ELECTRON DYNAMICS WITH SYNCHROTRON RADIATION

Size: px
Start display at page:

Download "ELECTRON DYNAMICS WITH SYNCHROTRON RADIATION"

Transcription

1 ELECTRON DYNAMICS WITH SYNCHROTRON RADIATION Lenny Rivkin Ecole Polythechnique Federale de Lausanne (EPFL) and Paul Scherrer Institute (PSI), Switzerland CERN Accelerator School: Introduction to Accelerator Physics November 5, 2012, Granada, Spain

2 Radiation effects in electron storage rings Average radiated power restored by RF Electron loses energy each turn RF cavities provide voltage to accelerate electrons back to the nominal energy Radiation damping Average rate of energy loss produces DAMPING of electron oscillations in all three degrees of freedom (if properly arranged!) Quantum fluctuations Statistical fluctuations in energy loss (from quantised emission of radiation) produce RANDOM EXCITATION of these oscillations Equilibrium distributions U of E 0 V RF > U 0 The balance between the damping and the excitation of the electron oscillations determines the equilibrium distribution of particles in the beam Electron Dynamics, L. Rivkin, EPFL & PSI, Granada, Spain, November 2012

3 Radiation is emitted into a narrow cone = 1 e v << c vc Electron Dynamics, L. Rivkin, EPFL & PSI, Granada, Spain, November 2012

4 Synchrotron radiation power Power emitted is proportional to: P E 2 B 2 P 4 cc E 2 2 P 2 c C = 4 3 r e m e c 2 3 = m GeV 3 = Energy loss per turn: U 0 = C E 4 hc = 197 Mev fm U 0 = 4 3 hc 4 Electron Dynamics, L. Rivkin, EPFL & PSI, Granada, Spain, November 2012

5 RADIATION DAMPING TRANSVERSE OSCILLATIONS

6 Average energy loss and gain per turn Every turn electron radiates small amount of energy E 1 = E 0 U 0 = E 0 1 U 0 E 0 only the amplitude of the momentum changes P 1 = P 0 U 0 c = P 0 1 U 0 E 0 Only the longitudinal component of the momentum is increased in the RF cavity Energy of betatron oscillation E A 2 A 1 2 = A U 0 E 0 or A 1 A 0 1 U 0 2E 0 Electron Dynamics, L. Rivkin, EPFL & PSI, Granada, Spain, November 2012

7 Damping of vertical oscillations But this is just the exponential decay law! A A = U 0 2E The oscillations are exponentially damped with the damping time (milliseconds!) 2ET U 0 0 In terms of radiation power 2E P A A e t 0 the time it would take particle to lose all of its energy 4 and since P E E 3 1 Electron Dynamics, L. Rivkin, EPFL & PSI, Granada, Spain, November 2012

8 Adiabatic damping in linear accelerators In a linear accelerator: p p x = p p p decreases 1 E p In a storage ring beam passes many times through same RF cavity Clean loss of energy every turn (no change in x ) Every turn is re-accelerated by RF (x is reduced) Particle energy on average remains constant

9 Emittance damping in linacs: e W e 2 W 2 e 4 W 4 e 1 or 2 4 econst.

10 RADIATION DAMPING LONGITUDINAL OSCILLATIONS

11 Longitudinal motion: compensating radiation loss U 0 RF cavity provides accelerating field with frequency f RF h f 0 h harmonic number V RF The energy gain: U 0 URF ev RF Synchronous particle: has design energy gains from the RF on the average as much as it loses per turn U 0

12 Longitudinal motion: phase stability U 0 V RF Particle ahead of synchronous one gets too much energy from the RF goes on a longer orbit (not enough B) >> takes longer to go around comes back to the RF cavity closer to synchronous part. Particle behind the synchronous one gets too little energy from the RF goes on a shorter orbit (too much B) catches-up with the synchronous particle

13 Longitudinal motion: energy-time oscillations energy deviation from the design energy, or the energy of the synchronous particle e longitudinal coordinate measured from the position of the synchronous electron

14 Orbit Length Length element depends on x dl = 1 + x ds dl x ds Horizontal displacement has two parts: x = x + x e To first order x does not change L x e has the same sign around the ring Length of the off-energy orbit L e = dl = 1 + x e ds = L 0 +L L = D s s ds p where = p = E E L L =

15 Something funny happens on the way around the ring... Revolution time changes with energy T T = L L Particle goes faster (not much!) while the orbit length increases (more!) The slip factor T T = 1 2 dp p = dp p Ring is above transition energy isochronous ring: T 0 = L 0 c d = 1 2 dp p since >> 1 2 = 0 or = tr 1 tr 2 (relativity) L L = dp p

16 Not only accelerators work above transition

17 RF Voltage V RF V Vˆ sin h 0 s U 0 here the synchronous phase s U arcsin 0 evˆ

18 Momentum compaction factor 1 L Like the tunes Q x, Q y - depends on the whole optics D s s ds A quick estimate for separated function guide field: = 1 L 0 0 mag D s ds L mag = 2 0 = 1 L 0 0 D L mag But = D R Since dispersion is approximately D R Q 2 1 typically < 1% 2 Q and the orbit change for ~ 1% energy deviation L = L 2 Q = 0 in dipoles = elsewhere

19 Energy balance Energy gain from the RF system: U RF = ev RF = U 0 + ev RF synchronous particle () will get exactly the energy loss per turn we consider only linear oscillations Each turn electron gets energy from RF and loses energy to radiation within one revolution time T 0 e = U 0 + ev RF U 0 + Ue V RF = dv RF d = 0 de dt = 1 T 0 ev RF Ue An electron with an energy deviation will arrive after one turn at a different time with respect to the synchronous particle d dt = e E 0

20 Synchrotron oscillations: damped harmonic oscillator Combining the two equations where the oscillation frequency the damping is slow: the solution is then: e t =e 0 e e t cos Wt + e d 2 e dt e de dt + W 2 e = 0 W 2 ev RF T 0 E 0 e U 2T 0 typically e <<W similarly, we can get for the time delay: t = 0 e e t cos Wt +

21 Synchrotron (time - energy) oscillations The ratio of amplitudes at any instant Oscillations are 90 degrees out of phase = WE 0 e e = + 2 The motion can be viewed in the phase space of conjugate variables e, e ˆ e e E 0, W e E 0 ˆ W

22 V Vo sin s s Stable regime U Separatrix d( ) dt

23 Longitudinal motion: damping of synchrotron oscillations P E 2 B 2 During one period of synchrotron oscillation: when the particle is in the upper half-plane, it loses more energy per turn, its energy gradually reduces e U > U 0 U < U 0 when the particle is in the lower half-plane, it loses less energy per turn, but receives U 0 on the average, so its energy deviation gradually reduces The synchrotron motion is damped the phase space trajectory is spiraling towards the origin

