E-162: Positron and Electron Dynamics in a Plasma Wakefield Accelerator

Size: px
Start display at page:

Download "E-162: Positron and Electron Dynamics in a Plasma Wakefield Accelerator"

Transcription

1 E-162: Positron and Electron Dynamics in a Plasma Wakefield Accelerator Presented by Mark Hogan for the E-162 Collaboration K. Baird, F.-J. Decker, M. J. Hogan*, R.H. Iverson, P. Raimondi, R.H. Siemann, D. Walz Stanford Linear Accelerator Center B.E. Blue, C.E. Clayton, E.S. Dodd, C. Joshi *, K.A. Marsh, W.B. Mori, S. Wang University of California at Los Angeles T. Katsouleas *, S. Lee, P. Muggli University of Southern California R. Assmann CERN Extraordinarily high fields developed in beam plasma interactions Many questions related to the applicability of plasmas to high energy accelerators and colliders E-157: First experiment to study Plasma Wakefield Acceleration (PWFA) of electrons over meter scale distances Physics for positron beam drivers qualitatively different (flow-in vs. blow-out) E-162

2 Outline q Motivation for positrons q Differences between positrons and electrons in PWFA Flow-in vs. blow-out regimes q Transverse wakes in homogeneous plasmas Opportunity to do unique physics with minimal investment q Longitudinal wakes in hollow and homogeneous plasmas Hollow channels to optimize the accelerating wake for positrons Required improvements to the experimental apparatus q Study matched beam propagation and longitudinal wakes of electrons

3 Why Positrons? For Example -- The Afterburner Idea apple Double the energy of Collider w/ short plasma sections before IP apple 1 st half of beam excites wake --decelerates to apple apple 2 nd half of beams rides wake--accelerates to 2 x E o Make up for Luminosity decrease N 2 /σ 2 by halving σ in a final plasma lens LENSES 5 GeV e - e - WFA e + WFA 5 GeV e + IP

4 Fundamentally Different Physics for Electron and Positron Wakes: Blow-out vs. Flow-in regime

5 Physical Principles of the Plasma Wakefield Accelerator Space charge of drive beam displaces plasma electrons Ez electron beam Plasma ions exert restoring force => Space charge oscillations Wake Phase Velocity = Beam Velocity (like wake on a boat) Wake amplitude N b σ 2 1 ( for 4σ ) z z λp n o

6 e - electron Radius ELECTRON PLASMA Blow-out -14 positron ELECTRON PLASMA -.5 e + Radius Flow-in -3 Z

7 3D Positron Beam Modeling Transverse Dynamics Electrons Positrons Radius [a.u.] Time [ps] Time [ps]

8 Why Positrons? Flow-in vs. Blow-out Regime Transverse Spot Size [µm] Electron Simulation Transverse Spot Size [µm] Positron Simulation Distance Into Plasma [m] 1.4 Transverse Spot Size [µm] DS OTR Electron Data Missing Positron Data? /2 Phase Advance K*L n e

9 Longitudinal Wake Optimization for Positron Beams: Homogeneous Plasma Hollow Plasma Channel

10 Wakefields of positron and electron 1 N = 2 1, σ = 4. mm(~ 13. ps), σ = 75µ m n p = z cm 14 3 r electron positron E 1 (GV/m) E z = 834 MV/m E 1 (GV/m) E z = 211 MV/m z (cm) z (cm)

11 ELECTRON For a positron drive beam and a homogeneous electron plasma the accelerating wakes have a lower amplitude than electron beam driven plasma waves require a high resolution imaging spectrometer Average Energy per 35µm bin (GeV) average <p z > x (3a) Electrons 34 MeV/m POSITRON z (cm) Relative Position Along Electron Bunch [mm] x number(#)/2.1747e15 sec bin Number of Electrons per 35µm bin (1 8 ) Average Energy per 35µm bin (GeV) x P z = 192 MeV/m (268.8MV/1.4m) z (cm) average <p z > (3b) Positrons x Relative Position Along Electron Bunch [mm] number(#)/2.1747e15 sec bin Number of Electrons per 35µm bin (1 8 )

12 q Why are positron wakes smaller? τ 3 τ 2 τ 1 τ 1 τ 2 τ 3 electron positron q Phase mixing due to different arrival time of sucked-in electrons q Gradient can be made larger by using a hollow plasma channel

13 electron Wakes in Hollow channel electron positron positron E 1 (MV/m) E zmax = 34 MV/m z (cm) E 1 (MV/m) E z = 27 MV/m z (cm)

14 Hollow channel plasmas can be optimized (plasma density vs. channel radius) for positron acceleration Accelerating Wake E z (MV/m) e - e Normalized Hollow Channel Radius r o ω p /c Accelerating wake for electron and positron beams as a function of the hollow plasma channel radius. For the electron case (filled blue circles) the wake amplitude decreases with channel radius, where as for positrons (open red circles) the wake has an maximum for a channel radius equal to c/ω p.

15 The accelerating wake for a positron beam driven plasma wave can be optimized by using a hollow channel plasma UV profiles.3 m (a) and 1.3 m (b) from a damaged UV optic with ~ 5 µm hole in reflective coating (center of images) as well as other forms of damage. The structure of the resultant mask in UV fluence is preserved over the required length to photo-ionize a hollow channel plasma.

