information

High energy gains in field-ionized noble gas plasma accelerators

High energy gains in field-ionized noble gas plasma accelerators High energy gains in field-ionized noble gas plasma accelerators Laser and Plasma Accelerators Workshop 2013 Sébastien Corde, September 05, 2013 Outline - High energy gains in Ar - Energy Doubling, up

More information

arxiv: v1 [physics.plasm-ph] 30 Jul 2011

arxiv: v1 [physics.plasm-ph] 30 Jul 2011 Phase velocity and particle injection in a self-modulated proton-driven plasma wakefield accelerator A. Pukhov 1, N. Kumar 1, T. Tückmantel 1, A. Upadhyay 1, K. Lotov 2, P. Muggli 3, V. Khudik 4, C. Siemon

More information

What must the PWFA Collabora2on do at FACET II Overview of requirements for Plasma Sources based on experimental needs

What must the PWFA Collabora2on do at FACET II Overview of requirements for Plasma Sources based on experimental needs What must the PWFA Collabora2on do at FACET II Overview of requirements for Plasma Sources based on experimental needs Chan Joshi UCLA With help from Weiming An, Chris Clayton, Xinlu Xu, Ken Marsh, Warren

More information

Low Emittance Machines

Low Emittance Machines Advanced Accelerator Physics Course RHUL, Egham, UK September 2017 Low Emittance Machines Part 1: Beam Dynamics with Synchrotron Radiation Andy Wolski The Cockcroft Institute, and the University of Liverpool,

More information

Resistive wall wakefields of short bunches at cryogenic temperatures

Resistive wall wakefields of short bunches at cryogenic temperatures Resistive wall wakefields of short bunches at cryogenic temperatures LCLS-II TN-15-01 1/15/15 G. Stupakov, K. L. F. Bane, and P. Emma SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA B.

More information

Wakefield in Structures: GHz to THz

Wakefield in Structures: GHz to THz Wakefield in Structures: GHz to THz Chunguang Jing Euclid Techlabs LLC, / AWA, Argonne National Laboratory AAC14, July, 2014 Wakefield (beam structure) Measured Wakefield: GHz to THz Wz S. Antipov et.

More information

General wall impedance theory for 2D axisymmetric and flat multilayer structures

General wall impedance theory for 2D axisymmetric and flat multilayer structures General wall impedance theory for 2D axisymmetric and flat multilayer structures N. Mounet and E. Métral Acknowledgements: N. Biancacci, F. Caspers, A. Koschik, G. Rumolo, B. Salvant, B. Zotter. N. Mounet

More information

Beam Physics at SLAC. Yunhai Cai Beam Physics Department Head. July 8, 2008 SLAC Annual Program Review Page 1

Beam Physics at SLAC. Yunhai Cai Beam Physics Department Head. July 8, 2008 SLAC Annual Program Review Page 1 Beam Physics at SLAC Yunhai Cai Beam Physics Department Head July 8, 2008 SLAC Annual Program Review Page 1 Members in the ABP Department * Head: Yunhai Cai * Staff: Gennady Stupakov Karl Bane Zhirong

More information

INSTABILITIES IN LINACS. Massimo Ferrario INFN-LNF

INSTABILITIES IN LINACS. Massimo Ferrario INFN-LNF INSTABILITIES IN LINACS Massimo Ferrario INFN-LNF Trondheim, 4 August, 13 SELF FIELDS AND WAKE FIELDS Direct self fields Image self fields Space Charge Wake fields γ = 1 1 β E = q 4πε o ( 1 β ) ( 1 β sin

More information

Excitements and Challenges for Future Light Sources Based on X-Ray FELs

Excitements and Challenges for Future Light Sources Based on X-Ray FELs Excitements and Challenges for Future Light Sources Based on X-Ray FELs 26th ADVANCED ICFA BEAM DYNAMICS WORKSHOP ON NANOMETRE-SIZE COLLIDING BEAMS Kwang-Je Kim Argonne National Laboratory and The University

More information

PoS(EPS-HEP2017)533. First Physics Results of AWAKE, a Plasma Wakefield Acceleration Experiment at CERN. Patric Muggli, Allen Caldwell