24 Robinson theorem: Damping partition numbers Transverse betatron oscillations are damped with Synchrotron oscillations are damped twice as fast x e z 2ET U ET U The total amount of damping (Robinson theorem) depends only on energy and loss per turn 1 x + 1 y + 1 e = 2U 0 ET 0 = U 0 2ET 0 J x + J y + J e the sum of the partition numbers J x + J z + J e = 4 Electron Dynamics, L. Rivkin, EPFL & PSI, Granada, Spain, November 2012

25 Radiation loss P E 2 B 2 Displaced off the design orbit particle sees fields that are different from design values energy deviation e different energy: P different magnetic field B particle moves on a different orbit, defined by the off-energy or dispersion function D x γ E 2 both contribute to linear term in P γ e betatron oscillations: zero on average Electron Dynamics, L. Rivkin, EPFL & PSI, Granada, Spain, November 2012

26 Radiation loss To first order in e U rad = U 0 + U e P E 2 B 2 electron energy changes slowly, at any instant it is moving on an orbit defined by D x after some algebra one can write U = U D E 0 D 0 only when k 0 U du rad de E0 Electron Dynamics, L. Rivkin, EPFL & PSI, Granada, Spain, November 2012

27 Damping partition numbers J x + J z + J e = 4 Typically we build rings with no vertical dispersion J 1 J 3 z Horizontal and energy partition numbers can be modified via D : J x e J x 1D J e 2 D Use of combined function magnets Shift the equilibrium orbit in quads with RF frequency Electron Dynamics, L. Rivkin, EPFL & PSI, Granada, Spain, November 2012

28 EQUILIBRIUM BEAM SIZES

29 Radiation effects in electron storage rings Average radiated power restored by RF Electron loses energy each turn RF cavities provide voltage to accelerate electrons back to the nominal energy Radiation damping Average rate of energy loss produces DAMPING of electron oscillations in all three degrees of freedom (if properly arranged!) Quantum fluctuations Statistical fluctuations in energy loss (from quantised emission of radiation) produce RANDOM EXCITATION of these oscillations Equilibrium distributions U of E 0 V RF > U 0 The balance between the damping and the excitation of the electron oscillations determines the equilibrium distribution of particles in the beam Electron Dynamics, L. Rivkin, EPFL & PSI, Granada, Spain, November 2012

30 Quantum nature of synchrotron radiation Damping only If damping was the whole story, the beam emittance (size) would shrink to microscopic dimensions!* Lots of problems! (e.g. coherent radiation) How small? On the order of electron wavelength E =mc 2 = h = hc e = 1 mc h = C e C = m Compton wavelength Diffraction limited electron emittance

31 Quantum nature of synchrotron radiation Quantum fluctuations Because the radiation is emitted in quanta, radiation itself takes care of the problem! It is sufficient to use quasi-classical picture:» Emission time is very short» Emission times are statistically independent (each emission - only a small change in electron energy) Purely stochastic (Poisson) process

32 Visible quantum effects I have always been somewhat amazed that a purely quantum effect can have gross macroscopic effects in large machines; and, even more, that Planck s constant has just the right magnitude needed to make practical the construction of large electron storage rings. A significantly larger or smaller value of would have posed serious -- perhaps insurmountable -- problems for the realization of large rings. Mathew Sands

33 Quantum excitation of energy oscillations Photons are emitted with typical energy at the rate (photons/second) Fluctuations in this rate excite oscillations During a small interval t electron emits photons u ph h typ = hc 3 N = P u ph N = N t losing energy of Actually, because of fluctuations, the number is resulting in spread in energy loss N u ph N N N u ph For large time intervals RF compensates the energy loss, providing damping towards the design energy E 0 Steady state: typical deviations from E 0 typical fluctuations in energy during a damping time e

34 Equilibrium energy spread: rough estimate We then expect the rms energy spread to be and since e E 0 P and P N u ph e N e u ph e E 0 u ph geometric mean of the electron and photon energies! Relative energy spread can be written then as: e e E e = m h 0 e c m it is roughly constant for all rings typically E 2 e E 0 ~ const ~ 10 3

35 Equilibrium energy spread More detailed calculations give for the case of an isomagnetic lattice s = 0 in dipoles elsewhere e E 2 = C q E 2 J e 0 with C q = hc m e c 2 3 = m GeV 2 It is difficult to obtain energy spread < 0.1% limit on undulator brightness!

36 Equilibrium bunch length Bunch length is related to the energy spread Energy deviation and time of arrival (or position along the bunch) are conjugate variables (synchrotron oscillations) recall that W s V RF = W s e E e = W s e E Two ways to obtain short bunches: RF voltage (power!) 1 1 V VRF RF Momentum compaction factor in the limit of = 0 isochronous ring: particle position along the bunch is frozen

37 Electron Dynamics, L. Rivkin, EPFL & PSI, Granada, Spain, November 2012 Excitation of betatron oscillations x x e x 0 e x x x x x e x E D x e e E D x e E D x e Courant Snyder invariant E D DD D x x x x e e

38 Excitation of betatron oscillations Electron emitting a photon at a place with non-zero dispersion starts a betatron oscillation around a new reference orbit x D e E Electron Dynamics, L. Rivkin, EPFL & PSI, Granada, Spain, November 2012

39 Horizontal oscillations: equilibrium Emission of photons is a random process Again we have random walk, now in x. How far particle will wander away is limited by the radiation damping The balance is achieved on the time scale of the damping time x = 2 e x e N x D 2 E Typical horizontal beam size ~ 1 mm Quantum effect visible to the naked eye! Vertical size - determined by coupling D E e

40 Beam emittance Betatron oscillations Particles in the beam execute betatron oscillations with different amplitudes. x Transverse beam distribution Gaussian (electrons) Typical particle: 1 - ellipse (in a place where = = 0) Emittance x 2 Units of e x = e x = e / m rad Area = e x x x e = x x = x x

41 Equilibrium horizontal emittance Detailed calculations for isomagnetic lattice e 2 x x0 = C qe 2 J x H mag where H = D 2 + 2DD + D 2 = 1 D 2 + D + D 2 and H mag is average value in the bending magnets

42 2-D Gaussian distribution Electron rings emittance definition 1 - ellipse x x n x dx = 1 2 e x 2 / 2 2 dx x x Area = e x Probability to be inside 1- ellipse P 1 = 1 e 1 2 = 0.39 Probability to be inside n- ellipse P n = 1 e n 2 2

43 FODO cell lattice Electron Dynamics, L. Rivkin, EPFL & PSI, Granada, Spain, November 2012

44 Emittance FODO lattice emittance 100 H ~ D 2 ~ R Q 3 10 e x0 C qe 2 J x R 1 Q 3 e E2 J x 3 F FODO Phase advance per cell [degrees] 180

45 Ionization cooling p p absorber E acceleration similar to radiation damping, but there is multiple scattering in the absorber that blows up the emittance = MS 0 >> MS to minimize the blow up due to multiple scattering in the absorber we can focus the beam Electron Dynamics, L. Rivkin, EPFL & PSI, Granada, Spain, November 2012