16 Optimization of the Experimental Set-up Imaging spectrometer Matched beam propagation for electrons

17 Aerogel Dump magnets Quad

18 Move experiment from IP1 to IP where optics are available to: Image plasma entrance and exit onto aerogel and have a true imaging spectrometer Match beam into plasma E-157 E-162 Cherenkov

19

20 IP allow matching into the plasma σ (µm) β beam =σ 2 /ε=1/k=β plasma σ =1.5 µm ε N =5 1-5 m rad n e = cm -3 Plasma SoptSizeZXmatchedX11.25µ.graph z (m) DS OTR σ Plasma Exit (µm) MatchedBeamPLExit.graph Plasma transparency condition broadened (@ plasma exit) Use imaging spectrometer µm n e = cm -3 σ =1.5 µm ε N =5 1 5 m rad β =13 cm σ=1.5µm±2.4% 1.4<n e < cm -3 n e ( 1 14 cm -3 )

21 Conclusions: q PWFA physics for positrons fundamentally different than for electrons q E-157 has produced a number of significant results with electrons q E-162 will be the first experiment to study the issues of PWFA with positron beams q Strong collaboration eager to use the facility developed in the FFTB to study PWFA

22 Experimental Program Run 1: A First Look at Positron Propagation in Long Homogeneous and Hollow Plasmas Use working E-157 apparatus Positrons in homogeneous and hollow plasmas Transverse dynamics (time integrated & time resolved) in the flow-in regime Run 2: High Resolution Energy Gain Measurements of Positrons Move to new location in FFTB to build true imaging spectrometer Positrons in homogeneous and hollow plasmas Detailed structure of longitudinal wakes (acceleration) Run 3: High Resolution Energy Gain Measurements of Electrons Electrons in homogeneous and hollow plasmas Matched beam propagation in a long plasma Higher resolution acceleration measurements

E-157: A Plasma Wakefield Acceleration Experiment

E-157: A Plasma Wakefield Acceleration Experiment SLAC-PUB-8656 October 2 E-157: A Plasma Wakefield Acceleration Experiment P. Muggli et al. Invited talk presented at the 2th International Linac Conference (Linac 2), 8/21/2 8/25/2, Monterey, CA, USA Stanford

More information

Plasma-based Acceleration at SLAC

Plasma-based Acceleration at SLAC Plasmabased Acceleration at SLAC Patric Muggli University of Southern California muggli@usc.edu for the E167 collaboration E167 Collaboration: I. Blumenfeld, F.J. Decker, P. Emma, M. J. Hogan, R. Iverson,

More information

Demonstration of Energy Gain Larger than 10GeV in a Plasma Wakefield Accelerator

Demonstration of Energy Gain Larger than 10GeV in a Plasma Wakefield Accelerator Demonstration of Energy Gain Larger than 10GeV in a Plasma Wakefield Accelerator Patric Muggli University of Southern California Los Angeles, USA muggli@usc.edu THANK YOU to my colleagues of the E167 Collaboration:

More information

E164. High Gradient Plasma-Wakefield Acceleration Using Ultrashort. Electron Bunches

E164. High Gradient Plasma-Wakefield Acceleration Using Ultrashort. Electron Bunches E164 High Gradient Plasma-Wakefield Acceleration Using Ultrashort Electron Bunches M. J. Hogan *, P. Emma, R. Iverson, C. O'Connell, P. Krejcik, R. Siemann and D. Walz Stanford Linear Accelerator Center

More information

Overview of accelerator science opportunities with FACET ASF

Overview of accelerator science opportunities with FACET ASF Overview of accelerator science opportunities with FACET ASF Bob Siemann DOE FACET Review, February 19-20, 2008 OUTLINE I. Plasma Wakefield Acceleration II. Plasma Wakefield Based Linear Colliders III.

More information

A Meter-Scale Plasma Wakefield Accelerator

A Meter-Scale Plasma Wakefield Accelerator A Meter-Scale Plasma Wakefield Accelerator Rasmus Ischebeck, Melissa Berry, Ian Blumenfeld, Christopher E. Clayton, Franz-Josef Decker, Mark J. Hogan, Chengkun Huang, Richard Iverson, Chandrashekhar Joshi,

More information

E200: Plasma Wakefield Accelera3on

E200: Plasma Wakefield Accelera3on E200: Plasma Wakefield Accelera3on Status and Plans Chan Joshi University of California Los Angeles For the E200 Collabora3on SAREC Mee3ng, SLAC : Sept 15-17 th 2014 Work Supported by DOE Experimental

More information

STATUS OF E-157: METER-LONG PLASMA WAKEFIELD EXPERIMENT. Presented by Patrick Muggli for the E-157 SLAC/USC/LBNL/UCLA Collaboration

STATUS OF E-157: METER-LONG PLASMA WAKEFIELD EXPERIMENT. Presented by Patrick Muggli for the E-157 SLAC/USC/LBNL/UCLA Collaboration STATUS OF E-157: METER-LONG PLASMA WAKEFIELD EXPERIMENT Presented by Patrick Muggli for the E-157 SLAC/USC/LBNL/UCLA Collaboration OUTLINE Basic E-157 Acelleration, Focusing Plasma Source Diagnostics:

More information

Plasma Wakefield Acceleration Presented by: Bob Siemann On behalf of: The E157, E162, E-164, E-164X, E167 Collaborations

Plasma Wakefield Acceleration Presented by: Bob Siemann On behalf of: The E157, E162, E-164, E-164X, E167 Collaborations Bob Siemann SLAC HEPAP Subpanel on Accelerator Research Plasma Wakefield Acceleration Facilities and Opportunities Concluding Remarks Dec 21, 2005 HEPAP Accel Research Subpanel 1 Plasma Wakefield Acceleration

More information

gradient Acceleration Schemes, Results of Experiments

gradient Acceleration Schemes, Results of Experiments Review of Ultra High-gradient gradient Acceleration Schemes, Results of Experiments R. Assmann,, CERN-SL Reporting also on work done at SLAC, as member of and in collaboration with the Accelerator Research

More information

Plasma Wakefield Accelerator Experiments and their Diagnostics Patric Muggli University of Southern California

Plasma Wakefield Accelerator Experiments and their Diagnostics Patric Muggli University of Southern California Plasma Wakefield Accelerator Experiments and their Diagnostics Patric Muggli University of Southern California muggli@usc.edu Work supported by US Dept. of Energy OUTLINE Motivation Plasma Wakefield Accelerator

More information

Measurements of Short Bunches at SPPS and E-164X

Measurements of Short Bunches at SPPS and E-164X Measurements of Short Bunches at SPPS and E-164X P. Muggli (USC) M.J. Hogan, C.D. Barnes, D. Walz, R. Siemann P.J. Emma, P. Krejcik (SLAC) H. Schlarb, R. Ischebeck (DESY) P. Muggli, XFEL 24, SLAC 7/29/4

More information

First results from the plasma wakefield acceleration transverse studies at FACET

First results from the plasma wakefield acceleration transverse studies at FACET First results from the plasma wakefield acceleration transverse studies at FACET Erik Adli (University of Oslo, Norway and SLAC) For the FACET E200 collaboration : M.J. Hogan, S. Corde, R.J. England, J.

