The DC Optimal Power Flow

Size: px
Start display at page:

Download "The DC Optimal Power Flow"

Transcription

1 1 / 20 The DC Optimal Power Flow Quantitative Energy Economics Anthony Papavasiliou

2 The DC Optimal Power Flow 2 / 20 1 The OPF Using PTDFs 2 The OPF Using Reactance

3 3 / 20 Transmission Constraints Lines can carry a limited amount of power Thermal limits Stability limits Voltage drop limits Kirchhoff voltage and current laws Non-linear mapping: power injection in buses power flow in lines We will linearize these Optimal power flow problem (OPF): Maximize welfare (minimize cost) subject to Kirchhoff laws + transmission limits

4 Network Representation 4 / 20 Transmission system is represented as a directed graph N: set of nodes K : set of lines (denoted by k = (m, n)) G n : set of generators located in node n, G = n N G n L n : set of loads located in node n, L = n N L n

5 5 / 20 Two Equivalent Models Decisions: p g : amount of power produced by generator g d l : amount of power consumed by load l Two equivalent models, depending on system state and input data: Model 1 Model 2 System state: nodal injections Input data: power transfer distribution factors (depend on physical characteristics of lines) System state: nodal phase angles Input data: reactance (depend on physical characteristics of lines)

6 Table of Contents 6 / 20 1 The OPF Using PTDFs 2 The OPF Using Reactance

7 Model 1: Power Transfer Distribution Factors 7 / 20

8 Net Injection Hub node: reference node that "absorbs" all injections Injection r n : amount of power shipped from node n to the hub r n = p g g G n l L n d l Not amount of power flowing over line connecting n and hub Conservation of energy: r n = 0 n N 8 / 20

9 9 / 20 Power Flows Power transfer distribution factor (PTDF) (F kn ): amount of power flowing on line k as a result of shipping 1 MW from n to hub F hub,n = 0 PTDF: input data, depend on physical characteristics of lines PTDF depend on choice of hub Flow f k is f k = F kn r n n N Flow can be positive or negative (interpretation?) T k : limit on power that each line can carry T k f k T k

10 10 / 20 Example All lines have identical electrical characteristics 1 F 1 2,1 =?, F 1 2,2 =? 2 Express shipment of 30 MW from 1 to 2 as transaction through hub 3 Compute flow f 1 2 from steps 1, 2 4 Note: r 1 and f 1 hub are different

11 The OPF Using PTDFs 11 / 20 max l L (λ + k ) : f k T k (λ k ) : f k T k dl pg 0 MB l (x)dx g G (ψ k ) : f k F kn r n = 0 n N (ρ n ) : r n p g + d l = 0 g G n l L n (φ) : r n = 0 n N p g, d l 0 0 MC g (x)dx

12 12 / 20 Optimal Solution Denote P g, D l as maximum production/consumption of generators/loads (imposed through domain of objective function) There exists a threshold ρ n for all n such that: If 0 < p g < P g, then ρ n = MC g (p g ). If 0 < d l < D l, then ρ n = MB l (d l ). If p g = P g, then ρ n MC g (P g ). If d l = D l, then ρ n MB l (D l ). If p g = 0, then ρ n MC g (0). If d l = 0, then ρ n MB l (0).

13 13 / 20 Proof: KKT conditions 0 p g MC g (p g ) ρ n(g) 0 0 d l MB l (d l ) + ρ n(l) 0 n(g): node where generator g is located n(l): node where load l is located

14 Sensitivity Helpful in understanding transmission pricing φ: marginal change in welfare from marginal increase in production/marginal decrease in consumption λ + k and λ k : marginal impact of increasing line capacity ρ n : marginal impact of marginal increase of consumption/decrease of generation in node n (what if demand is inelastic?) What sign do we expect for these dual variables? 14 / 20

15 15 / 20 Components of ρ n Useful identity for computing prices: ρ n = φ + k K F kn λ k k K F kn λ + k Proof: KKT conditions

16 Example 16 / 20 Case 1 D 2 = 50 MW, T 1 2 unlimited ρ 1 = ρ 2 = 20 $/MWh Case 2 D 2 = 50 MW, T 1 2 = 50 MW ρ 1 = 20 $/MWh, 20 $/MWh ρ 2 40 $/MWh Case 3 D 2 = 60 MW, T 1 2 = 50 MW ρ 1 = 20 $/MWh, ρ 2 = 40 $/MWh Can you explain multiplier values?

17 Table of Contents 17 / 20 1 The OPF Using PTDFs 2 The OPF Using Reactance

18 Model 2: Reactance 18 / 20

19 Power Flows 19 / 20 Reactance: input data, depends on physical characteristics of lines Independ on choice of hub Flow f k is f (m,n) = B (m,n) (θ m θ n ) Translation of θ results in identical flows, fix θ hub = 0 Conservation of energy: p g + g G n f k = + d l. l L n k=(,n) k=(,n) Input data is independent of network topology: transmission line investment, transmission line outages

20 The OPF Using Reactance 20 / 20 dl pg max MB l (x)dx MC g (x)dx l L 0 g G 0 (ρ n ) : p g f k + d l + f k = 0 g G n l L k=(,n) (γ k ) : f k B k (θ m θ n ) = 0, k = (m, n) (λ + k ) : f k T k (λ k ) : f k T k p g, d l 0 k=(n, )