46 Minimum emittance lattices e C E 2 q 3 x0 θ Flatt J x F min = Electron Dynamics, L. Rivkin, EPFL & PSI, Granada, Spain, November 2012

47 Quantum limit on emittance Electron in a storage ring s dipole fields is accelerated, interacts with vacuum fluctuations: «accelerated thermometers show increased temperature» synchrotron radiation opening angle is ~ 1/g-> a lower limit on equilibrium vertical emittance independent of energy G(s) =curvature, C q = pm in case of SLS: 0.2 pm isomagnetic lattice e y 0.09pm y Mag

48 Seeing the electron beam (SLS) Making an image of the electron beam using the vertically polarised synchrotron light

49 Vertical emittance record Beam size m Emittance pm SLS beam cross section compared to a human hair: 80 m 4 m

50 Summary of radiation integrals Momentum compaction factor I 1 = D ds = I 1 2R Energy loss per turn U 0 = 1 2 C E 4 I 2 I 2 = I 3 = ds 2 ds 3 I 4 = D 2k ds I 5 = H 3 ds C = 4 3 r e m e c 2 3 = m GeV 3 Electron Dynamics, L. Rivkin, EPFL & PSI, Granada, Spain, November 2012

51 Summary of radiation integrals (2) Damping parameter Damping times, partition numbers Equilibrium emittance e x0 = 2 x =C E 2 q I 5 J x D = I 4 I 2 J e = 2 + D, J x = 1 D, J y = 1 i = 0 J i Equilibrium energy spread 2 e C q E 2 = I 3 E J e I 2 0 = 2ET 0 I 2 U 0 C q = I 1 = I 2 = I 3 = D ds ds 2 ds 3 I 4 = D 2k ds I 5 = H 3 hc m e c 2 3 = H = D 2 + 2DD + D 2 ds m GeV 2 Electron Dynamics, L. Rivkin, EPFL & PSI, Granada, Spain, November 2012

52 Damping wigglers Increase the radiation loss per turn U 0 with WIGGLERS reduce damping time emittance control P E P wig wigglers at high dispersion: blow-up emittance e.g. storage ring colliders for high energy physics wigglers at zero dispersion: decrease emittance e.g. damping rings for linear colliders e.g. synchrotron light sources (PETRAIII, 1 nm.rad) Electron Dynamics, L. Rivkin, EPFL & PSI, Granada, Spain, November 2012

53 END

ELECTRON DYNAMICS with SYNCHROTRON RADIATION

ELECTRON DYNAMICS with SYNCHROTRON RADIATION ELECTRON DYNAMICS with SYNCHROTRON RADIATION Lenny Rivkin École Polythechnique Fédérale de Lausanne (EPFL) and Paul Scherrer Institute (PSI), Switzerland CERN Accelerator School: Introduction to Accelerator

More information

Low Emittance Machines

Low Emittance Machines Advanced Accelerator Physics Course RHUL, Egham, UK September 2017 Low Emittance Machines Part 1: Beam Dynamics with Synchrotron Radiation Andy Wolski The Cockcroft Institute, and the University of Liverpool,

More information

CERN Accelerator School. Intermediate Accelerator Physics Course Chios, Greece, September Low Emittance Rings

CERN Accelerator School. Intermediate Accelerator Physics Course Chios, Greece, September Low Emittance Rings CERN Accelerator School Intermediate Accelerator Physics Course Chios, Greece, September 2011 Low Emittance Rings Part 1: Beam Dynamics with Synchrotron Radiation Andy Wolski The Cockcroft Institute, and

More information

Low Emittance Machines

Low Emittance Machines CERN Accelerator School Advanced Accelerator Physics Course Trondheim, Norway, August 2013 Low Emittance Machines Part 1: Beam Dynamics with Synchrotron Radiation Andy Wolski The Cockcroft Institute, and

More information

Phase Space Study of the Synchrotron Oscillation and Radiation Damping of the Longitudinal and Transverse Oscillations

Phase Space Study of the Synchrotron Oscillation and Radiation Damping of the Longitudinal and Transverse Oscillations ScienceAsia 28 (2002 : 393-400 Phase Space Study of the Synchrotron Oscillation and Radiation Damping of the Longitudinal and Transverse Oscillations Balabhadrapatruni Harita*, Masumi Sugawara, Takehiko

More information

Accelerator Physics. Tip World Scientific NEW JERSEY LONDON SINGAPORE BEIJING SHANGHAI HONG KONG TAIPEI BANGALORE. Second Edition. S. Y.

Accelerator Physics. Tip World Scientific NEW JERSEY LONDON SINGAPORE BEIJING SHANGHAI HONG KONG TAIPEI BANGALORE. Second Edition. S. Y. Accelerator Physics Second Edition S. Y. Lee Department of Physics, Indiana University Tip World Scientific NEW JERSEY LONDON SINGAPORE BEIJING SHANGHAI HONG KONG TAIPEI BANGALORE Contents Preface Preface

More information

SYNCHROTRON RADIATION

SYNCHROTRON RADIATION SYNCHROTRON RADIATION Lenny Rivkin Ecole Polythechnique Federale de Lausanne (EPFL) and Paul Scherrer Institute (PSI), Switzerland CERN Accelerator School: Introduction to Accelerator Physics November

More information

Suppression of Radiation Excitation in Focusing Environment * Abstract

Suppression of Radiation Excitation in Focusing Environment * Abstract SLAC PUB 7369 December 996 Suppression of Radiation Excitation in Focusing Environment * Zhirong Huang and Ronald D. Ruth Stanford Linear Accelerator Center Stanford University Stanford, CA 94309 Abstract

More information

Synchrotron radiation

Synchrotron radiation Synchrotron radiation When a particle with velocity v is deflected it emits radiation : the synchrotron radiation. Relativistic particles emits in a characteristic cone 1/g The emitted power is strongly

More information

Low Emittance Machines

Low Emittance Machines TH CRN ACCLRATOR SCHOOL CAS 9, Darmstadt, German Lecture Beam Dnamics with Snchrotron Radiation And Wolski Universit of Liverpool and the Cockcroft nstitute Wh is it important to achieve low beam emittance

More information

3. Synchrotrons. Synchrotron Basics

3. Synchrotrons. Synchrotron Basics 1 3. Synchrotrons Synchrotron Basics What you will learn about 2 Overview of a Synchrotron Source Losing & Replenishing Electrons Storage Ring and Magnetic Lattice Synchrotron Radiation Flux, Brilliance

More information

Accelerator Physics Final Exam pts.

