Effect of Insertion Devices. Effect of IDs on beam dynamics

Size: px
Start display at page:

Download "Effect of Insertion Devices. Effect of IDs on beam dynamics"

Transcription

1 Effect of Insertion Devices The IDs are normally made of dipole magnets ith alternating dipole fields so that the orbit outside the device is un-altered. A simple planer undulator ith vertical sinusoidal fields, that satisfies Maxell s equation, is The nonlinear magnetic field can be neglected if the vertical betatron motion is small ith k z 1. The horizontal closed orbit becomes cos here k = π/λ is the iggler ave number, λ is the iggler period, and B is the magnetic field at mid-plane. The corresponding horizontal and longitudinal magnetic fields, and the vector potential are B x = 0, B s = B sinh k zsin k s, and The Hamiltonian of particle motion is sin ks z z 0 z 1 4 sin ks z ds sin k z s z sin ks z ds z Effect of IDs on beam dynamics A. Effects of insertion devices on the beam emittances are the energy losses in the storage ring dipoles and in an undulator or iggler in one revolution respectively. Here ρ 0 and ρ are the bending radii of storage ring dipoles and iggler magnets, L is the length of the undulator or iggler, and E is the beam energy. The emittance ill decrease slightly hen the undulators field is B (3πf h /8) B 0, and the natural emittance ill increase for strong field igglers

2 B. Effects of IDs on momentum spread C. Effect of the ID induced dispersion functions and its effect on emittance We consider a simple ideal vertical field iggler (Fig. 4.0), here ρ = p/eb is the bending radius, θ = Θ = L /ρ is the bending angle of each dipole, and L is the length of each iggler dipole. Since the rectangular magnet iggler is an achromat (see Exercise.4.0), the iggler, located in a zero dispersion straight section, ill not affect the dispersion function outside the iggler. If B 3πB 0 /8 for the planer undulator, the beam momentum spread ill decrease. On the other hand, the high field IDs can increase momentum spread, particularly important for the lo main dipole field design. The dispersion functions in the insertion region induced by a sinusoidal vertical iggler field D. Effect of IDs on the betatron tunes The IDs ith rectangular magnets is achromatic, and the edge defocusing in the rectangular vertical field magnets cancels the dipole focusing gradient of 1/ρ. Thus there is no net focusing in the horizontal plane. The focal length of the vertical betatron motion and the tune shift resulting from the rectangular iggler dipole are respectively here L,total = 4N L is the total length of the undulator, and <βz> is the average betatron amplitude function in the iggler region. The vertical sinusoidal field undulator generates average vertical focusing strength and vertical betatron tune shift: For a given U /U 0 =(ρ 0 /ρ )N θ ith a constant N θ, the factor F ε is smaller for a smaller θ. Hoever, igglers ith very large K values may increase the beam emittance. The momentum spread of the beam ill increase or decrease depending on hether the magnetic field B of the planer iggler is larger or smaller than (3π/8)B 0 of the main dipole field.

3 Given an undulator length L, the optimal β* is about L/. at the center of the undulator ith a large tolerance. The basic lattice has been designed to provide optimal performance of each specific undulators. 1/ 1/ Nonlinear beam dynamics The vertical chamber size in Insertion devices (IDs) is ±5 mm! Detailed studies on nonlinear beam dynamics has been carried out and good dynamic aperture has been found! [H.P. Chang, P.J. Chou, C.C. Kuo, G.H. Luo, H.J. Tsai, and M.H. Wang, EPAC06, 3430.] / 16 nd Workshop on Nonlinear Beam Dynamics in Storage Rings, November, 009 C.C. Kuo: TPS DA in the presence of Undulators H.P. Chang: nonlinear field representation in undulator. The TPS design handbook (009) Nonlinear beam dynamics associated ith igglers The nonlinear magnetic field can be neglected if the vertical betatron motion is small ith k z 1 or z λ u /π. This is clearly ok for most 3 rd GLS! The field profile depends on the poleidth of the undulator. Name λ(mm) U80 80 EPU EPU70 70 SW48 48 EPU46 46 IU SU15 15 CU18 18 Nonlinear dynamics in a SPEAR iggler J. Safranek, et al., PRSTAB 5, (00) BL11, the most recently installed iggler in the SPEAR storage ring at the Stanford Synchrotron Radiation Laboratory, produces a large nonlinear perturbation of the electron beam dynamics, hich as not directly evident in the integrated magnetic field measurements. Measurements of tune shifts ith betatron oscillation amplitude and closed orbit shifts ere used to characterize the nonlinear fields. Because of the narro pole idth in BL11, the nonlinear fields seen along the iggling electron trajectory are dramatically different from the magnetic measurements made along a straight line ith a stretched ire. This difference explains the tune shift measurements and the observed degradation in dynamic aperture. Because of the relatively large dispersion (1. m) at BL11, the nonlinearities particularly reduced the off-energy dynamic aperture. Because of the nature of these nonlinear fields, it is impossible, even theoretically, to cancel them completely ith short multipolecorrectors. Magic finger corrector magnets ere built, hoever, that partially correct the nonlinear perturbation, greatly improving the storage ring performance. dynamic field integral correction

4 BL11 has 50 mm pole idth results in the fields rolling off quickly at ±5 mm. It has significant 3 rd and 5 th harmonics. The TOSCA model of BL11 By(x) is shon at right. If a particle is launched at the entrance to the iggler ith (x, x )=(xi,0), it ill follo a iggling trajectory of The integrated field seen along the iggling trajectory is here L is the iggler length. Generally, xp is small (for BL11, the iggler period, π/k is 17.5 cm and the peak field is T, so x p is 155 μm), but ith narro iggler poles db y /dx can be large, generating a strong perturbation. The large change in the linear term of ν x vs x β from BL11 indicates a strong octupole-like x 3 component in the horizontal equation of motion. The amplitude is limited hen BL11 is closed, a reduction of dynamic aperture. These to measurements ere made ith all other igglers closed. With all igglers open, the beam could be kicked to x β ~ 45 mm, so other igglers had already compromised the dynamic aperture before BL11 as installed. With BL11 closed, the bump range as limited to the range shon in the Figure. The lifetime drops to minutes. The horizontal tune as also measured as a function of the rf frequency ith BL11 gap opened and closed. The dispersion at BL11 is relatively large (1. m), so varying the rf frequency is simply another ay to vary the horizontal closed orbit. This measurement gave results similar to the Figure at right. The derivative of the field integral according to the electron beam measurements compared to the stretched ire magnetic measurements and the dynamic field integrals. A polynomial as fit to the stretched ire field integrals, and the derivative of this polynomial. The first item to note is that the dynamic field integral is very large. The negative peaks in the dynamic integral at ±19 mm are 9 kg, far off scale. A 9 kg field integral ould generate a horizontal tune shift of 0.15 in SPEAR. The BL9 poles are 95 mm ide, hile the BL11 poles are only 50 mm ide. Figure 6 shos the derivative of the field integral for BL9 according to tune measurements and stretched ire measurements. The field roll-off data ere not readily available for BL9, so the dynamic field integrals are not shon in Fig. 6. The good agreement beteen the tune and stretched ire measurements, hoever, indicates that the dynamic integrals are much smaller in BL9 than BL11. The field integrals from construction tolerances ( stretched ire in Fig. 5) are negligible in comparison. The field integrals from tune measurements sho good qualitative agreement ith the dynamic integrals (ith some vertical offset that can be attributed ith uncertainty in the β function at BL11, and ith some horizontal offset due to the uncertainty in the electrical centers of the beam position monitors).

