Javier Contreras Sanz- Universidad de Castilla-La Mancha Jesús María López Lezama- Universidad de Antioquia Antonio Padilha-Feltrin- Universidade

Size: px
Start display at page:

Download "Javier Contreras Sanz- Universidad de Castilla-La Mancha Jesús María López Lezama- Universidad de Antioquia Antonio Padilha-Feltrin- Universidade"

Transcription

1 Javier Contreras Sanz- Universidad de Castilla-La Mancha Jesús María López Lezama- Universidad de Antioquia Antonio Padilha-Feltrin- Universidade Estadual Paulista Jose Ignacio Muñoz-Universidad de Castilla-La Mancha

2 Introduction Distributed generation General considerations Power flow approximations Inner optimization problem Outer optimization problem Bilevel model Test and results Final remarks 2

3 In the last decade the electric power industry has shown a renewed interest in distributed generation (DG). This new trend has been mainly motivated by advances in generation technologies that have made smaller generating units viable and feasible along with an increasing awareness of environmental issues. 3

4 DG can be broadly defined as the production of energy by typically small-size generators located near the consumers. There is a number of different technologies that can be used for small-scale electricity generation. Technologies that use conventional energy resources include gas turbines, fuel cells and microturbines. Technologies that use renewable energy resources include wind turbines, photovoltaic arrays, biomass systems and geothermal generation. 4

5 Motivations Deregulation of electric utility industry Significant advances in generation technologies New environmental policies Rapid increase in electric power demand Main applications Peak shaving Combined Heat and Power Isolated systems 5

6 Investment deferral in T&D Increased security for critical loads Relief of T&D congestion Reduced emissions of pollutants Distributed Generation 6

7 Two different agents are considered, namely, the distribution company (DisCo) and the owner of the DG. To attend the expected demand, the DisCo can purchase energy either form the DG units within its network, or from the wholesale energy market through its substations. Both agents have different objective functions, the DisCo procures the minimization of the payments incurred in attending the expected demand, while the owner of the DG procures the maximization of the profits obtained by selling energy to the DisCo. 7

8 The DisCo receives a contract price offer, and a declared capacity of the DG units located in its network. The DisCo must weigh the DG energy contract price offer (considering its location) with the potential benefits obtained from the dispatch of these units. If the power injected by a DG unit contributes to the enforcement of a voltage constraint and/or has a positive impact reducing power losses, then, even if the DG energy contract price offer is slightly higher than the wholesale market price, the DG unit is likely to be dispatched. 8

9 If the DG unit has a negative impact in the distribution network it might not be dispatched, even if its contract price is lower than the wholesale market price. On the other hand, in order to obtain maximum profits, the DG owner must consider the reasoning of the DisCo when deciding the contract price offer and location of its units. Regarding location, the DG owner is given a set of nodes in which he can allocate his units. This set of nodes is decided previously by the DisCo. The two-agent relationship described above can be modeled as a bilevel programming problem. 9

10 Bilevel programming scheme 10

11 Unlike transmission systems, in distribution systems, power flows are given mainly due to the difference in voltage magnitudes. Then, the following approximations are considered: P nm.( ) V V V n n m Z nm loss nm = nm + mn P P P Active power flow between nodes n,m P loss nm = ( V V ) 2 n Z nm m Active power losses in line connecting nodes n,m 11

12 The inner optimization problem corresponds to the DisCo who must minimize the payments incurred in attending the expected demand, subject to network constraints. se gk Min Δ tρ () t P () t + ΔtCp P () t dg gj P, P, V n se dg k gk j gj k K t T j J t T Energy purchaded on the wholesale energy market through the substations. Energy purchased from the DG units. 12

13 Subject to: Power balance ( ) ( ) Vn(). t Vn() t Vm() t Vm(). t Vm() t Vn() t + Z Z m Ωn nm m Ωn m> n m< n ( V () ()) 2 n t Vm t + Pgn () t Pdn () t = 0 n N, t T : π ( n,) t Z m Ωn nm Power flow limits ( ) Vn(). t Vn() t Vm() t Pnm Pnm; l nm L, t T : φ(l nm, t); φ(l nm, t) Z nm mn 13

14 Voltage limits V V() t V; n N, t T : ω(,); nt ω(,) nt n n n DG active power limits dg dg dg gj gj gj P P () t P ; j J, t T : β( j,); t β( j,) t Substation active power limits se se se gk gk gk P P () t P ; k K, t T : δ ( k,); t δ( k,) t 14

15 The outer optimization problem corresponds to the owner of the DG who must maximize profits. Contract price Energy cost ( ) Max Δt Cp c P () t Cp j t T Subject to j J : dg j j gj dg min dg dg max gj gj gj P P () t P ; j J, t T i I { } B = ndg; B 0,1 i i 15

16 Both problems can be expressed as a bilevel programming problem: P, P, V ( ) Max Δt Cp c P () t Cp j Subject to : B = ndg; B 0,1 { } Min Δ tρ () t P () t + ΔtCp P () t se gk i I t T dg gj i j J n Subject to : dg j j gj i se dg k gk j gj k K t T j J t T Network constraints 16

17 A BLPP is a single-round Stackelberg game. In this game there are two types of agents, namely, the leader and the followers. The leader makes his move first anticipating the reaction of the followers, then the followers move sequentially knowing the move of the leader. In this case the leader is the owner of the DG units, and the follower is the Disco. Furthermore, the price and location of the DG units are parameters, and not decision variables, of the inner problem. Assuming convexity, the inner optimization problem can be substituted by its Karush-Kuhn-Tucker optimality conditions. 17

18 Min f ( x) x Subject to : hx ( ) = 0 gx ( ) 0 KKT optimality conditions Stationary condition of the Lagrangean P f( x) + λ h ( x) + μ g ( x) = 0 p p= 1 q= 1 h ( x) = 0 p = 1,..., P g ( x) 0 q = 1,..., Q μ g ( x) = 0 q = 1,..., Q q p q q p Primal feasibility condition Complementarity condition Q Dual feasibility condition Q μ q = 1,..., q q q 18

