Wakefields and Impedances I. Wakefields and Impedances I

Size: px
Start display at page:

Download "Wakefields and Impedances I. Wakefields and Impedances I"

Transcription

1 Wakefields and Impedances I Wakefields and Impedances I An Introduction R. Wanzenberg M. Dohlus CAS Nov. 2, 2015 R. Wanzenberg Wakefields and Impedances I CAS, Nov Page 1

2 Introduction Wake Field = the track left by a moving body (as a ship) in a fluid (as water); broadly : a track or path left Impedance = Fourier Transform (Wake Field) R. Wanzenberg Wakefields and Impedances I CAS, Nov Page 2

3 Electric Field of a Bunch Point charge in a beam pipe Gaussian Bunch, Step out transition Opening angle φ = MeV E E = 10 MeV, => φ = 50 mrad = 2.89 R. Wanzenberg Wakefields and Impedances I CAS, Nov Page 3

4 Effects on a test charge Change of energy E(s) = q 2 dz Ez (r,z,t = (s + z)/c) Bunch charge q 1 Test charge q 2 Equation of motion q 1 : z = c t q 2 s q 1 q 2 : z = c t s E z (r, z, t) depends on the total bunch charge R. Wanzenberg Wakefields and Impedances I CAS, Nov Page 4

5 Wakepotential W (s) = 1 q 1 Z dz E z (r, z, t(s, z)) t s t(s, z) = 1 c (s + z) E(s) = q 2 q 1 W(s) Bunch charge q 1 Test charge q 2 Equation of motion: q 1 : z = c t q 2 : z = c t s 1 Longitudinal Wakepotential Wake Bunch 0.5 Wake / V/pC s / σ z R. Wanzenberg Wakefields and Impedances I CAS, Nov Page 5 z

6 Wake: point charge versus bunch Longitudinal Wakepotential r Point charge W (s) = 1 q 1 Z Bunch W (s) = 1 q 1 Z dz E z,p.c. (r, z, t(s, z)) dz E z (r, z, t(s, z)) ϕ r 2 s q 2 q 1 r 1 v = c u z W (r 2, s) = Z 0 ds λ(s s ) W (r 2, s ) The fields E and B are generated by the charge distribution ρ and the current density j. They are solutions of the Maxwell equations and have to obey several boundary conditions. B = µ 0 j + 1 c 2 t E B = 0 j = c u z ρ E = t B E = 1 ǫ 0 ρ ρ = q 1 λ λ λ(z) = «1 σ 2 π exp z2 2σ 2 R. Wanzenberg Wakefields and Impedances I CAS, Nov Page 6

7 Approximations Wake Field Rigid beam approximation The wake field does not affect the motion of the beam The wake field does not affect the motion of the test charge (only the energy or momentum change is calculated) The interaction of the beam with the environment is not self consistent. Nevertheless, one can use results from wake field calculations for a turn by turn tracking code - sometimes cutting a beam into slices. R. Wanzenberg Wakefields and Impedances I CAS, Nov Page 7

8 Catch-up distance b z c d Catch-up distance z c z c + d c = t = zc2 + b 2 c z c = b2 d 2 2 d = b2 2 d d 2 Example: z c 75 mm b = 35 mm, d 2 σ z = 8 mm R = 60 mm, L = 50 mm lim z c = LARGE d small R. Wanzenberg Wakefields and Impedances I CAS, Nov Page 8

9 Numerical Calculations There exist several numerical codes to calculate wakefields. Examples are: Non commercial codes (2D, r-z geometry) ABCI, Yong Ho Chin, KEK Echo 2D, Igor Zagorodnov, DESY zagor/wakefieldcode_echoz/ Commercial codes (3D) GdfidL CST (Particle Studio, Microwave Studio) The Maxwell equations are solved on a grid R. Wanzenberg Wakefields and Impedances I CAS, Nov Page 9

10 Example: wakepotential of a cavity Numerical calculation of the wakepotential with CST Particle Studio: R. Wanzenberg Wakefields and Impedances I CAS, Nov Page 10

11 Loss Parameter Wakepotential W(s) = 1 q 1 Z dz E z (r, z, (s + z)/c) 1 Longitudinal Wakepotential Wake Bunch Line charge density λ(s) = 1 σ z 2 π exp 1 2 s 2 σ z 2 «Wake / V/pC Total loss parameter k tot = ds λ(s) W(s) Energy loss s / σ z k tot = 0.46 V pc, σ z = 4 mm, Cavity: L = 5 cm, R = 6 cm, pipe radius 3.5 cm E = P = q bunch 2 k tot E = (16 nc) V pc = mv C Bunch population N = , PETRA C = 2304m, T = 7.68µs P = 1 E = 15.2 W T R. Wanzenberg Wakefields and Impedances I CAS, Nov Page 11

12 Transverse Wake Fields Lorentz Force F(r 2, t) = q 2 (E(r 2, t) +v B(r 2, t)) Longitudinal Wakepotential W (r 2, s) = 1 q 1 Z dz E z (r 2, z,(s + z)/c) q 2 Wakepotential W(r 2, s) = 1 Z q 1 dz[e(r 2, z, t) + ce z B(r 2, z, t)] t=(s+z)/c q 1 Change of momentum of a test charge q 2 p(r 2, s) = 1 c q 2 q 1 W(r 2, s) kick on an electron (q 2 ) due to the bunch charge q 1 θ(r 2, s) = e E q 1W (r 2, s) R. Wanzenberg Wakefields and Impedances I CAS, Nov Page 12

13 Transverse Wakepotential W (r 2, s) = 1 q 1 Z Bunch charge q 1 Test charge q 2 Equation of motion: q 1 : z = c t q 2 : z = c t s Transverse Wakepotential dz[e (r 2, z, t) + ce z B (r 2, z, t)] t=(s+z)/c t s Wake Bunch 15 Wake / V/(pC m) s / σ z z R. Wanzenberg Wakefields and Impedances I CAS, Nov Page 13

14 Kick Parameter Wakepotential W(r 2,s) = 1 q 1 dz[e(r 2,z,t) + c e z B(r 2,z,t)] t=(s+z)/c r Line charge density λ(s) = 1 σ z 2 π exp 1 2 Kick parameter ( V/(pCm) ) k = s 2 σ z 2 «ds λ(s) 1 r 2 W (r 2,s) ϕ 15 s r 2 q 2 Transverse Wakepotential Wake Bunch r 1 v = c u z q 1 z W radial, vertical or horizontal component of the wake potential Wake / V/(pC m) 10 5 Betatron Tune shift in a storage ring Q β = I bunch T 0 4π E/e β k, (β function, optics) s / σ z k = 3.6 V pc m R. Wanzenberg Wakefields and Impedances I CAS, Nov Page 14

15 From Wakes to Impedance Wake Field = the track left by a moving ship in water Impedance = Fourier Transform (Wake Field) Warning: Wakefields have a bad reputation and the generation of wakes may be even illegal in some communities: NO WAKE please on Chicago river (PAC 2001) R. Wanzenberg Wakefields and Impedances I CAS, Nov Page 15

