Application of Monte Carlo Simulation to Multi-Area Reliability Calculations. The NARP Model

Size: px
Start display at page:

Download "Application of Monte Carlo Simulation to Multi-Area Reliability Calculations. The NARP Model"

Transcription

1 Application of Monte Carlo Simulation to Multi-Area Reliability Calculations The NARP Model Any power system reliability model using Monte Carlo simulation consists of at least the following steps: 1. Sampling of States The states may be sampled using random sampling or sequential simulation. The sampled state is defined by the status of all components comprising the system and the magnitude of load at various buses. 2. Evaluation of States This step consists of determining whether the load of all buses can be satisfied given the status of generators and transmission lines. 3. Estimation of Indices Reliability indices are estimated from the repeated use of steps 1 and 2. The stopping criterion is based on the coefficient of variation being less than a specified value. The NARP model was developed by Associated Power Analysts, Inc. and is being used by ERCOT (Electric Reliability Council of Texas). The basic model is described in the following section. In the NARP model simulation proceeds sequentially through time in hourly steps. 1. Each hour the status of every generator and transmission link is randomly and independently drawn according to the probability distribution of generating unit and transmission link states. The available capacities of individual units can be added to obtain the area generating capacities. 2. The load of each area is updated to the current hour. 210

2 3. If no area has a negative margin (capacity - load), then the simulation proceeds to the next hour, otherwise the state evaluation module is called. 4. If all area loads are satisfied, then the simulation proceeds to the next hour. If there is a loss of load in one or more areas then this is counted as loss of load for those areas and the system and area loss of load magnitudes are computed. 5. Simulation is performed till the end of the year and statistics of number of loss of load hours per year are collected. 6. The simulation process is continued until the specified convergence criterion is reached. Convergence of results: An important issue in Monte Carlo simulation programs is number of years of artificial history that must be created to achieve an acceptable level of statistical convergence in reliability indices of interest. Here the degree of statistical convergence is measured by the standard deviation of the estimate of the reliability index obtained from simulation data. Let I i = value of reliability index obtained from simulation data for year i N = number of years of simulated data available Then the estimate of index I _ N I = I i / N i=1 and S I = (S 2 /N) = standard dev of estimate of I 211

3 where N _ S 2 = ( I i - I ) 2 /N i=1 _ Note that standard dev of I, varies as the inverse of square root of N. Clearly, S I can never be made zero in practice and so the computed value of reliability indices (mean or expected values) will always contain some uncertainty. The goal here is to reduce the uncertainty in the computed reliability indices to an acceptable level and to understand the degree of uncertainty that remains. The NARP model stops until one of the following criteria is satisfied. 1. Max number of years specified. _ 2. S I / I is less than a specified fraction. The NARP model is so structured that if criterion 1 is satisfied and the computations terminate, you could restart the computations from the year of termination so that simulated years are not lost. State evaluation module: The following description assumes no loss sharing policy between areas, that is, an area will provide emergency assistance to other areas only to the extent of its surplus capacity. A loss sharing policy has also been implemented but is not described here to keep the discussion simple. 1. The scheduled transfers due to firm contracts and jointly owned units are algebraically added to determine the net scheduled transfers. These transfers are then input to the network flow module (described later) to determine feasible transfers and line flows. 2. If the load in each area can be satisfied by the capacity in each area together with the feasible scheduled transfers determined in step 1, then further computation is not required, otherwise go to step

4 3.First, the net injections are assigned to each area: M i = injection at bus i = margin in area i = capacity in area i - load in area i Now the feasible scheduled transfers calculated in step 1 are subtracted from the net injections, and line capacity limits are modified by the flows due to scheduled transfers. The network flow model is called to determine the loss of load. The line flows calculated in this step are algebraically added to line flows calculated in step 1. Network flow calculations: The underlying model in NARP is a DC load flow model. This model needs both tie capacity limits and line admittances. This can be, however, easily replaced by capacity flow model if preferred. The following description is based on DC flow model. The state evaluation model in NARP proceeds in two steps. 1. Stage 1: Heuristic method If the sum of positive injections is greater than the sum of negative injections, all positive injections are scaled down in the same ratio so as to make these sums equal. If the sum of negative injections is greater than the sum of positive injections, all negative injections are scaled down in the same ratio to make these sums equal. Then DC load flow model is called to make flow calculations. This model is usually expressed by the equation B θ = M 213