19 Substituting the inner optimization problem by its KKT optimality conditions, the following single-level optimization problem is obtained: P, P, V, Cp ( ) Max Δt Cp c P () t se dg gk gj n j Subject to : i I t T j J { } B = ndg; B 0,1 i i dg j j gj Primal feasibility conditions 19

20 Stationary condition of the Lagrangean: ( Vn() t Vm() t ) V () t ( Vn() t Vm() t ) m + + Z m n nm Z m n mn Z Ω Ω m Ωn nm m> n m< n + ω( nt, ) ω( nt, ) + φ( l, t) Vm () t φ( l, t) φ( l, t) Z ( Vn() t Vm() t ) Vm () t + φ( lnm, t) n> m = 0; n N, t T Z nm n< m nm n> m nm n< m nm nm Z nm ( Vn() t Vm() t ) Z nm 20

21 Complementarity and dual feasibility conditions: Cp π( n, t) + β( j, t) β( j, t) = 0; j J, t T j ρ () t π( n,) t + δ ( k,) t δ( k,) t = 0; k K, t T k ( ) n n ( ) ω( nt, ) V( t) V = 0; ω( nt, ) 0; n N, t T ω( nt, ) V( t) + V = 0; ω( nt, ) 0; n N, t T n ( dg dg ) gj gj ( dg dg ) gj gj ( se se ) gk gk ( se se ) gk gk n β( j, t) P ( t) P = 0; β( j, t) 0; j J, t T β ( jt, ) P ( t) + P = 0; β ( j, t) 0; j J, t T δ ( kt, ) P ( t) P = 0; δ ( kt, ) 0; k K, t T δ( kt, ) P ( t) + P = 0; δ( kt, ) 0; k K, t 21

22 Several tests were carried out with a 10-bus distribution system. Load and price duration curves were consider for a one-year contract. Example of a load duration curve and its approximation. 22

23 Load and price duration curves are related since higher prices on the wholesale market are expected to take place precisely during the peak hours, conversely, lower prices are expected during off peak hours. Load duration curve Price duration curve Load (MW) Time (%) Energy market price ( /MWh) Time (%) 23

24 For the sake of simplicity and without lose of generality, we consider the loads to be equally divided among the 10 nodes. Furthermore, we consider an impedance of Ω for all lines. However, any load distribution and impedance can be used. 24

25 Locational marginal prices for a peak load of 50 MW and a wholesale market price of 60/MWh are shown in the figure below. It can be observed that despite of the fact that the energy price at the substation is 60/MWh, providing an additional MW to bus 10 costs 74.4/MWh Locational marginal price ( /MWh) Bus 25

26 The voltage profile of the system for the peak hour (50 MW) without DG is presented in the figure below. It can be observed that the further away from the substation, the lower the voltages are Voltage (p.u) Bus 26

27 Case 1: We assume that there is only one single DG unit of 4 MW to be allocated in any node from 6 to 10. Furthermore, we consider a production cost of 50/MWh for the DG unit. Solution: Location: Bus 10 Contract price: 63.38/MWh Set of possible nodes where to allocate the DG unit. 27

28 1.06 Voltage profile of the distribution system for the peak hour with and without DG. Voltage (p.u) Without DG With DG Bus Locational marginal prices of the distribution system for the peak hour with and witout DG. Locational marginal price ( /MWh) Without DG With DG Bus 28

29 In this case the DG improves the voltage profile and reduces the locational marginal prices of the system. That is because the net load of the system is reduced due to the presence of the DG. The relationship between price offer and profits for the DG unit located in bus 10 is shown in the figure below. 2 x Profit ( ) Price offer ( /MWh) 29

30 Case 2: We consider two DG units named as DG1 and DG2. Each unit has a capacity of 4 MW and a production cost of 50/MWh. The DG units can be allocated in any node form 6 to 10. Solution: DG1: Bus 9 Contract price DG1: 54.83/MWh DG2: Bus 10 Contract price DG2: 55.82/MWh Set of possible nodes where to allocate the DG units 30

31 75 With an increasing penetration of DG the locational marginal prices tend to decrease, as shown in the figure. Locational marginal price ( /MWh) Without DG Only DG1 DG1 and DG Bus 1.06 Voltage profile also improves with an increasing penetration of DG, as shown in the figure. Voltage (p.u) Without DG Only DG1 DG1 and DG Bus 31

32 Table 1. Optimal location and contract prices Case Bus location Contract price Profits ( ) One DG unit ,521 Two DG units , ,359 It was observed that when two DG units are allocated, the optimal contract price per DG unit reduces, as well as the profit obtained per DG unit. However, total profits are higher with two DG units. 32

33 Total payments and energy losses of the DisCo Case Payments (M ) Energy losses (MWh) Without DG 19,077 21,297 One DG unit 19,002 18,563 Two DG units 18,718 14,896 The Disco benefits from the DG units since annual total payments and energy losses decrease. In case 2 (two DG units) a reduction of % of energy losses was obtained. 33

34 It was found that the most suitable location for the DG units are those nodes with the highest locational marginal prices. The DG improves the voltage profile and reduces the locational marginal prices of the network. The benefits of the DG depend on its location and size. A high penetration of DG might lead to reverse power flows with a subsequent increase in power losses. Further work will include non-dispatchable technologies, as well as the inclusion of stochasticity in the model. 34

A three-level MILP model for generation and transmission expansion planning

A three-level MILP model for generation and transmission expansion planning A three-level MILP model for generation and transmission expansion planning David Pozo Cámara (UCLM) Enzo E. Sauma Santís (PUC) Javier Contreras Sanz (UCLM) Contents 1. Introduction 2. Aims and contributions

More information

Chapter 5. Transmission networks and electricity markets

Chapter 5. Transmission networks and electricity markets Chapter 5. Transmission networks and electricity markets 1 Introduction In most of the regions of the world: assumptions that electrical energy can be traded as if all generators were connected to the