Accelerator Physics Final Exam pts. Accelerator Physics Final Exam - 170 pts. S. M. Lund and Y. Hao Graders: C. Richard and C. Y. Wong June 14, 2018 Problem 1 P052 Emittance Evolution 40 pts. a) 5 pts: Consider a coasting beam composed of

More information

Tools of Particle Physics I Accelerators

Tools of Particle Physics I Accelerators Tools of Particle Physics I Accelerators W.S. Graves July, 2011 MIT W.S. Graves July, 2011 1.Introduction to Accelerator Physics 2.Three Big Machines Large Hadron Collider (LHC) International Linear Collider

More information

First propositions of a lattice for the future upgrade of SOLEIL. A. Nadji On behalf of the Accelerators and Engineering Division

First propositions of a lattice for the future upgrade of SOLEIL. A. Nadji On behalf of the Accelerators and Engineering Division First propositions of a lattice for the future upgrade of SOLEIL A. Nadji On behalf of the Accelerators and Engineering Division 1 SOLEIL : A 3 rd generation synchrotron light source 29 beamlines operational

More information

FEMTO - Preliminary studies of effects of background electron pulses. Paul Scherrer Institut CH-5232 Villigen PSI Switzerland

FEMTO - Preliminary studies of effects of background electron pulses. Paul Scherrer Institut CH-5232 Villigen PSI Switzerland PAUL SCHERRER INSTITUT SLS-TME-TA-00-080 October, 00 FEMTO - Preliminary studies of effects of background electron pulses Gurnam Singh Andreas Streun Paul Scherrer Institut CH-53 Villigen PSI Switzerland

More information

{ } Double Bend Achromat Arc Optics for 12 GeV CEBAF. Alex Bogacz. Abstract. 1. Dispersion s Emittance H. H γ JLAB-TN

{ } Double Bend Achromat Arc Optics for 12 GeV CEBAF. Alex Bogacz. Abstract. 1. Dispersion s Emittance H. H γ JLAB-TN JLAB-TN-7-1 Double Bend Achromat Arc Optics for 12 GeV CEBAF Abstract Alex Bogacz Alternative beam optics is proposed for the higher arcs to limit emittance dilution due to quantum excitations. The new

More information

D. Brandt, CERN. CAS Frascati 2008 Accelerators for Newcomers D. Brandt 1

D. Brandt, CERN. CAS Frascati 2008 Accelerators for Newcomers D. Brandt 1 Accelerators for Newcomers D. Brandt, CERN D. Brandt 1 Why this Introduction? During this school, you will learn about beam dynamics in a rigorous way but some of you are completely new to the field of

More information

E. Wilson - CERN. Components of a synchrotron. Dipole Bending Magnet. Magnetic rigidity. Bending Magnet. Weak focusing - gutter. Transverse ellipse

E. Wilson - CERN. Components of a synchrotron. Dipole Bending Magnet. Magnetic rigidity. Bending Magnet. Weak focusing - gutter. Transverse ellipse Transverse Dynamics E. Wilson - CERN Components of a synchrotron Dipole Bending Magnet Magnetic rigidity Bending Magnet Weak focusing - gutter Transverse ellipse Fields and force in a quadrupole Strong

More information

Lattice Design and Performance for PEP-X Light Source

Lattice Design and Performance for PEP-X Light Source Lattice Design and Performance for PEP-X Light Source Yuri Nosochkov SLAC National Accelerator Laboratory With contributions by M-H. Wang, Y. Cai, X. Huang, K. Bane 48th ICFA Advanced Beam Dynamics Workshop

More information

!"#$%$!&'()$"('*+,-')'+-$#..+/+,0)&,$%.1&&/$ LONGITUDINAL BEAM DYNAMICS

!#$%$!&'()$('*+,-')'+-$#..+/+,0)&,$%.1&&/$ LONGITUDINAL BEAM DYNAMICS LONGITUDINAL BEAM DYNAMICS Elias Métral BE Department CERN The present transparencies are inherited from Frank Tecker (CERN-BE), who gave this course last year and who inherited them from Roberto Corsini

More information

Introduction to Collider Physics

Introduction to Collider Physics Introduction to Collider Physics William Barletta United States Particle Accelerator School Dept. of Physics, MIT The Very Big Picture Accelerators Figure of Merit 1: Accelerator energy ==> energy frontier

More information

SYNCHROTRON RADIATION

SYNCHROTRON RADIATION SYNCHROTRON RADIATION Lenny Rivkin Ecole Polythechnique Federale de Lausanne (EPFL) and Paul Scherrer Institute (PSI), Switzerland Introduction to Accelerator Physics Course CERN Accelerator School, Zakopane,

More information

Physics 610. Adv Particle Physics. April 7, 2014

Physics 610. Adv Particle Physics. April 7, 2014 Physics 610 Adv Particle Physics April 7, 2014 Accelerators History Two Principles Electrostatic Cockcroft-Walton Van de Graaff and tandem Van de Graaff Transformers Cyclotron Betatron Linear Induction

More information

Linear Collider Collaboration Tech Notes

Linear Collider Collaboration Tech Notes LCC 0035 07/01/00 Linear Collider Collaboration Tech Notes More Options for the NLC Bunch Compressors January 7, 2000 Paul Emma Stanford Linear Accelerator Center Stanford, CA Abstract: The present bunch

More information

Insertion Devices Lecture 2 Wigglers and Undulators. Jim Clarke ASTeC Daresbury Laboratory

Insertion Devices Lecture 2 Wigglers and Undulators. Jim Clarke ASTeC Daresbury Laboratory Insertion Devices Lecture 2 Wigglers and Undulators Jim Clarke ASTeC Daresbury Laboratory Summary from Lecture #1 Synchrotron Radiation is emitted by accelerated charged particles The combination of Lorentz

More information

Magnets and Lattices. - Accelerator building blocks - Transverse beam dynamics - coordinate system

Magnets and Lattices. - Accelerator building blocks - Transverse beam dynamics - coordinate system Magnets and Lattices - Accelerator building blocks - Transverse beam dynamics - coordinate system Both electric field and magnetic field can be used to guide the particles path. r F = q( r E + r V r B

More information

Bernhard Holzer, CERN-LHC

Bernhard Holzer, CERN-LHC Bernhard Holzer, CERN-LHC * Bernhard Holzer, CERN CAS Prague 2014 x Liouville: in reasonable storage rings area in phase space is constant. A = π*ε=const x ε beam emittance = woozilycity of the particle

More information

Longitudinal dynamics Yannis PAPAPHILIPPOU CERN

Longitudinal dynamics Yannis PAPAPHILIPPOU CERN Longitudinal dynamics Yannis PAPAPHILIPPOU CERN United States Particle Accelerator School, University of California - Santa-Cruz, Santa Rosa, CA 14 th 18 th January 2008 1 Outline Methods of acceleration

More information

Introduction to Longitudinal Beam Dynamics

Introduction to Longitudinal Beam Dynamics Introduction to Longitudinal Beam Dynamics B.J. Holzer CERN, Geneva, Switzerland Abstract This chapter gives an overview of the longitudinal dynamics of the particles in an accelerator and, closely related

More information

PBL (Problem-Based Learning) scenario for Accelerator Physics Mats Lindroos and E. Métral (CERN, Switzerland) Lund University, Sweden, March 19-23,