A three-level MILP model for generation and transmission expansion planning

A three-level MILP model for generation and transmission expansion planning A three-level MILP model for generation and transmission expansion planning David Pozo Cámara (UCLM) Enzo E. Sauma Santís (PUC) Javier Contreras Sanz (UCLM) Contents 1. Introduction 2. Aims and contributions

More information

Chapter 5. Transmission networks and electricity markets

Chapter 5. Transmission networks and electricity markets Chapter 5. Transmission networks and electricity markets 1 Introduction In most of the regions of the world: assumptions that electrical energy can be traded as if all generators were connected to the

More information

I. Why power? II. Model definition III. Model uses IV. The basics. A. Supply Dispatch B. Demand Bidding. D. Transmission

I. Why power? II. Model definition III. Model uses IV. The basics. A. Supply Dispatch B. Demand Bidding. D. Transmission Electric Power Markets: Why is Electricity Different? Dumb Grids, the Ultimate Just-in in-time Problem, & Polar Bears Benjamin F. Hobbs & Daniel Ralph Whiting School of Engineering The Johns Hopkins University

More information

Course notes for EE394V Restructured Electricity Markets: Locational Marginal Pricing

Course notes for EE394V Restructured Electricity Markets: Locational Marginal Pricing Course notes for EE394V Restructured Electricity Markets: Locational Marginal Pricing Ross Baldick Copyright c 2013 Ross Baldick www.ece.utexas.edu/ baldick/classes/394v/ee394v.html Title Page 1 of 132

More information

Javier Contreras Sanz- Universidad de Castilla-La Mancha Jesús María López Lezama- Universidad de Antioquia Antonio Padilha-Feltrin- Universidade

Javier Contreras Sanz- Universidad de Castilla-La Mancha Jesús María López Lezama- Universidad de Antioquia Antonio Padilha-Feltrin- Universidade Javier Contreras Sanz- Universidad de Castilla-La Mancha Jesús María López Lezama- Universidad de Antioquia Antonio Padilha-Feltrin- Universidade Estadual Paulista Jose Ignacio Muñoz-Universidad de Castilla-La

More information

Complex Renewable Energy Networks: Power flows and markets

Complex Renewable Energy Networks: Power flows and markets Complex Renewable Energy Networks: Power flows and markets Mirko Schäfer 14th June 2016 Frankfurt Institute of Advanced Studies (FIAS), Goethe-Universität Frankfurt FIAS Renewable Energy System and Network

More information

Bilevel Programming-Based Unit Commitment for Locational Marginal Price Computation

Bilevel Programming-Based Unit Commitment for Locational Marginal Price Computation Bilevel Programming-Based Unit Commitment for Locational Marginal Price Computation Presentation at 50 th North American Power Symposium Abdullah Alassaf Department of Electrical Engineering University

More information

Optimal Locating and Sizing of TCPST for Congestion Management in Deregulated Electricity Markets

Optimal Locating and Sizing of TCPST for Congestion Management in Deregulated Electricity Markets Optimal Locating and Sizing of TCPST for Congestion Management in Deregulated Electricity Markets M. Joorabian Shahid Chamran University, Ahwaz, Iran mjoorabian@yahoo.com M. Saniei Shahid Chamran University,

More information

Software Tools: Congestion Management

Software Tools: Congestion Management Software Tools: Congestion Management Tom Qi Zhang, PhD CompuSharp Inc. (408) 910-3698 Email: zhangqi@ieee.org October 16, 2004 IEEE PES-SF Workshop on Congestion Management Contents Congestion Management

More information

Coordinated Multilateral Trades for Electric Power Networks: Theory and Implementation. Felix F. Wu and Pravin Varaiya

Coordinated Multilateral Trades for Electric Power Networks: Theory and Implementation. Felix F. Wu and Pravin Varaiya PWP-031 Coordinated Multilateral Trades for Electric Power Networks: Theory and Implementation Felix F. Wu and Pravin Varaiya June 1995 This paper is part of the working papers series of the Program on

More information

Tutorial 2: Modelling Transmission

Tutorial 2: Modelling Transmission Tutorial 2: Modelling Transmission In our previous example the load and generation were at the same bus. In this tutorial we will see how to model the transmission of power from one bus to another. The

More information

Energy System Modelling Summer Semester 2018, Lecture 7

Energy System Modelling Summer Semester 2018, Lecture 7 Energy System Modelling Summer Semester 2018, Lecture 7 Dr. Tom Brown, tom.brown@kit.edu, https://nworbmot.org/ Karlsruhe Institute of Technology (KIT), Institute for Automation and Applied Informatics

More information

Transmission capacity allocation in zonal electricity markets

Transmission capacity allocation in zonal electricity markets Transmission capacity allocation in zonal electricity markets Anthony Papavasiliou (UC Louvain) Collaborators: Ignacio Aravena (LLNL), Yves Smeers (UC Louvain) Workshop on Flexible Operation and Advanced

More information

SIGNIFICANT increase in amount of private distributed

SIGNIFICANT increase in amount of private distributed 1 Distributed DC Optimal Power Flow for Radial Networks Through Partial Primal Dual Algorithm Vahid Rasouli Disfani, Student Member, IEEE, Lingling Fan, Senior Member, IEEE, Zhixin Miao, Senior Member,

More information

Sensitivity-Based Line Outage Angle Factors

Sensitivity-Based Line Outage Angle Factors Sensitivity-Based Line Outage Angle Factors Kai E. Van Horn, Alejandro D. Domínguez-García, and Peter W. Sauer Department of Electrical and Computer Engineering University of Illinois at Urbana-Champaign