5 where B matrix is such that b ij = ijth element of B =-(susceptance between nodes i and j) if i j b ii = sum of susceptances connected to node i. θ = node voltage angle vector and M = bus injection vector The line flow from node i to node j is given by f ij = (θ j - θ i ) b ij If the flows are within the tie capacity constraints, then a feasible flow has been found otherwise the program proceeds to the next stage to find a feasible flow. Stage 2: Linear programming If a feasible solution is not found in stage 1 then network flow module enters the optimization phase. The optimization procedure is based on LP and it assigns positive margins or curtails negative margins so as to minimize the pool loss of load. Mathematically the formulation is Loss of load = Min C i subject to: B θ + G +C =D 214

6 G G max C D F F f -F F r S S max where G = vector of positive injections D = vector of negative injections C = vector of negative injection curtailments C i = ith element of C S = vector of sum of flows at nodes F= vector of flows G max = vector of max available net positive injections S max = max flow values of flows at node s F f,f r = forward and reverse tie capacities F and S are related to tie line susceptances by the equation f ij = (θ j - θ I ) b ij 215

CHAPTER 3 FUZZIFIED PARTICLE SWARM OPTIMIZATION BASED DC- OPF OF INTERCONNECTED POWER SYSTEMS

CHAPTER 3 FUZZIFIED PARTICLE SWARM OPTIMIZATION BASED DC- OPF OF INTERCONNECTED POWER SYSTEMS 51 CHAPTER 3 FUZZIFIED PARTICLE SWARM OPTIMIZATION BASED DC- OPF OF INTERCONNECTED POWER SYSTEMS 3.1 INTRODUCTION Optimal Power Flow (OPF) is one of the most important operational functions of the modern

More information

Tutorial 2: Modelling Transmission

Tutorial 2: Modelling Transmission Tutorial 2: Modelling Transmission In our previous example the load and generation were at the same bus. In this tutorial we will see how to model the transmission of power from one bus to another. The

More information

Software Tools: Congestion Management

Software Tools: Congestion Management Software Tools: Congestion Management Tom Qi Zhang, PhD CompuSharp Inc. (408) 910-3698 Email: zhangqi@ieee.org October 16, 2004 IEEE PES-SF Workshop on Congestion Management Contents Congestion Management

More information

Composite System Reliability Evaluation using State Space Pruning

Composite System Reliability Evaluation using State Space Pruning Composite System Reliability Evaluation using State Space Pruning C. Singh, Fellow, IEEE J. Mitra, Student Member, IEEE Department of Electrical Engineering Texas A & M University College Station, Texas

More information

Power System Security. S. Chakrabarti

Power System Security. S. Chakrabarti Power System Security S. Chakrabarti Outline Introduction Major components of security assessment On-line security assessment Tools for contingency analysis DC power flow Linear sensitivity factors Line

More information

Standard Form An LP is in standard form when: All variables are non-negativenegative All constraints are equalities Putting an LP formulation into sta

Standard Form An LP is in standard form when: All variables are non-negativenegative All constraints are equalities Putting an LP formulation into sta Chapter 4 Linear Programming: The Simplex Method An Overview of the Simplex Method Standard Form Tableau Form Setting Up the Initial Simplex Tableau Improving the Solution Calculating the Next Tableau

More information

Optimal Placement & sizing of Distributed Generator (DG)

Optimal Placement & sizing of Distributed Generator (DG) Chapter - 5 Optimal Placement & sizing of Distributed Generator (DG) - A Single Objective Approach CHAPTER - 5 Distributed Generation (DG) for Power Loss Minimization 5. Introduction Distributed generators

More information

Blackouts in electric power transmission systems

Blackouts in electric power transmission systems University of Sunderland From the SelectedWorks of John P. Karamitsos 27 Blackouts in electric power transmission systems Ioannis Karamitsos Konstadinos Orfanidis Available at: https://works.bepress.com/john_karamitsos/9/

More information

Module 7-2 Decomposition Approach

Module 7-2 Decomposition Approach Module 7-2 Decomposition Approach Chanan Singh Texas A&M University Decomposition Approach l Now we will describe a method of decomposing the state space into subsets for the purpose of calculating the