16 Impedance Longitudinal impedance r Z (r 2, ω) = 1 c Z ds W (r 2, s) exp( i ω c s) ϕ s r2 q2 r 1 q 1 v = c u z z Transverse impedance 1 Longitudinal Wakepotential Wake Bunch Z (r 2, ω) = i c Z phase factor i = exp( i π/2) Wakepotential of a Gaussian bunch W (r 2, s) = Z Fourier Transform of the Wake 0 dsw (r 2, s) exp( i ω c s) ds λ(s s ) W (r 2, s ) Wake / V/pC s / σ z eλ(ω) Z (r 2, ω) = 1 c Z ds W (r 2, s) exp( i ω c s) R. Wanzenberg Wakefields and Impedances I CAS, Nov Page 16

17 You get the Impedance if you click here! R. Wanzenberg Wakefields and Impedances I CAS, Nov Page 17

18 Equivalent Circuit Model L C R Impedance Z (ω) = 1 + i Q R ( ) ωr ω ω ω r 2 k = ω r R Q = 1 C ω r = 1 L C Q = ω r R C Wake Potential s > 0 (point charge) long range wakefield of one mode W (s) 2 k cos(ω r s c ) exp( ω r 2 Q Loss parameter (Gaussian bunch) k tot k exp ( ω 2 r ( σ ) z c )2 s c ) R. Wanzenberg Wakefields and Impedances I CAS, Nov Page 18

19 Panofsky-Wenzel-Theorem r s W (r 2, s) = 2 W (r 2, s) s W (r 2, s) = 1 q 1 Z» 1 dz c q r 2 2 t E (r 2, z, t) + ce z 1 c s v = c u z q r 1 1 t B(r 2, z, t) t=(s+z)/c z Maxwell Equation: E = t B e z t B = z E E z d dz E (r 2, z, z + s ) = c z + 1 «E (r 2, z, z + s ) c t c s W (r 2, s) = 1 q 1 Z dz ( d dz E )(r 2, z + s c ) E z (r 2, z + s «) c s W (r 2, s) = 2 W (r 2, s) + 1 q 1 Z dz( d dz E )(r 2, z + s ) c R. Wanzenberg Wakefields and Impedances I CAS, Nov Page 19

20 Panofsky-Wenzel-Theorem (cont.) s W (r 2, s) = 2 W (r 2, s) r Frequency domain version of the Panofsky-Wenzel-Theorem: ω c Z (r 2, ω) = Z (r 2, ω) q r 2 2 s v = c u z q r 1 1 z Integration of the transverse gradient of the longitudinal wake potential provides the transverse wake potential: W (r 2, s) = Z s ds W (r 2, s ). W.K.H. Panofsky, W.A. Wenzel, Some Considerations Concerning the Transverse Deflection of Charged Particles in Radio-Frequency Fields, Rev. Sci. Instrum. 27 (1956), 947 R. Wanzenberg Wakefields and Impedances I CAS, Nov Page 20

21 Multipole Expansion of the Wake Longitudinal Wakepotential W (r 1, r 2, ϕ 1, ϕ 2, s) = X r m 1 r m 2 W (m) (s) cos (m(ϕ 2 ϕ 1 )) m=0 Panofsky Wenzel theorem s W (x 2, y 2, x 1, y 1, s) = 2 W (x 2, y 2, x 1, y 1, s) Multipole expansion in Cartesian coordinates W (x 1, y 1, x 2, y 2, s) W (0) (s) r ϕ + (x 2 x 1 + y 2 y 1 ) W (1) (s) r 2 s q 2 q 1 r 1 v = c u z + `(x 2 2 y 2 2 )(x 2 1 y 2 1 ) + 2 x 2 y 2 2 x 1 y 1 W(2) (s) W (x 1, y 1, x 2, y 2, s) (x 1 u x + y 1 u y ) W (1) (s) +(x 2 u x y 2 u y ) 2 (x 2 1 y 2 1 ) W (2) (s) +(y 2 u x + x 2 u y )2 (2 x 1 y 1 ) W (2) (s). Z s W (m) (s) = ds W (m) (s ) R. Wanzenberg Wakefields and Impedances I CAS, Nov Page 21

22 Monopole and Dipole Wake Longitudinal Wakepotential W (x 1, y 1, x 2, y 2, s) W (0) (s) + (x 2 x 1 + y 2 y 1 ) W (1) (s) Transverse Wakepotential W (x 1, y 1, x 2, y 2, s) (x 1 u x + y 1 u y ) W (1) (s) r ϕ s q 2 x 2, y 2 q 1 x 1, y 1 v = c u z Monopole Wakepotential W (0) (s) Longitudinal Dipole Wakepotential W (1) (s) Z s Transverse Dipole Wakepotential W (1) (s) = ds W (1) (s ) There is no transverse monopole wake potential. There is no a priori relation between the wake potentials of different azimuthal order. But for resistive wall impedance (wake) in a pipe with radius b there is a relation: Z (1) (ω) = c 2 ω b 2 Z(0) (ω) R. Wanzenberg Wakefields and Impedances I CAS, Nov Page 22

23 W (r, s) as a harmonic function W (r, s) is a harmonic function of the transverse coordinates: 2 W (r,s) = 0 Line charge density λ(z) Charge density ρ(r, t) = q 1 λ (x, y) λ(z ct) Current density j(r, t) = cu z ρ(r, t) Maxwell Equation + ( E) = ( E) 2 E 2 E 1 2 c 2 2 t E = 1 ρ + 1 «ε 0 c 2 t j ρ and j z = c ρ are functions of z ct 1 2 E 2 «z = c 2 2 t 2 2 E z z 2 W (x, y, s) = 1 q 1 Z t j z = c 2 z ρ dz 2 E z(x, y, z, (s + z)/c) = 0 2 W 1 γ 2 0, for γ R. Wanzenberg Wakefields and Impedances I CAS, Nov Page 23

24 Indirect test beams 2 W (x, y, s) = 0 It is possible to find W (x, y, s) for all possible beam positions (x, y) by a numerical solution of Poissons equation if one knows the wake potential on the boundary. Beam and Test Beams on the boundary. Lines of constant longitudinal wake potential. Gradient of the longitudinal wake potential. An integration provides the transverse wake potential according to Testbeam Beam the Panofsky Wenzel theorem. R. Wanzenberg Wakefields and Impedances I CAS, Nov Page 24

25 PETRA III Application of Wake Field Calculations: The Light Source PETRA III R. Wanzenberg Wakefields and Impedances I CAS, Nov Page 25

26 PETRA III undulator PETRA III undulators: Length: 10 m / 5 m / 2 m Mag. Field: 0.9 T Period: 30 mm Synchrotron radiation from an undulator R. Wanzenberg Wakefields and Impedances I CAS, Nov Page 26