More information

A BI-LEVEL APPROACH FOR OPTIMAL CONTRACT PRICING OF INDEPENDENT DISPATCHABLE DG UNITS IN DISTRIBUTION NETWORKS

A BI-LEVEL APPROACH FOR OPTIMAL CONTRACT PRICING OF INDEPENDENT DISPATCHABLE DG UNITS IN DISTRIBUTION NETWORKS A BI-LEVEL APPROACH FOR OPTIMAL CONTRACT PRICING OF INDEPENDENT DISPATCHABLE DG UNITS IN DISTRIBUTION NETWORKS Ashkan Sadeghi Mobarakeh, Abbas Rajabi-Ghahnavieh*, Hossein Haghighat** *Sharif University

More information

The DC Optimal Power Flow

The DC Optimal Power Flow 1 / 20 The DC Optimal Power Flow Quantitative Energy Economics Anthony Papavasiliou The DC Optimal Power Flow 2 / 20 1 The OPF Using PTDFs 2 The OPF Using Reactance 3 / 20 Transmission Constraints Lines

More information

Energy System Modelling Summer Semester 2018, Lecture 7

Energy System Modelling Summer Semester 2018, Lecture 7 Energy System Modelling Summer Semester 2018, Lecture 7 Dr. Tom Brown, tom.brown@kit.edu, https://nworbmot.org/ Karlsruhe Institute of Technology (KIT), Institute for Automation and Applied Informatics

More information

Deregulated Electricity Market for Smart Grid: A Network Economic Approach

Deregulated Electricity Market for Smart Grid: A Network Economic Approach Deregulated Electricity Market for Smart Grid: A Network Economic Approach Chenye Wu Institute for Interdisciplinary Information Sciences (IIIS) Tsinghua University Chenye Wu (IIIS) Network Economic Approach

More information

Tutorial 2: Modelling Transmission

Tutorial 2: Modelling Transmission Tutorial 2: Modelling Transmission In our previous example the load and generation were at the same bus. In this tutorial we will see how to model the transmission of power from one bus to another. The

More information

Perfect and Imperfect Competition in Electricity Markets

Perfect and Imperfect Competition in Electricity Markets Perfect and Imperfect Competition in Electricity Marets DTU CEE Summer School 2018 June 25-29, 2018 Contact: Vladimir Dvorin (vladvo@eletro.dtu.d) Jalal Kazempour (seyaz@eletro.dtu.d) Deadline: August

More information

Bilevel Programming-Based Unit Commitment for Locational Marginal Price Computation

Bilevel Programming-Based Unit Commitment for Locational Marginal Price Computation Bilevel Programming-Based Unit Commitment for Locational Marginal Price Computation Presentation at 50 th North American Power Symposium Abdullah Alassaf Department of Electrical Engineering University

More information

Optimal Placement & sizing of Distributed Generator (DG)

Optimal Placement & sizing of Distributed Generator (DG) Chapter - 5 Optimal Placement & sizing of Distributed Generator (DG) - A Single Objective Approach CHAPTER - 5 Distributed Generation (DG) for Power Loss Minimization 5. Introduction Distributed generators

More information

Course notes for EE394V Restructured Electricity Markets: Locational Marginal Pricing

Course notes for EE394V Restructured Electricity Markets: Locational Marginal Pricing Course notes for EE394V Restructured Electricity Markets: Locational Marginal Pricing Ross Baldick Copyright c 2013 Ross Baldick www.ece.utexas.edu/ baldick/classes/394v/ee394v.html Title Page 1 of 132

More information

Coupled Optimization Models for Planning and Operation of Power Systems on Multiple Scales

Coupled Optimization Models for Planning and Operation of Power Systems on Multiple Scales Coupled Optimization Models for Planning and Operation of Power Systems on Multiple Scales Michael C. Ferris University of Wisconsin, Madison Computational Needs for the Next Generation Electric Grid,

More information

Design Patent Damages under Sequential Innovation

Design Patent Damages under Sequential Innovation Design Patent Damages under Sequential Innovation Yongmin Chen and David Sappington University of Colorado and University of Florida February 2016 1 / 32 1. Introduction Patent policy: patent protection

More information

Optimal Demand Response

Optimal Demand Response Optimal Demand Response Libin Jiang Steven Low Computing + Math Sciences Electrical Engineering Caltech June 2011 Outline o Motivation o Demand response model o Some results Wind power over land (outside

More information

Optimal Demand Response

Optimal Demand Response Optimal Demand Response Libin Jiang Steven Low Computing + Math Sciences Electrical Engineering Caltech Oct 2011 Outline Caltech smart grid research Optimal demand response Global trends 1 Exploding renewables

More information

SHORT-TERM hydropower planning under uncertainty is

SHORT-TERM hydropower planning under uncertainty is Proceedings of the International MultiConference of Engineers and Computer Scientists 015 Vol II, IMECS 015, March 18-0, 015, Hong Kong Hydropower Producer Day-ahead Market Strategic Offering Using Stochastic

More information

Application of Teaching Learning Based Optimization for Size and Location Determination of Distributed Generation in Radial Distribution System.

Application of Teaching Learning Based Optimization for Size and Location Determination of Distributed Generation in Radial Distribution System. Application of Teaching Learning Based Optimization for Size and Location Determination of Distributed Generation in Radial Distribution System. Khyati Mistry Electrical Engineering Department. Sardar

More information

Weighting Transmission Loading Relief Nodal. Indexes for the Optimal Allocation of Distributed. Generation in Power Systems

Weighting Transmission Loading Relief Nodal. Indexes for the Optimal Allocation of Distributed. Generation in Power Systems Contemporary Engineering Sciences, Vol. 11, 2018, no. 53, 2601-2611 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ces.2018.86266 Weighting Transmission Loading Relief Nodal Indexes for the Optimal

More information

DIMACS, Rutgers U January 21, 2013 Michael Caramanis

DIMACS, Rutgers U January 21, 2013 Michael Caramanis Power Market Participation of Flexible Loads and Reactive Power Providers: Real Power, Reactive Power, and Regulation Reserve Capacity Pricing at T&D Networks DIMACS, Rutgers U January 21, 2013 Michael

More information

Concave programming. Concave programming is another special case of the general constrained optimization. subject to g(x) 0