5 Table I shos the agreement beteen the octupole-like cubic term predicted by the TOSCA field model and that from three different electron beam measurements! SPEAR PERFORMANCE WITH MAGIC FINGERS The bottom half of the magic fingers attached to the ends of the iggler. The yello arros indicate polarity of permanent magnets. Dimensions in mm. The model of BL11 reasonably predicts the electron beam measurements. The horizontal tune shift hen closing the BL11 magnet gap indicated an integrated field gradient of T, hile the TOSCA field model has an integrated gradient of T. The dynamic aperture reduction results from nonlinear fields. The quadrupole-like focusing generates a horizontal beta beat of 1% and 1% at 3 and.3 GeV, respectively. This linear perturbation is not enough to explain the reduction in dynamic aperture. A loer ja of the magnetic finger assemblies are designed to cancel the dynamic field integrals. The bolt arrangement allos small changes in the block positions in the shimming process. The jas are attached in pairs to the to ends of the iggler to create normal multipoles and must fit in a narro edge-shaped space beteen the iggler end and the vacuum chamber flange. Question: Can one carry out multipole compensator instead of the ja geometry! The jas are attached in pairs to the to ends of the iggler to create normal multipoles and must fit in a narro edge-shaped space beteen the iggler end and the vacuum chamber flange. To limit the number of magnet blocks needed, it as decided the dynamic field integral on the magnetic mid-plane should be canceled in the interval x < 5 mm. The resulting design has six magnet blocks in each ja. The large blocks take care of the dominating 1- pole component, hile the smaller blocks adjust the 8-pole and 4-pole components. With magic fingers installed, the storage ring performance as restored nearly to that ithout BL Before magic fingers at the.3 GeV injection energy, beam injected ith the BL11 gap open ould be lost hile closing the gap.. After magic fingers ere installed, the dynamic aperture as sufficiently improved that beam can be stored and injected at.3 GeV. 3. With the gap closed, hoever, the injection rate is still more sensitive to small variations in machine parameters, so the gap is usually opened several millimeters prior to injection. At the 3 GeV operational energy, closing the gap gives no degradation in the ring performance for synchrotron radiation users. There is no measurable change in the lifetime hen closing the iggler gap at 3 GeV. Both the tune shift ith betatron oscillation amplitude and the tune shift ith a closed orbit bump ere remeasured after the installation of the magic fingers. The data ere made ith all other igglers open. and beam loss for the maximum kick as greater hen measuring the data in Fig. 1. The magic fingers increased by nearly a factor of 3 the range over hich the beam could be bumped before the lifetime decreased to minutes. (The change in the starting horizontal tune from 0.13 to 0.17 beteen Figs. 4 and 13 as a change in the operational value in the 1.5 yr beteen the to measurements and had nothing to do ith BL11.)

6 Nonlinear beam dynamics orkshop 009: P. Kuske, BESSY, Berlin No Impact of sc IDs on Longitudinal Acceptance Field Optimization ith Magic Fingers U15IDR black: ithout Magic Fingers red: ith Magic Fingers ID-gap open ithout ID-gap = 15.7 mm ith Magic Fingers Dynamic multipoles: second order effect created by the oscillatory motion of the electrons in the 3dim fields of the IDs no straight line integrals, cannot be measured ith moving ire A Ne Approach to the Electron Beam Dynamics in Undulators and Wigglers Pascal ELLEAUME, EPAC9, 661 Important in lo and medium electron energy rings (e.g. BESSY II: 1.7GeV) long period lengths (e.g. BESSY UE11 ith 11mm period length) high fields, large transverse gradients (e.g. high field iggler, APPLE) Shimming of UE56ID3R APPLE Devices -- some success Successful Active Compensation 8 flat ires along the ID- chamber ith 14 PS maximum current: 16A, ire diameter: 3x0.3mm ire separation: 4mm Recommendations: 1. It appears that only the field integrals are important in ID. One needs only to correct the field integral locally. The field integrals can be compensated by magic fingers, or by multipolecoil compensators 3. The representation of H.P. Chang may be extended to the treatment of field integrals 4. Lifetime and DA are tune-dependent! Avoid resonances can provide good DA ith good lifetime!

Lattice Design for the Taiwan Photon Source (TPS) at NSRRC

Lattice Design for the Taiwan Photon Source (TPS) at NSRRC Lattice Design for the Taiwan Photon Source (TPS) at NSRRC Chin-Cheng Kuo On behalf of the TPS Lattice Design Team Ambient Ground Motion and Civil Engineering for Low Emittance Electron Storage Ring Workshop

More information

Quadruple-bend achromatic low emittance lattice studies

Quadruple-bend achromatic low emittance lattice studies REVIEW OF SCIENTIFIC INSTRUMENTS 78, 055109 2007 Quadruple-bend achromatic lo emittance lattice studies M. H. Wang, H. P. Chang, H. C. Chao, P. J. Chou, C. C. Kuo, and H. J. Tsai National Synchrotron Radiation

More information

Accelerator Physics. Accelerator Development

Accelerator Physics. Accelerator Development Accelerator Physics The Taiwan Light Source (TLS) is the first large accelerator project in Taiwan. The goal was to build a high performance accelerator which provides a powerful and versatile light source

More information

Lecture 3: Modeling Accelerators Fringe fields and Insertion devices. X. Huang USPAS, January 2015 Hampton, Virginia