27 Undulator Chamber Wakefields Model of the undulator chamber and the absorber Wakepotential 90 mm x 38 mm y Taper Bellow BPM Undulator L = 115 mm 56 mm x 9 mm 66 mm x 11 mm k = 62.8 V/(pC m) 10 mm 57 mm x 7 mm Longt. Wake / V/pC z Trans. Wake V/(pC mm) L. Wake, on axis L. Wake, off axis Bunch Trans. Wake s / σ z E. Gjonaj, et al. Wake Computations for Undulator Vacuum Chambers of PETRA III, PAC 07 R. Wanzenberg Wakefields and Impedances I CAS, Nov Page 27

28 Prediction versus Measurement wiggler West Vertical frequency shift Betatron oszillations: y = q ǫ y β(s) cos(φ(s)) f / I / khz / ma wiggler North SW W NW N NE E SE S (ORM Data: J. Keil, DESY) W NW Damping Wigglers 10 wigglers (10 x 4 m) 54.0 m Arc 14 FODO cells m 32.4 m N Damping Wigglers 10 wigglers (10 x 4 m) Insertion Devices 8 DBA cells NE 8 FB Cavities Injection E s / m new octant rf section φ(c) = 2π Q y Measurement: phase φ(s) Orbit Responce Matrix (ORM) with diffenrent single bunch intensities 240 x ma = 20 ma 10 x 2 ma = 20 ma f I = 1 2 E/e New Octant: Intensity dependend phase shift khz/ma Prediction khz/ma Measurement ( 20 % larger) n β n k n SW RF Section 12 cavities S SE R. Wanzenberg Wakefields and Impedances I CAS, Nov Page 28

29 Acknowledgment Thank you for your attention! R. Wanzenberg Wakefields and Impedances I CAS, Nov Page 29

Impedance & Instabilities

Impedance & Instabilities Impedance & Instabilities The concept of wakefields and impedance Wakefield effects and their relation to important beam parameters Beam-pipe geometry and materials and their impact on impedance An introduction

More information

Tapered Transitions Dominating the PETRA III Impedance Model.

Tapered Transitions Dominating the PETRA III Impedance Model. Tapered Transitions Dominating the PETRA III Impedance Model. ICFA Mini-Workshop: Electromagnetic Wake Fields and Impedances in Particle Accelerators Rainer Wanzenberg DESY April 26, 2014 Outline > PETRA

More information

Calculation of Wakefields and Higher Order Modes for the New Design of the Vacuum Chamber of the ALICE Experiment for the HL-LHC

Calculation of Wakefields and Higher Order Modes for the New Design of the Vacuum Chamber of the ALICE Experiment for the HL-LHC CERN-ACC-NOTE-2017-0033 23rd May 2017 rainer.wanzenberg@desy.de Calculation of Wakefields and Higher Order Modes for the New Design of the Vacuum Chamber of the ALICE Experiment for the HL-LHC R. Wanzenberg

More information

Wakefields in the LCLS Undulator Transitions. Abstract

Wakefields in the LCLS Undulator Transitions. Abstract SLAC-PUB-11388 LCLS-TN-05-24 August 2005 Wakefields in the LCLS Undulator Transitions Karl L.F. Bane Stanford Linear Accelerator Center SLAC, Stanford, CA 94309, USA Igor A. Zagorodnov Deutsches Electronen-Synchrotron

More information

Emittance Growth and Tune Spectra at PETRA III

Emittance Growth and Tune Spectra at PETRA III Emittance Growth and Tune Spectra at PETRA III Presentation at the ECLOUD 2010 workshop Rainer Wanzenberg ECLOUD 2010 October 8-12, 2010 Statler Hotel, Cornell University Ithaca, New York USA PETRA III

More information

CERN Accelerator School Wakefields. Prof. Dr. Ursula van Rienen, Franziska Reimann University of Rostock

CERN Accelerator School Wakefields. Prof. Dr. Ursula van Rienen, Franziska Reimann University of Rostock CERN Accelerator School Wakefields Prof. Dr. Ursula van Rienen, Franziska Reimann University of Rostock Contents The Term Wakefield and Some First Examples Basic Concept of Wakefields Basic Definitions

More information

Single-Bunch Effects from SPX Deflecting Cavities

Single-Bunch Effects from SPX Deflecting Cavities Single-Bunch Effects from SPX Deflecting Cavities Yong-Chul Chae and Louis Emery Accelerator Operation Group Accelerator System Division Measurements March 13, 2013 Introduction The single bunch current

More information

First Collective Effects Measurements in NSLS-II A. Blednykh Accelerator Physicist, BNL/NSLS-II Sep , 2014

First Collective Effects Measurements in NSLS-II A. Blednykh Accelerator Physicist, BNL/NSLS-II Sep , 2014 First Collective Effects Measurements in NSLS-II A. Blednykh Accelerator Physicist, BNL/NSLS-II Sep. 17-19, 2014 (LOWεRING 2014) 1 BROOKHAVEN SCIENCE ASSOCIATES Outline Phase 1 (25mA / PETRA-III) and Phase

More information

Fast Simulation of FEL Linacs with Collective Effects. M. Dohlus FLS 2018

Fast Simulation of FEL Linacs with Collective Effects. M. Dohlus FLS 2018 Fast Simulation of FEL Linacs with Collective Effects M. Dohlus FLS 2018 A typical X-FEL gun environment photo cathode cavity, solenoid, drift straight cavity, quadrupole, drift dispersive bend, quadrupole,

More information

Index. Accelerator model 8 Adiabatic damping 32, 141 Air-bag model 338 Alternating explicit time scheme 112 Azimuthal modes, see Modes

Index. Accelerator model 8 Adiabatic damping 32, 141 Air-bag model 338 Alternating explicit time scheme 112 Azimuthal modes, see Modes Index Accelerator model 8 Adiabatic damping 32, 141 Air-bag model 338 Alternating explicit time scheme 112 Azimuthal modes, see Modes Beam breakup in linacs dipole mode 136 higher modes 160 quadrupole

More information

Longitudinal Impedance Budget and Simulations for XFEL. Igor Zagorodnov DESY

Longitudinal Impedance Budget and Simulations for XFEL. Igor Zagorodnov DESY Longitudinal Impedance Budget and Simulations for XFEL Igor Zagorodnov 14.3.211 DESY Beam dynamics simulations for the European XFEL Full 3D simulation method (2 CPU, ~1 hours) Gun LH M 1,1 M 1,3 E1 13

More information

Impedance and Collective Effects in Future Light Sources. Karl Bane FLS2010 Workshop 1 March 2010

Impedance and Collective Effects in Future Light Sources. Karl Bane FLS2010 Workshop 1 March 2010 Impedance and Collective Effects in Future Light Sources Karl Bane FLS2010 Workshop 1 March 2010 In future ring-based light sources, the combination of low emittance and high current will mean that collective