More information

SINGLE OBJECTIVE RISK- BASED TRANSMISSION EXPANSION

SINGLE OBJECTIVE RISK- BASED TRANSMISSION EXPANSION Vol.2, Issue.1, Jan-Feb 2012 pp-424-430 ISSN: 2249-6645 SINGLE OBJECTIVE RISK- BASED TRANSMISSION EXPANSION V.Sumadeepthi 1, K.Sarada 2 1 (Student, Department of Electrical and Electronics Engineering,

More information

OPTIMAL LOCATION AND SIZING OF DISTRIBUTED GENERATOR IN RADIAL DISTRIBUTION SYSTEM USING OPTIMIZATION TECHNIQUE FOR MINIMIZATION OF LOSSES

OPTIMAL LOCATION AND SIZING OF DISTRIBUTED GENERATOR IN RADIAL DISTRIBUTION SYSTEM USING OPTIMIZATION TECHNIQUE FOR MINIMIZATION OF LOSSES 780 OPTIMAL LOCATIO AD SIZIG OF DISTRIBUTED GEERATOR I RADIAL DISTRIBUTIO SYSTEM USIG OPTIMIZATIO TECHIQUE FOR MIIMIZATIO OF LOSSES A. Vishwanadh 1, G. Sasi Kumar 2, Dr. D. Ravi Kumar 3 1 (Department of

More information

A possible notion of short-term value-based reliability

A possible notion of short-term value-based reliability Energy Laboratory MIT EL 1-13 WP Massachusetts Institute of Technology A possible notion of short-term value-based reliability August 21 A possible notion of short-term value-based reliability Yong TYoon,

More information

A Scenario-based Transmission Network Expansion Planning in Electricity Markets

A Scenario-based Transmission Network Expansion Planning in Electricity Markets A -based Transmission Network Expansion ning in Electricity Markets Pranjal Pragya Verma Department of Electrical Engineering Indian Institute of Technology Madras Email: ee14d405@ee.iitm.ac.in K.S.Swarup

More information

Contents Economic dispatch of thermal units

Contents Economic dispatch of thermal units Contents 2 Economic dispatch of thermal units 2 2.1 Introduction................................... 2 2.2 Economic dispatch problem (neglecting transmission losses)......... 3 2.2.1 Fuel cost characteristics........................

More information

The DC Optimal Power Flow

The DC Optimal Power Flow 1 / 20 The DC Optimal Power Flow Quantitative Energy Economics Anthony Papavasiliou The DC Optimal Power Flow 2 / 20 1 The OPF Using PTDFs 2 The OPF Using Reactance 3 / 20 Transmission Constraints Lines

More information

PowerApps Optimal Power Flow Formulation

PowerApps Optimal Power Flow Formulation PowerApps Optimal Power Flow Formulation Page1 Table of Contents 1 OPF Problem Statement... 3 1.1 Vector u... 3 1.1.1 Costs Associated with Vector [u] for Economic Dispatch... 4 1.1.2 Costs Associated

More information

Lecture 9 Evolutionary Computation: Genetic algorithms

Lecture 9 Evolutionary Computation: Genetic algorithms Lecture 9 Evolutionary Computation: Genetic algorithms Introduction, or can evolution be intelligent? Simulation of natural evolution Genetic algorithms Case study: maintenance scheduling with genetic

More information

= V I = Bus Admittance Matrix. Chapter 6: Power Flow. Constructing Ybus. Example. Network Solution. Triangular factorization. Let

= V I = Bus Admittance Matrix. Chapter 6: Power Flow. Constructing Ybus. Example. Network Solution. Triangular factorization. Let Chapter 6: Power Flow Network Matrices Network Solutions Newton-Raphson Method Fast Decoupled Method Bus Admittance Matri Let I = vector of currents injected into nodes V = vector of node voltages Y bus

More information

A Particle Swarm Based Method for Composite System Reliability Analysis

A Particle Swarm Based Method for Composite System Reliability Analysis A Particle Swarm Based Method for Composite System Reliability Analysis Ramesh Earla, Shashi B. Patra, Student Member, IEEE and Joydeep Mitra, Senior Member, IEEE Abstract This paper presents a new method