More information

Electron Acceleration in a Plasma Wakefield Accelerator E200 FACET, SLAC

Electron Acceleration in a Plasma Wakefield Accelerator E200 FACET, SLAC Electron Acceleration in a Plasma Wakefield Accelerator E200 Collaboration @ FACET, SLAC Chan Joshi UCLA Making Big Science Small : Moving Toward a TeV Accelerator Using Plasmas Work Supported by DOE Compact

More information

Results of the Energy Doubler Experiment at SLAC

Results of the Energy Doubler Experiment at SLAC Results of the Energy Doubler Experiment at SLAC Mark Hogan 22nd Particle Accelerator Conference 2007 June 27, 2007 Work supported by Department of Energy contracts DE-AC02-76SF00515 (SLAC), DE-FG03-92ER40745,

More information

Accelerators Beyond LHC and ILC

Accelerators Beyond LHC and ILC Accelerators Beyond LHC and ILC Rasmus Ischebeck, Stanford Linear Accelerator Center Accelerators for TeV-Energy electrons Present Technologies Advanced Accelerator Research at SLAC Electron beam driven

More information

Beam-plasma Physics Working Group Summary

Beam-plasma Physics Working Group Summary Beam-plasma Physics Working Group Summary P. Muggli, Ian Blumenfeld Wednesday: 10:55, Matt Thompson, LLNL, "Prospect for ultra-high gradient Cherenkov wakefield accelerator experiments at SABER 11:25,

More information

The status and evolution of plasma wakefield particle accelerators

The status and evolution of plasma wakefield particle accelerators The status and evolution of plasma wakefield particle accelerators C Joshi and W.B Mori Phil. Trans. R. Soc. A 2006 364, 577-585 doi: 10.1098/rsta.2005.1723 References Rapid response Email alerting service

More information

Wakefield Acceleration in Dielectric Structures

Wakefield Acceleration in Dielectric Structures Wakefield Acceleration in Dielectric Structures J.B. Rosenzweig UCLA Dept. of Physics and Astronomy Future Light Sources SLAC, March 2, 2010 Scaling the accelerator in size Lasers produce copious power

More information

Dynamic focusing of an electron beam through a long plasma

Dynamic focusing of an electron beam through a long plasma PHYSICAL REVIEW SPECIAL TOPICS - ACCELERATORS AND BEAMS, VOLUME 5, 121301 (2002) Dynamic focusing of an electron beam through a long plasma C. O Connell, F-J. Decker, M. J. Hogan, R. Iverson, P. Raimondi,

More information

Ionization Injection and Acceleration of Electrons in a Plasma Wakefield Accelerator at FACET

Ionization Injection and Acceleration of Electrons in a Plasma Wakefield Accelerator at FACET Ionization Injection and Acceleration of Electrons in a Plasma Wakefield Accelerator at FACET N. Vafaei-Najafabadi 1, a), C.E. Clayton 1, K.A. Marsh 1, W. An 1, W. Lu 1,, W.B. Mori 1, C. Joshi 1, E. Adli

More information

M. J. Hogan, C. O Connell, R. Siemann, and D. Watz Stanford Linear Accelerator Center, Stanford University, Stanford, California 94309

M. J. Hogan, C. O Connell, R. Siemann, and D. Watz Stanford Linear Accelerator Center, Stanford University, Stanford, California 94309 PHYSICS OF PLASMAS VOLUME 9, NUMBER 5 MAY 2002 REVIEW PAPERS High energy density plasma science with an ultrarelativistic electron beam a C. Joshi, b) B. Blue, C. E. Clayton, E. Dodd, C. Huang, K. A. Marsh,

More information

E-157: A 1.4 Meter long Plasma Wakefield Acceleration Experiment Using a. 30GeV Electron Beam from the Stanford Linear Accelerator Center Linac +

E-157: A 1.4 Meter long Plasma Wakefield Acceleration Experiment Using a. 30GeV Electron Beam from the Stanford Linear Accelerator Center Linac + SLAC-PUB-8352 April 2000 E-157: A 1.4 Meter long Plasma Wakefield Acceleration Experiment Using a 30GeV Electron Beam from the Stanford Linear Accelerator Center Linac + M. J. Hogan, R. Assmann, F.-J.

More information

FACET*, a springboard to the accelerator frontier of the future

FACET*, a springboard to the accelerator frontier of the future Going Beyond Current Techniques: FACET*, a springboard to the accelerator frontier of the future Patric Muggli University of Southern California muggli@usc.edu *Facilities for Accelerator Science and Experimental

More information

High quality electron beam generation in a proton-driven hollow plasma wakefield accelerator

High quality electron beam generation in a proton-driven hollow plasma wakefield accelerator High quality electron beam generation in a proton-driven hollow plasma wakefield accelerator Authors: Y. Li 1,2,a), G. Xia 1,2, K. V. Lotov 3,4, A. P. Sosedkin 3,4, K. Hanahoe 1,2, O. Mete-Apsimon 1,2

More information

Collective Refraction of a Beam of Electrons at a Plasma-Gas Interface

Collective Refraction of a Beam of Electrons at a Plasma-Gas Interface Collective Refraction of a Beam of Electrons at a Plasma-Gas Interface P. Muggli, S. Lee, T. Katsouleas University of Southern California, Los Angeles, CA 90089 R. Assmann, F. J. Decker, M. J. Hogan, R.