Lecture 3: Modeling Accelerators Fringe fields and Insertion devices. X. Huang USPAS, January 2015 Hampton, Virginia Lecture 3: Modeling Accelerators Fringe fields and Insertion devices X. Huang USPAS, January 05 Hampton, Virginia Fringe field effects Dipole Quadrupole Outline Modeling of insertion devices Radiation

More information

Part II Effect of Insertion Devices on the Electron Beam

Part II Effect of Insertion Devices on the Electron Beam Part II Effect of Insertion Devices on the Electron Beam Pascal ELLEAUME European Synchrotron Radiation Facility, Grenoble II, 1/14, P. Elleaume, CAS, Brunnen July -9, 3. Effect of an Insertion Device

More information

Lattice Design and Performance for PEP-X Light Source

Lattice Design and Performance for PEP-X Light Source Lattice Design and Performance for PEP-X Light Source Yuri Nosochkov SLAC National Accelerator Laboratory With contributions by M-H. Wang, Y. Cai, X. Huang, K. Bane 48th ICFA Advanced Beam Dynamics Workshop

More information

E. Wilson - CERN. Components of a synchrotron. Dipole Bending Magnet. Magnetic rigidity. Bending Magnet. Weak focusing - gutter. Transverse ellipse

E. Wilson - CERN. Components of a synchrotron. Dipole Bending Magnet. Magnetic rigidity. Bending Magnet. Weak focusing - gutter. Transverse ellipse Transverse Dynamics E. Wilson - CERN Components of a synchrotron Dipole Bending Magnet Magnetic rigidity Bending Magnet Weak focusing - gutter Transverse ellipse Fields and force in a quadrupole Strong

More information

Accelerator Physics Homework #3 P470 (Problems: 1-5)

Accelerator Physics Homework #3 P470 (Problems: 1-5) Accelerator Physics Homework #3 P470 (Problems: -5). Particle motion in the presence of magnetic field errors is (Sect. II.2) y + K(s)y = B Bρ, where y stands for either x or z. Here B = B z for x motion,

More information

MAGNETS AND INSERTION DEVICES FOR THE ESRF II

MAGNETS AND INSERTION DEVICES FOR THE ESRF II MAGNETS AND INSERTION DEVICES FOR THE ESRF II OUTLINE Magnetic design R&D and Magnetic measurements IDs & BM sources Summary J. Chavanne G. Lebec C. Benabderrahmane C.Penel On behalf the accelerator upgrade

More information

COMBINER RING LATTICE

COMBINER RING LATTICE CTFF3 TECHNICAL NOTE INFN - LNF, Accelerator Division Frascati, April 4, 21 Note: CTFF3-2 COMBINER RING LATTICE C. Biscari 1. Introduction The 3 rd CLIC test facility, CTF3, is foreseen to check the feasibility

More information

First propositions of a lattice for the future upgrade of SOLEIL. A. Nadji On behalf of the Accelerators and Engineering Division

First propositions of a lattice for the future upgrade of SOLEIL. A. Nadji On behalf of the Accelerators and Engineering Division First propositions of a lattice for the future upgrade of SOLEIL A. Nadji On behalf of the Accelerators and Engineering Division 1 SOLEIL : A 3 rd generation synchrotron light source 29 beamlines operational

More information

OCTUPOLE/QUADRUPOLE/ ACTING IN ONE DIRECTION Alexander Mikhailichenko Cornell University, LEPP, Ithaca, NY 14853

OCTUPOLE/QUADRUPOLE/ ACTING IN ONE DIRECTION Alexander Mikhailichenko Cornell University, LEPP, Ithaca, NY 14853 October 13, 3. CB 3-17 OCTUPOLE/QUADRUPOLE/ ACTIG I OE DIRECTIO Aleander Mikhailichenko Cornell Universit, LEPP, Ithaca, Y 14853 We propose to use elements of beam optics (quads, setupoles, octupoles,

More information

Transverse dynamics Selected topics. Erik Adli, University of Oslo, August 2016, v2.21

Transverse dynamics Selected topics. Erik Adli, University of Oslo, August 2016, v2.21 Transverse dynamics Selected topics Erik Adli, University of Oslo, August 2016, Erik.Adli@fys.uio.no, v2.21 Dispersion So far, we have studied particles with reference momentum p = p 0. A dipole field

More information

Beam Dynamics. D. Brandt, CERN. CAS Bruges June 2009 Beam Dynamics D. Brandt 1

Beam Dynamics. D. Brandt, CERN. CAS Bruges June 2009 Beam Dynamics D. Brandt 1 Beam Dynamics D. Brandt, CERN D. Brandt 1 Some generalities D. Brandt 2 Units: the electronvolt (ev) The electronvolt (ev)) is the energy gained by an electron travelling, in vacuum, between two points

More information

Part V Undulators for Free Electron Lasers

Part V Undulators for Free Electron Lasers Part V Undulators for Free Electron Lasers Pascal ELLEAUME European Synchrotron Radiation Facility, Grenoble V, 1/22, P. Elleaume, CAS, Brunnen July 2-9, 2003. Oscillator-type Free Electron Laser V, 2/22,

More information

Accelerator Design and Construction Progress of TPS Project

Accelerator Design and Construction Progress of TPS Project Accelerator Design and Construction Progress of TPS Project Taiwan Light Source (TLS), a 120-m storage ring originally designed for 1.3 GeV, was commissioned and opened to users in 1993. The energy of

More information

Wigglers for Damping Rings

Wigglers for Damping Rings Wigglers for Damping Rings S. Guiducci Super B-Factory Meeting Damping time and Emittance Increasing B 2 ds wigglers allows to achieve the short damping times and ultra-low beam emittance needed in Linear

More information

Longitudinal Top-up Injection for Small Aperture Storage Rings

Longitudinal Top-up Injection for Small Aperture Storage Rings Longitudinal Top-up Injection for Small Aperture Storage Rings M. Aiba, M. Böge, Á. Saá Hernández, F. Marcellini and A. Streun Paul Scherrer Institut Introduction Lower and lower horizontal emittances

More information

Transverse Field Profile of the NLC Damping Rings Electromagnet Wiggler

Transverse Field Profile of the NLC Damping Rings Electromagnet Wiggler LCC 0038 29/04/00 CBP Tech Note - 234 Linear Collider Collaboration Tech Notes Transverse Field Profile of the NLC Damping Rings Electromagnet Wiggler 29 April 2000 17 J. Corlett and S. Marks Lawrence