PBL (Problem-Based Learning) scenario for Accelerator Physics Mats Lindroos and E. Métral (CERN, Switzerland) Lund University, Sweden, March 19-23, PBL (Problem-Based Learning) scenario for Accelerator Physics Mats Lindroos and E. Métral (CERN, Switzerland) Lund University, Sweden, March 19-23, 2007 As each working day, since the beginning of the

More information

RF LINACS. Alessandra Lombardi BE/ ABP CERN

RF LINACS. Alessandra Lombardi BE/ ABP CERN 1 RF LINACS Alessandra Lombardi BE/ ABP CERN Contents PART 1 (yesterday) : Introduction : why?,what?, how?, when? Building bloc I (1/) : Radio Frequency cavity From an RF cavity to an accelerator PART

More information

Longitudinal Top-up Injection for Small Aperture Storage Rings

Longitudinal Top-up Injection for Small Aperture Storage Rings Longitudinal Top-up Injection for Small Aperture Storage Rings M. Aiba, M. Böge, Á. Saá Hernández, F. Marcellini and A. Streun Paul Scherrer Institut Introduction Lower and lower horizontal emittances

More information

Light Sources based on Storage Rings

Light Sources based on Storage Rings Light Sources based on Storage Rings Lenny Rivkin Paul Scherrer Institute (PSI) and Swiss Federal Institute of Technology Lausanne (EPFL) Electron Beam Dynamics, L. Rivkin, Introduction to Accelerator

More information

Modeling CESR-c. D. Rubin. July 22, 2005 Modeling 1

Modeling CESR-c. D. Rubin. July 22, 2005 Modeling 1 Modeling CESR-c D. Rubin July 22, 2005 Modeling 1 Weak strong beambeam simulation Motivation Identify component or effect that is degrading beambeam tuneshift Establish dependencies on details of lattice

More information

Transverse dynamics Selected topics. Erik Adli, University of Oslo, August 2016, v2.21

Transverse dynamics Selected topics. Erik Adli, University of Oslo, August 2016, v2.21 Transverse dynamics Selected topics Erik Adli, University of Oslo, August 2016, Erik.Adli@fys.uio.no, v2.21 Dispersion So far, we have studied particles with reference momentum p = p 0. A dipole field

More information

Note. Performance limitations of circular colliders: head-on collisions

Note. Performance limitations of circular colliders: head-on collisions 2014-08-28 m.koratzinos@cern.ch Note Performance limitations of circular colliders: head-on collisions M. Koratzinos University of Geneva, Switzerland Keywords: luminosity, circular, collider, optimization,

More information

Introduction to Accelerator Physics 2011 Mexican Particle Accelerator School

Introduction to Accelerator Physics 2011 Mexican Particle Accelerator School Introduction to Accelerator Physics 2011 Mexican Particle Accelerator School Lecture 5/7: Dispersion (including FODO), Dispersion Suppressor, Light Source Lattices (DBA, TBA, TME) Todd Satogata (Jefferson

More information

PBL SCENARIO ON ACCELERATORS: SUMMARY

PBL SCENARIO ON ACCELERATORS: SUMMARY PBL SCENARIO ON ACCELERATORS: SUMMARY Elias Métral Elias.Metral@cern.ch Tel.: 72560 or 164809 CERN accelerators and CERN Control Centre Machine luminosity Transverse beam dynamics + space charge Longitudinal

More information

Lattices for Light Sources

Lattices for Light Sources Andreas Streun Swiss Light Source SLS, Paul Scherrer Institute, Villigen, Switzerland Contents: Global requirements: size, brightness, stability Lattice building blocks: magnets and other devices Emittance:

More information

Beam Dynamics. D. Brandt, CERN. CAS Bruges June 2009 Beam Dynamics D. Brandt 1

Beam Dynamics. D. Brandt, CERN. CAS Bruges June 2009 Beam Dynamics D. Brandt 1 Beam Dynamics D. Brandt, CERN D. Brandt 1 Some generalities D. Brandt 2 Units: the electronvolt (ev) The electronvolt (ev)) is the energy gained by an electron travelling, in vacuum, between two points

More information

On behalf of: F. Antoniou, H. Bartosik, T. Bohl, Y. Papaphilippou (CERN), N. Milas, A. Streun (PSI/SLS), M. Pivi (SLAC), T.

On behalf of: F. Antoniou, H. Bartosik, T. Bohl, Y. Papaphilippou (CERN), N. Milas, A. Streun (PSI/SLS), M. Pivi (SLAC), T. On behalf of: F. Antoniou, H. Bartosik, T. Bohl, Y. Papaphilippou (CERN), N. Milas, A. Streun (PSI/SLS), M. Pivi (SLAC), T. Demma (LAL) HB2010, Institute of High Energy Physics, Beijing September 17-21

More information

RADIATION SOURCES AT SIBERIA-2 STORAGE RING

RADIATION SOURCES AT SIBERIA-2 STORAGE RING RADIATION SOURCES AT SIBERIA-2 STORAGE RING V.N. Korchuganov, N.Yu. Svechnikov, N.V. Smolyakov, S.I. Tomin RRC «Kurchatov Institute», Moscow, Russia Kurchatov Center Synchrotron Radiation undulator undulator

More information

Fundamentals of Accelerators

Fundamentals of Accelerators Fundamentals of Accelerators - 2015 Lecture 9 - Synchrotron Radiation William A. Barletta Director, Dept. of Physics, MIT Economics Faculty, University of Ljubljana Photon energy to frequency conversion

More information

Accelerator Physics Homework #3 P470 (Problems: 1-5)

Accelerator Physics Homework #3 P470 (Problems: 1-5) Accelerator Physics Homework #3 P470 (Problems: -5). Particle motion in the presence of magnetic field errors is (Sect. II.2) y + K(s)y = B Bρ, where y stands for either x or z. Here B = B z for x motion,

More information

Longitudinal Dynamics

Longitudinal Dynamics Longitudinal Dynamics F = e (E + v x B) CAS Bruges 16-25 June 2009 Beam Dynamics D. Brandt 1 Acceleration The accelerator has to provide kinetic energy to the charged particles, i.e. increase the momentum

More information

Lattice Design for the Taiwan Photon Source (TPS) at NSRRC

Lattice Design for the Taiwan Photon Source (TPS) at NSRRC Lattice Design for the Taiwan Photon Source (TPS) at NSRRC Chin-Cheng Kuo On behalf of the TPS Lattice Design Team Ambient Ground Motion and Civil Engineering for Low Emittance Electron Storage Ring Workshop

More information

Accelerator Physics. Accelerator Development

Accelerator Physics. Accelerator Development Accelerator Physics The Taiwan Light Source (TLS) is the first large accelerator project in Taiwan. The goal was to build a high performance accelerator which provides a powerful and versatile light source