More information

A Model for a Zonal Operating Reserve Demand Curve

A Model for a Zonal Operating Reserve Demand Curve A Model for a Zonal Operating Reserve Demand Curve Yen-Yu Lee Electrical and Computer Engineering University of Texas at Austin March 5, Outline What is operating reserves? Why do we need elastic reserves

More information

Topology control algorithms in power systems

Topology control algorithms in power systems Boston University OpenBU Theses & Dissertations http://open.bu.edu Boston University Theses & Dissertations 2015 Topology control algorithms in power systems Goldis, Evgeniy https://hdl.handle.net/2144/16306

More information

Net Export Rule 1 : Deriving the generation value of storage device G(t)

Net Export Rule 1 : Deriving the generation value of storage device G(t) Net Export Rule 1 : Deriving the generation value of storage device G(t) G(t) nx = n i=1 G(i, t) min{0, N(i, t)} Where, i = 1,2, n location G(i, t) storage device generation metered output at location

More information

A Fully Controllable Power System Concept for FACTS and HVDC Placement

A Fully Controllable Power System Concept for FACTS and HVDC Placement A Fully Controllable Power System Concept for FACTS and HVDC Placement Spyros Chatzivasileiadis, Member, IEEE, and Göran Andersson, Fellow, IEEE arxiv:.v [cs.sy] Jun Abstract This paper puts forward the

More information

03-Economic Dispatch 1. EE570 Energy Utilization & Conservation Professor Henry Louie

03-Economic Dispatch 1. EE570 Energy Utilization & Conservation Professor Henry Louie 03-Economic Dispatch 1 EE570 Energy Utilization & Conservation Professor Henry Louie 1 Topics Generator Curves Economic Dispatch (ED) Formulation ED (No Generator Limits, No Losses) ED (No Losses) ED Example

More information

04-Economic Dispatch 2. EE570 Energy Utilization & Conservation Professor Henry Louie

04-Economic Dispatch 2. EE570 Energy Utilization & Conservation Professor Henry Louie 04-Economic Dispatch EE570 Energy Utilization & Conservation Professor Henry Louie 1 Topics Example 1 Example Dr. Henry Louie Consider two generators with the following cost curves and constraints: C 1

More information

Some Observations on the Locational Marginal Prices and Loads

Some Observations on the Locational Marginal Prices and Loads on the Locational Marginal Prices and Loads Xinbo Geng Texas A&M University gengxinbo@gmail.com October 15, 2014 Xinbo Geng (TAMU) Relationship between LMP and Load October 15, 2014 1 / 17 Overview 1 Preliminary

More information

2015 IEEE. Digital Object Identifier: /PTC

2015 IEEE. Digital Object Identifier: /PTC 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes,

More information

USAEE/IAEE. Diagnostic metrics for the adequate development of efficient-market baseload natural gas storage capacity.

USAEE/IAEE. Diagnostic metrics for the adequate development of efficient-market baseload natural gas storage capacity. USAEE/IAEE Diagnostic metrics for the adequate development of efficient-market baseload natural gas storage capacity Colorado School of Mines November 13, 2017 Contact: eguzman.phd@gmail.com 1 / 28 Introduction

More information

Application of Monte Carlo Simulation to Multi-Area Reliability Calculations. The NARP Model

Application of Monte Carlo Simulation to Multi-Area Reliability Calculations. The NARP Model Application of Monte Carlo Simulation to Multi-Area Reliability Calculations The NARP Model Any power system reliability model using Monte Carlo simulation consists of at least the following steps: 1.

More information

ECE 476. Exam #2. Tuesday, November 15, Minutes

ECE 476. Exam #2. Tuesday, November 15, Minutes Name: Answers ECE 476 Exam #2 Tuesday, November 15, 2016 75 Minutes Closed book, closed notes One new note sheet allowed, one old note sheet allowed 1. / 20 2. / 20 3. / 20 4. / 20 5. / 20 Total / 100

More information

The Analysis of Electricity Storage Location Sites in the Electric Transmission Grid

The Analysis of Electricity Storage Location Sites in the Electric Transmission Grid Proceedings o the 2010 Industrial Engineering Research Conerence A. Johnson and J. Miller, eds. The Analysis o Electricity Storage Location Sites in the Electric Transmission Grid Thomas F. Brady College

More information

PowerApps Optimal Power Flow Formulation

PowerApps Optimal Power Flow Formulation PowerApps Optimal Power Flow Formulation Page1 Table of Contents 1 OPF Problem Statement... 3 1.1 Vector u... 3 1.1.1 Costs Associated with Vector [u] for Economic Dispatch... 4 1.1.2 Costs Associated

More information

Management of Power Systems With In-line Renewable Energy Sources (Mid-term presentation) Z I WEI YU M ENTOR: JA R ED M CBRIDE

Management of Power Systems With In-line Renewable Energy Sources (Mid-term presentation) Z I WEI YU M ENTOR: JA R ED M CBRIDE Management of Power Systems With In-line Renewable Energy Sources (Mid-term presentation) HAOIANG SHI HAOZ HE XU XIAOYU SHI Z I WEI YU M ENTOR: JA R ED M CBRIDE Project Distribution Ziwei Yu / Haoliang

More information

Welfare Effects of Expansions in Equilibrium Models of an Electricity Market with Fuel Network

Welfare Effects of Expansions in Equilibrium Models of an Electricity Market with Fuel Network Industrial and Manufacturing Systems Engineering Publications Industrial and Manufacturing Systems Engineering 2010 Welfare Effects of Expansions in Equilibrium Models of an Electricity Market with Fuel