More information

LOW EMITTANCE MODEL FOR THE ANKA SYNCHROTRON RADIATION SOURCE

LOW EMITTANCE MODEL FOR THE ANKA SYNCHROTRON RADIATION SOURCE Karlsruhe Institute of Technology (KIT, Karlsruhe, Germany) Budker Institute of Nuclear Physics (BINP, Novosibirsk, Russia) LOW EMITTANCE MODEL FOR THE ANKA SYNCHROTRON RADIATION SOURCE (A.Papash - on

More information

On-axis injection into small dynamic aperture

On-axis injection into small dynamic aperture On-axis injection into small dynamic aperture L. Emery Accelerator Systems Division Argonne National Laboratory Future Light Source Workshop 2010 Tuesday March 2nd, 2010 On-Axis (Swap-Out) injection for

More information

Bernhard Holzer, CERN-LHC

Bernhard Holzer, CERN-LHC Bernhard Holzer, CERN-LHC * Bernhard Holzer, CERN CAS Prague 2014 x Liouville: in reasonable storage rings area in phase space is constant. A = π*ε=const x ε beam emittance = woozilycity of the particle

More information

Practical Lattice Design

Practical Lattice Design Practical Lattice Design Dario Pellegrini (CERN) dario.pellegrini@cern.ch USPAS January, 15-19, 2018 1/17 D. Pellegrini - Practical Lattice Design Lecture 5. Low Beta Insertions 2/17 D. Pellegrini - Practical

More information

Low Emittance Machines

Low Emittance Machines Advanced Accelerator Physics Course RHUL, Egham, UK September 2017 Low Emittance Machines Part 1: Beam Dynamics with Synchrotron Radiation Andy Wolski The Cockcroft Institute, and the University of Liverpool,

More information

Lecture 2: Modeling Accelerators Calculation of lattice functions and parameters. X. Huang USPAS, January 2015 Hampton, Virginia

Lecture 2: Modeling Accelerators Calculation of lattice functions and parameters. X. Huang USPAS, January 2015 Hampton, Virginia Lecture 2: Modeling Accelerators Calculation of lattice functions and parameters X. Huang USPAS, January 2015 Hampton, Virginia 1 Outline Closed orbit Transfer matrix, tunes, Optics functions Chromatic

More information

Free electron lasers

Free electron lasers Preparation of the concerned sectors for educational and R&D activities related to the Hungarian ELI project Free electron lasers Lecture 2.: Insertion devices Zoltán Tibai János Hebling 1 Outline Introduction

More information

Modeling CESR-c. D. Rubin. July 22, 2005 Modeling 1

Modeling CESR-c. D. Rubin. July 22, 2005 Modeling 1 Modeling CESR-c D. Rubin July 22, 2005 Modeling 1 Weak strong beambeam simulation Motivation Identify component or effect that is degrading beambeam tuneshift Establish dependencies on details of lattice

More information

Accelerator. Physics of PEP-I1. Lecture #7. March 13,1998. Dr. John Seeman

Accelerator. Physics of PEP-I1. Lecture #7. March 13,1998. Dr. John Seeman Accelerator Physics of PEP-1 Lecture #7 March 13,1998 Dr. John Seeman Accelerator Physics of PEPJ John Seeman March 13,1998 1) What is PEP-? Lecture 1 2) 3) Beam parameters for an luminosity of 3~1~~/cm~/sec

More information

The TESLA Dogbone Damping Ring

The TESLA Dogbone Damping Ring The TESLA Dogbone Damping Ring Winfried Decking for the TESLA Collaboration April 6 th 2004 Outline The Dogbone Issues: Kicker Design Dynamic Aperture Emittance Dilution due to Stray-Fields Collective

More information

ILC Damping Ring Alternative Lattice Design (Modified FODO)

ILC Damping Ring Alternative Lattice Design (Modified FODO) ILC Damping Ring Alternative Lattice Design (Modified FODO) Yi-Peng Sun 1,2, Jie Gao 1, Zhi-Yu Guo 2 Wei-Shi Wan 3 1 Institute of High Energy Physics, CAS, China 2 State Key Laboratory of Nuclear Physics

More information

Linear Collider Collaboration Tech Notes

Linear Collider Collaboration Tech Notes LCC 0035 07/01/00 Linear Collider Collaboration Tech Notes More Options for the NLC Bunch Compressors January 7, 2000 Paul Emma Stanford Linear Accelerator Center Stanford, CA Abstract: The present bunch

More information

D. Brandt, CERN. CAS Frascati 2008 Accelerators for Newcomers D. Brandt 1

D. Brandt, CERN. CAS Frascati 2008 Accelerators for Newcomers D. Brandt 1 Accelerators for Newcomers D. Brandt, CERN D. Brandt 1 Why this Introduction? During this school, you will learn about beam dynamics in a rigorous way but some of you are completely new to the field of

More information

Magnets and Lattices. - Accelerator building blocks - Transverse beam dynamics - coordinate system

Magnets and Lattices. - Accelerator building blocks - Transverse beam dynamics - coordinate system Magnets and Lattices - Accelerator building blocks - Transverse beam dynamics - coordinate system Both electric field and magnetic field can be used to guide the particles path. r F = q( r E + r V r B

More information

Commissioning and Characterization of Two Undulators at the MAX IV 3 GeV Storage Ring

Commissioning and Characterization of Two Undulators at the MAX IV 3 GeV Storage Ring Master s Thesis Commissioning and Characterization of Two Undulators at the MAX IV 3 GeV Storage Ring Sara Mikaelsson In cooperation with MAX IV Laboratory Department of Electrical and Information Technology,

More information

Nonlinear Single-Particle Dynamics in High Energy Accelerators

Nonlinear Single-Particle Dynamics in High Energy Accelerators Nonlinear Single-Particle Dynamics in High Energy Accelerators Part 8: Case Study The ILC Damping Wiggler Nonlinear Single-Particle Dynamics in High Energy Accelerators This course consists of eight lectures:

More information

S9: Momentum Spread Effects and Bending S9A: Formulation

S9: Momentum Spread Effects and Bending S9A: Formulation S9: Momentum Spread Effects and Bending S9A: Formulation Except for brief digressions in S1 and S4, we have concentrated on particle dynamics where all particles have the design longitudinal momentum at

More information

First Collective Effects Measurements in NSLS-II A. Blednykh Accelerator Physicist, BNL/NSLS-II Sep , 2014