More information

Stochastic Unit Commitment with Topology Control Recourse for Renewables Integration

Stochastic Unit Commitment with Topology Control Recourse for Renewables Integration 1 Stochastic Unit Commitment with Topology Control Recourse for Renewables Integration Jiaying Shi and Shmuel Oren University of California, Berkeley IPAM, January 2016 33% RPS - Cumulative expected VERs

More information

OPTIMAL CAPACITOR PLACEMENT USING FUZZY LOGIC

OPTIMAL CAPACITOR PLACEMENT USING FUZZY LOGIC CHAPTER - 5 OPTIMAL CAPACITOR PLACEMENT USING FUZZY LOGIC 5.1 INTRODUCTION The power supplied from electrical distribution system is composed of both active and reactive components. Overhead lines, transformers

More information

Monte Carlo Simulation for Reliability Analysis of Emergency and Standby Power Systems

Monte Carlo Simulation for Reliability Analysis of Emergency and Standby Power Systems Monte Carlo Simulation for Reliability Analysis of Emergency and Standby Power Systems Chanan Singh, Fellow, IEEE Joydeep Mitra, Student Member, IEEE Department of Electrical Engineering Texas A & M University

More information

UNIT-I ECONOMIC OPERATION OF POWER SYSTEM-1

UNIT-I ECONOMIC OPERATION OF POWER SYSTEM-1 UNIT-I ECONOMIC OPERATION OF POWER SYSTEM-1 1.1 HEAT RATE CURVE: The heat rate characteristics obtained from the plot of the net heat rate in Btu/Wh or cal/wh versus power output in W is shown in fig.1

More information

ECEN 667 Power System Stability Lecture 25: FFT, Energy Methods

ECEN 667 Power System Stability Lecture 25: FFT, Energy Methods ECEN 667 Power System Stability Lecture 5: FFT, Energy Methods Prof. Tom Overbye Dept. of Electrical and Computer Engineering Texas A&M University, overbye@tamu.edu 1 Announcements Read Chapter 9 Final

More information

ELEC4612 Power System Analysis Power Flow Analysis

ELEC4612 Power System Analysis Power Flow Analysis ELEC462 Power Sstem Analsis Power Flow Analsis Dr Jaashri Ravishankar jaashri.ravishankar@unsw.edu.au Busbars The meeting point of various components of a PS is called bus. The bus or busbar is a conductor

More information

SECTION 5: POWER FLOW. ESE 470 Energy Distribution Systems

SECTION 5: POWER FLOW. ESE 470 Energy Distribution Systems SECTION 5: POWER FLOW ESE 470 Energy Distribution Systems 2 Introduction Nodal Analysis 3 Consider the following circuit Three voltage sources VV sss, VV sss, VV sss Generic branch impedances Could be

More information

CAPACITOR PLACEMENT IN UNBALANCED POWER SYSTEMS

CAPACITOR PLACEMENT IN UNBALANCED POWER SYSTEMS CAPACITOR PLACEMET I UBALACED POWER SSTEMS P. Varilone and G. Carpinelli A. Abur Dipartimento di Ingegneria Industriale Department of Electrical Engineering Universita degli Studi di Cassino Texas A&M

More information

1 Unified Power Flow Controller (UPFC)

1 Unified Power Flow Controller (UPFC) Power flow control with UPFC Rusejla Sadikovic Internal report 1 Unified Power Flow Controller (UPFC) The UPFC can provide simultaneous control of all basic power system parameters ( transmission voltage,

More information

Chapter 2. Planning Criteria. Turaj Amraee. Fall 2012 K.N.Toosi University of Technology

Chapter 2. Planning Criteria. Turaj Amraee. Fall 2012 K.N.Toosi University of Technology Chapter 2 Planning Criteria By Turaj Amraee Fall 2012 K.N.Toosi University of Technology Outline 1- Introduction 2- System Adequacy and Security 3- Planning Purposes 4- Planning Standards 5- Reliability

More information

AN OPTIMIZED FAST VOLTAGE STABILITY INDICATOR

AN OPTIMIZED FAST VOLTAGE STABILITY INDICATOR AN OPTIMIZED FAST OLTAE STABILITY INDICATOR C. A. Belhadj M. A. Abido Electrical Engineering Department King Fahd University of Petroleum & Minerals Dhahran 31261, Saudi Arabia ABSTRACT: This paper proposes