More information

Electron Cloud in Wigglers

Electron Cloud in Wigglers Electron Cloud in Wigglers considering DAFNE, ILC, and CLIC Frank Zimmermann, Giulia Bellodi, Elena Benedetto, Hans Braun, Roberto Cimino, Maxim Korostelev, Kazuhito Ohmi, Mauro Pivi, Daniel Schulte, Cristina

More information

CSR calculation by paraxial approximation

CSR calculation by paraxial approximation CSR calculation by paraxial approximation Tomonori Agoh (KEK) Seminar at Stanford Linear Accelerator Center, March 3, 2006 Short Bunch Introduction Colliders for high luminosity ERL for short duration

More information

Instabilities Part III: Transverse wake fields impact on beam dynamics

Instabilities Part III: Transverse wake fields impact on beam dynamics Instabilities Part III: Transverse wake fields impact on beam dynamics Giovanni Rumolo and Kevin Li 08/09/2017 Beam Instabilities III - Giovanni Rumolo and Kevin Li 2 Outline We will close in into the

More information

Impedance Minimization by Nonlinear Tapering

Impedance Minimization by Nonlinear Tapering Impedance Minimization by Nonlinear Tapering Boris Podobedov Brookhaven National Lab Igor Zagorodnov DESY PAC-7, Albuquerque, NM June 7, 7 BROOKHAVEN SCIENCE ASSOCIATES Outline Motivation Review of theoretical

More information

Accelerator Physics. Tip World Scientific NEW JERSEY LONDON SINGAPORE BEIJING SHANGHAI HONG KONG TAIPEI BANGALORE. Second Edition. S. Y.

Accelerator Physics. Tip World Scientific NEW JERSEY LONDON SINGAPORE BEIJING SHANGHAI HONG KONG TAIPEI BANGALORE. Second Edition. S. Y. Accelerator Physics Second Edition S. Y. Lee Department of Physics, Indiana University Tip World Scientific NEW JERSEY LONDON SINGAPORE BEIJING SHANGHAI HONG KONG TAIPEI BANGALORE Contents Preface Preface

More information

Lattice Design and Performance for PEP-X Light Source

Lattice Design and Performance for PEP-X Light Source Lattice Design and Performance for PEP-X Light Source Yuri Nosochkov SLAC National Accelerator Laboratory With contributions by M-H. Wang, Y. Cai, X. Huang, K. Bane 48th ICFA Advanced Beam Dynamics Workshop

More information

Accelerator Physics Homework #3 P470 (Problems: 1-5)

Accelerator Physics Homework #3 P470 (Problems: 1-5) Accelerator Physics Homework #3 P470 (Problems: -5). Particle motion in the presence of magnetic field errors is (Sect. II.2) y + K(s)y = B Bρ, where y stands for either x or z. Here B = B z for x motion,

More information

Wakefield Effects of Collimators in LCLS-II

Wakefield Effects of Collimators in LCLS-II Wakefield Effects of Collimators in LCLS-II LCLS-II TN-15-38 10/7/2015 K. Bane SLAC, Menlo Park, CA 94025, USA October 7, 2015 LCLSII-TN-15-38 L C L S - I I T E C H N I C A L N O T E LCLS-TN-15-38 October

More information

Physics 598ACC Accelerators: Theory and Applications

Physics 598ACC Accelerators: Theory and Applications Physics 598ACC Accelerators: Theory and Instructors: Fred Mills, Deborah Errede Lecture 6: Collective Effects 1 Summary A. Transverse space charge defocusing effects B. Longitudinal space charge effects

More information

3. Synchrotrons. Synchrotron Basics

3. Synchrotrons. Synchrotron Basics 1 3. Synchrotrons Synchrotron Basics What you will learn about 2 Overview of a Synchrotron Source Losing & Replenishing Electrons Storage Ring and Magnetic Lattice Synchrotron Radiation Flux, Brilliance

More information

Evaluation of In-Vacuum Wiggler Wakefield Impedances for SOLEIL and MAX IV

Evaluation of In-Vacuum Wiggler Wakefield Impedances for SOLEIL and MAX IV 26/11/2014 European Synchrotron Light Source Workshop XXII 1 Evaluation of In-Vacuum Wiggler Wakefield Impedances for SOLEIL and MAX IV F. Cullinan, R. Nagaoka (SOLEIL, St. Aubin, France) D. Olsson, G.

More information

Beam Physics at SLAC. Yunhai Cai Beam Physics Department Head. July 8, 2008 SLAC Annual Program Review Page 1

Beam Physics at SLAC. Yunhai Cai Beam Physics Department Head. July 8, 2008 SLAC Annual Program Review Page 1 Beam Physics at SLAC Yunhai Cai Beam Physics Department Head July 8, 2008 SLAC Annual Program Review Page 1 Members in the ABP Department * Head: Yunhai Cai * Staff: Gennady Stupakov Karl Bane Zhirong

More information

EFFECTS OF LONGITUDINAL AND TRANSVERSE RESISTIVE-WALL WAKEFIELDS ON ERLS

EFFECTS OF LONGITUDINAL AND TRANSVERSE RESISTIVE-WALL WAKEFIELDS ON ERLS Proceedings of ERL9, Ithaca, New York, USA JS5 EFFECTS OF LONGITUDINAL AND TRANSVERSE RESISTIVE-WALL WAKEFIELDS ON ERLS N. Nakamura # Institute for Solid State Physics(ISSP), University of Tokyo 5--5 Kashiwanoha,

More information

CERN Accelerator School. Intermediate Accelerator Physics Course Chios, Greece, September Low Emittance Rings

CERN Accelerator School. Intermediate Accelerator Physics Course Chios, Greece, September Low Emittance Rings CERN Accelerator School Intermediate Accelerator Physics Course Chios, Greece, September 2011 Low Emittance Rings Part 1: Beam Dynamics with Synchrotron Radiation Andy Wolski The Cockcroft Institute, and

More information

ThomX Machine Advisory Committee. (LAL Orsay, March ) Ring Beam Dynamics

ThomX Machine Advisory Committee. (LAL Orsay, March ) Ring Beam Dynamics ThomX Machine Advisory Committee (LAL Orsay, March 20-21 2017) Ring Beam Dynamics A. Loulergue, M. Biagini, C. Bruni, I. Chaikovska I. Debrot, N. Delerue, A. Gamelin, H. Guler, J. Zang Programme Investissements

More information

Lattice Design for the Taiwan Photon Source (TPS) at NSRRC

Lattice Design for the Taiwan Photon Source (TPS) at NSRRC Lattice Design for the Taiwan Photon Source (TPS) at NSRRC Chin-Cheng Kuo On behalf of the TPS Lattice Design Team Ambient Ground Motion and Civil Engineering for Low Emittance Electron Storage Ring Workshop

More information

Commissioning of PETRA III. Klaus Balewski on behalf of the PETRA III Team IPAC 2010, 25 May, 2010