First Collective Effects Measurements in NSLS-II A. Blednykh Accelerator Physicist, BNL/NSLS-II Sep , 2014 First Collective Effects Measurements in NSLS-II A. Blednykh Accelerator Physicist, BNL/NSLS-II Sep. 17-19, 2014 (LOWεRING 2014) 1 BROOKHAVEN SCIENCE ASSOCIATES Outline Phase 1 (25mA / PETRA-III) and Phase

More information

Longitudinal Dynamics

Longitudinal Dynamics Longitudinal Dynamics F = e (E + v x B) CAS Bruges 16-25 June 2009 Beam Dynamics D. Brandt 1 Acceleration The accelerator has to provide kinetic energy to the charged particles, i.e. increase the momentum

More information

Low Emittance Machines

Low Emittance Machines CERN Accelerator School Advanced Accelerator Physics Course Trondheim, Norway, August 2013 Low Emittance Machines Part 1: Beam Dynamics with Synchrotron Radiation Andy Wolski The Cockcroft Institute, and

More information

Insertion Devices Lecture 2 Wigglers and Undulators. Jim Clarke ASTeC Daresbury Laboratory

Insertion Devices Lecture 2 Wigglers and Undulators. Jim Clarke ASTeC Daresbury Laboratory Insertion Devices Lecture 2 Wigglers and Undulators Jim Clarke ASTeC Daresbury Laboratory Summary from Lecture #1 Synchrotron Radiation is emitted by accelerated charged particles The combination of Lorentz

More information

EFFECTS OF THE WIGGLER ON THE HEFEI LIGHT SOURCE STORAGE RING

EFFECTS OF THE WIGGLER ON THE HEFEI LIGHT SOURCE STORAGE RING International Journal of Modern Physics A Vol. 24, No. 5 (2009) 1057 1067 c World Scientific Publishing Company EFFECTS OF THE WIGGLER ON THE HEFEI LIGHT SOURCE STORAGE RING HE ZHANG and MARTIN BERZ Department

More information

EFFECT OF THE FIRST AXIAL FIELD SPECTROMETER IN THE CERN INTERSECTING STORAGE RINGS (ISR) ON THE CIRCULATING BEAMS

EFFECT OF THE FIRST AXIAL FIELD SPECTROMETER IN THE CERN INTERSECTING STORAGE RINGS (ISR) ON THE CIRCULATING BEAMS EFFECT OF THE FIRST AXIAL FIELD SPECTROMETER IN THE CERN INTERSECTING STORAGE RINGS (ISR) ON THE CIRCULATING BEAMS P.J.Bryant and G.Kantardjian CERN, Geneva, Switzerland Introduction and General Description

More information

Phase Space Study of the Synchrotron Oscillation and Radiation Damping of the Longitudinal and Transverse Oscillations

Phase Space Study of the Synchrotron Oscillation and Radiation Damping of the Longitudinal and Transverse Oscillations ScienceAsia 28 (2002 : 393-400 Phase Space Study of the Synchrotron Oscillation and Radiation Damping of the Longitudinal and Transverse Oscillations Balabhadrapatruni Harita*, Masumi Sugawara, Takehiko

More information

CERN Accelerator School. Intermediate Accelerator Physics Course Chios, Greece, September Low Emittance Rings

CERN Accelerator School. Intermediate Accelerator Physics Course Chios, Greece, September Low Emittance Rings CERN Accelerator School Intermediate Accelerator Physics Course Chios, Greece, September 2011 Low Emittance Rings Part 1: Beam Dynamics with Synchrotron Radiation Andy Wolski The Cockcroft Institute, and

More information

Operational Experience with HERA

Operational Experience with HERA PAC 07, Albuquerque, NM, June 27, 2007 Operational Experience with HERA Joachim Keil / DESY On behalf of the HERA team Contents Introduction HERA II Luminosity Production Experiences with HERA Persistent

More information

January 13, 2005 CBN 05-1 IDEAL WIGGLER 1. A.Mikhailichenko, Cornell University, LEPP, Ithaca NY 14853

January 13, 2005 CBN 05-1 IDEAL WIGGLER 1. A.Mikhailichenko, Cornell University, LEPP, Ithaca NY 14853 January 1, 005 CBN 05-1 IDEAL WIGGLER 1 A.Mikhailichenko, Cornell University, LEPP, Ithaca NY 1485 Abstract. Described is the wiggler with reduced nonlinear components for usage in the damping ring of

More information

RADIATION SOURCES AT SIBERIA-2 STORAGE RING

RADIATION SOURCES AT SIBERIA-2 STORAGE RING RADIATION SOURCES AT SIBERIA-2 STORAGE RING V.N. Korchuganov, N.Yu. Svechnikov, N.V. Smolyakov, S.I. Tomin RRC «Kurchatov Institute», Moscow, Russia Kurchatov Center Synchrotron Radiation undulator undulator

More information

First commissioning of the HLS-II storage ring*

First commissioning of the HLS-II storage ring* Submitted to Chinese Physics C First commissioning of the HLS-II storage ring* LIU Gang-Wen( 刘刚文 ) XUAN Ke( 宣科 ) 1) XU Wei( 徐卫 ) WANG Lin( 王琳 ) LI Wei-Min( 李为民 ) LI Jing-yi( 李京祎 ) National Synchrotron

More information

STATUS REPORT ON STORAGE RING REALIGNMENT AT SLRI

STATUS REPORT ON STORAGE RING REALIGNMENT AT SLRI STATUS REPORT ON STORAGE RING REALIGNMENT AT SLRI S. Srichan #, A. Kwankasem, S. Boonsuya, B. Boonwanna, V. Sooksrimuang, P. Klysubun Synchrotron Light Research Institute, 111 University Ave, Muang District,

More information

MAX-lab. MAX IV Lattice Design: Multibend Achromats for Ultralow Emittance. Simon C. Leemann

MAX-lab. MAX IV Lattice Design: Multibend Achromats for Ultralow Emittance. Simon C. Leemann Workshop on Low Emittance Rings 2010 CERN Jan 12 15, 2010 MAX-lab MAX IV Lattice Design: Multibend Achromats for Ultralow Emittance Simon C. Leemann simon.leemann@maxlab.lu.se Brief Overview of the MAX

More information

Compressor Lattice Design for SPL Beam

Compressor Lattice Design for SPL Beam EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH CERN A&B DIVISION AB-Note-27-34 BI CERN-NUFACT-Note-153 Compressor Lattice Design for SPL Beam M. Aiba Abstract A compressor ring providing very short proton