More information

Minimization of Energy Loss using Integrated Evolutionary Approaches

Minimization of Energy Loss using Integrated Evolutionary Approaches Minimization of Energy Loss using Integrated Evolutionary Approaches Attia A. El-Fergany, Member, IEEE, Mahdi El-Arini, Senior Member, IEEE Paper Number: 1569614661 Presentation's Outline Aim of this work,

More information

Reliability Evaluation in Transmission Systems

Reliability Evaluation in Transmission Systems Reliability Evaluation in Transmission Systems Chanan Singh 1 and Joydeep Mitra 2 1 Texas A&M University, College Station, TX, USA 2 Michigan State University, East Lansing, MI, USA 1 Introduction In reliability

More information

Chapter 5. Transmission networks and electricity markets

Chapter 5. Transmission networks and electricity markets Chapter 5. Transmission networks and electricity markets 1 Introduction In most of the regions of the world: assumptions that electrical energy can be traded as if all generators were connected to the

More information

CHAPTER 2 LOAD FLOW ANALYSIS FOR RADIAL DISTRIBUTION SYSTEM

CHAPTER 2 LOAD FLOW ANALYSIS FOR RADIAL DISTRIBUTION SYSTEM 16 CHAPTER 2 LOAD FLOW ANALYSIS FOR RADIAL DISTRIBUTION SYSTEM 2.1 INTRODUCTION Load flow analysis of power system network is used to determine the steady state solution for a given set of bus loading

More information

Differential Evolution: a stochastic nonlinear optimization algorithm by Storn and Price, 1996

Differential Evolution: a stochastic nonlinear optimization algorithm by Storn and Price, 1996 Differential Evolution: a stochastic nonlinear optimization algorithm by Storn and Price, 1996 Presented by David Craft September 15, 2003 This presentation is based on: Storn, Rainer, and Kenneth Price

More information

ECG 740 GENERATION SCHEDULING (UNIT COMMITMENT)

ECG 740 GENERATION SCHEDULING (UNIT COMMITMENT) 1 ECG 740 GENERATION SCHEDULING (UNIT COMMITMENT) 2 Unit Commitment Given a load profile, e.g., values of the load for each hour of a day. Given set of units available, When should each unit be started,

More information

Importance Sampling Stratified Sampling. Lecture 6, autumn 2015 Mikael Amelin

Importance Sampling Stratified Sampling. Lecture 6, autumn 2015 Mikael Amelin Importance Sampling Stratified Sampling Lecture 6, autumn 2015 Mikael Amelin 1 Introduction All samples are treated equally in simple sampling. Sometimes it is possible to increase the accuracy by focusing

More information

RELIABILITY MODELING AND EVALUATION IN AGING POWER SYSTEMS. A Thesis HAG-KWEN KIM

RELIABILITY MODELING AND EVALUATION IN AGING POWER SYSTEMS. A Thesis HAG-KWEN KIM RELIABILITY MODELING AND EVALUATION IN AGING POWER SYSTEMS A Thesis by HAG-KWEN KIM Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the

More information

Automatic Generation Control. Meth Bandara and Hassan Oukacha

Automatic Generation Control. Meth Bandara and Hassan Oukacha Automatic Generation Control Meth Bandara and Hassan Oukacha EE194 Advanced Controls Theory February 25, 2013 Outline Introduction System Modeling Single Generator AGC Going Forward Conclusion Introduction

More information

Electric Circuit Theory

Electric Circuit Theory Electric Circuit Theory Nam Ki Min nkmin@korea.ac.kr 010-9419-2320 Chapter 18 Two-Port Circuits Nam Ki Min nkmin@korea.ac.kr 010-9419-2320 Contents and Objectives 3 Chapter Contents 18.1 The Terminal Equations

More information

Probabilistic Assessment of Atc in the Deregulated Network

Probabilistic Assessment of Atc in the Deregulated Network Australian Journal of Basic and Applied Sciences, 5(6): 882-890, 2011 ISSN 1991-8178 Probabilistic Assessment of Atc in the Deregulated Network Mojtaba Najafi and Mohsen Simab Department of Engineering,