More information

Plasma Wakefield Acceleration of an. Intense Positron Beam

Plasma Wakefield Acceleration of an. Intense Positron Beam UNIVERSITY OF CALIFORNIA Los Angeles Plasma Wakefield Acceleration of an Intense Positron Beam A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in

More information

Chan Joshi UCLA With help from Weiming An, Chris Clayton, Xinlu Xu, Ken Marsh and Warren Mori

Chan Joshi UCLA With help from Weiming An, Chris Clayton, Xinlu Xu, Ken Marsh and Warren Mori E-doubling with emittance preservation and pump depletion Generation of Ultra-low Emittance Electrons Testing a new concept for a novel positron source Chan Joshi UCLA With help from Weiming An, Chris

More information

PoS(EPS-HEP2017)533. First Physics Results of AWAKE, a Plasma Wakefield Acceleration Experiment at CERN. Patric Muggli, Allen Caldwell

PoS(EPS-HEP2017)533. First Physics Results of AWAKE, a Plasma Wakefield Acceleration Experiment at CERN. Patric Muggli, Allen Caldwell First Physics Results of AWAKE, a Plasma Wakefield Acceleration Experiment at CERN Patric Muggli, Max Planck Institute for Physics E-mail: muggli@mpp.mpg.de AWAKE is a plasma wakefield acceleration experiment

More information

Wakefield Acceleration in Dielectric Structures

Wakefield Acceleration in Dielectric Structures Wakefield Acceleration in Dielectric Structures J.B. Rosenzweig UCLA Dept. of Physics and Astronomy ICFA Workshop on Novel Concepts for Linear Accelerators and Colliders SLAC, July 8, 2009 Future colliders:

More information

Summary Report: Working Group 5 on Electron Beam-Driven Plasma and Structure Based Acceleration Concepts

Summary Report: Working Group 5 on Electron Beam-Driven Plasma and Structure Based Acceleration Concepts ANL-HEP-CP-00-111 Summary Report: Working Group 5 on Electron Beam-Driven Plasma and Structure Based Acceleration Concepts Manoel E. Conde+ and Thomas Katsouleas Argonne National Laboratory High Energy

More information

A proposed demonstration of an experiment of proton-driven plasma wakefield acceleration based on CERN SPS

A proposed demonstration of an experiment of proton-driven plasma wakefield acceleration based on CERN SPS J. Plasma Physics (2012), vol. 78, part 4, pp. 347 353. c Cambridge University Press 2012 doi:.17/s0022377812000086 347 A proposed demonstration of an experiment of proton-driven plasma wakefield acceleration

More information

Quasi-static Modeling of Beam-Plasma and Laser-Plasma Interactions

Quasi-static Modeling of Beam-Plasma and Laser-Plasma Interactions University of California Los Angeles Quasi-static Modeling of Beam-Plasma and Laser-Plasma Interactions A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy

More information

Ultra-High Gradient Dielectric Wakefield Accelerator Experiments

Ultra-High Gradient Dielectric Wakefield Accelerator Experiments SLAC-PUB-12420 Ultra-High Gradient Dielectric Wakefield Accelerator Experiments M.C. Thompson, H. Badakov, J.B. Rosenzweig, G. Travish, M. Hogan, R. Ischebeck, N. Kirby, R. Siemann, D. Walz, P. Muggli,

More information

High energy gains in field-ionized noble gas plasma accelerators

High energy gains in field-ionized noble gas plasma accelerators High energy gains in field-ionized noble gas plasma accelerators Laser and Plasma Accelerators Workshop 2013 Sébastien Corde, September 05, 2013 Outline - High energy gains in Ar - Energy Doubling, up

More information

arxiv: v1 [physics.plasm-ph] 12 Nov 2014

arxiv: v1 [physics.plasm-ph] 12 Nov 2014 Plasma wakefield acceleration studies using the quasi-static code WAKE Neeraj Jain, 1, a) John Palastro, 2, a) T. M. Antonsen Jr., 3 Warren B. Mori, 4 and Weiming An 4 1) Max Planck Institute for Solar

More information

Calculation of wakefields for plasma-wakefield accelerators

Calculation of wakefields for plasma-wakefield accelerators 1 Calculation of wakefields for plasma-wakefield accelerators G. Stupakov, SLAC ICFA mini-workshop on Impedances and Beam Instabilities in Particle Accelerators 18-22 September 2017 2 Introduction to PWFA

More information

Tuning Techniques And Operator Diagnostics for FACET at SLAC National Accelerator Laboratory. Chris Melton SLAC Accelerator Operations

Tuning Techniques And Operator Diagnostics for FACET at SLAC National Accelerator Laboratory. Chris Melton SLAC Accelerator Operations Tuning Techniques And Operator Diagnostics for FACET at SLAC National Accelerator Laboratory Chris Melton SLAC Accelerator Operations FACET Tuning And Diagnostics What is FACET? FACET Performance Challenges

More information

3D Simulations of Pre-Ionized and Two-Stage Ionization Injected Laser Wakefield Accelerators

3D Simulations of Pre-Ionized and Two-Stage Ionization Injected Laser Wakefield Accelerators 3D Simulations of Pre-Ionized and Two-Stage Ionization Injected Laser Wakefield Accelerators Asher Davidson, Ming Zheng,, Wei Lu,, Xinlu Xu,, Chang Joshi, Luis O. Silva, Joana Martins, Ricardo Fonseca

More information

Laser Plasma Wakefield Acceleration : Concepts, Tests and Premises

Laser Plasma Wakefield Acceleration : Concepts, Tests and Premises Laser Plasma Wakefield Acceleration : Concepts, Tests and Premises J. Faure, Y. Glinec, A. Lifschitz, A. Norlin, C. Réchatin, V.Malka Laboratoire d Optique Appliquée ENSTA-Ecole Polytechnique, CNRS 91761