More information

Comparison of the brilliance limit between MAX IV 3 GeV ring and NSLS II low beta straights using the same undulator technique

Comparison of the brilliance limit between MAX IV 3 GeV ring and NSLS II low beta straights using the same undulator technique Comparison of the brilliance limit between 3 GeV ring and low beta straights using the same undulator technique Erik Wallén Thu 10 Nov 2011 22:18:57 Contents Contents 1 1 Introduction 2 2 Undulator technique

More information

3.2 The MAX IV 3 GeV Storage Ring

3.2 The MAX IV 3 GeV Storage Ring 25 38. S. Liuzzo et al. Test of Low emittance tuning at Diamond, Proceedings of the IPAC11, 2031, (2011). 39. L. Nadolski, Methods and tools to simulate and analyse nonlinear beam dynamics in electron

More information

IMPROVEMENT OF SC WIGGLER PERFORMANCE 1 A. Mikhailichenko Cornell University, LEPP, Ithaca NY 14853

IMPROVEMENT OF SC WIGGLER PERFORMANCE 1 A. Mikhailichenko Cornell University, LEPP, Ithaca NY 14853 March 4 003 CBN 03-3 IMPROVEMENT OF SC WIGGLER PERFORMANCE 1 A. Mikhailichenko Cornell University, LEPP, Ithaca NY 14853 Described is a methodology of improvement for good field region in a SC.1 T CESR

More information

Preliminary design study of JUICE. Joint Universities International Circular Electronsynchrotron

Preliminary design study of JUICE. Joint Universities International Circular Electronsynchrotron Preliminary design study of JUICE Joint Universities International Circular Electronsynchrotron Goal Make a 3th generation Synchrotron Radiation Lightsource at 3 GeV Goal Make a 3th generation Synchrotron

More information

!"#$%$!&'()$"('*+,-')'+-$#..+/+,0)&,$%.1&&/$ LONGITUDINAL BEAM DYNAMICS

!#$%$!&'()$('*+,-')'+-$#..+/+,0)&,$%.1&&/$ LONGITUDINAL BEAM DYNAMICS LONGITUDINAL BEAM DYNAMICS Elias Métral BE Department CERN The present transparencies are inherited from Frank Tecker (CERN-BE), who gave this course last year and who inherited them from Roberto Corsini

More information

Physics 610. Adv Particle Physics. April 7, 2014

Physics 610. Adv Particle Physics. April 7, 2014 Physics 610 Adv Particle Physics April 7, 2014 Accelerators History Two Principles Electrostatic Cockcroft-Walton Van de Graaff and tandem Van de Graaff Transformers Cyclotron Betatron Linear Induction

More information

Accelerator Physics Final Exam pts.

Accelerator Physics Final Exam pts. Accelerator Physics Final Exam - 170 pts. S. M. Lund and Y. Hao Graders: C. Richard and C. Y. Wong June 14, 2018 Problem 1 P052 Emittance Evolution 40 pts. a) 5 pts: Consider a coasting beam composed of

More information

Accelerator Physics. Tip World Scientific NEW JERSEY LONDON SINGAPORE BEIJING SHANGHAI HONG KONG TAIPEI BANGALORE. Second Edition. S. Y.

Accelerator Physics. Tip World Scientific NEW JERSEY LONDON SINGAPORE BEIJING SHANGHAI HONG KONG TAIPEI BANGALORE. Second Edition. S. Y. Accelerator Physics Second Edition S. Y. Lee Department of Physics, Indiana University Tip World Scientific NEW JERSEY LONDON SINGAPORE BEIJING SHANGHAI HONG KONG TAIPEI BANGALORE Contents Preface Preface

More information

Lattices for Light Sources

Lattices for Light Sources Andreas Streun Swiss Light Source SLS, Paul Scherrer Institute, Villigen, Switzerland Contents: Global requirements: size, brightness, stability Lattice building blocks: magnets and other devices Emittance:

More information

Beam Physics at SLAC. Yunhai Cai Beam Physics Department Head. July 8, 2008 SLAC Annual Program Review Page 1

Beam Physics at SLAC. Yunhai Cai Beam Physics Department Head. July 8, 2008 SLAC Annual Program Review Page 1 Beam Physics at SLAC Yunhai Cai Beam Physics Department Head July 8, 2008 SLAC Annual Program Review Page 1 Members in the ABP Department * Head: Yunhai Cai * Staff: Gennady Stupakov Karl Bane Zhirong

More information

Low energy electron storage ring with tunable compaction factor

Low energy electron storage ring with tunable compaction factor REVIEW OF SCIENTIFIC INSTRUMENTS 78, 075107 2007 Low energy electron storage ring with tunable compaction factor S. Y. Lee, J. Kolski, Z. Liu, X. Pang, C. Park, W. Tam, and F. Wang Department of Physics,

More information

Status of Optics Design

Status of Optics Design 17th B2GM, February 5, 2014 Status of Optics Design Y. Ohnishi /KEK 17th B2GM KEK, February 5, 2014 Contents! Lattice parameters! Dynamic aperture under influence of beam-beam effect! Lattice preparation

More information

ELECTRON DYNAMICS WITH SYNCHROTRON RADIATION

ELECTRON DYNAMICS WITH SYNCHROTRON RADIATION ELECTRON DYNAMICS WITH SYNCHROTRON RADIATION Lenny Rivkin Ecole Polythechnique Federale de Lausanne (EPFL) and Paul Scherrer Institute (PSI), Switzerland CERN Accelerator School: Introduction to Accelerator

More information

DYNAMIC APERTURE STUDIES FOR HL-LHC V1.0 *

DYNAMIC APERTURE STUDIES FOR HL-LHC V1.0 * SLAC PUB 17366 December 2018 DYNAMIC APERTURE STUDIES FOR HL-LHC V1.0 * Y. Cai, R. De Maria, M. Giovannozzi, Y. Nosochkov, F.F. Van der Veken ;1 CERN, CH-1211 Geneva 23, Switzerland SLAC National Accelerator

More information

CESR-c Status and Accelerator Physics

CESR-c Status and Accelerator Physics 30th Advanced ICFA Beam Dynamics Workshop on High Luminosity e+e- Collisions, October 3-6, 003, Stanford, California CESR-c Status and Accelerator Physics D. Rice LEPP-Cornell Univ., Ithaca, NY 4853 USA

More information

Key words: diffraction-limited storage ring, half integer resonance, momentum acceptance, beta beats

Key words: diffraction-limited storage ring, half integer resonance, momentum acceptance, beta beats Statistical analysis of the limitation of half integer resonances on the available momentum acceptance of a diffraction-limited storage ring Yi Jiao*, Zhe Duan Key Laboratory of Particle Acceleration Physics

More information

Beam dynamics and magnet design challenges for 4th-generation storage ring light sources

Beam dynamics and magnet design challenges for 4th-generation storage ring light sources Beam dynamics and magnet design challenges for 4th-generation storage ring light sources Michael Borland December 1, 2014 Accelerator Systems Division Outline What do storage ring light source users want?