More information

APPLICATIONS OF SENSITIVITY ANALYSIS IN PLANNING AND OPERATION OF MODERN POWER SYSTEMS. Mohammed Ben-Idris

APPLICATIONS OF SENSITIVITY ANALYSIS IN PLANNING AND OPERATION OF MODERN POWER SYSTEMS. Mohammed Ben-Idris APPLICATIONS OF SENSITIVITY ANALYSIS IN PLANNING AND OPERATION OF MODERN POWER SYSTEMS By Mohammed Ben-Idris A DISSERTATION Submitted to Michigan State University in partial fulfillment of the requirements

More information

M.SC. MATHEMATICS - II YEAR

M.SC. MATHEMATICS - II YEAR MANONMANIAM SUNDARANAR UNIVERSITY DIRECTORATE OF DISTANCE & CONTINUING EDUCATION TIRUNELVELI 627012, TAMIL NADU M.SC. MATHEMATICS - II YEAR DKM24 - OPERATIONS RESEARCH (From the academic year 2016-17)

More information

Distributed Optimization. Song Chong EE, KAIST

Distributed Optimization. Song Chong EE, KAIST Distributed Optimization Song Chong EE, KAIST songchong@kaist.edu Dynamic Programming for Path Planning A path-planning problem consists of a weighted directed graph with a set of n nodes N, directed links

More information

ADEQUACY ASSESSMENT IN POWER SYSTEMS USING GENETIC ALGORITHM AND DYNAMIC PROGRAMMING. A Thesis DONGBO ZHAO

ADEQUACY ASSESSMENT IN POWER SYSTEMS USING GENETIC ALGORITHM AND DYNAMIC PROGRAMMING. A Thesis DONGBO ZHAO ADEQUACY ASSESSMENT IN POWER SYSTEMS USING GENETIC ALGORITHM AND DYNAMIC PROGRAMMING A Thesis by DONGBO ZHAO Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of

More information

Controlling variability in power systems

Controlling variability in power systems Daniel APAM Nov 17 2017 A simple example: 100 100 A simple example: 100 100 Only one solution: 200 100 200 100 100 100 A simple example: 100 100 Only one solution: 200 100 200 100 100 100 But what if the

More information

Applied Optimization: Formulation and Algorithms for Engineering Systems Slides

Applied Optimization: Formulation and Algorithms for Engineering Systems Slides Applied Optimization: Formulation and Algorithms for Engineering Systems Slides Ross Baldick Department of Electrical and Computer Engineering The University of Texas at Austin Austin, TX 78712 Copyright

More information

Meta Heuristic Harmony Search Algorithm for Network Reconfiguration and Distributed Generation Allocation

Meta Heuristic Harmony Search Algorithm for Network Reconfiguration and Distributed Generation Allocation Department of CSE, JayShriram Group of Institutions, Tirupur, Tamilnadu, India on 6 th & 7 th March 2014 Meta Heuristic Harmony Search Algorithm for Network Reconfiguration and Distributed Generation Allocation

More information

Power Flow Analysis of Radial Distribution System using Backward/Forward Sweep Method

Power Flow Analysis of Radial Distribution System using Backward/Forward Sweep Method Power Flow Analysis of Radial Distribution System using Backward/Forward Sweep Method Gurpreet Kaur 1, Asst. Prof. Harmeet Singh Gill 2 1,2 Department of Electrical Engineering, Guru Nanak Dev Engineering

More information

Electrodynamics and Microwaves 17. Stub Matching Technique in Transmission Lines

Electrodynamics and Microwaves 17. Stub Matching Technique in Transmission Lines 1 Module 17 Stub Matching Technique in Transmission Lines 1. Introduction 2. Concept of matching stub 3. Mathematical Basis for Single shunt stub matching 4.Designing of single stub using Smith chart 5.