More information

External Injection in Plasma Accelerators. R. Pompili, S. Li, F. Massimo, L. Volta, J. Yang

External Injection in Plasma Accelerators. R. Pompili, S. Li, F. Massimo, L. Volta, J. Yang External Injection in Plasma Accelerators R. Pompili, S. Li, F. Massimo, L. Volta, J. Yang Why Plasma Accelerators? Conventional RF cavities: 50-100 MV/m due to electrical breakdown Plasma: E>100 GV/m

More information

Measurement of wakefields in hollow plasma channels Carl A. Lindstrøm (University of Oslo)

Measurement of wakefields in hollow plasma channels Carl A. Lindstrøm (University of Oslo) Measurement of wakefields in hollow plasma channels Carl A. Lindstrøm (University of Oslo) in collaboration with Spencer Gessner (CERN) presented by Erik Adli (University of Oslo) FACET-II Science Workshop

More information

SLAC-PUB-9249 May 2002

SLAC-PUB-9249 May 2002 SLAC-PUB-9249 May 2002 X-Ray Emission From Betatron Motion In A Plasma Wiggler Shuoqin Wang 1,C.E.Clayton 1,B.E.Blue 1,E.S.Dodd 1,K.A.Marsh 1, W. B. Mori 1,C. Joshi 1,S.Lee 2,P. Muggli 2, T. Katsouleas

More information

II) Experimental Design

II) Experimental Design SLAC Experimental Advisory Committee --- September 12 th, 1997 II) Experimental Design Theory and simulations Great promise of significant scientific and technological achievements! How to realize this

More information

External injection of electron bunches into plasma wakefields

External injection of electron bunches into plasma wakefields External injection of electron bunches into plasma wakefields Studies on emittance growth and bunch compression p x x Timon Mehrling, Julia Grebenyuk and Jens Osterhoff FLA, Plasma Acceleration Group (http://plasma.desy.de)

More information

X-ray Radiation Emitted from the Betatron Oscillation of Electrons in Laser Wakefields

X-ray Radiation Emitted from the Betatron Oscillation of Electrons in Laser Wakefields Journal of the Korean Physical Society, Vol. 56, No. 1, January 2010, pp. 309 314 X-ray Radiation Emitted from the Betatron Oscillation of Electrons in Laser Wakefields Seok Won Hwang and Hae June Lee

More information

Accelerator Science at SLAC: Overview. Eric R. Colby SLAC National Accelerator Laboratory Advanced Accelerator Research Department

Accelerator Science at SLAC: Overview. Eric R. Colby SLAC National Accelerator Laboratory Advanced Accelerator Research Department Accelerator Science at SLAC: Overview Eric R. Colby SLAC National Accelerator Laboratory Advanced Accelerator Research Department Outline Motivation Efforts in Next-Generation Accelerator Technologies

More information

Multi-gigaelectronvolt, low-energy spread acceleration of positrons in a selfloaded plasma wakefield

Multi-gigaelectronvolt, low-energy spread acceleration of positrons in a selfloaded plasma wakefield SLAC-PUB-16246 Multi-gigaelectronvolt, low-energy spread acceleration of positrons in a selfloaded plasma wakefield S. Corde 1*, E. Adli 1, 2, J. M. Allen 1, W. An 3, C. I. Clarke 1, C. E. Clayton 3, J.

More information

Wakefields and beam hosing instability in plasma wake acceleration (PWFA)

Wakefields and beam hosing instability in plasma wake acceleration (PWFA) 1 Wakefields and beam hosing instability in plasma wake acceleration (PWFA) G. Stupakov, SLAC DESY/University of Hamburg accelerator physics seminar 21 November 2017 Introduction to PWFA Plasma wake excited

More information

ORION Proposal January 25, 2001 Executive Summary

ORION Proposal January 25, 2001 Executive Summary ORION Proposal January 25, 2001 Executive Summary Executive Summary: The ORION Center for Advanced Accelerator and Beam Physics Particle physics is addressing fundamental questions of the origin of mass

More information

Outlook for PWA Experiments

Outlook for PWA Experiments Outlook for PWA Experiments Ralph Assmann, Steffen Hillenbrand, Frank Zimmermann CERN, BE Department, ABP Group KET Meeting Dortmund 25 October 2010 themes community interest and potential first demonstration

More information

AWAKE, the Advanced Proton Driven Plasma Wakefield Accelera9on Experiment at CERN

AWAKE, the Advanced Proton Driven Plasma Wakefield Accelera9on Experiment at CERN AWAKE, the Advanced Proton Driven Plasma Wakefield Accelera9on Experiment at CERN Ulrik Uggerhøj many slides from a presenta0on at PSI by Edda Gschwendtner, CERN Main Driver for PWFA: Linear Collider è

More information

Proton Driven Plasma Wakefield Acceleration

Proton Driven Plasma Wakefield Acceleration Proton Driven Plasma Wakefield Acceleration Guoxing Xia Max-Planck Planck-Institute für f r Physik March 30, 2010 Large Hadron Collider-collision today! LHC: the world biggest accelerator, both in energy

More information

Electron acceleration behind self-modulating proton beam in plasma with a density gradient. Alexey Petrenko

Electron acceleration behind self-modulating proton beam in plasma with a density gradient. Alexey Petrenko Electron acceleration behind self-modulating proton beam in plasma with a density gradient Alexey Petrenko Outline AWAKE experiment Motivation Baseline parameters Longitudinal motion of electrons Effect

More information

Plasma Wakefield Acceleration of. Positron Bunches. Jorge Vieira

Plasma Wakefield Acceleration of. Positron Bunches. Jorge Vieira GoLP/IPFN Instituto Superior Técnico Plasma Wakefield Acceleration of Jorge Vieira! Instituto de Plasmas e Fusão Nuclear Instituto Superior Técnico Lisbon, Portugal http://epp.ist.utl.pt[/jorgevieira]