More information

{ } Double Bend Achromat Arc Optics for 12 GeV CEBAF. Alex Bogacz. Abstract. 1. Dispersion s Emittance H. H γ JLAB-TN

{ } Double Bend Achromat Arc Optics for 12 GeV CEBAF. Alex Bogacz. Abstract. 1. Dispersion s Emittance H. H γ JLAB-TN JLAB-TN-7-1 Double Bend Achromat Arc Optics for 12 GeV CEBAF Abstract Alex Bogacz Alternative beam optics is proposed for the higher arcs to limit emittance dilution due to quantum excitations. The new

More information

Analytical Estimation of Dynamic Aperture Limited by Wigglers in a Storage Ring

Analytical Estimation of Dynamic Aperture Limited by Wigglers in a Storage Ring Analtical Estimation of Dnamic Aperture Limited b Wigglers in a Storage Ring J. GAO Institute of High Energ Phsics Chinese Academ of Sciences Snomass ILC orshop, August 4-7, 005 Contents Dnamic Apertures

More information

USPAS Accelerator Physics 2017 University of California, Davis

USPAS Accelerator Physics 2017 University of California, Davis USPAS Accelerator Physics 207 University of California, Davis Lattice Extras: Linear Errors, Doglegs, Chicanes, Achromatic Conditions, Emittance Exchange Todd Satogata (Jefferson Lab) / satogata@jlab.org

More information

Introduction to Transverse Beam Dynamics

Introduction to Transverse Beam Dynamics Introduction to Transverse Beam Dynamics B.J. Holzer CERN, Geneva, Switzerland Abstract In this chapter we give an introduction to the transverse dynamics of the particles in a synchrotron or storage ring.

More information

ILC Damping Ring Alternative Lattice Design **

ILC Damping Ring Alternative Lattice Design ** ILC Damping Ring Alternative Lattice Design ** Yi-Peng Sun *,1,2, Jie Gao 1, Zhi-Yu Guo 2 1 Institute of High Energy Physics, CAS, Beijing 2 Key Laboratory of Heavy Ion Physics, Peking University, Beijing

More information

Emittance Limitation of a Conditioned Beam in a Strong Focusing FEL Undulator. Abstract

Emittance Limitation of a Conditioned Beam in a Strong Focusing FEL Undulator. Abstract SLAC PUB 11781 March 26 Emittance Limitation of a Conditioned Beam in a Strong Focusing FEL Undulator Z. Huang, G. Stupakov Stanford Linear Accelerator Center, Stanford, CA 9439 S. Reiche University of

More information

Lattice Design in Particle Accelerators

Lattice Design in Particle Accelerators Lattice Design in Particle Accelerators Bernhard Holzer, DESY Historical note:... Particle acceleration where lattice design is not needed 4 N ntz e i N( θ ) = * 4 ( 8πε ) r K sin 0 ( θ / ) uo P Rutherford

More information

arxiv: v1 [physics.acc-ph] 21 Oct 2014

arxiv: v1 [physics.acc-ph] 21 Oct 2014 SIX-DIMENSIONAL WEAK STRONG SIMULATIONS OF HEAD-ON BEAM BEAM COMPENSATION IN RHIC arxiv:.8v [physics.acc-ph] Oct Abstract Y. Luo, W. Fischer, N.P. Abreu, X. Gu, A. Pikin, G. Robert-Demolaize BNL, Upton,

More information

Linear Collider Collaboration Tech Notes. A New Structure for the NLC Positron Predamping Ring Lattice

Linear Collider Collaboration Tech Notes. A New Structure for the NLC Positron Predamping Ring Lattice Linear Collider Collaboration Tech Notes LCC-0066 CBP Tech Note - 233 June 2001 A New Structure for the NLC Positron Predamping Ring Lattice A. Wolski Lawrence Berkeley National Laboratory Berkeley, CA

More information

Transverse Beam Dynamics II

Transverse Beam Dynamics II Transverse Beam Dynamics II II) The State of the Art in High Energy Machines: The Theory of Synchrotrons: Linear Beam Optics The Beam as Particle Ensemble Emittance and Beta-Function Colliding Beams &

More information

Polarization Preservation and Control in a Figure-8 Ring

Polarization Preservation and Control in a Figure-8 Ring Spin Physics (SPIN2014) International Journal of Modern Physics: Conference Series Vol. 40 (2016) 1660090 (7 pages) c The Author(s) DOI: 10.1142/S2010194516600909 Polarization Preservation and Control

More information

Experience on Coupling Correction in the ESRF electron storage ring

Experience on Coupling Correction in the ESRF electron storage ring Experience on Coupling Correction in the ESRF electron storage ring Laurent Farvacque & Andrea Franchi, on behalf of the Accelerator and Source Division Future Light Source workshop 2012 Jefferson Lab,

More information

Name U200 U55 U17 W40 Type Electromagnet Pure Permanent. NdFeB

Name U200 U55 U17 W40 Type Electromagnet Pure Permanent. NdFeB 4 Radiation Sources One of the main motivations to build SLS is to have a very bright source of photons in a wide spectral range. This is achieved on one hand with a very low emittance of the electron

More information

CSR Benchmark Test-Case Results

CSR Benchmark Test-Case Results CSR Benchmark Test-Case Results Paul Emma SLAC January 4, 2 BERLIN CSR Workshop Chicane CSR Test-Case Chicane parameters symbol value unit Bend magnet length (not curved length) L B.5 m Drift length (projected;

More information

3.2.2 Magnets. The properties of the quadrupoles, sextupoles and correctors are listed in tables t322_b,_c and _d.

3.2.2 Magnets. The properties of the quadrupoles, sextupoles and correctors are listed in tables t322_b,_c and _d. 3.2.2 Magnets The characteristics for the two types of combined function magnets,bd and BF, are listed in table t322_a. Their cross-sections are shown, together with the vacuum chamber, in Figure f322_a.