Commissioning of PETRA III. Klaus Balewski on behalf of the PETRA III Team IPAC 2010, 25 May, 2010 Commissioning of PETRA III Klaus Balewski on behalf of the PETRA III Team IPAC 2010, 25 May, 2010 PETRA III Parameters Circumference (m) Energy (GeV) ε x (nm rad) ε y (pm rad) Current (ma) # bunches Straight

More information

Longitudinal Dynamics

Longitudinal Dynamics Longitudinal Dynamics F = e (E + v x B) CAS Bruges 16-25 June 2009 Beam Dynamics D. Brandt 1 Acceleration The accelerator has to provide kinetic energy to the charged particles, i.e. increase the momentum

More information

Low Emittance Machines

Low Emittance Machines Advanced Accelerator Physics Course RHUL, Egham, UK September 2017 Low Emittance Machines Part 1: Beam Dynamics with Synchrotron Radiation Andy Wolski The Cockcroft Institute, and the University of Liverpool,

More information

The TESLA Dogbone Damping Ring

The TESLA Dogbone Damping Ring The TESLA Dogbone Damping Ring Winfried Decking for the TESLA Collaboration April 6 th 2004 Outline The Dogbone Issues: Kicker Design Dynamic Aperture Emittance Dilution due to Stray-Fields Collective

More information

INSTABILITIES IN LINACS. Massimo Ferrario INFN-LNF

INSTABILITIES IN LINACS. Massimo Ferrario INFN-LNF INSTABILITIES IN LINACS Massimo Ferrario INFN-LNF Trondheim, 4 August, 13 SELF FIELDS AND WAKE FIELDS Direct self fields Image self fields Space Charge Wake fields γ = 1 1 β E = q 4πε o ( 1 β ) ( 1 β sin

More information

INSTABILITIES IN LINACS

INSTABILITIES IN LINACS INSTABILITIES IN LINACS Massimo Ferrario INFN-LNF Trieste, 2-142 October 2005 Introduction to Wake Fields Instability in Linacs:Beam Break Up Circular Perfectly Conducting Pipe - Beam at Center- Static

More information

Large Scale Parallel Wake Field Computations with PBCI

Large Scale Parallel Wake Field Computations with PBCI Large Scale Parallel Wake Field Computations with PBCI E. Gjonaj, X. Dong, R. Hampel, M. Kärkkäinen, T. Lau, W.F.O. Müller and T. Weiland ICAP `06 Chamonix, 2-6 October 2006 Technische Universität Darmstadt,

More information

Linear Collider Collaboration Tech Notes

Linear Collider Collaboration Tech Notes LCC 0035 07/01/00 Linear Collider Collaboration Tech Notes More Options for the NLC Bunch Compressors January 7, 2000 Paul Emma Stanford Linear Accelerator Center Stanford, CA Abstract: The present bunch

More information

Modeling of Space Charge Effects and Coherent Synchrotron Radiation in Bunch Compression Systems. Martin Dohlus DESY, Hamburg

Modeling of Space Charge Effects and Coherent Synchrotron Radiation in Bunch Compression Systems. Martin Dohlus DESY, Hamburg Modeling of Space Charge Effects and Coherent Synchrotron Radiation in Bunch Compression Systems Martin Dohlus DESY, Hamburg SC and CSR effects are crucial for design & simulation of BC systems CSR and

More information

arxiv: v1 [physics.acc-ph] 8 Nov 2017

arxiv: v1 [physics.acc-ph] 8 Nov 2017 THE IMPEDANCE OF FLAT METALLIC PLATES WITH SMALL CORRUGATIONS K. Bane, SLAC National Accelerator Laboratory, Menlo Park, CA, USA arxiv:1711.321v1 [physics.acc-ph] 8 Nov 217 INTRODUCTION The RadiaBeam/SLAC

More information

Beam Dynamics and SASE Simulations for XFEL. Igor Zagorodnov DESY

Beam Dynamics and SASE Simulations for XFEL. Igor Zagorodnov DESY Beam Dynamics and SASE Simulations for XFEL Igor Zagorodnov 4.. DESY Beam dynamics simulations for the European XFEL Full 3D simulation method ( CPU, ~ hours) Gun LH M, M,3 E = 3 MeV E = 7 MeV E 3 = 4

More information

Emittance Dilution In Electron/Positron Damping Rings

Emittance Dilution In Electron/Positron Damping Rings Emittance Dilution In Electron/Positron Damping Rings David Rubin (for Jeremy Perrin, Mike Ehrlichman, Sumner Hearth, Stephen Poprocki, Jim Crittenden, and Suntao Wang) Outline CESR Test Accelerator Single

More information

6 Bunch Compressor and Transfer to Main Linac

6 Bunch Compressor and Transfer to Main Linac II-159 6 Bunch Compressor and Transfer to Main Linac 6.1 Introduction The equilibrium bunch length in the damping ring (DR) is 6 mm, too long by an order of magnitude for optimum collider performance (σ

More information

Accelerator Physics. Accelerator Development

Accelerator Physics. Accelerator Development Accelerator Physics The Taiwan Light Source (TLS) is the first large accelerator project in Taiwan. The goal was to build a high performance accelerator which provides a powerful and versatile light source

More information

Physics 610. Adv Particle Physics. April 7, 2014

Physics 610. Adv Particle Physics. April 7, 2014 Physics 610 Adv Particle Physics April 7, 2014 Accelerators History Two Principles Electrostatic Cockcroft-Walton Van de Graaff and tandem Van de Graaff Transformers Cyclotron Betatron Linear Induction

More information

CSR Benchmark Test-Case Results

CSR Benchmark Test-Case Results CSR Benchmark Test-Case Results Paul Emma SLAC January 4, 2 BERLIN CSR Workshop Chicane CSR Test-Case Chicane parameters symbol value unit Bend magnet length (not curved length) L B.5 m Drift length (projected;

More information

Low Emittance Machines

Low Emittance Machines CERN Accelerator School Advanced Accelerator Physics Course Trondheim, Norway, August 2013 Low Emittance Machines Part 1: Beam Dynamics with Synchrotron Radiation Andy Wolski The Cockcroft Institute, and

More information

Longitudinal Top-up Injection for Small Aperture Storage Rings

Longitudinal Top-up Injection for Small Aperture Storage Rings Longitudinal Top-up Injection for Small Aperture Storage Rings M. Aiba, M. Böge, Á. Saá Hernández, F. Marcellini and A. Streun Paul Scherrer Institut Introduction Lower and lower horizontal emittances

More information

Preliminary design study of JUICE. Joint Universities International Circular Electronsynchrotron

Preliminary design study of JUICE. Joint Universities International Circular Electronsynchrotron Preliminary design study of JUICE Joint Universities International Circular Electronsynchrotron Goal Make a 3th generation Synchrotron Radiation Lightsource at 3 GeV Goal Make a 3th generation Synchrotron

More information

Introduction to Accelerators

Introduction to Accelerators Introduction to Accelerators D. Brandt, CERN CAS Platja d Aro 2006 Introduction to Accelerators D. Brandt 1 Why an Introduction? The time where each accelerator sector was working alone in its corner is