Concave programming. Concave programming is another special case of the general constrained optimization. subject to g(x) 0 1 Introduction Concave programming Concave programming is another special case of the general constrained optimization problem max f(x) subject to g(x) 0 in which the objective function f is concave and

More information

EVALUATION OF WIND ENERGY SOURCES INFLUENCE ON COMPOSITE GENERATION AND TRANSMISSION SYSTEMS RELIABILITY

EVALUATION OF WIND ENERGY SOURCES INFLUENCE ON COMPOSITE GENERATION AND TRANSMISSION SYSTEMS RELIABILITY EVALUATION OF WIND ENERGY SOURCES INFLUENCE ON COMPOSITE GENERATION AND TRANSMISSION SYSTEMS RELIABILITY Carmen Lucia Tancredo Borges João Paulo Galvão carmen@dee.ufrj.br joaopaulo@mercados.com.br Federal

More information

Mixed Integer Linear Programming Formulation for Chance Constrained Mathematical Programs with Equilibrium Constraints

Mixed Integer Linear Programming Formulation for Chance Constrained Mathematical Programs with Equilibrium Constraints Mixed Integer Linear Programming Formulation for Chance Constrained Mathematical Programs with Equilibrium Constraints ayed A. adat and Lingling Fan University of outh Florida, email: linglingfan@usf.edu

More information

A Merchant Mechanism for Electricity Transmission Expansion

A Merchant Mechanism for Electricity Transmission Expansion A Merchant Mechanism for Electricity Transmission Expansion Tarjei Kristiansen, Norwegian University of Science and Technology. Tarjei.Kristiansen@elkraft.ntnu.no Juan Rosellon, Harvard University/CIDE.

More information

On the Efficiency of Local Electricity Markets Under Decentralized and Centralized Designs: A Multi-leader Stackelberg Game Analysis

On the Efficiency of Local Electricity Markets Under Decentralized and Centralized Designs: A Multi-leader Stackelberg Game Analysis On the Efficiency of Local Electricity Markets Under Decentralized and Centralized Designs: A Multi-leader Stackelberg Game Analysis Hélène Le Cadre To cite this version: Hélène Le Cadre. On the Efficiency

More information

I. Why power? II. Model definition III. Model uses IV. The basics. A. Supply Dispatch B. Demand Bidding. D. Transmission

I. Why power? II. Model definition III. Model uses IV. The basics. A. Supply Dispatch B. Demand Bidding. D. Transmission Electric Power Markets: Why is Electricity Different? Dumb Grids, the Ultimate Just-in in-time Problem, & Polar Bears Benjamin F. Hobbs & Daniel Ralph Whiting School of Engineering The Johns Hopkins University

More information

A Market Mechanism for Electric Distribution Networks

A Market Mechanism for Electric Distribution Networks 2015 IEEE 54th Annual Conference on Decision and Control (CDC) December 15-18, 2015. Osaa, Japan A Maret Mechanism for Electric Distribution Networs Na Li Abstract To encourage end-users to participate

More information

A Contract for Demand Response based on Probability of Call

A Contract for Demand Response based on Probability of Call A Contract for Demand Response based on Probability of Call Jose Vuelvas, Fredy Ruiz and Giambattista Gruosso Pontificia Universidad Javeriana - Politecnico di Milano 2018 1 2 Outline Introduction Problem

More information

Pb1 y13 =-j10 Pb5. Pb4. y34 =-j10

Pb1 y13 =-j10 Pb5. Pb4. y34 =-j10 EE 55, Exam, Take-home. Due Monday, April, 06, 5:00pm. You may use class notes or any reference materials (e.g., books, etc.) that you like; however, you must work alone, i.e., you should not be communicating

More information

Capacity Expansion in the Integrated Supply Network for an Electricity Market

Capacity Expansion in the Integrated Supply Network for an Electricity Market Industrial and Manufacturing Systems Engineering Publications Industrial and Manufacturing Systems Engineering 2011 Capacity Expansion in the Integrated Supply Network for an Electricity Market Shan Jin

More information

Mixed-integer Bilevel Optimization for Capacity Planning with Rational Markets

Mixed-integer Bilevel Optimization for Capacity Planning with Rational Markets Mixed-integer Bilevel Optimization for Capacity Planning with Rational Markets Pablo Garcia-Herreros a, Lei Zhang b, Pratik Misra c, Sanjay Mehta c, and Ignacio E. Grossmann a a Department of Chemical

More information

Modeling, equilibria, power and risk

Modeling, equilibria, power and risk Modeling, equilibria, power and risk Michael C. Ferris Joint work with Andy Philpott and Roger Wets University of Wisconsin, Madison Workshop on Stochastic Optimization and Equilibrium University of Southern

More information

Bringing Renewables to the Grid. John Dumas Director Wholesale Market Operations ERCOT

Bringing Renewables to the Grid. John Dumas Director Wholesale Market Operations ERCOT Bringing Renewables to the Grid John Dumas Director Wholesale Market Operations ERCOT 2011 Summer Seminar August 2, 2011 Quick Overview of ERCOT The ERCOT Market covers ~85% of Texas overall power usage

More information

A Progressive Hedging Approach to Multistage Stochastic Generation and Transmission Investment Planning

A Progressive Hedging Approach to Multistage Stochastic Generation and Transmission Investment Planning A Progressive Hedging Approach to Multistage Stochastic Generation and Transmission Investment Planning Yixian Liu Ramteen Sioshansi Integrated Systems Engineering Department The Ohio State University

More information

Numerical illustration

Numerical illustration A umerical illustration Inverse demand is P q, t = a 0 a 1 e λ 2t bq, states of the world are distributed according to f t = λ 1 e λ 1t, and rationing is anticipated and proportional. a 0, a 1, λ = λ 1

More information

Mathematical Foundations -1- Constrained Optimization. Constrained Optimization. An intuitive approach 2. First Order Conditions (FOC) 7

Mathematical Foundations -1- Constrained Optimization. Constrained Optimization. An intuitive approach 2. First Order Conditions (FOC) 7 Mathematical Foundations -- Constrained Optimization Constrained Optimization An intuitive approach First Order Conditions (FOC) 7 Constraint qualifications 9 Formal statement of the FOC for a maximum