More information

A Market Mechanism for Electric Distribution Networks

A Market Mechanism for Electric Distribution Networks 2015 IEEE 54th Annual Conference on Decision and Control (CDC) December 15-18, 2015. Osaa, Japan A Maret Mechanism for Electric Distribution Networs Na Li Abstract To encourage end-users to participate

More information

A Progressive Hedging Approach to Multistage Stochastic Generation and Transmission Investment Planning

A Progressive Hedging Approach to Multistage Stochastic Generation and Transmission Investment Planning A Progressive Hedging Approach to Multistage Stochastic Generation and Transmission Investment Planning Yixian Liu Ramteen Sioshansi Integrated Systems Engineering Department The Ohio State University

More information

The L-Shaped Method. Operations Research. Anthony Papavasiliou 1 / 44

The L-Shaped Method. Operations Research. Anthony Papavasiliou 1 / 44 1 / 44 The L-Shaped Method Operations Research Anthony Papavasiliou Contents 2 / 44 1 The L-Shaped Method [ 5.1 of BL] 2 Optimality Cuts [ 5.1a of BL] 3 Feasibility Cuts [ 5.1b of BL] 4 Proof of Convergence

More information

Distributed Price-based Optimal Control of Power Systems

Distributed Price-based Optimal Control of Power Systems 16th IEEE International Conference on Control Applications Part of IEEE Multi-conference on Systems and Control Singapore, 1-3 October 2007 TuC04.1 Distributed Price-based Optimal Control of Power Systems

More information

Blackouts in electric power transmission systems

Blackouts in electric power transmission systems University of Sunderland From the SelectedWorks of John P. Karamitsos 27 Blackouts in electric power transmission systems Ioannis Karamitsos Konstadinos Orfanidis Available at: https://works.bepress.com/john_karamitsos/9/

More information

Numerical illustration

Numerical illustration A umerical illustration Inverse demand is P q, t = a 0 a 1 e λ 2t bq, states of the world are distributed according to f t = λ 1 e λ 1t, and rationing is anticipated and proportional. a 0, a 1, λ = λ 1

More information

Power System Network Reduction for Engineering and Economic Analysis. Di Shi. A Dissertation Presented in Partial Fulfillment

Power System Network Reduction for Engineering and Economic Analysis. Di Shi. A Dissertation Presented in Partial Fulfillment Power System Network Reduction for Engineering and Economic Analysis by Di Shi A Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy Approved August 2012

More information

Appendix A Solving Systems of Nonlinear Equations

Appendix A Solving Systems of Nonlinear Equations Appendix A Solving Systems of Nonlinear Equations Chapter 4 of this book describes and analyzes the power flow problem. In its ac version, this problem is a system of nonlinear equations. This appendix

More information

A new stochastic program to facilitate intermittent renewable generation

A new stochastic program to facilitate intermittent renewable generation A new stochastic program to facilitate intermittent renewable generation Golbon Zakeri Geoff Pritchard, Mette Bjorndal, Endre Bjorndal EPOC UoA and Bergen, IPAM 2016 Premise for our model Growing need

More information

Energy System Modelling Summer Semester 2018, Lecture 12

Energy System Modelling Summer Semester 2018, Lecture 12 Energy System Modelling Summer Semester 2018, Lecture 12 Dr. Tom Brown, tom.brown@kit.edu, https://nworbmot.org/ Karlsruhe Institute of Technology (KIT), Institute for Automation and Applied Informatics

More information

Generalized Injection Shift Factors and Application to Estimation of Power Flow Transients

Generalized Injection Shift Factors and Application to Estimation of Power Flow Transients Generalized Injection Shift Factors and Application to Estimation of Power Flow Transients Yu Christine Chen, Alejandro D. Domínguez-García, and Peter W. Sauer Department of Electrical and Computer Engineering

More information

A Unified Framework for Defining and Measuring Flexibility in Power System

A Unified Framework for Defining and Measuring Flexibility in Power System J A N 1 1, 2 0 1 6, A Unified Framework for Defining and Measuring Flexibility in Power System Optimization and Equilibrium in Energy Economics Workshop Jinye Zhao, Tongxin Zheng, Eugene Litvinov Outline

More information

Lagrangian Duality. Richard Lusby. Department of Management Engineering Technical University of Denmark

Lagrangian Duality. Richard Lusby. Department of Management Engineering Technical University of Denmark Lagrangian Duality Richard Lusby Department of Management Engineering Technical University of Denmark Today s Topics (jg Lagrange Multipliers Lagrangian Relaxation Lagrangian Duality R Lusby (42111) Lagrangian

More information

The L-Shaped Method. Operations Research. Anthony Papavasiliou 1 / 38

The L-Shaped Method. Operations Research. Anthony Papavasiliou 1 / 38 1 / 38 The L-Shaped Method Operations Research Anthony Papavasiliou Contents 2 / 38 1 The L-Shaped Method 2 Example: Capacity Expansion Planning 3 Examples with Optimality Cuts [ 5.1a of BL] 4 Examples

More information

Mixed Integer Linear Programming Formulation for Chance Constrained Mathematical Programs with Equilibrium Constraints

Mixed Integer Linear Programming Formulation for Chance Constrained Mathematical Programs with Equilibrium Constraints Mixed Integer Linear Programming Formulation for Chance Constrained Mathematical Programs with Equilibrium Constraints ayed A. adat and Lingling Fan University of outh Florida, email: linglingfan@usf.edu