More information

BEAM INSTABILITIES IN LINEAR MACHINES 2

BEAM INSTABILITIES IN LINEAR MACHINES 2 BEAM INSTABILITIES IN LINEAR MACHINES 2 Massimo.Ferrario@LNF.INFN.IT CERN 5 November 215 ( ) σ " + k 2 s σ = k sc s,γ σ Equilibrium solution: ( ) = k sc( s,γ ) σ eq s,γ k s Single Component Relativistic

More information

First propositions of a lattice for the future upgrade of SOLEIL. A. Nadji On behalf of the Accelerators and Engineering Division

First propositions of a lattice for the future upgrade of SOLEIL. A. Nadji On behalf of the Accelerators and Engineering Division First propositions of a lattice for the future upgrade of SOLEIL A. Nadji On behalf of the Accelerators and Engineering Division 1 SOLEIL : A 3 rd generation synchrotron light source 29 beamlines operational

More information

Terahertz Coherent Synchrotron Radiation at DAΦNE

Terahertz Coherent Synchrotron Radiation at DAΦNE K K DAΦNE TECHNICAL NOTE INFN - LNF, Accelerator Division Frascati, July 28, 2004 Note: G-61 Terahertz Coherent Synchrotron Radiation at DAΦNE C. Biscari 1, J. M. Byrd 2, M. Castellano 1, M. Cestelli Guidi

More information

Transverse dynamics Selected topics. Erik Adli, University of Oslo, August 2016, v2.21

Transverse dynamics Selected topics. Erik Adli, University of Oslo, August 2016, v2.21 Transverse dynamics Selected topics Erik Adli, University of Oslo, August 2016, Erik.Adli@fys.uio.no, v2.21 Dispersion So far, we have studied particles with reference momentum p = p 0. A dipole field

More information

SLS at the Paul Scherrer Institute (PSI), Villigen, Switzerland

SLS at the Paul Scherrer Institute (PSI), Villigen, Switzerland SLS at the Paul Scherrer Institute (PSI), Villigen, Switzerland Michael Böge 1 SLS Team at PSI Michael Böge 2 Layout of the SLS Linac, Transferlines Booster Storage Ring (SR) Beamlines and Insertion Devices

More information

Evaluating the Emittance Increase Due to the RF Coupler Fields

Evaluating the Emittance Increase Due to the RF Coupler Fields Evaluating the Emittance Increase Due to the RF Coupler Fields David H. Dowell May 2014 Revised June 2014 Final Revision November 11, 2014 Abstract This technical note proposes a method for evaluating

More information

ILC Crab Cavity Wakefield Analysis

ILC Crab Cavity Wakefield Analysis ILC Crab Cavity Wakefield Analysis Yesterday, Peter McIntosh discussed the overall requirements for the ILC crab cavities, the system-level design, and the team that is working on it. Here, I will discuss

More information

Wakefield computations for the LCLS Injector (Part I) *

Wakefield computations for the LCLS Injector (Part I) * LCLS-TN-05-17 Wakefield computations for the LCLS Injector (Part I) * June 13 th 005 (reedited May 007) C.Limborg-Deprey, K.Bane Abstract In this document, we report on basic wakefield computations used

More information

Computer Algorithm for Longitudinal Single Bunch Stability Study in a Storage Ring * Abstract

Computer Algorithm for Longitudinal Single Bunch Stability Study in a Storage Ring * Abstract SLAC PUB 1151 May 5 Computer Algorithm for Longitudinal Single Bunch Stability Study in a Storage Ring * Sasha Novokhatski Stanford Linear Accelerator Center, Stanford University, Stanford, California

More information

Investigation of Coherent Emission from the NSLS VUV Ring

Investigation of Coherent Emission from the NSLS VUV Ring SPIE Accelerator Based Infrared Sources and Spectroscopic Applications Proc. 3775, 88 94 (1999) Investigation of Coherent Emission from the NSLS VUV Ring G.L. Carr, R.P.S.M. Lobo, J.D. LaVeigne, D.H. Reitze,

More information

Synchrotron Motion with Space-Charge

Synchrotron Motion with Space-Charge Synchrotron Motion with Space-Charge Basic Principles without space-charge RF resonant cavity providing accelerating voltage V (t). Often V = V 0 sin(φ s + ω rf t), where ω rf is the angular frequency

More information

Lattices for Light Sources

Lattices for Light Sources Andreas Streun Swiss Light Source SLS, Paul Scherrer Institute, Villigen, Switzerland Contents: Global requirements: size, brightness, stability Lattice building blocks: magnets and other devices Emittance:

More information

Beam Dynamics. D. Brandt, CERN. CAS Bruges June 2009 Beam Dynamics D. Brandt 1

Beam Dynamics. D. Brandt, CERN. CAS Bruges June 2009 Beam Dynamics D. Brandt 1 Beam Dynamics D. Brandt, CERN D. Brandt 1 Some generalities D. Brandt 2 Units: the electronvolt (ev) The electronvolt (ev)) is the energy gained by an electron travelling, in vacuum, between two points

More information

Review of proposals of ERL injector cryomodules. S. Belomestnykh

Review of proposals of ERL injector cryomodules. S. Belomestnykh Review of proposals of ERL injector cryomodules S. Belomestnykh ERL 2005 JLab, March 22, 2005 Introduction In this presentation we will review injector cryomodule designs either already existing or under

More information

Beam Breakup, Feynman and Complex Zeros

Beam Breakup, Feynman and Complex Zeros Beam Breakup, Feynman and Complex Zeros Ivan Bazarov brown bag seminar, 16 Jan 04 Ivan Bazarov, BBU, feynman and complex zeros, Brown Bag seminar, 16 January 2004 1 Outline BBU: code-writing and simulation

More information

Suppression of Radiation Excitation in Focusing Environment * Abstract

Suppression of Radiation Excitation in Focusing Environment * Abstract SLAC PUB 7369 December 996 Suppression of Radiation Excitation in Focusing Environment * Zhirong Huang and Ronald D. Ruth Stanford Linear Accelerator Center Stanford University Stanford, CA 94309 Abstract

More information

Beam instabilities (I)

Beam instabilities (I) Beam instabilities (I) Giovanni Rumolo in CERN Accelerator School, Advanced Level, Trondheim Wednesday 21.08.2013 Big thanks to H. Bartosik, G. Iadarola, K. Li, N. Mounet, B. Salvant, R. Tomás, C. Zannini

More information

D. Brandt, CERN. CAS Frascati 2008 Accelerators for Newcomers D. Brandt 1

D. Brandt, CERN. CAS Frascati 2008 Accelerators for Newcomers D. Brandt 1 Accelerators for Newcomers D. Brandt, CERN D. Brandt 1 Why this Introduction? During this school, you will learn about beam dynamics in a rigorous way but some of you are completely new to the field of