More information

More on Lagrange multipliers

More on Lagrange multipliers More on Lagrange multipliers CE 377K April 21, 2015 REVIEW The standard form for a nonlinear optimization problem is min x f (x) s.t. g 1 (x) 0. g l (x) 0 h 1 (x) = 0. h m (x) = 0 The objective function

More information

Battery Energy Storage

Battery Energy Storage Battery Energy Storage Implications for Load Shapes and Forecasting April 28, 2017 TOPICS» What is Energy Storage» Storage Market, Costs, Regulatory Background» Behind the Meter (BTM) Battery Storage Where

More information

A possible notion of short-term value-based reliability

A possible notion of short-term value-based reliability Energy Laboratory MIT EL 1-13 WP Massachusetts Institute of Technology A possible notion of short-term value-based reliability August 21 A possible notion of short-term value-based reliability Yong TYoon,

More information

Real-Time Demand Response with Uncertain Renewable Energy in Smart Grid

Real-Time Demand Response with Uncertain Renewable Energy in Smart Grid Forty-Ninth Annual Allerton Conference Allerton House, UIUC, Illinois, USA September 28-3, 211 Real-Time Demand Response with Uncertain Renewable Energy in Smart Grid Libin Jiang and Steven Low Engineering

More information

Multi-Area Stochastic Unit Commitment for High Wind Penetration in a Transmission Constrained Network

Multi-Area Stochastic Unit Commitment for High Wind Penetration in a Transmission Constrained Network Multi-Area Stochastic Unit Commitment for High Wind Penetration in a Transmission Constrained Network Anthony Papavasiliou Center for Operations Research and Econometrics Université catholique de Louvain,

More information

Game Theoretic Approach for Elastic and Inelastic Demand Management in Microgrid

Game Theoretic Approach for Elastic and Inelastic Demand Management in Microgrid Game Theoretic Approach for Elastic and Inelastic Demand Management in Microgrid Anonymous ID: 4 December 22, 2011 Abstract Smart grid, which consists of many small microgrids, leads to a more stable and

More information

03-Economic Dispatch 1. EE570 Energy Utilization & Conservation Professor Henry Louie

03-Economic Dispatch 1. EE570 Energy Utilization & Conservation Professor Henry Louie 03-Economic Dispatch 1 EE570 Energy Utilization & Conservation Professor Henry Louie 1 Topics Generator Curves Economic Dispatch (ED) Formulation ED (No Generator Limits, No Losses) ED (No Losses) ED Example

More information

Welfare Effects of Expansions in Equilibrium Models of an Electricity Market with Fuel Network

Welfare Effects of Expansions in Equilibrium Models of an Electricity Market with Fuel Network Industrial and Manufacturing Systems Engineering Publications Industrial and Manufacturing Systems Engineering 2010 Welfare Effects of Expansions in Equilibrium Models of an Electricity Market with Fuel

More information

Dual decomposition approach for dynamic spatial equilibrium models

Dual decomposition approach for dynamic spatial equilibrium models Dual decomposition approach for dynamic spatial equilibrium models E. Allevi (1), A. Gnudi (2), I.V. Konnov (3), G. Oggioni (1) (1) University of Brescia, Italy (2) University of Bergamo, Italy (3) Kazan

More information

Tradable Permits for System-Optimized Networks. Anna Nagurney Isenberg School of Management University of Massachusetts Amherst, MA 01003

Tradable Permits for System-Optimized Networks. Anna Nagurney Isenberg School of Management University of Massachusetts Amherst, MA 01003 Tradable Permits for System-Optimized Networks Anna Nagurney Isenberg School of Management University of Massachusetts Amherst, MA 01003 c 2002 Introduction In this lecture, I return to the policy mechanism

More information

Computing risk averse equilibrium in incomplete market. Henri Gerard Andy Philpott, Vincent Leclère

Computing risk averse equilibrium in incomplete market. Henri Gerard Andy Philpott, Vincent Leclère Computing risk averse equilibrium in incomplete market Henri Gerard Andy Philpott, Vincent Leclère YEQT XI: Winterschool on Energy Systems Netherlands, December, 2017 CERMICS - EPOC 1/43 Uncertainty on

More information

Revenue Maximization in a Cloud Federation

Revenue Maximization in a Cloud Federation Revenue Maximization in a Cloud Federation Makhlouf Hadji and Djamal Zeghlache September 14th, 2015 IRT SystemX/ Telecom SudParis Makhlouf Hadji Outline of the presentation 01 Introduction 02 03 04 05

More information

SIGNIFICANT increase in amount of private distributed

SIGNIFICANT increase in amount of private distributed 1 Distributed DC Optimal Power Flow for Radial Networks Through Partial Primal Dual Algorithm Vahid Rasouli Disfani, Student Member, IEEE, Lingling Fan, Senior Member, IEEE, Zhixin Miao, Senior Member,

More information

Analytical Study Based Optimal Placement of Energy Storage Devices in Distribution Systems to Support Voltage and Angle Stability

Analytical Study Based Optimal Placement of Energy Storage Devices in Distribution Systems to Support Voltage and Angle Stability University of Wisconsin Milwaukee UWM Digital Commons Theses and Dissertations June 2017 Analytical Study Based Optimal Placement of Energy Storage Devices in Distribution Systems to Support Voltage and

More information

Optimization Basics for Electric Power Markets

Optimization Basics for Electric Power Markets Optimization Basics for Electric Power Markets Presenter: Leigh Tesfatsion Professor of Econ, Math, and ECpE Iowa State University Ames, Iowa 50011-1070 http://www.econ.iastate.edu/tesfatsi/ tesfatsi@iastate.edu

More information

On-line supplement to: SMART: A Stochastic Multiscale Model for the Analysis of Energy Resources, Technology

On-line supplement to: SMART: A Stochastic Multiscale Model for the Analysis of Energy Resources, Technology On-line supplement to: SMART: A Stochastic Multiscale Model for e Analysis of Energy Resources, Technology and Policy This online supplement provides a more detailed version of e model, followed by derivations