More information

Real Time Voltage Control using Genetic Algorithm

Real Time Voltage Control using Genetic Algorithm Real Time Voltage Control using Genetic Algorithm P. Thirusenthil kumaran, C. Kamalakannan Department of EEE, Rajalakshmi Engineering College, Chennai, India Abstract An algorithm for control action selection

More information

2015 IEEE. Digital Object Identifier: /PTC

2015 IEEE. Digital Object Identifier: /PTC 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes,

More information

EVALUATION OF WIND ENERGY SOURCES INFLUENCE ON COMPOSITE GENERATION AND TRANSMISSION SYSTEMS RELIABILITY

EVALUATION OF WIND ENERGY SOURCES INFLUENCE ON COMPOSITE GENERATION AND TRANSMISSION SYSTEMS RELIABILITY EVALUATION OF WIND ENERGY SOURCES INFLUENCE ON COMPOSITE GENERATION AND TRANSMISSION SYSTEMS RELIABILITY Carmen Lucia Tancredo Borges João Paulo Galvão carmen@dee.ufrj.br joaopaulo@mercados.com.br Federal

More information

min 4x 1 5x 2 + 3x 3 s.t. x 1 + 2x 2 + x 3 = 10 x 1 x 2 6 x 1 + 3x 2 + x 3 14

min 4x 1 5x 2 + 3x 3 s.t. x 1 + 2x 2 + x 3 = 10 x 1 x 2 6 x 1 + 3x 2 + x 3 14 The exam is three hours long and consists of 4 exercises. The exam is graded on a scale 0-25 points, and the points assigned to each question are indicated in parenthesis within the text. If necessary,

More information

Power grid vulnerability analysis

Power grid vulnerability analysis Power grid vulnerability analysis Daniel Bienstock Columbia University Dimacs 2010 Daniel Bienstock (Columbia University) Power grid vulnerability analysis Dimacs 2010 1 Background: a power grid is three

More information

International Workshop on Wind Energy Development Cairo, Egypt. ERCOT Wind Experience

International Workshop on Wind Energy Development Cairo, Egypt. ERCOT Wind Experience International Workshop on Wind Energy Development Cairo, Egypt ERCOT Wind Experience March 22, 21 Joel Mickey Direcr of Grid Operations Electric Reliability Council of Texas jmickey@ercot.com ERCOT 2 2

More information

False Data Injection Attacks Against Nonlinear State Estimation in Smart Power Grids

False Data Injection Attacks Against Nonlinear State Estimation in Smart Power Grids 1 False Data Injection Attacks Against Nonlinear State Estimation in Smart Power rids Md. Ashfaqur Rahman and Hamed Mohsenian-Rad Department of Electrical and Computer Engineering, Texas Tech University,

More information

CSC 4510 Machine Learning

CSC 4510 Machine Learning 10: Gene(c Algorithms CSC 4510 Machine Learning Dr. Mary Angela Papalaskari Department of CompuBng Sciences Villanova University Course website: www.csc.villanova.edu/~map/4510/ Slides of this presenta(on

More information

Supplementary Technical Details and Results

Supplementary Technical Details and Results Supplementary Technical Details and Results April 6, 2016 1 Introduction This document provides additional details to augment the paper Efficient Calibration Techniques for Large-scale Traffic Simulators.

More information

Power System Analysis Prof. A. K. Sinha Department of Electrical Engineering Indian Institute of Technology, Kharagpur. Lecture - 21 Power Flow VI

Power System Analysis Prof. A. K. Sinha Department of Electrical Engineering Indian Institute of Technology, Kharagpur. Lecture - 21 Power Flow VI Power System Analysis Prof. A. K. Sinha Department of Electrical Engineering Indian Institute of Technology, Kharagpur Lecture - 21 Power Flow VI (Refer Slide Time: 00:57) Welcome to lesson 21. In this

More information

Various Techniques for Nonlinear Energy-Related Optimizations. Javad Lavaei. Department of Electrical Engineering Columbia University

Various Techniques for Nonlinear Energy-Related Optimizations. Javad Lavaei. Department of Electrical Engineering Columbia University Various Techniques for Nonlinear Energy-Related Optimizations Javad Lavaei Department of Electrical Engineering Columbia University Acknowledgements Caltech: Steven Low, Somayeh Sojoudi Columbia University:

More information

Reactive Power Compensation for Reliability Improvement of Power Systems

Reactive Power Compensation for Reliability Improvement of Power Systems for Reliability Improvement of Power Systems Mohammed Benidris, Member, IEEE, Samer Sulaeman, Student Member, IEEE, Yuting Tian, Student Member, IEEE and Joydeep Mitra, Senior Member, IEEE Department of