More information

O rion. The ORION Facility at SLAC. Bob Siemann AAC Workshop, June 15, 2000

O rion. The ORION Facility at SLAC. Bob Siemann AAC Workshop, June 15, 2000 The ORION Facility at SLAC Bob Siemann AAC Workshop, June 15, 2000 1. Introduction 2. The ORION Workshop 3. What s Next? 4. Concluding Remarks http://www-project.slac.stanford.edu/orion/ Introduction Advanced

More information

Longitudinal Laser Shaping in Laser Wakefield Accelerators

Longitudinal Laser Shaping in Laser Wakefield Accelerators SLAC-PUB-898 August physics:/86 Longitudinal Laser Shaping in Laser Wakefield Accelerators Anatoly Spitkovsky ( and Pisin Chen ( ( Department of Physics, University of California, Berkeley, CA 97 ( Stanford

More information

Simulation of laser propagation in plasma chamber including nonlinearities by utilization of VirtualLab 5 software

Simulation of laser propagation in plasma chamber including nonlinearities by utilization of VirtualLab 5 software Simulation of laser propagation in plasma chamber including nonlinearities by utilization of VirtualLab 5 software DESY Summer Student Programme, 2012 Anusorn Lueangaramwong Chiang Mai University, Thailand

More information

Proton-driven plasma wakefield acceleration

Proton-driven plasma wakefield acceleration Proton-driven plasma wakefield acceleration Matthew Wing (UCL) Motivation : particle physics; large accelerators General concept : proton-driven plasma wakefield acceleration Towards a first test experiment

More information

Diagnostic Systems for Characterizing Electron Sources at the Photo Injector Test Facility at DESY, Zeuthen site

Diagnostic Systems for Characterizing Electron Sources at the Photo Injector Test Facility at DESY, Zeuthen site 1 Diagnostic Systems for Characterizing Electron Sources at the Photo Injector Test Facility at DESY, Zeuthen site Sakhorn Rimjaem (on behalf of the PITZ team) Motivation Photo Injector Test Facility at

More information

Power efficiency vs instability (or, emittance vs beam loading) Sergei Nagaitsev, Valeri Lebedev, and Alexey Burov Fermilab/UChicago Oct 18, 2017

Power efficiency vs instability (or, emittance vs beam loading) Sergei Nagaitsev, Valeri Lebedev, and Alexey Burov Fermilab/UChicago Oct 18, 2017 Power efficiency vs instability (or, emittance vs beam loading) Sergei Nagaitsev, Valeri Lebedev, and Alexey Burov Fermilab/UChicago Oct 18, 2017 Acknowledgements We would like to thank our UCLA colleagues

More information

Review of Beam Driven Plasma Wakefield Accelerators

Review of Beam Driven Plasma Wakefield Accelerators Review Beam Driven Plasma Wakefield Accelerators C. Joshi University California, Los Angeles Los Angeles, CA 90095 Abstract. The current status -driven wakefield accelerators is reviewed. INTRODUCTION

More information

The UCLA/NICADD Plasma Density Transition Trapping Experiment

The UCLA/NICADD Plasma Density Transition Trapping Experiment The UCLA/NICADD Plasma Density Transition Traing Exeriment M.C. Thomson, J.B. Rosenzweig, G. Travish UCLA Deartment of Physics and Astronomy N. Barov Northern Illinois University Deartment of Physics H.

More information

Survey of Advanced Dielectric Wakefield Accelerators

Survey of Advanced Dielectric Wakefield Accelerators Survey of Advanced Dielectric Wakefield Accelerators Manoel Conde Argonne National Laboratory 27 Particle Accelerator Conference Outline Dielectric Wakefield Acceleration experiments (more references in

More information

SL_COMB. The SL_COMB experiment at SPARC_LAB will operate in the so-called quasinonlinear regime, defined by the dimensionless charge quantity

SL_COMB. The SL_COMB experiment at SPARC_LAB will operate in the so-called quasinonlinear regime, defined by the dimensionless charge quantity SL_COMB E. Chiadroni (Resp), D. Alesini, M. P. Anania (Art. 23), M. Bellaveglia, A. Biagioni (Art. 36), S. Bini (Tecn.), F. Ciocci (Ass.), M. Croia (Dott), A. Curcio (Dott), M. Daniele (Dott), D. Di Giovenale

More information

What must the PWFA Collabora2on do at FACET II Overview of requirements for Plasma Sources based on experimental needs

What must the PWFA Collabora2on do at FACET II Overview of requirements for Plasma Sources based on experimental needs What must the PWFA Collabora2on do at FACET II Overview of requirements for Plasma Sources based on experimental needs Chan Joshi UCLA With help from Weiming An, Chris Clayton, Xinlu Xu, Ken Marsh, Warren

More information

Emittance preserving staging optics for PWFA and LWFA

Emittance preserving staging optics for PWFA and LWFA Emittance preserving staging optics for PWFA and LWFA Physics and Applications of High Brightness Beams Havana, Cuba Carl Lindstrøm March 29, 2016 PhD Student University of Oslo / SLAC (FACET) Supervisor:

More information

Particle Driven Acceleration Experiments

Particle Driven Acceleration Experiments Particle Driven Acceleration Experiments Edda Gschwendtner CAS, Plasma Wake Acceleration 2014 2 Outline Introduction Motivation for Beam Driven Plasmas Wakefield Acceleration Experiments Electron and proton

More information

VHEeP: A very high energy electron proton collider based on protondriven plasma wakefield acceleration

VHEeP: A very high energy electron proton collider based on protondriven plasma wakefield acceleration VHEeP: A very high energy electron proton collider based on protondriven plasma wakefield acceleration Allen Caldwell (MPI) Matthew Wing (UCL/DESY/Univ. Hamburg) Introduction Accelerator based on plasma

More information

The AWAKE Experiment: Beam-Plasma Interaction Simulations

The AWAKE Experiment: Beam-Plasma Interaction Simulations The AWAKE Experiment: Beam-Plasma Interaction Simulations IOP HEPP/APP Annual Meeting Tuesday 8 th April 2014 Scott Mandry University College London Max-Planck-Institut für Physik, München (Werner-Heisenberg-Institut)

More information

Recent developments in the Dutch Laser Wakefield Accelerators program at the University of Twente: New external bunch injection scheme.