More information

Topics in Data Mining Fall Bruno Ribeiro

Topics in Data Mining Fall Bruno Ribeiro Network Utility Maximization Topics in Data Mining Fall 2015 Bruno Ribeiro 2015 Bruno Ribeiro Data Mining for Smar t Cities Need congestion control 2 Supply and Demand (A Dating Website [China]) Males

More information

PowerApps Optimal Power Flow Formulation

PowerApps Optimal Power Flow Formulation PowerApps Optimal Power Flow Formulation Page1 Table of Contents 1 OPF Problem Statement... 3 1.1 Vector u... 3 1.1.1 Costs Associated with Vector [u] for Economic Dispatch... 4 1.1.2 Costs Associated

More information

Capacity Planning with uncertainty in Industrial Gas Markets

Capacity Planning with uncertainty in Industrial Gas Markets Capacity Planning with uncertainty in Industrial Gas Markets A. Kandiraju, P. Garcia Herreros, E. Arslan, P. Misra, S. Mehta & I.E. Grossmann EWO meeting September, 2015 1 Motivation Industrial gas markets

More information

Complex Renewable Energy Networks: Power flows and markets

Complex Renewable Energy Networks: Power flows and markets Complex Renewable Energy Networks: Power flows and markets Mirko Schäfer 14th June 2016 Frankfurt Institute of Advanced Studies (FIAS), Goethe-Universität Frankfurt FIAS Renewable Energy System and Network

More information

Coordinated Multilateral Trades for Electric Power Networks: Theory and Implementation. Felix F. Wu and Pravin Varaiya

Coordinated Multilateral Trades for Electric Power Networks: Theory and Implementation. Felix F. Wu and Pravin Varaiya PWP-031 Coordinated Multilateral Trades for Electric Power Networks: Theory and Implementation Felix F. Wu and Pravin Varaiya June 1995 This paper is part of the working papers series of the Program on

More information

Mechanism design and allocation algorithms for energy-network markets with piece-wise linear costs and quadratic externalities

Mechanism design and allocation algorithms for energy-network markets with piece-wise linear costs and quadratic externalities 1 / 45 Mechanism design and allocation algorithms for energy-network markets with piece-wise linear costs and quadratic externalities Alejandro Jofré 1 Center for Mathematical Modeling & DIM Universidad

More information

POWER systems are one of the most critical infrastructures

POWER systems are one of the most critical infrastructures 1 Capacity Controlled Demand Side Management: A Stochastic Pricing Analysis Kostas Margellos, Member, IEEE, and Shmuel Oren, Fellow, IEEE Abstract We consider a novel paradigm for demand side management,

More information

A new stochastic program to facilitate intermittent renewable generation

A new stochastic program to facilitate intermittent renewable generation A new stochastic program to facilitate intermittent renewable generation Golbon Zakeri Geoff Pritchard, Mette Bjorndal, Endre Bjorndal EPOC UoA and Bergen, IPAM 2016 Premise for our model Growing need

More information

Duration and deadline differentiated demand: a model of flexible demand

Duration and deadline differentiated demand: a model of flexible demand Duration and deadline differentiated demand: a model of flexible demand A. Nayyar, M. Negrete-Pincetić, K. Poolla, W. Chen, Y.Mo, L. Qiu, P. Varaiya May, 2016 1 / 21 Outline Duration-differentiated (DD)

More information

Draft Wholesale Power Price Forecasts

Draft Wholesale Power Price Forecasts Sixth & Electric Power Plan Draft Wholesale Power Price Forecasts Maury Galbraith Generating Resource Advisory Committee Meeting Portland, OR December 18, 28 Outline 1. Overall Perspective: Major AURORA

More information

Are Targets for Renewable Portfolio Standards Too Low? A Complementarity-Based Policy Analysis

Are Targets for Renewable Portfolio Standards Too Low? A Complementarity-Based Policy Analysis Are Targets for Renewable Portfolio Standards Too Low? A Complementarity-Based Policy Analysis Afzal S Siddiqui a Yihsu Chen b Makoto Tanaka c a Department of Statistical Science, University College London

More information

Generation Expansion Planning

Generation Expansion Planning Generation Exansion Planning Based on Multi-area eliability Exonential Analytic Model and Emission Control Lin Cheng singhua Univ. Generation Exansion Planning Considerationsrequirements of ower demands,

More information

EC487 Advanced Microeconomics, Part I: Lecture 5

EC487 Advanced Microeconomics, Part I: Lecture 5 EC487 Advanced Microeconomics, Part I: Lecture 5 Leonardo Felli 32L.LG.04 27 October, 207 Pareto Efficient Allocation Recall the following result: Result An allocation x is Pareto-efficient if and only

More information

Moral Hazard: Part 1. April 9, 2018

Moral Hazard: Part 1. April 9, 2018 Moral Hazard: Part 1 April 9, 2018 Introduction In a standard moral hazard problem, the agent A is characterized by only one type. As with adverse selection, the principal P wants to engage in an economic

More information

ECG 740 GENERATION SCHEDULING (UNIT COMMITMENT)

ECG 740 GENERATION SCHEDULING (UNIT COMMITMENT) 1 ECG 740 GENERATION SCHEDULING (UNIT COMMITMENT) 2 Unit Commitment Given a load profile, e.g., values of the load for each hour of a day. Given set of units available, When should each unit be started,

More information

Optimization and Equilibrium in Energy Economics

Optimization and Equilibrium in Energy Economics Optimization and Equilibrium in Energy Economics Michael C. Ferris University of Wisconsin, Madison IPAM Workshop Los Angeles January 11, 2016 Ferris (Univ. Wisconsin) IPAM 2016 Supported by DOE/LBNL 1

More information

Simultaneous placement of Distributed Generation and D-Statcom in a radial distribution system using Loss Sensitivity Factor

Simultaneous placement of Distributed Generation and D-Statcom in a radial distribution system using Loss Sensitivity Factor Simultaneous placement of Distributed Generation and D-Statcom in a radial distribution system using Loss Sensitivity Factor 1 Champa G, 2 Sunita M N University Visvesvaraya college of Engineering Bengaluru,