More information

Economic analysis of the N-1 reliable unit commitment and transmission switching problem using duality concepts

Economic analysis of the N-1 reliable unit commitment and transmission switching problem using duality concepts Energy Syst DOI 10.1007/s12667-009-0005-6 ORIGINAL PAPER Economic analysis of the N-1 reliable unit commitment and transmission switching problem using duality concepts Richard P. O Neill Kory W. Hedman

More information

IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 24, NO. 3, AUGUST

IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 24, NO. 3, AUGUST IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 24, NO. 3, AUGUST 2009 1435 DCOPF-Based Marginal Loss Pricing With Enhanced Power Flow Accuracy by Using Matrix Loss Distribution V. Sarkar, Student Member, IEEE,

More information

Multi-Area Stochastic Unit Commitment for High Wind Penetration in a Transmission Constrained Network

Multi-Area Stochastic Unit Commitment for High Wind Penetration in a Transmission Constrained Network Multi-Area Stochastic Unit Commitment for High Wind Penetration in a Transmission Constrained Network Anthony Papavasiliou Center for Operations Research and Econometrics Université catholique de Louvain,

More information

Nonlinear Programming (Hillier, Lieberman Chapter 13) CHEM-E7155 Production Planning and Control

Nonlinear Programming (Hillier, Lieberman Chapter 13) CHEM-E7155 Production Planning and Control Nonlinear Programming (Hillier, Lieberman Chapter 13) CHEM-E7155 Production Planning and Control 19/4/2012 Lecture content Problem formulation and sample examples (ch 13.1) Theoretical background Graphical

More information

Coupled Optimization Models for Planning and Operation of Power Systems on Multiple Scales

Coupled Optimization Models for Planning and Operation of Power Systems on Multiple Scales Coupled Optimization Models for Planning and Operation of Power Systems on Multiple Scales Michael C. Ferris University of Wisconsin, Madison Computational Needs for the Next Generation Electric Grid,

More information

A Benders Decomposition Approach to Corrective Security Constrained OPF with Power Flow Control Devices

A Benders Decomposition Approach to Corrective Security Constrained OPF with Power Flow Control Devices A Benders Decomposition Approach to Corrective Security Constrained OPF with Power Flow Control Devices Javad Mohammadi, Gabriela Hug, Soummya Kar Department of Electrical and Computer Engineering Carnegie

More information

Power Grid Partitioning: Static and Dynamic Approaches

Power Grid Partitioning: Static and Dynamic Approaches Power Grid Partitioning: Static and Dynamic Approaches Miao Zhang, Zhixin Miao, Lingling Fan Department of Electrical Engineering University of South Florida Tampa FL 3320 miaozhang@mail.usf.edu zmiao,

More information

Autonomous Demand Response in Heterogeneous Smart Grid Topologies

Autonomous Demand Response in Heterogeneous Smart Grid Topologies 1 Autonomous Demand Response in Heterogeneous Smart Grid Topologies Hamed Narimani and Hamed Mohsenian-Rad Department of Electrical and Computer Engineering, Isfahan University of Technology, Isfahan,

More information

The System's Limitations Costs Determination Using the Duality Concept of Linear Programming

The System's Limitations Costs Determination Using the Duality Concept of Linear Programming Volume 3, Number 1, 1 he System's Limitations Costs etermination Using the uality Concept of Linear rogramming MAHNIKO Anatolijs, UMBRASHKO Inga, VARFOLOMEJEVA Renata Riga echnical University, Institute

More information

2010/53. Market coupling and the organization of counter-trading: separating energy and transmission again? Giorgia Oggioni and Yves Smeers

2010/53. Market coupling and the organization of counter-trading: separating energy and transmission again? Giorgia Oggioni and Yves Smeers 2010/53 Market coupling and the organization of counter-trading: separating energy and transmission again? Giorgia Oggioni and Yves Smeers DISCUSSION PAPER Center for Operations Research and Econometrics

More information

Modelling and Simulation of TCPAR for Power System Flow Studies

Modelling and Simulation of TCPAR for Power System Flow Studies ISSN 1583-033 Issue 1, July-December 01 p. 13-137 Modelling and Simulation of TCPAR for Power System Flow Studies Narimen Lahaçani AOUZELLAG *, Lyes BENKHELLAT, Samir MAHLOUL Department of Electrical Engineering,

More information

A preventive control model for static voltage stability considering the active power transfer capabilities of weak branches

A preventive control model for static voltage stability considering the active power transfer capabilities of weak branches A preventive control model for static voltage stability considering the active power transfer capabilities of weak branches Xiuqiong Hu 1,2, Zhouyang Ren 2, Yiming Li 2 (1) School of Information and Electric

More information

Corrective Control to Handle Forecast Uncertainty: A Chance Constrained Optimal Power Flow

Corrective Control to Handle Forecast Uncertainty: A Chance Constrained Optimal Power Flow 1 Corrective Control to Handle Forecast Uncertainty: A Chance Constrained Optimal Power Flow Line Roald, Sidhant Misra, Thilo Krause, and Göran Andersson arxiv:169.2194v1 [math.oc] 7 Sep 216 Abstract Higher

More information

Power Distribution in Electrical Grids

Power Distribution in Electrical Grids Power Distribution in Electrical Grids Safatul Islam, Deanna Johnson, Homa Shayan, Jonathan Utegaard Mentors: Aalok Shah, Dr. Ildar Gabitov May 7, 2013 Abstract Power in electrical grids is modeled using