More information

Lab Report TEMF - TU Darmstadt

Lab Report TEMF - TU Darmstadt Institut für Theorie Elektromagnetischer Felder Lab Report TEMF - TU Darmstadt W. Ackermann, R. Hampel, M. Kunze T. Lau, W.F.O. Müller, S. Setzer, T. Weiland, I. Zagorodnov TESLA Collaboration Meeting

More information

Wake Fields in Particle Accelerators with Finite Thickness and Conductivity

Wake Fields in Particle Accelerators with Finite Thickness and Conductivity FACOLTÀ DI INGEGNERIA Corso di Laurea in Ingegneria delle Telecomunicazioni Tesi di Laurea Wake Fields in Particle Accelerators with Finite Thickness and Conductivity Relatore: Prof. Stefania Petracca

More information

LOLA: Past, present and future operation

LOLA: Past, present and future operation LOLA: Past, present and future operation FLASH Seminar 1/2/29 Christopher Gerth, DESY 8/5/29 FLASH Seminar Christopher Gerth 1 Outline Past Present Future 8/5/29 FLASH Seminar Christopher Gerth 2 Past

More information

CEPC and FCCee parameters from the viewpoint of the beam-beam and electron cloud effects. K. Ohmi (KEK) IAS-HEP, HKUST, Hong Kong Jan.

CEPC and FCCee parameters from the viewpoint of the beam-beam and electron cloud effects. K. Ohmi (KEK) IAS-HEP, HKUST, Hong Kong Jan. CEPC and FCCee parameters from the viewpoint of the beam-beam and electron cloud effects K. Ohmi (KEK) IAS-HEP, HKUST, Hong Kong Jan. 22-25, 2018 CEPC Parameters Y. Zhang, CEPC conference Nov. 2017, IHEP

More information

III. CesrTA Configuration and Optics for Ultra-Low Emittance David Rice Cornell Laboratory for Accelerator-Based Sciences and Education

III. CesrTA Configuration and Optics for Ultra-Low Emittance David Rice Cornell Laboratory for Accelerator-Based Sciences and Education III. CesrTA Configuration and Optics for Ultra-Low Emittance David Rice Cornell Laboratory for Accelerator-Based Sciences and Education Introduction Outline CESR Overview CESR Layout Injector Wigglers

More information

Electron Cloud Studies for KEKB and ATF KEK, May 17 May 30, 2003

Electron Cloud Studies for KEKB and ATF KEK, May 17 May 30, 2003 Electron Cloud Studies for KEKB and ATF KEK, May 17 May 3, 23 F. Zimmermann April 12, 23 Abstract I describe a few recent electron-cloud simulations for KEKB and the ATF. For KEKB the dependence of the

More information

Physics 663. Particle Physics Phenomenology. April 9, Physics 663, lecture 2 1

Physics 663. Particle Physics Phenomenology. April 9, Physics 663, lecture 2 1 Physics 663 Particle Physics Phenomenology April 9, 2002 Physics 663, lecture 2 1 History Two Principles Electrostatic Cockcroft-Walton Accelerators Van de Graaff and tandem Van de Graaff Transformers

More information

Electron cloud effects in KEKB and ILC

Electron cloud effects in KEKB and ILC Electron cloud effects in KEKB and ILC K. OhmiKEK Joint DESY and University of Hamburg Accelerator Physics Seminar 21, August, 2007, DESY Thanks for the hospitality and GuoXing, Rainer and Eckhard. Contents

More information

ILC Beam Dynamics Studies Using PLACET

ILC Beam Dynamics Studies Using PLACET ILC Beam Dynamics Studies Using PLACET Andrea Latina (CERN) July 11, 2007 John Adams Institute for Accelerator Science - Oxford (UK) Introduction Simulations Results Conclusions and Outlook PLACET Physical

More information

Start-to-end beam optics development and multi-particle tracking for the ILC undulator-based positron source*

Start-to-end beam optics development and multi-particle tracking for the ILC undulator-based positron source* SLAC-PUB-12239 January 27 (A) Start-to-end beam optics development and multi-particle tracking for the ILC undulator-based positron source* F. Zhou, Y. Batygin, Y. Nosochkov, J. C. Sheppard, and M. D.

More information

Beam Dynamics in Synchrotrons with Space- Charge

Beam Dynamics in Synchrotrons with Space- Charge Beam Dynamics in Synchrotrons with Space- Charge 1 Basic Principles without space-charge RF resonant cavity providing accelerating voltage V (t). Often V = V 0 sin(φ s + ω rf t), where ω rf is the angular

More information

Modeling CESR-c. D. Rubin. July 22, 2005 Modeling 1

Modeling CESR-c. D. Rubin. July 22, 2005 Modeling 1 Modeling CESR-c D. Rubin July 22, 2005 Modeling 1 Weak strong beambeam simulation Motivation Identify component or effect that is degrading beambeam tuneshift Establish dependencies on details of lattice

More information

Accelerator. Physics of PEP-I1. Lecture #7. March 13,1998. Dr. John Seeman

Accelerator. Physics of PEP-I1. Lecture #7. March 13,1998. Dr. John Seeman Accelerator Physics of PEP-1 Lecture #7 March 13,1998 Dr. John Seeman Accelerator Physics of PEPJ John Seeman March 13,1998 1) What is PEP-? Lecture 1 2) 3) Beam parameters for an luminosity of 3~1~~/cm~/sec

More information

Ultra-Short Low Charge Operation at FLASH and the European XFEL

Ultra-Short Low Charge Operation at FLASH and the European XFEL Ultra-Short Low Charge Operation at FLASH and the uropean XFL Igor Zagorodnov DSY, Hamburg, Germany 5.8. The 3nd FL Conference, Malmö Outline FLASH layout and desired beam parameters Technical constraints

More information

PBL (Problem-Based Learning) scenario for Accelerator Physics Mats Lindroos and E. Métral (CERN, Switzerland) Lund University, Sweden, March 19-23,

PBL (Problem-Based Learning) scenario for Accelerator Physics Mats Lindroos and E. Métral (CERN, Switzerland) Lund University, Sweden, March 19-23, PBL (Problem-Based Learning) scenario for Accelerator Physics Mats Lindroos and E. Métral (CERN, Switzerland) Lund University, Sweden, March 19-23, 2007 As each working day, since the beginning of the

More information

Frequency and time domain analysis of trapped modes in the CERN Proton Synchrotron

Frequency and time domain analysis of trapped modes in the CERN Proton Synchrotron Frequency and time domain analysis of trapped modes in the CERN Proton Synchrotron Serena Persichelli CERN Impedance and collective effects BE-ABP-ICE Abstract The term trapped mode refers to a resonance

More information

ILC Damping Ring Alternative Lattice Design (Modified FODO)

ILC Damping Ring Alternative Lattice Design (Modified FODO) ILC Damping Ring Alternative Lattice Design (Modified FODO) Yi-Peng Sun 1,2, Jie Gao 1, Zhi-Yu Guo 2 Wei-Shi Wan 3 1 Institute of High Energy Physics, CAS, China 2 State Key Laboratory of Nuclear Physics

More information

Calculation of wakefields for plasma-wakefield accelerators

Calculation of wakefields for plasma-wakefield accelerators 1 Calculation of wakefields for plasma-wakefield accelerators G. Stupakov, SLAC ICFA mini-workshop on Impedances and Beam Instabilities in Particle Accelerators 18-22 September 2017 2 Introduction to PWFA

More information

Compressor Ring. Contents Where do we go? Beam physics limitations Possible Compressor ring choices Conclusions. Valeri Lebedev.