More information

Particle Accelerators: Transverse Beam Dynamics

Particle Accelerators: Transverse Beam Dynamics Particle Accelerators: Transverse Beam Dynamics Volker Ziemann Department of Physics and Astronomy Uppsala University Research Training course in Detector Technology Stockholm, Sept. 8, 2008 080908 V.

More information

3. Synchrotrons. Synchrotron Basics

3. Synchrotrons. Synchrotron Basics 1 3. Synchrotrons Synchrotron Basics What you will learn about 2 Overview of a Synchrotron Source Losing & Replenishing Electrons Storage Ring and Magnetic Lattice Synchrotron Radiation Flux, Brilliance

More information

Putting it all together

Putting it all together Putting it all together Werner Herr, CERN (Version n.n) http://cern.ch/werner.herr/cas24/lectures/praha review.pdf 01 0 1 00 11 00 11 00 11 000 111 01 0 1 00 11 00 11 00 11 000 111 01 0 1 00 11 00 11 00

More information

HIRFL STATUS AND HIRFL-CSR PROJECT IN LANZHOU

HIRFL STATUS AND HIRFL-CSR PROJECT IN LANZHOU HIRFL STATUS AND HIRFL-CSR PROJECT IN LANZHOU J. W. Xia, Y. F. Wang, Y. N. Rao, Y. J. Yuan, M. T. Song, W. Z. Zhang, P. Yuan, W. Gu, X. T. Yang, X. D. Yang, S. L. Liu, H.W.Zhao, J.Y.Tang, W. L. Zhan, B.

More information

Suppression of Radiation Excitation in Focusing Environment * Abstract

Suppression of Radiation Excitation in Focusing Environment * Abstract SLAC PUB 7369 December 996 Suppression of Radiation Excitation in Focusing Environment * Zhirong Huang and Ronald D. Ruth Stanford Linear Accelerator Center Stanford University Stanford, CA 94309 Abstract

More information

Enhanced Performance of the Advanced Light Source Through Periodicity Restoration of the Linear Lattice

Enhanced Performance of the Advanced Light Source Through Periodicity Restoration of the Linear Lattice SLAC-PUB-9463 August 2002 Enhanced Performance of the Advanced Light Source Through Periodicity Restoration of the Linear Lattice D. Robin et al Presented at the 7th European Particle Accelerator Conference

More information

COMMISSIONING OF NSLS-II*

COMMISSIONING OF NSLS-II* COMMISSIONING OF NSLS-II* F. Willeke, BNL, Upton, NY 11973, USA Figure 1: Aerial view of NSLS-II. Abstract NSLS-II, the new 3rd generation light source at BNL was designed for a brightness of 10 22 photons

More information

S3: Description of Applied Focusing Fields S3A: Overview

S3: Description of Applied Focusing Fields S3A: Overview S3: Description of Applied Focusing Fields S3A: Overview The fields of such classes of magnets obey the vacuum Maxwell Equations within the aperture: Applied fields for focusing, bending, and acceleration

More information

Bunch Separation with Reconance Island Buckets

Bunch Separation with Reconance Island Buckets Bunch Separation with Reconance Island Buckets P.Goslawski, J.Feikes, T.Goetsch, J.Li, M.Ries, M.Ruprecht, A.Schälicke, G.Wüstefeld and the BESSY VSR design team Helmholtz-Zentrum Berlin November 26th,

More information

Low Emittance Storage Ring for Light Source. Sukho Kongtawong PHY 554 Fall 2016

Low Emittance Storage Ring for Light Source. Sukho Kongtawong PHY 554 Fall 2016 Low Emittance Storage Ring for Light Source Sukho Kongtawong PHY 554 Fall 2016 Content Brightness and emittance Radiative effect and emittance Theory Theoretical Minimum Emittance (TME) cell Double-bend

More information

Three Loose Ends: Edge Focusing; Chromaticity; Beam Rigidity.

Three Loose Ends: Edge Focusing; Chromaticity; Beam Rigidity. Linear Dynamics, Lecture 5 Three Loose Ends: Edge Focusing; Chromaticity; Beam Rigidity. Andy Wolski University of Liverpool, and the Cockcroft Institute, Daresbury, UK. November, 2012 What we Learned

More information

Conceptual design of an accumulator ring for the Diamond II upgrade

Conceptual design of an accumulator ring for the Diamond II upgrade Journal of Physics: Conference Series PAPER OPEN ACCESS Conceptual design of an accumulator ring for the Diamond II upgrade To cite this article: I P S Martin and R Bartolini 218 J. Phys.: Conf. Ser. 167

More information

2008 JINST 3 S Main machine layout and performance. Chapter Performance goals

2008 JINST 3 S Main machine layout and performance. Chapter Performance goals Chapter 2 Main machine layout and performance 2.1 Performance goals The aim of the LHC is to reveal the physics beyond the Standard Model with centre of mass collision energies of up to 14 TeV. The number

More information

Commissioning of PETRA III. Klaus Balewski on behalf of the PETRA III Team IPAC 2010, 25 May, 2010

Commissioning of PETRA III. Klaus Balewski on behalf of the PETRA III Team IPAC 2010, 25 May, 2010 Commissioning of PETRA III Klaus Balewski on behalf of the PETRA III Team IPAC 2010, 25 May, 2010 PETRA III Parameters Circumference (m) Energy (GeV) ε x (nm rad) ε y (pm rad) Current (ma) # bunches Straight

More information

Abstract. 1. Introduction

Abstract. 1. Introduction The New Upgrade of SESAME D.Einfeld1, R.H.Sarraf2, M.Attal3, H.Hashemi4, A.Elsisi5, A.Amro6, H.Hassanzadegan4, K.Tavakoli3, B.Kalantari7, S. Varnasery8, E. Al-Dmour8, D. Foudeh6, H.Tarawneh9, A.Aladwan7

More information

April 25, 1998 CBN MULTIPOLES FOR DUAL APERTURE STORAGE RING 1 Alexander Mikhailichenko Cornell University, Wilson Laboratory, Ithaca, NY 14850

April 25, 1998 CBN MULTIPOLES FOR DUAL APERTURE STORAGE RING 1 Alexander Mikhailichenko Cornell University, Wilson Laboratory, Ithaca, NY 14850 April 5, 1998 CBN 98-1 MULTIPOLES FOR DUAL APERTURE STORAGE RING 1 Aleander Mikhailichenko Cornell University, Wilson Laboratory, Ithaca, NY 1485 Design of superconducting multipoles and theirs parameters

More information