More information

A Unified Framework for Defining and Measuring Flexibility in Power System

A Unified Framework for Defining and Measuring Flexibility in Power System J A N 1 1, 2 0 1 6, A Unified Framework for Defining and Measuring Flexibility in Power System Optimization and Equilibrium in Energy Economics Workshop Jinye Zhao, Tongxin Zheng, Eugene Litvinov Outline

More information

Addendum to: Dual Sales Channel Management with Service Competition

Addendum to: Dual Sales Channel Management with Service Competition Addendum to: Dual Sales Channel Management with Service Competition Kay-Yut Chen Murat Kaya Özalp Özer Management Science & Engineering, Stanford University, Stanford, CA. December, 006 1. Single-Channel

More information

Sensitivity Analysis and Duality in LP

Sensitivity Analysis and Duality in LP Sensitivity Analysis and Duality in LP Xiaoxi Li EMS & IAS, Wuhan University Oct. 13th, 2016 (week vi) Operations Research (Li, X.) Sensitivity Analysis and Duality in LP Oct. 13th, 2016 (week vi) 1 /

More information

Decomposition Techniques in Mathematical Programming

Decomposition Techniques in Mathematical Programming Antonio J. Conejo Enrique Castillo Roberto Minguez Raquel Garcia-Bertrand Decomposition Techniques in Mathematical Programming Engineering and Science Applications Springer Contents Part I Motivation and

More information

Structured Problems and Algorithms

Structured Problems and Algorithms Integer and quadratic optimization problems Dept. of Engg. and Comp. Sci., Univ. of Cal., Davis Aug. 13, 2010 Table of contents Outline 1 2 3 Benefits of Structured Problems Optimization problems may become

More information

Optimal Location and Sizing of Distributed Generation Based on Gentic Algorithm

Optimal Location and Sizing of Distributed Generation Based on Gentic Algorithm Location and Sizing of Distributed Generation Based on Gentic Algorithm Ahmed Helal #,Motaz Amer *, and Hussien Eldosouki # # Electrical and Control Engineering Dept., Arab Academy for Sciences & Technology

More information

A Multistage Decision-Dependent Stochastic Bi-level Programming Approach for Power Generation Investment Expansion Planning

A Multistage Decision-Dependent Stochastic Bi-level Programming Approach for Power Generation Investment Expansion Planning A Multistage Decision-Dependent Stochastic Bi-level Programming Approach for Power Generation Investment Expansion Planning Yiduo Zhan Qipeng P. Zheng February 11, 2018 Abstract In this paper, we study

More information

Econ 101A Problem Set 6 Solutions Due on Monday Dec. 9. No late Problem Sets accepted, sorry!

Econ 101A Problem Set 6 Solutions Due on Monday Dec. 9. No late Problem Sets accepted, sorry! Econ 0A Problem Set 6 Solutions Due on Monday Dec. 9. No late Problem Sets accepted, sry! This Problem set tests the knowledge that you accumulated mainly in lectures 2 to 26. The problem set is focused

More information

OPTIMAL STORAGE AND TRANSMISSION INVESTMENTS IN A BILEVEL ELECTRICITY MARKET MODEL

OPTIMAL STORAGE AND TRANSMISSION INVESTMENTS IN A BILEVEL ELECTRICITY MARKET MODEL OPTIMAL STORAGE AND TRANSMISSION INVESTMENTS IN A BILEVEL ELECTRICITY MARKET MODEL MARTIN WEIBELZAHL AND ALEXANDRA MÄRTZ Keywords: Bilevel Problem, Multistage Game, Congestion Management, Zonal Pricing,

More information

A Model for a Zonal Operating Reserve Demand Curve

A Model for a Zonal Operating Reserve Demand Curve A Model for a Zonal Operating Reserve Demand Curve Yen-Yu Lee Electrical and Computer Engineering University of Texas at Austin March 5, Outline What is operating reserves? Why do we need elastic reserves

More information

Uncertainty Per Krusell & D. Krueger Lecture Notes Chapter 6

Uncertainty Per Krusell & D. Krueger Lecture Notes Chapter 6 1 Uncertainty Per Krusell & D. Krueger Lecture Notes Chapter 6 1 A Two-Period Example Suppose the economy lasts only two periods, t =0, 1. The uncertainty arises in the income (wage) of period 1. Not that

More information

SUBMITTED TO IEEE TRANSACTIONS ON POWER SYSTEMS, AUGUST

SUBMITTED TO IEEE TRANSACTIONS ON POWER SYSTEMS, AUGUST SUBMITTED TO IEEE TRANSACTIONS ON POWER SYSTEMS, AUGUST 2014 1 Adaptive Robust Optimization with Dynamic Uncertainty Sets for Multi-Period Economic Dispatch under Significant Wind Álvaro Lorca, Student

More information

Department of Agricultural Economics. PhD Qualifier Examination. May 2009

Department of Agricultural Economics. PhD Qualifier Examination. May 2009 Department of Agricultural Economics PhD Qualifier Examination May 009 Instructions: The exam consists of six questions. You must answer all questions. If you need an assumption to complete a question,

More information

2015 IEEE. Digital Object Identifier: /PTC

2015 IEEE. Digital Object Identifier: /PTC 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes,

More information

Power Engineering II. Fundamental terms and definitions

Power Engineering II. Fundamental terms and definitions Fundamental terms and definitions Power engineering A scientific discipline that focuses on: Generation of electrical energy (EE) Transmission and distribution of EE Consumption of EE Power grid operation

More information

Controlling variability in power systems

Controlling variability in power systems Daniel APAM Nov 17 2017 A simple example: 100 100 A simple example: 100 100 Only one solution: 200 100 200 100 100 100 A simple example: 100 100 Only one solution: 200 100 200 100 100 100 But what if the

More information

Multistage Adaptive Robust Optimization for the Unit Commitment Problem

Multistage Adaptive Robust Optimization for the Unit Commitment Problem Multistage Adaptive Robust Optimization for the Unit Commitment Problem Álvaro Lorca, X. Andy Sun H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta,