More information

Dual decomposition approach for dynamic spatial equilibrium models

Dual decomposition approach for dynamic spatial equilibrium models Dual decomposition approach for dynamic spatial equilibrium models E. Allevi (1), A. Gnudi (2), I.V. Konnov (3), G. Oggioni (1) (1) University of Brescia, Italy (2) University of Bergamo, Italy (3) Kazan

More information

Power Distribution in Electrical Grids

Power Distribution in Electrical Grids Power Distribution in Electrical Grids Safatul Islam, Deanna Johnson, Homa Shayan, Jonathan Utegaard Mentors: Aalok Shah, Dr. Ildar Gabitov April 5, 2013 Abstract Power in electrical grids is modeled using

More information

Reduced MIP Formulation for Transmission Topology Control

Reduced MIP Formulation for Transmission Topology Control Reduced MIP Formulation for Transmission Topology Control Pablo A. Ruiz, Aleksandr Rudkevich, Michael C. Caramanis, Evgenyi Goldis, Elli Ntakou, and C. Russ Philbrick. Abstract The standard optimal power

More information

Pb1 y13 =-j10 Pb5. Pb4. y34 =-j10

Pb1 y13 =-j10 Pb5. Pb4. y34 =-j10 EE 55, Exam, Take-home. Due Monday, April, 06, 5:00pm. You may use class notes or any reference materials (e.g., books, etc.) that you like; however, you must work alone, i.e., you should not be communicating

More information

CHAPTER 2 LOAD FLOW ANALYSIS FOR RADIAL DISTRIBUTION SYSTEM

CHAPTER 2 LOAD FLOW ANALYSIS FOR RADIAL DISTRIBUTION SYSTEM 16 CHAPTER 2 LOAD FLOW ANALYSIS FOR RADIAL DISTRIBUTION SYSTEM 2.1 INTRODUCTION Load flow analysis of power system network is used to determine the steady state solution for a given set of bus loading

More information

Semidefinite Relaxation of Optimal Power Flow for ac-dc Grids

Semidefinite Relaxation of Optimal Power Flow for ac-dc Grids Semidefinite Relaxation of Optimal Power Flow for ac-dc Grids Shahab Bahrami, Student Member, IEEE, Francis Therrien, Member, IEEE, Vincent W.S. Wong, Fellow, IEEE, and Juri Jatsevich, Senior Member, IEEE

More information

EE 581 Power Systems. Admittance Matrix: Development, Direct and Iterative solutions

EE 581 Power Systems. Admittance Matrix: Development, Direct and Iterative solutions EE 581 Power Systems Admittance Matrix: Development, Direct and Iterative solutions Overview and HW # 8 Chapter 2.4 Chapter 6.4 Chapter 6.1-6.3 Homework: Special Problem 1 and 2 (see handout) Overview

More information

Multi-Area Stochastic Unit Commitment for High Wind Penetration

Multi-Area Stochastic Unit Commitment for High Wind Penetration Multi-Area Stochastic Unit Commitment for High Wind Penetration Workshop on Optimization in an Uncertain Environment Anthony Papavasiliou, UC Berkeley Shmuel S. Oren, UC Berkeley March 25th, 2011 Outline

More information

A Survey of Long Term Transmission Expansion Planning Using Cycles

A Survey of Long Term Transmission Expansion Planning Using Cycles Contemporary Engineering Sciences, Vol. 11, 218, no. 12, 547-555 HIKARI Ltd, www.m-hikari.com https://doi.org/1.12988/ces.218.81562 A Survey of Long Term Transmission Epansion Planning Using Cycles Pedro

More information

Lecture 12 The Spatial Price Equilibrium Problem

Lecture 12 The Spatial Price Equilibrium Problem Lecture 12 The Spatial Price Equilibrium Problem Dr. Anna Nagurney John F. Smith Memorial Professor Isenberg School of Management University of Massachusetts Amherst, Massachusetts 01003 c 2009 Parallel

More information

ECONOMIC OPTIMALITY. Date: October 10, 2005.

ECONOMIC OPTIMALITY. Date: October 10, 2005. ECONOMIC OPTIMALITY 1. FORMAL STATEMENT OF THE DECISION PROBLEM 1.1. Statement of the problem. ma h(, a) (1) such that G(a) This says that the problem is to maimize the function h which depends on and

More information

Congestion Management in a Smart Grid via Shadow Prices

Congestion Management in a Smart Grid via Shadow Prices Congestion Management in a Smart Grid via Shadow Prices Benjamin Biegel, Palle Andersen, Jakob Stoustrup, Jan Bendtsen Systems of Systems October 23, 2012 1 This presentation use of distributed Receding

More information

OPTIMAL CAPACITOR PLACEMENT USING FUZZY LOGIC

OPTIMAL CAPACITOR PLACEMENT USING FUZZY LOGIC CHAPTER - 5 OPTIMAL CAPACITOR PLACEMENT USING FUZZY LOGIC 5.1 INTRODUCTION The power supplied from electrical distribution system is composed of both active and reactive components. Overhead lines, transformers

More information

OPTIMAL STORAGE AND TRANSMISSION INVESTMENTS IN A BILEVEL ELECTRICITY MARKET MODEL

OPTIMAL STORAGE AND TRANSMISSION INVESTMENTS IN A BILEVEL ELECTRICITY MARKET MODEL OPTIMAL STORAGE AND TRANSMISSION INVESTMENTS IN A BILEVEL ELECTRICITY MARKET MODEL MARTIN WEIBELZAHL AND ALEXANDRA MÄRTZ Keywords: Bilevel Problem, Multistage Game, Congestion Management, Zonal Pricing,

More information

Chapter 2. Engr228 Circuit Analysis. Dr Curtis Nelson

Chapter 2. Engr228 Circuit Analysis. Dr Curtis Nelson Chapter 2 Engr228 Circuit Analysis Dr Curtis Nelson Chapter 2 Objectives Understand symbols and behavior of the following circuit elements: Independent voltage and current sources; Dependent voltage and

More information

KEEP THIS QUIZ CLOSED AND FACE UP UNTIL YOU ARE TOLD TO BEGIN.