More information

SLS at the Paul Scherrer Institute (PSI), Villigen, Switzerland

SLS at the Paul Scherrer Institute (PSI), Villigen, Switzerland SLS at the Paul Scherrer Institute (PSI), Villigen, Switzerland Michael Böge 1 SLS Team at PSI Michael Böge 2 Layout of the SLS Linac, Transferlines Booster Storage Ring (SR) Beamlines and Insertion Devices

More information

Low energy electron storage ring with tunable compaction factor

Low energy electron storage ring with tunable compaction factor REVIEW OF SCIENTIFIC INSTRUMENTS 78, 075107 2007 Low energy electron storage ring with tunable compaction factor S. Y. Lee, J. Kolski, Z. Liu, X. Pang, C. Park, W. Tam, and F. Wang Department of Physics,

More information

TUNE SPREAD STUDIES AT INJECTION ENERGIES FOR THE CERN PROTON SYNCHROTRON BOOSTER

TUNE SPREAD STUDIES AT INJECTION ENERGIES FOR THE CERN PROTON SYNCHROTRON BOOSTER TUNE SPREAD STUDIES AT INJECTION ENERGIES FOR THE CERN PROTON SYNCHROTRON BOOSTER B. Mikulec, A. Findlay, V. Raginel, G. Rumolo, G. Sterbini, CERN, Geneva, Switzerland Abstract In the near future, a new

More information

Accelerator. Physics of PEP-I1. Lecture #7. March 13,1998. Dr. John Seeman

Accelerator. Physics of PEP-I1. Lecture #7. March 13,1998. Dr. John Seeman Accelerator Physics of PEP-1 Lecture #7 March 13,1998 Dr. John Seeman Accelerator Physics of PEPJ John Seeman March 13,1998 1) What is PEP-? Lecture 1 2) 3) Beam parameters for an luminosity of 3~1~~/cm~/sec

More information

Emittance Dilution In Electron/Positron Damping Rings

Emittance Dilution In Electron/Positron Damping Rings Emittance Dilution In Electron/Positron Damping Rings David Rubin (for Jeremy Perrin, Mike Ehrlichman, Sumner Hearth, Stephen Poprocki, Jim Crittenden, and Suntao Wang) Outline CESR Test Accelerator Single

More information

ILC Spin Rotator. Super B Workshop III. Presenter: Jeffrey Smith, Cornell University. with

ILC Spin Rotator. Super B Workshop III. Presenter: Jeffrey Smith, Cornell University. with ILC Spin Rotator Super B Workshop III Presenter: Jeffrey Smith, Cornell University with Peter Schmid, DESY Peter Tenenbaum and Mark Woodley, SLAC Georg Hoffstaetter and David Sagan, Cornell Based on NLC

More information

Accelerator Physics NMI and Synchrotron Radiation. G. A. Krafft Old Dominion University Jefferson Lab Lecture 16

Accelerator Physics NMI and Synchrotron Radiation. G. A. Krafft Old Dominion University Jefferson Lab Lecture 16 Accelerator Physics NMI and Synchrotron Radiation G. A. Krafft Old Dominion University Jefferson Lab Lecture 16 Graduate Accelerator Physics Fall 17 Oscillation Frequency nq I n i Z c E Re Z 1 mode has

More information

Medical Linac. Block diagram. Electron source. Bending magnet. Accelerating structure. Klystron or magnetron. Pulse modulator.

Medical Linac. Block diagram. Electron source. Bending magnet. Accelerating structure. Klystron or magnetron. Pulse modulator. Block diagram Medical Linac Electron source Bending magnet Accelerating structure Pulse modulator Klystron or magnetron Treatment head 1 Medical Linac 2 Treatment Head 3 Important Accessories Wedges Dynamic

More information

Simulations of HL-LHC Crab Cavity Noise using HEADTAIL

Simulations of HL-LHC Crab Cavity Noise using HEADTAIL Simulations of HL-LHC Crab Cavity Noise using HEADTAIL A Senior Project presented to the Faculty of the Physics Department California Polytechnic State University, San Luis Obispo In Partial Fulfillment

More information

Engines of Discovery

Engines of Discovery Engines of Discovery R.S. Orr Department of Physics University of Toronto Berkley 1930 1 MeV Geneva 20089 14 TeV Birth of Particle Physics and Accelerators 1909 Geiger/Marsden MeV a backscattering - Manchester

More information

Particle physics experiments

Particle physics experiments Particle physics experiments Particle physics experiments: collide particles to produce new particles reveal their internal structure and laws of their interactions by observing regularities, measuring

More information

Investigation of the Feasibility of a Free Electron Laser for the Cornell Electron Storage Ring and Linear Accelerator

Investigation of the Feasibility of a Free Electron Laser for the Cornell Electron Storage Ring and Linear Accelerator Investigation of the Feasibility of a Free Electron Laser for the Cornell Electron Storage Ring and Linear Accelerator Marty Zwikel Department of Physics, Grinnell College, Grinnell, IA, 50 Abstract Free

More information

parameter symbol value beam energy E 15 GeV transverse rms beam size x;y 25 m rms bunch length z 20 m charge per bunch Q b 1nC electrons per bunch N b

parameter symbol value beam energy E 15 GeV transverse rms beam size x;y 25 m rms bunch length z 20 m charge per bunch Q b 1nC electrons per bunch N b LCLS{TN{98{2 March 1998 SLAC/AP{109 November 1997 Ion Eects in the LCLS Undulator 1 Frank Zimmermann Stanford Linear Accelerator Center, Stanford University, Stanford, CA 94309 Abstract I calculate the

More information

Emittance preservation in TESLA

Emittance preservation in TESLA Emittance preservation in TESLA R.Brinkmann Deutsches Elektronen-Synchrotron DESY,Hamburg, Germany V.Tsakanov Yerevan Physics Institute/CANDLE, Yerevan, Armenia The main approaches to the emittance preservation

More information

50 MeV 1.4 GeV 25GeV 450 GeV 8 TeV. Sources of emittance growth CAS 07 Liverpool. Sept D. Möhl, slide 1

50 MeV 1.4 GeV 25GeV 450 GeV 8 TeV. Sources of emittance growth CAS 07 Liverpool. Sept D. Möhl, slide 1 * 5 KeV 750 KeV 50 MeV 1.4 GeV 5GeV 450 GeV 8 TeV Sources of emittance growth CAS 07 Liverpool. Sept. 007 D. Möhl, slide 1 Sources of Emittance Growth Dieter Möhl Menu Overview Definition of emittance,

More information

Small Synchrotrons. Michael Benedikt. CERN, AB-Department. CAS, Zeegse, 30/05/05 Small Synchrotrons M. Benedikt 1

Small Synchrotrons. Michael Benedikt. CERN, AB-Department. CAS, Zeegse, 30/05/05 Small Synchrotrons M. Benedikt 1 Small Synchrotrons Michael Benedikt CERN, AB-Department CAS, Zeegse, 30/05/05 Small Synchrotrons M. Benedikt 1 Contents Introduction Synchrotron linac - cyclotron Main elements of the synchrotron Accelerator