Recent developments in the Dutch Laser Wakefield Accelerators program at the University of Twente: New external bunch injection scheme. Recent developments in the Dutch Laser Wakefield Accelerators program at the University of Twente: New external bunch injection scheme. A.G. Khachatryan, F.A. van Goor, J.W.J. Verschuur and K.-J. Boller

More information

Status of linear collider designs:

Status of linear collider designs: Status of linear collider designs: Main linacs Design overview, principal open issues G. Dugan March 11, 2002 Linear colliders: main linacs The main linac is the heart of the linear collider TESLA, NLC/JLC,

More information

Novel Features of Computational EM and Particle-in-Cell Simulations. Shahid Ahmed. Illinois Institute of Technology

Novel Features of Computational EM and Particle-in-Cell Simulations. Shahid Ahmed. Illinois Institute of Technology Novel Features of Computational EM and Particle-in-Cell Simulations Shahid Ahmed Illinois Institute of Technology Outline Part-I EM Structure Motivation Method Modes, Radiation Leakage and HOM Damper Conclusions

More information

An Introduction to Plasma Accelerators

An Introduction to Plasma Accelerators An Introduction to Plasma Accelerators Humboldt University Research Seminar > Role of accelerators > Working of plasma accelerators > Self-modulation > PITZ Self-modulation experiment > Application Gaurav

More information

Laser wakefield electron acceleration to multi-gev energies

Laser wakefield electron acceleration to multi-gev energies Laser wakefield electron acceleration to multi-gev energies N.E. Andreev Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow, Russia Moscow Institute of Physics and Technology, Russia

More information

Advanced Acceleration Concepts

Advanced Acceleration Concepts Advanced Acceleration Concepts Levi Schächter chter Technion Israel Institute of Technology Acknowledgement R.H. Siemann (SLAC) W. D. Kimura (STI) I. Ben-Zvi (BNL) D. Sutter (DoE) Outline Some brief guidelines

More information

Reinventing the accelerator for the high-energy frontier

Reinventing the accelerator for the high-energy frontier Reinventing the accelerator for the high-energy frontier J. B. Rosenzweig UCLA Department of Physics and Astronomy, June 16, 2006 Particle physics and particle accelerators have a shared history, destiny

More information

FACET Facility for Advanced Accelerator Experimental Tests at SLAC

FACET Facility for Advanced Accelerator Experimental Tests at SLAC SLAC-R-930 September-14-2009 FACET Facility for Advanced Accelerator Experimental Tests at SLAC Conceptual Design Report Published September 2009 Prepared for the Department of Energy under contract number

More information

Plasma based compact light sources. Amichay Perry

Plasma based compact light sources. Amichay Perry Plasma based compact light sources Amichay Perry Conventional undulators\wigglers Monochromatic & Tunable XRays High brilliance Good angular collimation [1] [2] The fundamental wavelength is given by:

More information

Measuring very low emittances using betatron radiation. Nathan Majernik October 19, 2017 FACET-II Science Workshop

Measuring very low emittances using betatron radiation. Nathan Majernik October 19, 2017 FACET-II Science Workshop Measuring very low emittances using betatron radiation Nathan Majernik October 19, 2017 FACET-II Science Workshop Plasma photocathode injection Trojan horse High and low ionization threshold gases Blowout

More information

Transverse dynamics Selected topics. Erik Adli, University of Oslo, August 2016, v2.21

Transverse dynamics Selected topics. Erik Adli, University of Oslo, August 2016, v2.21 Transverse dynamics Selected topics Erik Adli, University of Oslo, August 2016, Erik.Adli@fys.uio.no, v2.21 Dispersion So far, we have studied particles with reference momentum p = p 0. A dipole field

More information

arxiv: v1 [physics.acc-ph] 1 Sep 2015

arxiv: v1 [physics.acc-ph] 1 Sep 2015 based on proton-driven plasma wakefield acceleration arxiv:1509.00235v1 [physics.acc-ph] 1 Sep 2015 A. Caldwell Max Planck Institute for Physics, Munich, Germany E-mail: caldwell@mpp.mpg.de UCL, London,

More information

Non-neutral fireball and possibilities for accelerating positrons with plasma

Non-neutral fireball and possibilities for accelerating positrons with plasma Instituto Superior Técnico GoLP/IPFN Non-neutral fireball and possibilities for accelerating positrons with plasma J.Vieira GoLP / Instituto de Plasmas e Fusão Nuclear Instituto Superior Técnico, Lisbon

More information

High Energy Gain Helical Inverse Free Electron Laser Accelerator at Brookhaven National Laboratory

High Energy Gain Helical Inverse Free Electron Laser Accelerator at Brookhaven National Laboratory High Energy Gain Helical Inverse Free Electron Laser Accelerator at Brookhaven National Laboratory J. Duris 1, L. Ho 1, R. Li 1, P. Musumeci 1, Y. Sakai 1, E. Threlkeld 1, O. Williams 1, M. Babzien 2,

More information

Meter Long, Homogeneous Plasma Source for Advanced Accelerator Applications

Meter Long, Homogeneous Plasma Source for Advanced Accelerator Applications Meter Long, Homogeneous Plasma Source for Advanced Accelerator Applications P. Muggli, + K.A. Marsh, ~,' S. Wang, ~:' C.E. Clayton,':' T.C. Katsouleas, + and C. Joshi ~: :University of Southern California

More information

Proton-driven plasma wakefield acceleration

Proton-driven plasma wakefield acceleration Proton-driven plasma wakefield acceleration Konstantin Lotov Budker Institute of Nuclear Physics SB RAS, Novosibirsk, Russia Novosibirsk State University, Novosibirsk, Russia AWAKE Collaboration Motivation