PoS(EPS-HEP2017)533. First Physics Results of AWAKE, a Plasma Wakefield Acceleration Experiment at CERN. Patric Muggli, Allen Caldwell First Physics Results of AWAKE, a Plasma Wakefield Acceleration Experiment at CERN Patric Muggli, Max Planck Institute for Physics E-mail: muggli@mpp.mpg.de AWAKE is a plasma wakefield acceleration experiment

More information

Transverse dynamics of a relativistic electron beam in an underdense plasma channel

Transverse dynamics of a relativistic electron beam in an underdense plasma channel PHYSICS OF PLASMAS VOLUME 7, NUMBER 8 AUGUST 2000 Transverse dynamics of a relativistic electron beam in an underdense plasma channel Andrew A. Geraci and David H. Whittum Stanford Linear Accelerator Center,

More information

FACET*, a springboard to the accelerator frontier of the future

FACET*, a springboard to the accelerator frontier of the future Going Beyond Current Techniques: FACET*, a springboard to the accelerator frontier of the future Patric Muggli University of Southern California muggli@usc.edu *Facilities for Accelerator Science and Experimental

More information

UCLA Neptune Ramped Bunch Experiment. R. Joel England UCLA Department of Physics and Astronomy Particle Beam Physics Laboratory May 19, 2004

UCLA Neptune Ramped Bunch Experiment. R. Joel England UCLA Department of Physics and Astronomy Particle Beam Physics Laboratory May 19, 2004 UCLA Neptune Ramped Bunch Experiment R. Joel England UCLA Department of Physics and Astronomy Particle Beam Physics Laboratory May 19, 2004 Outline 1. Background & Motivation 2. Neptune Dogleg Compressor

More information

Plasma Accelerators the Basics. R Bingham Central Laser Facility Rutherford Appleton Laboratory, UK.

Plasma Accelerators the Basics. R Bingham Central Laser Facility Rutherford Appleton Laboratory, UK. Plasma Accelerators the Basics R Bingham Central Laser Facility Rutherford Appleton Laboratory, UK. CERN Accelerator School, 4 th November 014 Introduction General Principles Laser-plasma accelerators

More information

Wakefields and Impedances I. Wakefields and Impedances I

Wakefields and Impedances I. Wakefields and Impedances I Wakefields and Impedances I Wakefields and Impedances I An Introduction R. Wanzenberg M. Dohlus CAS Nov. 2, 2015 R. Wanzenberg Wakefields and Impedances I CAS, Nov. 2015 Page 1 Introduction Wake Field

More information

Beam Echo Effect for Generation of Short Wavelength Radiation

Beam Echo Effect for Generation of Short Wavelength Radiation Beam Echo Effect for Generation of Short Wavelength Radiation G. Stupakov SLAC NAL, Stanford, CA 94309 31st International FEL Conference 2009 Liverpool, UK, August 23-28, 2009 1/31 Outline of the talk

More information

Wakefield Acceleration in Dielectric Structures

Wakefield Acceleration in Dielectric Structures Wakefield Acceleration in Dielectric Structures J.B. Rosenzweig UCLA Dept. of Physics and Astronomy Future Light Sources SLAC, March 2, 2010 Scaling the accelerator in size Lasers produce copious power

More information

Mapping plasma lenses

Mapping plasma lenses FACET II science workshop SLAC October 21 2017 Mapping plasma lenses JH Röckemann, L Schaper, SK Barber, NA Bobrova, S Bulanov, N Delbos, K Flöttmann, G Kube, W Lauth, W Leemans, V Libov, A Maier, M Meisel,

More information

Lecture 4: Emittance Compensation. J.B. Rosenzweig USPAS, UW-Madision 6/30/04

Lecture 4: Emittance Compensation. J.B. Rosenzweig USPAS, UW-Madision 6/30/04 Lecture 4: Emittance Compensation J.B. Rosenzweig USPAS, UW-Madision 6/30/04 Emittance minimization in the RF photoinjector Thermal emittance limit Small transverse beam size Avoid metal cathodes? n,th

More information

Cherenkov Radiation and Dielectric Based Accelerating Structures: Wakefield Generation, Power Extraction and Energy Transfer Efficiency.