More information

Status of the OSC Experiment Preparations

Status of the OSC Experiment Preparations Status of the OSC Experiment Preparations Valeri Lebedev Contribution came from A. Romanov, M. Andorf, J. Ruan FNAL IOTA/FAST Science Program meeting Fermilab June 14, 2016 Test of OSC in Fermilab IOTA

More information

Compressor Lattice Design for SPL Beam

Compressor Lattice Design for SPL Beam EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH CERN A&B DIVISION AB-Note-27-34 BI CERN-NUFACT-Note-153 Compressor Lattice Design for SPL Beam M. Aiba Abstract A compressor ring providing very short proton

More information

SBF Accelerator Principles

SBF Accelerator Principles SBF Accelerator Principles John Seeman SLAC Frascati Workshop November 11, 2005 Topics The Collision Point Design constraints going backwards Design constraints going forward Parameter relations Luminosity

More information

ILC Damping Ring Alternative Lattice Design **

ILC Damping Ring Alternative Lattice Design ** ILC Damping Ring Alternative Lattice Design ** Yi-Peng Sun *,1,2, Jie Gao 1, Zhi-Yu Guo 2 1 Institute of High Energy Physics, CAS, Beijing 2 Key Laboratory of Heavy Ion Physics, Peking University, Beijing

More information

LHeC Recirculator with Energy Recovery Beam Optics Choices

LHeC Recirculator with Energy Recovery Beam Optics Choices LHeC Recirculator with Energy Recovery Beam Optics Choices Alex Bogacz in collaboration with Frank Zimmermann and Daniel Schulte Alex Bogacz 1 Alex Bogacz 2 Alex Bogacz 3 Alex Bogacz 4 Alex Bogacz 5 Alex

More information

Introduction to particle accelerators

Introduction to particle accelerators Introduction to particle accelerators Walter Scandale CERN - AT department Lecce, 17 June 2006 Introductory remarks Particle accelerators are black boxes producing either flux of particles impinging on

More information

Laser-Electron Storage Ring Zhirong Huang and Ronald D. Ruth Stanford Linear Accelerator Center, Stanford University, Stanford, CA (October 16,

Laser-Electron Storage Ring Zhirong Huang and Ronald D. Ruth Stanford Linear Accelerator Center, Stanford University, Stanford, CA (October 16, SLAC{PUB{7556 September 1997 Laser-Electron Storage Ring Zhirong Huang and Ronald D. Ruth Stanford Linear Accelerator Center, Stanford University, Stanford, CA 94309 Abstract A compact laser-electron storage

More information

Transverse Beam Dynamics II

Transverse Beam Dynamics II Transverse Beam Dynamics II II) The State of the Art in High Energy Machines: The Theory of Synchrotrons: Linear Beam Optics The Beam as Particle Ensemble Emittance and Beta-Function Colliding Beams &

More information

Investigation of Coherent Emission from the NSLS VUV Ring

Investigation of Coherent Emission from the NSLS VUV Ring SPIE Accelerator Based Infrared Sources and Spectroscopic Applications Proc. 3775, 88 94 (1999) Investigation of Coherent Emission from the NSLS VUV Ring G.L. Carr, R.P.S.M. Lobo, J.D. LaVeigne, D.H. Reitze,

More information

Beam Diagnostics Lecture 3. Measuring Complex Accelerator Parameters Uli Raich CERN AB-BI

Beam Diagnostics Lecture 3. Measuring Complex Accelerator Parameters Uli Raich CERN AB-BI Beam Diagnostics Lecture 3 Measuring Complex Accelerator Parameters Uli Raich CERN AB-BI Contents of lecture 3 Some examples of measurements done with the instruments explained during the last 2 lectures

More information

Terahertz Coherent Synchrotron Radiation at DAΦNE

Terahertz Coherent Synchrotron Radiation at DAΦNE K K DAΦNE TECHNICAL NOTE INFN - LNF, Accelerator Division Frascati, July 28, 2004 Note: G-61 Terahertz Coherent Synchrotron Radiation at DAΦNE C. Biscari 1, J. M. Byrd 2, M. Castellano 1, M. Cestelli Guidi

More information

3. Particle accelerators

3. Particle accelerators 3. Particle accelerators 3.1 Relativistic particles 3.2 Electrostatic accelerators 3.3 Ring accelerators Betatron // Cyclotron // Synchrotron 3.4 Linear accelerators 3.5 Collider Van-de-Graaf accelerator

More information

10 GeV Synchrotron Longitudinal Dynamics

10 GeV Synchrotron Longitudinal Dynamics 0 GeV Synchrotron Longitudinal Dynamics G. Dugan Laboratory of Nuclear Studies Cornell University Ithaca, NY 483 In this note, I provide some estimates of the parameters of longitudinal dynamics in the

More information

A Proposal of Harmonictron

A Proposal of Harmonictron Memoirs of the Faculty of Engineering, Kyushu University, Vol.77, No.2, December 2017 A Proposal of Harmonictron by Yoshiharu MORI *, Yujiro YONEMURA ** and Hidehiko ARIMA *** (Received November 17, 2017)

More information

Synchrotron Motion. RF cavities. Charged particles gain and lose energy in electric field via

Synchrotron Motion. RF cavities. Charged particles gain and lose energy in electric field via 217 NSRRC FEL Longitudinal Motion (SYL) 1 Synchrotron Motion RF cavities Charged particles gain and lose energy in electric field via Δ. For DC accelerators such as the Cockcroft-Walton and Van-der- Graaff

More information

Research with Synchrotron Radiation. Part I

Research with Synchrotron Radiation. Part I Research with Synchrotron Radiation Part I Ralf Röhlsberger Generation and properties of synchrotron radiation Radiation sources at DESY Synchrotron Radiation Sources at DESY DORIS III 38 beamlines XFEL

More information

Beam Optics for Parity Experiments

Beam Optics for Parity Experiments Beam Optics for Parity Experiments Mark Pitt Virginia Tech (DHB) Electron beam optics in the injector, accelerator, and transport lines to the experimental halls has a significant impact on helicitycorrelated

More information

OBSERVATION OF TRANSVERSE- LONGITUDINAL COUPLING EFFECT AT UVSOR-II

OBSERVATION OF TRANSVERSE- LONGITUDINAL COUPLING EFFECT AT UVSOR-II OBSERVATION OF TRANSVERSE- LONGITUDINAL COUPLING EFFECT AT UVSOR-II The 1st International Particle Accelerator Conference, IPAC 10 Kyoto International Conference Center, May 23-28, 2010 M. Shimada (KEK),

More information

Transverse dynamics. Transverse dynamics: degrees of freedom orthogonal to the reference trajectory

Transverse dynamics. Transverse dynamics: degrees of freedom orthogonal to the reference trajectory Transverse dynamics Transverse dynamics: degrees of freedom orthogonal to the reference trajectory x : the horizontal plane y : the vertical plane Erik Adli, University of Oslo, August 2016, Erik.Adli@fys.uio.no,