More information

Plasma Accelerator Based FELs Status of SLAC Task Force Efforts

Plasma Accelerator Based FELs Status of SLAC Task Force Efforts Plasma Accelerator Based FELs Status of SLAC Task Force Efforts FACET-II Science Workshop October 17-20, 2017 Mark J. Hogan FACET-II Project Scientist FACET-II CD-2/3A Director s Review, August 9, 2016

More information

Plasma wakefield acceleration and high energy physics

Plasma wakefield acceleration and high energy physics Plasma wakefield acceleration and high energy physics Matthew Wing (UCL/DESY) Introduction and motivation Plasma wakefield acceleration Laser-driven plasma wakefield acceleration Electron-driven plasma

More information

UCLA Neptune Ramped Bunch Experiment. R. Joel England UCLA Department of Physics and Astronomy Particle Beam Physics Laboratory May 19, 2004

UCLA Neptune Ramped Bunch Experiment. R. Joel England UCLA Department of Physics and Astronomy Particle Beam Physics Laboratory May 19, 2004 UCLA Neptune Ramped Bunch Experiment R. Joel England UCLA Department of Physics and Astronomy Particle Beam Physics Laboratory May 19, 2004 Outline 1. Background & Motivation 2. Neptune Dogleg Compressor

More information

UCLA Neptune Facility for Advanced Accelerator Studies

UCLA Neptune Facility for Advanced Accelerator Studies UCLA Neptune Facility for Advanced Accelerator Studies Sergei Ya. Tochitsky, 1 Christopher E. Clayton, 1 Kenneth A. Marsh, 1 James B. Rosenzweig, 2 Claudio Pellegrini 2 and Chandrashekhar Joshi 1 Neptune

More information

A Beam Size Monitor Based on Appearance Intensities for Multiple Gas Ionization INTRODUCTION

A Beam Size Monitor Based on Appearance Intensities for Multiple Gas Ionization INTRODUCTION A Beam Size Monitor Based on Appearance Intensities for Multiple Gas Ionization T. Katsouleas and J. Yoshii Department of Electrical Engineering-Electrophysics, University of Southern California Los Angeles,

More information

Emittance preservation in TESLA

Emittance preservation in TESLA Emittance preservation in TESLA R.Brinkmann Deutsches Elektronen-Synchrotron DESY,Hamburg, Germany V.Tsakanov Yerevan Physics Institute/CANDLE, Yerevan, Armenia The main approaches to the emittance preservation

More information

Evidence for high-energy and low-emittance electron beams using ionization injection of charge in a plasma wakefield accelerator

Evidence for high-energy and low-emittance electron beams using ionization injection of charge in a plasma wakefield accelerator Evidence for high-energy and low-emittance electron beams using ionization injection of charge in a plasma wakefield accelerator N Vafaei-Najafabadi 1, W An 1, C E Clayton 1, C Joshi 1, K A Marsh 1, W

More information

Introduction to plasma wakefield acceleration. Stuart Mangles The John Adams Institute for Accelerator Science Imperial College London

Introduction to plasma wakefield acceleration. Stuart Mangles The John Adams Institute for Accelerator Science Imperial College London Introduction to plasma wakefield acceleration Stuart Mangles The John Adams Institute for Accelerator Science Imperial College London plasma as an accelerator ~ 1 m; ~ 40 MV/m ~ 50 µm; ~ 100 GV/m a plasma

More information

An Astrophysical Plasma Wakefield Accelerator. Alfven Wave Induced Plasma Wakefield Acceleration

An Astrophysical Plasma Wakefield Accelerator. Alfven Wave Induced Plasma Wakefield Acceleration An Astrophysical Plasma Wakefield Accelerator Alfven Wave Induced Plasma Wakefield Acceleration Laboratory Astrophysics at SLAC Study in a Laboratory setting: Fundamental physics Astrophysical Dynamics

More information

Two-Screen Method for Determining Electron Beam Energy and Deflection from Laser Wakefield Acceleration

Two-Screen Method for Determining Electron Beam Energy and Deflection from Laser Wakefield Acceleration LLNL-PROC-41269 Two-Screen Method for Determining Electron Beam Energy and Deflection from Laser Wakefield Acceleration B. B. Pollock, J. S. Ross, G. R. Tynan, L. Divol, S. H. Glenzer, V. Leurent, J. P.

More information

Injector Experimental Progress

Injector Experimental Progress Injector Experimental Progress LCLS TAC Meeting December 10-11 2001 John Schmerge for the GTF Team GTF Group John Schmerge Paul Bolton Steve Gierman Cecile Limborg Brendan Murphy Dave Dowell Leader Laser

More information

Par$cle- Driven Plasma Wakefield Accelera$on

Par$cle- Driven Plasma Wakefield Accelera$on Par$cle- Driven Plasma Wakefield Accelera$on James Holloway University College London, London, UK PhD Supervisors: Professor MaHhew wing University College London, London, UK Professor Peter Norreys Central

More information

Accelerating Electrons with Protons The AWAKE Project Allen Caldwell Max-Planck-Institut für Physik

Accelerating Electrons with Protons The AWAKE Project Allen Caldwell Max-Planck-Institut für Physik Accelerating Electrons with Protons The AWAKE Project Allen Caldwell Max-Planck-Institut für Physik 1. Motivation for plasma wakefield acceleration 2. How it works & challenges 3. The AWAKE project: evolution

More information

AWAKE: The Proton Driven Plasma Wakefield Acceleration Experiment at CERN. Alexey Petrenko on behalf of the AWAKE Collaboration

AWAKE: The Proton Driven Plasma Wakefield Acceleration Experiment at CERN. Alexey Petrenko on behalf of the AWAKE Collaboration AWAKE: The Proton Driven Plasma Wakefield Acceleration Experiment at CERN Alexey Petrenko on behalf of the AWAKE Collaboration Outline Motivation AWAKE at CERN AWAKE Experimental Layout: 1 st Phase AWAKE

More information