KEEP THIS QUIZ CLOSED AND FACE UP UNTIL YOU ARE TOLD TO BEGIN. Name: Signature Date: (rint) ECE 300 -- Quiz #6 S.. Brankovic Section MW 11:30 AM Dec. 5th, 005 KEE THIS QUI CLOSED AND FACE U UNTIL YOU AE TOLD TO BEGIN. 1. is quiz is closed book, closed notes. You can

More information

Power System Security. S. Chakrabarti

Power System Security. S. Chakrabarti Power System Security S. Chakrabarti Outline Introduction Major components of security assessment On-line security assessment Tools for contingency analysis DC power flow Linear sensitivity factors Line

More information

Edinburgh Research Explorer

Edinburgh Research Explorer Edinburgh Research Explorer Decentralized Multi-Period Economic Dispatch for Real-Time Flexible Demand Management Citation for published version: Loukarakis, E, Dent, C & Bialek, J 216, 'Decentralized

More information

The AR OPF: an Exact Convex Formulation for the Optimal Power Flow in Radial Distribution Networks

The AR OPF: an Exact Convex Formulation for the Optimal Power Flow in Radial Distribution Networks Photo credit: Infineon The AR OPF: an Exact Convex Formulation for the Optimal Power Flow in Radial Distribution Networks Jean Yves Le Boudec and Mario Paolone EPFL LCA and DESL (joint work with Dr. Mostafa

More information

DYNAMICS OF ELECTRIC POWER SUPPLY CHAIN NETWORKS UNDER RISK AND UNCERTAINTY

DYNAMICS OF ELECTRIC POWER SUPPLY CHAIN NETWORKS UNDER RISK AND UNCERTAINTY DYNAMICS OF ELECTRIC POWER SUPPLY CHAIN NETWORKS UNDER RISK AND UNCERTAINTY Dmytro Matsypura and Anna Nagurney International Conference on Computational Management Science, March 31 - April 3, 2005 University

More information

A Merchant Mechanism for Electricity Transmission Expansion

A Merchant Mechanism for Electricity Transmission Expansion A Merchant Mechanism for Electricity Transmission Expansion Tarjei Kristiansen, Norwegian University of Science and Technology. Tarjei.Kristiansen@elkraft.ntnu.no Juan Rosellon, Harvard University/CIDE.

More information

Various Techniques for Nonlinear Energy-Related Optimizations. Javad Lavaei. Department of Electrical Engineering Columbia University

Various Techniques for Nonlinear Energy-Related Optimizations. Javad Lavaei. Department of Electrical Engineering Columbia University Various Techniques for Nonlinear Energy-Related Optimizations Javad Lavaei Department of Electrical Engineering Columbia University Acknowledgements Caltech: Steven Low, Somayeh Sojoudi Columbia University:

More information

FAST OPTIMAL POWER FLOW ANALYSIS FOR LARGE-SCALE SMART GRID YI LIANG THESIS

FAST OPTIMAL POWER FLOW ANALYSIS FOR LARGE-SCALE SMART GRID YI LIANG THESIS c 2013 Yi Liang FAST OPTIMAL POWER FLOW ANALYSIS FOR LARGE-SCALE SMART GRID BY YI LIANG THESIS Submitted in partial fulfillment of the requirements for the degree of Master of Science in Electrical and

More information

Perfect and Imperfect Competition in Electricity Markets

Perfect and Imperfect Competition in Electricity Markets Perfect and Imperfect Competition in Electricity Marets DTU CEE Summer School 2018 June 25-29, 2018 Contact: Vladimir Dvorin (vladvo@eletro.dtu.d) Jalal Kazempour (seyaz@eletro.dtu.d) Deadline: August

More information

A New Network Reduction Methodology for Congestion Study

A New Network Reduction Methodology for Congestion Study 1 A New Network Reduction Methodology for Congestion Study HyungSeon Oh, Member, IEEE Abstract System planning on a large-scale electric power system is computationally challenging. Network reduction into

More information

A Stackelberg Game Approach for Two-Level Distributed Energy Management in Smart Grids

A Stackelberg Game Approach for Two-Level Distributed Energy Management in Smart Grids A Stackelberg Game Approach for Two-Level Distributed Energy Management in Smart Grids Juntao Chen, Student Member, IEEE, and Quanyan Zhu, Member, IEEE power balance and stability issues of the system,

More information

Extension of a Probabilistic Load Flow Calculation Based on an Enhanced Convolution Technique

Extension of a Probabilistic Load Flow Calculation Based on an Enhanced Convolution Technique Extension of a Probabilistic Load Flow Calculation Based on an Enhanced Convolution Technique J. Schwippe; O. Krause; C. Rehtanz, Senior Member, IEEE Abstract Traditional algorithms used in grid operation