More information

RF System Calibration Using Beam Orbits at LEP

RF System Calibration Using Beam Orbits at LEP EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH CERN SL DIVISION CERN-SL-22-28 OP LEP Energy Working Group 2/1 RF System Calibration Using Beam Orbits at LEP J. Wenninger Abstract The target for beam energy

More information

Part V Undulators for Free Electron Lasers

Part V Undulators for Free Electron Lasers Part V Undulators for Free Electron Lasers Pascal ELLEAUME European Synchrotron Radiation Facility, Grenoble V, 1/22, P. Elleaume, CAS, Brunnen July 2-9, 2003. Oscillator-type Free Electron Laser V, 2/22,

More information

Part II Effect of Insertion Devices on the Electron Beam

Part II Effect of Insertion Devices on the Electron Beam Part II Effect of Insertion Devices on the Electron Beam Pascal ELLEAUME European Synchrotron Radiation Facility, Grenoble II, 1/14, P. Elleaume, CAS, Brunnen July -9, 3. Effect of an Insertion Device

More information

Accelerator Physics Issues of ERL Prototype

Accelerator Physics Issues of ERL Prototype Accelerator Physics Issues of ERL Prototype Ivan Bazarov, Geoffrey Krafft Cornell University TJNAF ERL site visit (Mar 7-8, ) Part I (Bazarov). Optics. Space Charge Emittance Compensation in the Injector

More information

ThomX Machine Advisory Committee. (LAL Orsay, March ) Ring Beam Dynamics

ThomX Machine Advisory Committee. (LAL Orsay, March ) Ring Beam Dynamics ThomX Machine Advisory Committee (LAL Orsay, March 20-21 2017) Ring Beam Dynamics A. Loulergue, M. Biagini, C. Bruni, I. Chaikovska I. Debrot, N. Delerue, A. Gamelin, H. Guler, J. Zang Programme Investissements

More information

CSR calculation by paraxial approximation

CSR calculation by paraxial approximation CSR calculation by paraxial approximation Tomonori Agoh (KEK) Seminar at Stanford Linear Accelerator Center, March 3, 2006 Short Bunch Introduction Colliders for high luminosity ERL for short duration

More information

6 Bunch Compressor and Transfer to Main Linac

6 Bunch Compressor and Transfer to Main Linac II-159 6 Bunch Compressor and Transfer to Main Linac 6.1 Introduction The equilibrium bunch length in the damping ring (DR) is 6 mm, too long by an order of magnitude for optimum collider performance (σ

More information

Polarization studies for beam parameters of CEPC and FCCee

Polarization studies for beam parameters of CEPC and FCCee Polarization studies for beam parameters of CEPC and FCCee Ivan Koop, BINP, 630090 Novosibirsk IAS conference, HKUST, Hong Kong, 23.01.2018 I. Koop, IAS 2018 1 Outline Polarization specificity of CEPC

More information

Choosing the Baseline Lattice for the Engineering Design Phase

Choosing the Baseline Lattice for the Engineering Design Phase Third ILC Damping Rings R&D Mini-Workshop KEK, Tsukuba, Japan 18-20 December 2007 Choosing the Baseline Lattice for the Engineering Design Phase Andy Wolski University of Liverpool and the Cockcroft Institute

More information

APPLICATIONS OF ADVANCED SCALING FFAG ACCELERATOR

APPLICATIONS OF ADVANCED SCALING FFAG ACCELERATOR APPLICATIONS OF ADVANCED SCALING FFAG ACCELERATOR JB. Lagrange ), T. Planche ), E. Yamakawa ), Y. Ishi ), Y. Kuriyama ), Y. Mori ), K. Okabe ), T. Uesugi ), ) Graduate School of Engineering, Kyoto University,

More information

Muon Front-End without Cooling

Muon Front-End without Cooling EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH Muon Front-End without Cooling CERN-Nufact-Note-59 K. Hanke Abstract In this note a muon front-end without cooling is presented. The muons are captured, rotated

More information

MODERN OPTICS. P47 Optics: Unit 9

MODERN OPTICS. P47 Optics: Unit 9 MODERN OPTICS P47 Optics: Unit 9 Course Outline Unit 1: Electromagnetic Waves Unit 2: Interaction with Matter Unit 3: Geometric Optics Unit 4: Superposition of Waves Unit 5: Polarization Unit 6: Interference

More information

Free-electron laser SACLA and its basic. Yuji Otake, on behalf of the members of XFEL R&D division RIKEN SPring-8 Center

Free-electron laser SACLA and its basic. Yuji Otake, on behalf of the members of XFEL R&D division RIKEN SPring-8 Center Free-electron laser SACLA and its basic Yuji Otake, on behalf of the members of XFEL R&D division RIKEN SPring-8 Center Light and Its Wavelength, Sizes of Material Virus Mosquito Protein Bacteria Atom

More information

Photonuclear Reactions and Nuclear Transmutation. T. Tajima 1 and H. Ejiri 2

Photonuclear Reactions and Nuclear Transmutation. T. Tajima 1 and H. Ejiri 2 Draft Photonuclear Reactions and Nuclear Transmutation T. Tajima 1 and H. Ejiri 2 1) Kansai JAERI 2) JASRI/SPring-8, Mikazuki-cho, Sayou-gun, Hyougo, 679-5198 JAPAN Abstract Photonuclear reactions are

More information

Introduction to electron and photon beam physics. Zhirong Huang SLAC and Stanford University

Introduction to electron and photon beam physics. Zhirong Huang SLAC and Stanford University Introduction to electron and photon beam physics Zhirong Huang SLAC and Stanford University August 03, 2015 Lecture Plan Electron beams (1.5 hrs) Photon or radiation beams (1 hr) References: 1. J. D. Jackson,

More information

High-Resolution. Transmission. Electron Microscopy

High-Resolution. Transmission. Electron Microscopy Part 4 High-Resolution Transmission Electron Microscopy 186 Significance high-resolution transmission electron microscopy (HRTEM): resolve object details smaller than 1nm (10 9 m) image the interior of

More information

NON LINEAR PULSE EVOLUTION IN SEEDED AND CASCADED FELS

NON LINEAR PULSE EVOLUTION IN SEEDED AND CASCADED FELS NON LINEAR PULSE EVOLUTION IN SEEDED AND CASCADED FELS L. Giannessi, S. Spampinati, ENEA C.R., Frascati, Italy P. Musumeci, INFN & Dipartimento di Fisica, Università di Roma La Sapienza, Roma, Italy Abstract

More information

arxiv: v1 [physics.acc-ph] 22 Aug 2014

arxiv: v1 [physics.acc-ph] 22 Aug 2014 THE SYNCHROTRON MOTION SIMULATOR FOR ADIABATIC CAPTURE STUDY IN THE TLS BOOSTER Cheng-Chin Chiang Taipei Taiwan arxiv:.7v [physics.acc-ph] Aug Abstract The synchrotron motion simulator is invented to simulate

More information