Cherenkov Radiation and Dielectric Based Accelerating Structures: Wakefield Generation, Power Extraction and Energy Transfer Efficiency. Cherenkov Radiation and Dielectric Based Accelerating Structures: Wakefield Generation, Power Extraction and Energy Transfer Efficiency. Alexei Kanareykin S.Petersburg Electrotechnical University LETI,

More information

A proposed demonstration of an experiment of proton-driven plasma wakefield acceleration based on CERN SPS

A proposed demonstration of an experiment of proton-driven plasma wakefield acceleration based on CERN SPS J. Plasma Physics (2012), vol. 78, part 4, pp. 347 353. c Cambridge University Press 2012 doi:.17/s0022377812000086 347 A proposed demonstration of an experiment of proton-driven plasma wakefield acceleration

More information

Excitements and Challenges for Future Light Sources Based on X-Ray FELs

Excitements and Challenges for Future Light Sources Based on X-Ray FELs Excitements and Challenges for Future Light Sources Based on X-Ray FELs 26th ADVANCED ICFA BEAM DYNAMICS WORKSHOP ON NANOMETRE-SIZE COLLIDING BEAMS Kwang-Je Kim Argonne National Laboratory and The University

More information

VHEeP: A very high energy electron proton collider based on protondriven plasma wakefield acceleration

VHEeP: A very high energy electron proton collider based on protondriven plasma wakefield acceleration VHEeP: A very high energy electron proton collider based on protondriven plasma wakefield acceleration Allen Caldwell (MPI) Matthew Wing (UCL/DESY/Univ. Hamburg) Introduction Accelerator based on plasma

More information

Plasma Wakefield Acceleration of an. Intense Positron Beam

Plasma Wakefield Acceleration of an. Intense Positron Beam UNIVERSITY OF CALIFORNIA Los Angeles Plasma Wakefield Acceleration of an Intense Positron Beam A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in

More information

Beam Shaping and Permanent Magnet Quadrupole Focusing with Applications to the Plasma Wakefield Accelerator

Beam Shaping and Permanent Magnet Quadrupole Focusing with Applications to the Plasma Wakefield Accelerator Beam Shaping and Permanent Magnet Quadrupole Focusing with Applications to the Plasma Wakefield Accelerator R. Joel England J. B. Rosenzweig, G. Travish, A. Doyuran, O. Williams, B. O Shea UCLA Department

More information

Collimator Wakefields in the LC Context

Collimator Wakefields in the LC Context With the fire from the fireworks up above Collimator Wakefields in the LC Context CollTF 2002 17-Dec Dec-2002 SLAC/NLC CollWake Think Tank K. Bane, D. Onoprienko, T. Raubenheimer, G. Stupakov, Statement

More information

Particle-In-Cell Modeling of Plasma-Based Accelerators in Two and Three Dimensions

Particle-In-Cell Modeling of Plasma-Based Accelerators in Two and Three Dimensions UNIVERSITY OF CALIFORNIA Los Angeles arxiv:1503.00276v1 [physics.comp-ph] 1 Mar 2015 Particle-In-Cell Modeling of Plasma-Based Accelerators in Two and Three Dimensions A dissertation submitted in partial

More information

DESIGN STUDY OF LCLS CHIRP-CONTROL WITH A CORRUGATED STRUCTURE

DESIGN STUDY OF LCLS CHIRP-CONTROL WITH A CORRUGATED STRUCTURE DESIGN STUDY OF LCLS CHIRP-CONTROL WITH A CORRUGATED STRUCTURE Z. Zhang, K. Bane, Y. Ding, Z. Huang, R. Iverson, T. Maxwell, G. Stupakov, L. Wang SLAC National Accelerator Laboratory, Menlo Park, CA 9425,

More information

STATUS OF E-157: METER-LONG PLASMA WAKEFIELD EXPERIMENT. Presented by Patrick Muggli for the E-157 SLAC/USC/LBNL/UCLA Collaboration