Compressor Ring. Contents Where do we go? Beam physics limitations Possible Compressor ring choices Conclusions. Valeri Lebedev. Compressor Ring Valeri Lebedev Fermilab Contents Where do we go? Beam physics limitations Possible Compressor ring choices Conclusions Muon Collider Workshop Newport News, VA Dec. 8-1, 8 Where do we go?

More information

Effect of Insertion Devices. Effect of IDs on beam dynamics

Effect of Insertion Devices. Effect of IDs on beam dynamics Effect of Insertion Devices The IDs are normally made of dipole magnets ith alternating dipole fields so that the orbit outside the device is un-altered. A simple planer undulator ith vertical sinusoidal

More information

High performance computing simulations. for multi-particle effects in the synchrotons

High performance computing simulations. for multi-particle effects in the synchrotons High performance computing simulations for multi-particle effects in the synchrotons Content What is the HSC section doing? Physics basics PyHEADTAIL software Simulations of the PS Simulations of instabilities

More information

ELECTRON DYNAMICS WITH SYNCHROTRON RADIATION

ELECTRON DYNAMICS WITH SYNCHROTRON RADIATION ELECTRON DYNAMICS WITH SYNCHROTRON RADIATION Lenny Rivkin Ecole Polythechnique Federale de Lausanne (EPFL) and Paul Scherrer Institute (PSI), Switzerland CERN Accelerator School: Introduction to Accelerator

More information

Proposal to convert TLS Booster for hadron accelerator

Proposal to convert TLS Booster for hadron accelerator Proposal to convert TLS Booster for hadron accelerator S.Y. Lee -- Department of Physics IU, Bloomington, IN -- NSRRC Basic design TLS is made of a 50 MeV electron linac, a booster from 50 MeV to 1.5 GeV,

More information

Emittance preservation in TESLA

Emittance preservation in TESLA Emittance preservation in TESLA R.Brinkmann Deutsches Elektronen-Synchrotron DESY,Hamburg, Germany V.Tsakanov Yerevan Physics Institute/CANDLE, Yerevan, Armenia The main approaches to the emittance preservation

More information

Using Surface Impedance for Calculating Wakefields in Flat Geometry

Using Surface Impedance for Calculating Wakefields in Flat Geometry Using Surface Impedance for Calculating Wakefields in Flat Geometry 1/20/2015 K. Bane and G. Stupakov January 20, 2015 LCLSII-TN-13-01 L C L S - I I T E C H N I C A L N O T E January 20, 2015 LCLSII-TN-XXXX

More information

arxiv: v1 [physics.acc-ph] 12 Sep 2016

arxiv: v1 [physics.acc-ph] 12 Sep 2016 Single beam collective effects in FCC-ee due to beam coupling impedance E. Belli, 1 M. Migliorati,, a) S. Persichelli, 3 and M. Zobov 4 1) University of Rome La Sapienza, INFN Sez. Roma1 - Roma - Italy,

More information

Fundamental Concepts of Particle Accelerators III : High-Energy Beam Dynamics (2) Koji TAKATA KEK. Accelerator Course, Sokendai. Second Term, JFY2012

Fundamental Concepts of Particle Accelerators III : High-Energy Beam Dynamics (2) Koji TAKATA KEK. Accelerator Course, Sokendai. Second Term, JFY2012 .... Fundamental Concepts of Particle Accelerators III : High-Energy Beam Dynamics (2) Koji TAKATA KEK koji.takata@kek.jp http://research.kek.jp/people/takata/home.html Accelerator Course, Sokendai Second

More information

FEMTO - Preliminary studies of effects of background electron pulses. Paul Scherrer Institut CH-5232 Villigen PSI Switzerland

FEMTO - Preliminary studies of effects of background electron pulses. Paul Scherrer Institut CH-5232 Villigen PSI Switzerland PAUL SCHERRER INSTITUT SLS-TME-TA-00-080 October, 00 FEMTO - Preliminary studies of effects of background electron pulses Gurnam Singh Andreas Streun Paul Scherrer Institut CH-53 Villigen PSI Switzerland

More information

Future Light Sources March 5-9, 2012 Low- alpha mode at SOLEIL 1

Future Light Sources March 5-9, 2012 Low- alpha mode at SOLEIL 1 Introduction: bunch length measurements Reminder of optics Non- linear dynamics Low- alpha operation On the user side: THz and X- ray short bunch science CSR measurement and modeling Future Light Sources

More information

Transverse-Longitudinal Emittance Transfer in Circular Accelerators Revised

Transverse-Longitudinal Emittance Transfer in Circular Accelerators Revised EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH CERN A&B DIVISION CERN-AB-Note-28-27 OP Transverse-Longitudinal Emittance Transfer in Circular Accelerators Revised L. Bojtar Abstract We revise a previous version

More information

A Bunch Compressor for the CLIC Main Beam

A Bunch Compressor for the CLIC Main Beam A Bunch Compressor for the CLIC Main Beam F.Stulle, A. Adelmann, M. Pedrozzi March 14, 2007 Abstract The last bunch compressor chicane in front of the main linac of the multi TeV linear collider CLIC is

More information

S1: Particle Equations of Motion S1A: Introduction: The Lorentz Force Equation

S1: Particle Equations of Motion S1A: Introduction: The Lorentz Force Equation S1: Particle Equations of Motion S1A: Introduction: The Lorentz Force Equation The Lorentz force equation of a charged particle is given by (MKS Units):... particle mass, charge... particle coordinate...

More information

Phase Space Study of the Synchrotron Oscillation and Radiation Damping of the Longitudinal and Transverse Oscillations

Phase Space Study of the Synchrotron Oscillation and Radiation Damping of the Longitudinal and Transverse Oscillations ScienceAsia 28 (2002 : 393-400 Phase Space Study of the Synchrotron Oscillation and Radiation Damping of the Longitudinal and Transverse Oscillations Balabhadrapatruni Harita*, Masumi Sugawara, Takehiko

More information

Lab Report TEMF, TU Darmstadt

Lab Report TEMF, TU Darmstadt Fachgebiet Theorie Elektromagnetischer Felder Lab Report Wolfgang F.O. Müller Thomas Weiland TESLA Collaboration Meeting Daresbury, 09/23/02 Technische Universität Darmstadt, Fachbereich Elektrotechnik

More information