More information

arxiv: v1 [math.oc] 28 Jun 2016

arxiv: v1 [math.oc] 28 Jun 2016 On the Inefficiency of Forward Markets in Leader-Follower Competition Desmond Cai, Anish Agarwal, Adam Wierman arxiv:66.864v [math.oc] 8 Jun 6 June 9, 6 Abstract Motivated by electricity markets, this

More information

Multi-Area Stochastic Unit Commitment for High Wind Penetration

Multi-Area Stochastic Unit Commitment for High Wind Penetration Multi-Area Stochastic Unit Commitment for High Wind Penetration Workshop on Optimization in an Uncertain Environment Anthony Papavasiliou, UC Berkeley Shmuel S. Oren, UC Berkeley March 25th, 2011 Outline

More information

Firming Renewable Power with Demand Response: An End-to-end Aggregator Business Model

Firming Renewable Power with Demand Response: An End-to-end Aggregator Business Model Firming Renewable Power with Demand Response: An End-to-end Aggregator Business Model Clay Campaigne joint work with Shmuel Oren November 5, 2015 1 / 16 Motivation Problem: Expansion of renewables increases

More information

Pb1 y13 =-j10 Pb5. Pb4. y34 =-j10

Pb1 y13 =-j10 Pb5. Pb4. y34 =-j10 EE 55, Exam, ake-home. Due Monday, April, 06, 5:00pm. You may use class notes or any reference materials (e.g., books, etc.) that you like; however, you must work alone, i.e., you should not be communicating

More information

Returns to Scale in Networks. Marvin Kraus * June Keywords: Networks, congestion, returns to scale, congestion pricing

Returns to Scale in Networks. Marvin Kraus * June Keywords: Networks, congestion, returns to scale, congestion pricing Returns to Scale in Networks by Marvin Kraus * June 2006 Keywords: Networks, congestion, returns to scale, congestion pricing * Department of Economics, Boston College, Chestnut Hill, MA 02467, USA. E-mail:

More information

Pure or Hybrid?: Policy Options for Renewable Energy 1

Pure or Hybrid?: Policy Options for Renewable Energy 1 15th IAEE European Conference 2017 Pure or Hybrid?: Policy Options for Renewable Energy 1 Ryuta Takashima a Yuta Kamobayashi a Makoto Tanaka b Yihsu Chen c a Department of Industrial Administration, Tokyo

More information

CMSC 858F: Algorithmic Game Theory Fall 2010 Market Clearing with Applications

CMSC 858F: Algorithmic Game Theory Fall 2010 Market Clearing with Applications CMSC 858F: Algorithmic Game Theory Fall 2010 Market Clearing with Applications Instructor: Mohammad T. Hajiaghayi Scribe: Rajesh Chitnis September 15, 2010 1 Overview We will look at MARKET CLEARING or

More information

Nonlinear Programming (Hillier, Lieberman Chapter 13) CHEM-E7155 Production Planning and Control

Nonlinear Programming (Hillier, Lieberman Chapter 13) CHEM-E7155 Production Planning and Control Nonlinear Programming (Hillier, Lieberman Chapter 13) CHEM-E7155 Production Planning and Control 19/4/2012 Lecture content Problem formulation and sample examples (ch 13.1) Theoretical background Graphical

More information

MVE165/MMG631 Linear and integer optimization with applications Lecture 13 Overview of nonlinear programming. Ann-Brith Strömberg

MVE165/MMG631 Linear and integer optimization with applications Lecture 13 Overview of nonlinear programming. Ann-Brith Strömberg MVE165/MMG631 Overview of nonlinear programming Ann-Brith Strömberg 2015 05 21 Areas of applications, examples (Ch. 9.1) Structural optimization Design of aircraft, ships, bridges, etc Decide on the material

More information

Planning a 100 percent renewable electricity system

Planning a 100 percent renewable electricity system Planning a 100 percent renewable electricity system Andy Philpott Electric Power Optimization Centre University of Auckland www.epoc.org.nz (Joint work with Michael Ferris) INI Open for Business Meeting,

More information

Decision Models Lecture 5 1. Lecture 5. Foreign-Currency Trading Integer Programming Plant-location example Summary and Preparation for next class

Decision Models Lecture 5 1. Lecture 5. Foreign-Currency Trading Integer Programming Plant-location example Summary and Preparation for next class Decision Models Lecture 5 1 Lecture 5 Foreign-Currency Trading Integer Programming Plant-location example Summary and Preparation for next class Foreign Exchange (FX) Markets Decision Models Lecture 5

More information

Lecture 18: Optimization Programming

Lecture 18: Optimization Programming Fall, 2016 Outline Unconstrained Optimization 1 Unconstrained Optimization 2 Equality-constrained Optimization Inequality-constrained Optimization Mixture-constrained Optimization 3 Quadratic Programming

More information

+/- $50 Bid Cap and Node Limitations on Up-To Congestion Transactions APRIL 10 SPECIAL SESSION MIC NOHA SIDHOM- INERTIA POWER

+/- $50 Bid Cap and Node Limitations on Up-To Congestion Transactions APRIL 10 SPECIAL SESSION MIC NOHA SIDHOM- INERTIA POWER +/- $50 Bid Cap and Node Limitations on Up-To Congestion Transactions APRIL 10 SPECIAL SESSION MIC NOHA SIDHOM- INERTIA POWER Limitations Addressed in Problem Statement Section 1.10 of Attachment K of

More information

MOPEC: Multiple Optimization Problems with Equilibrium Constraints

MOPEC: Multiple Optimization Problems with Equilibrium Constraints MOPEC: Multiple Optimization Problems with Equilibrium Constraints Michael C. Ferris Joint work with Roger Wets University of Wisconsin Scientific and Statistical Computing Colloquium, University of Chicago:

More information

The Spatial Analysis of Wind Power on Nodal Prices in New Zealand

The Spatial Analysis of Wind Power on Nodal Prices in New Zealand The Spatial Analysis of Wind Power on Nodal Prices in New Zealand Le Wen Research Fellow Energy Centre The University of Auckland l.wen@auckland.ac.nz 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983

More information