STATUS OF E-157: METER-LONG PLASMA WAKEFIELD EXPERIMENT. Presented by Patrick Muggli for the E-157 SLAC/USC/LBNL/UCLA Collaboration STATUS OF E-157: METER-LONG PLASMA WAKEFIELD EXPERIMENT Presented by Patrick Muggli for the E-157 SLAC/USC/LBNL/UCLA Collaboration OUTLINE Basic E-157 Acelleration, Focusing Plasma Source Diagnostics:

More information

Novel Features of Computational EM and Particle-in-Cell Simulations. Shahid Ahmed. Illinois Institute of Technology

Novel Features of Computational EM and Particle-in-Cell Simulations. Shahid Ahmed. Illinois Institute of Technology Novel Features of Computational EM and Particle-in-Cell Simulations Shahid Ahmed Illinois Institute of Technology Outline Part-I EM Structure Motivation Method Modes, Radiation Leakage and HOM Damper Conclusions

More information

gradient Acceleration Schemes, Results of Experiments

gradient Acceleration Schemes, Results of Experiments Review of Ultra High-gradient gradient Acceleration Schemes, Results of Experiments R. Assmann,, CERN-SL Reporting also on work done at SLAC, as member of and in collaboration with the Accelerator Research

More information

arxiv: v1 [physics.acc-ph] 1 Jan 2014

arxiv: v1 [physics.acc-ph] 1 Jan 2014 The Roads to LPA Based Free Electron Laser Xiongwei Zhu Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 arxiv:1401.0263v1 [physics.acc-ph] 1 Jan 2014 January 3, 2014 Abstract

More information

Computer Algorithm for Longitudinal Single Bunch Stability Study in a Storage Ring * Abstract

Computer Algorithm for Longitudinal Single Bunch Stability Study in a Storage Ring * Abstract SLAC PUB 1151 May 5 Computer Algorithm for Longitudinal Single Bunch Stability Study in a Storage Ring * Sasha Novokhatski Stanford Linear Accelerator Center, Stanford University, Stanford, California

More information

FURTHER UNDERSTANDING THE LCLS INJECTOR EMITTANCE*

FURTHER UNDERSTANDING THE LCLS INJECTOR EMITTANCE* Proceedings of FEL014, Basel, Switzerland FURTHER UNDERSTANDING THE LCLS INJECTOR EMITTANCE* F. Zhou, K. Bane, Y. Ding, Z. Huang, and H. Loos, SLAC, Menlo Park, CA 9405, USA Abstract Coherent optical transition

More information

3D Simulations of Pre-Ionized and Two-Stage Ionization Injected Laser Wakefield Accelerators

3D Simulations of Pre-Ionized and Two-Stage Ionization Injected Laser Wakefield Accelerators 3D Simulations of Pre-Ionized and Two-Stage Ionization Injected Laser Wakefield Accelerators Asher Davidson, Ming Zheng,, Wei Lu,, Xinlu Xu,, Chang Joshi, Luis O. Silva, Joana Martins, Ricardo Fonseca

More information

Instabilities Part III: Transverse wake fields impact on beam dynamics

Instabilities Part III: Transverse wake fields impact on beam dynamics Instabilities Part III: Transverse wake fields impact on beam dynamics Giovanni Rumolo and Kevin Li 08/09/2017 Beam Instabilities III - Giovanni Rumolo and Kevin Li 2 Outline We will close in into the

More information

Transverse beam stability and Landau damping in hadron colliders

Transverse beam stability and Landau damping in hadron colliders Work supported by the Swiss State Secretariat for Educa6on, Research and Innova6on SERI Transverse beam stability and Landau damping in hadron colliders C. Tambasco J. Barranco, X. Buffat, T. Pieloni Acknowledgements:

More information

CSR calculation by paraxial approximation

CSR calculation by paraxial approximation CSR calculation by paraxial approximation Tomonori Agoh (KEK) Seminar at Stanford Linear Accelerator Center, March 3, 2006 Short Bunch Introduction Colliders for high luminosity ERL for short duration

More information

Index. Accelerator model 8 Adiabatic damping 32, 141 Air-bag model 338 Alternating explicit time scheme 112 Azimuthal modes, see Modes