More information

Networked Feedback Control for a Smart Power Distribution Grid

Networked Feedback Control for a Smart Power Distribution Grid Networked Feedback Control for a Smart Power Distribution Grid Saverio Bolognani 6 March 2017 - Workshop 1 Future power distribution grids Traditional Power Generation transmission grid It delivers power

More information

UNIT-I ECONOMIC OPERATION OF POWER SYSTEM-1

UNIT-I ECONOMIC OPERATION OF POWER SYSTEM-1 UNIT-I ECONOMIC OPERATION OF POWER SYSTEM-1 1.1 HEAT RATE CURVE: The heat rate characteristics obtained from the plot of the net heat rate in Btu/Wh or cal/wh versus power output in W is shown in fig.1

More information

Capacity Scarcity Condition Monday, September 3, 2018 Two primary factors led to the implementation of OP 4 event Significant generation outages and r

Capacity Scarcity Condition Monday, September 3, 2018 Two primary factors led to the implementation of OP 4 event Significant generation outages and r S E P T E M B E R 1 2, 2 0 1 8 September 3 OP-4 Event and Capacity Scarcity Condition Vamsi Chadalavada E X E C U T I V E V I C E P R E S I D E N T A N D C H I E F O P E R A T I N G O F F I C E R Capacity

More information

Distributed Approach for DC Optimal Power Flow Calculations

Distributed Approach for DC Optimal Power Flow Calculations 1 Distributed Approach for DC Optimal Power Flow Calculations Javad Mohammadi, IEEE Student Member, Soummya Kar, IEEE Member, Gabriela Hug, IEEE Member Abstract arxiv:1410.4236v1 [math.oc] 15 Oct 2014

More information

Assessment of Available Transfer Capability Incorporating Probabilistic Distribution of Load Using Interval Arithmetic Method

Assessment of Available Transfer Capability Incorporating Probabilistic Distribution of Load Using Interval Arithmetic Method Assessment of Available Transfer Capability Incorporating Probabilistic Distribution of Load Using Interval Arithmetic Method Prabha Umapathy, Member, IACSIT, C.Venkataseshaiah and M.Senthil Arumugam Abstract

More information

Adding Production to the Theory

Adding Production to the Theory Adding Production to the Theory We begin by considering the simplest situation that includes production: two goods, both of which have consumption value, but one of which can be transformed into the other.

More information

EE 3120 Electric Energy Systems Study Guide for Prerequisite Test Wednesday, Jan 18, pm, Room TBA

EE 3120 Electric Energy Systems Study Guide for Prerequisite Test Wednesday, Jan 18, pm, Room TBA EE 3120 Electric Energy Systems Study Guide for Prerequisite Test Wednesday, Jan 18, 2006 6-7 pm, Room TBA First retrieve your EE2110 final and other course papers and notes! The test will be closed book

More information

EE 451 Power System Stability

EE 451 Power System Stability EE 451 Power System Stability Power system operates in synchronous mode Power system is subjected to a wide range of disturbances (small and large) - Loads and generation changes - Network changes - Faults

More information

Department of Economics The Ohio State University Final Exam Questions and Answers Econ 8712

Department of Economics The Ohio State University Final Exam Questions and Answers Econ 8712 Prof. Peck Fall 20 Department of Economics The Ohio State University Final Exam Questions and Answers Econ 872. (0 points) The following economy has two consumers, two firms, and three goods. Good is leisure/labor.

More information

The Pennsylvania State University. The Graduate School. College of Earth and Mineral Sciences FLEXIBLE NETWORK TOPOLOGIES AND THE SMART GRID

The Pennsylvania State University. The Graduate School. College of Earth and Mineral Sciences FLEXIBLE NETWORK TOPOLOGIES AND THE SMART GRID The Pennsylvania State University The Graduate School College of Earth and Mineral Sciences FLEXIBLE NETWORK TOPOLOGIES AND THE SMART GRID IN ELECTRIC POWER SYSTEMS A Dissertation in Energy and Mineral

More information

Analyzing the Effect of Loadability in the

Analyzing the Effect of Loadability in the Analyzing the Effect of Loadability in the Presence of TCSC &SVC M. Lakshmikantha Reddy 1, V. C. Veera Reddy 2, Research Scholar, Department of Electrical Engineering, SV University, Tirupathi, India 1

More information

Uniqueness and Multiplicity of Market Equilibria on DC Power Flow Networks

Uniqueness and Multiplicity of Market Equilibria on DC Power Flow Networks Uniqueness and Multiplicity of Market Equilibria on DC Power Flow Networks Vanessa Krebs, Lars Schewe, Martin Schmidt Abstract. We consider uniqueness and multiplicity of market equilibria in a short-run

More information

Definition: If y = f(x), then. f(x + x) f(x) y = f (x) = lim. Rules and formulas: 1. If f(x) = C (a constant function), then f (x) = 0.

Definition: If y = f(x), then. f(x + x) f(x) y = f (x) = lim. Rules and formulas: 1. If f(x) = C (a constant function), then f (x) = 0. Definition: If y = f(x), then Rules and formulas: y = f (x) = lim x 0 f(x + x) f(x). x 1. If f(x) = C (a constant function), then f (x) = 0. 2. If f(x) = x k (a power function), then f (x) = kx k 1. 3.

More information

DIMACS, Rutgers U January 21, 2013 Michael Caramanis

DIMACS, Rutgers U January 21, 2013 Michael Caramanis Power Market Participation of Flexible Loads and Reactive Power Providers: Real Power, Reactive Power, and Regulation Reserve Capacity Pricing at T&D Networks DIMACS, Rutgers U January 21, 2013 Michael

More information