Index. Accelerator model 8 Adiabatic damping 32, 141 Air-bag model 338 Alternating explicit time scheme 112 Azimuthal modes, see Modes Index Accelerator model 8 Adiabatic damping 32, 141 Air-bag model 338 Alternating explicit time scheme 112 Azimuthal modes, see Modes Beam breakup in linacs dipole mode 136 higher modes 160 quadrupole

More information

THEORY AND MEASUREMENTS OF EMITTANCE PRESERVATION IN PLASMA WAKEFIELD ACCELERATION

THEORY AND MEASUREMENTS OF EMITTANCE PRESERVATION IN PLASMA WAKEFIELD ACCELERATION SLAC-R-1079 THEORY AND MEASUREMENTS OF EMITTANCE PRESERVATION IN PLASMA WAKEFIELD ACCELERATION A DISSERTATION SUBMITTED TO THE DEPARTMENT OF PHYSICS AND THE COMMITTEE ON GRADUATE STUDIES OF STANFORD UNIVERSITY

More information

Emittance Limitation of a Conditioned Beam in a Strong Focusing FEL Undulator. Abstract

Emittance Limitation of a Conditioned Beam in a Strong Focusing FEL Undulator. Abstract SLAC PUB 11781 March 26 Emittance Limitation of a Conditioned Beam in a Strong Focusing FEL Undulator Z. Huang, G. Stupakov Stanford Linear Accelerator Center, Stanford, CA 9439 S. Reiche University of

More information

A Meter-Scale Plasma Wakefield Accelerator

A Meter-Scale Plasma Wakefield Accelerator A Meter-Scale Plasma Wakefield Accelerator Rasmus Ischebeck, Melissa Berry, Ian Blumenfeld, Christopher E. Clayton, Franz-Josef Decker, Mark J. Hogan, Chengkun Huang, Richard Iverson, Chandrashekhar Joshi,

More information

Self field of a relativistic beam (Lecture 15)

Self field of a relativistic beam (Lecture 15) Self field of a relativistic beam (Lecture 15) February 1, 2016 259/441 Lecture outline We will study the electromagnetic field of a bunch of charged particles moving with relativistic velocity along a

More information

Optical Circular Deflector with Attosecond Resolution for Ultrashort Electron. Abstract

Optical Circular Deflector with Attosecond Resolution for Ultrashort Electron. Abstract SLAC-PUB-16931 February 2017 Optical Circular Deflector with Attosecond Resolution for Ultrashort Electron Zhen Zhang, Yingchao Du, Chuanxiang Tang 1 Department of Engineering Physics, Tsinghua University,

More information

Coherent radiation of electron cloud.

Coherent radiation of electron cloud. SLAC-PUB-1784 October 5, 24 Coherent radiation of electron cloud. S. Heifets Stanford Linear Accelerator Center, Stanford University, Stanford, CA 9439 Abstract The electron cloud in positron storage rings

More information

THRESHOLDS OF THE HEAD-TAIL INSTABILITY IN BUNCHES WITH SPACE CHARGE

THRESHOLDS OF THE HEAD-TAIL INSTABILITY IN BUNCHES WITH SPACE CHARGE WEOLR Proceedings of HB, East-Lansing, MI, USA THRESHOLDS OF THE HEAD-TAIL INSTABILITY IN BUNCHES WITH SPACE CHARGE V. Kornilov, O.Boine-Frankenheim, GSI Darmstadt, and TU Darmstadt, Germany C. Warsop,

More information

Introduction to plasma wakefield acceleration. Stuart Mangles The John Adams Institute for Accelerator Science Imperial College London

Introduction to plasma wakefield acceleration. Stuart Mangles The John Adams Institute for Accelerator Science Imperial College London Introduction to plasma wakefield acceleration Stuart Mangles The John Adams Institute for Accelerator Science Imperial College London plasma as an accelerator ~ 1 m; ~ 40 MV/m ~ 50 µm; ~ 100 GV/m a plasma

More information

CSR Benchmark Test-Case Results

CSR Benchmark Test-Case Results CSR Benchmark Test-Case Results Paul Emma SLAC January 4, 2 BERLIN CSR Workshop Chicane CSR Test-Case Chicane parameters symbol value unit Bend magnet length (not curved length) L B.5 m Drift length (projected;

More information