More information

(P ) Minimize 4x 1 + 6x 2 + 5x 3 s.t. 2x 1 3x 3 3 3x 2 2x 3 6

(P ) Minimize 4x 1 + 6x 2 + 5x 3 s.t. 2x 1 3x 3 3 3x 2 2x 3 6 The exam is three hours long and consists of 4 exercises. The exam is graded on a scale 0-25 points, and the points assigned to each question are indicated in parenthesis within the text. Problem 1 Consider

More information

Performance Improvement of the Radial Distribution System by using Switched Capacitor Banks

Performance Improvement of the Radial Distribution System by using Switched Capacitor Banks Int. J. on Recent Trends in Engineering and Technology, Vol. 10, No. 2, Jan 2014 Performance Improvement of the Radial Distribution System by using Switched Capacitor Banks M. Arjun Yadav 1, D. Srikanth

More information

y(d) = j

y(d) = j Problem 2.66 A 0-Ω transmission line is to be matched to a computer terminal with Z L = ( j25) Ω by inserting an appropriate reactance in parallel with the line. If f = 800 MHz and ε r = 4, determine the

More information

Simplex tableau CE 377K. April 2, 2015

Simplex tableau CE 377K. April 2, 2015 CE 377K April 2, 2015 Review Reduced costs Basic and nonbasic variables OUTLINE Review by example: simplex method demonstration Outline Example You own a small firm producing construction materials for

More information

OPERATIONS RESEARCH. Linear Programming Problem

OPERATIONS RESEARCH. Linear Programming Problem OPERATIONS RESEARCH Chapter 1 Linear Programming Problem Prof. Bibhas C. Giri Department of Mathematics Jadavpur University Kolkata, India Email: bcgiri.jumath@gmail.com MODULE - 2: Simplex Method for

More information

OPERATIONS RESEARCH. Transportation and Assignment Problems

OPERATIONS RESEARCH. Transportation and Assignment Problems OPERATIONS RESEARCH Chapter 2 Transportation and Assignment Problems Prof. Bibhas C. Giri Department of Mathematics Jadavpur University Kolkata, India Email: bcgiri.jumath@gmail.com 1.0 Introduction In

More information

Wind Power Capacity Assessment

Wind Power Capacity Assessment Wind Power Capacity Assessment Mary Johannis, BPA, representing Northwest Resource Adequacy Forum Northwest Wind Integration Forum Technical Working Group October 29,2009 March 2007 NW Wind Integration

More information

Q520: Answers to the Homework on Hopfield Networks. 1. For each of the following, answer true or false with an explanation:

Q520: Answers to the Homework on Hopfield Networks. 1. For each of the following, answer true or false with an explanation: Q50: Answers to the Homework on Hopfield Networks 1. For each of the following, answer true or false with an explanation: a. Fix a Hopfield net. If o and o are neighboring observation patterns then Φ(

More information

Metode Kuantitatif Bisnis. Week 4 Linear Programming Simplex Method - Minimize

Metode Kuantitatif Bisnis. Week 4 Linear Programming Simplex Method - Minimize Metode Kuantitatif Bisnis Week 4 Linear Programming Simplex Method - Minimize Outlines Solve Linear Programming Model Using Graphic Solution Solve Linear Programming Model Using Simplex Method (Maximize)

More information

IMPEDANCE and NETWORKS. Transformers. Networks. A method of analysing complex networks. Y-parameters and S-parameters

IMPEDANCE and NETWORKS. Transformers. Networks. A method of analysing complex networks. Y-parameters and S-parameters IMPEDANCE and NETWORKS Transformers Networks A method of analysing complex networks Y-parameters and S-parameters 1 ENGN4545/ENGN6545: Radiofrequency Engineering L#7 Transformers Combining the effects

More information

Total Transfer Capability Enhancement Using Hybrid Evolutionary Algorithm

Total Transfer Capability Enhancement Using Hybrid Evolutionary Algorithm CMU. J. Nat. Sci. (2007) Vol. 6(2) 301 Total Transfer Capability Enhancement Using Hybrid Evolutionary Algorithm Peerapol Jirapong* Department of Electrical Engineering, Faculty of Engineering, Chiang

More information

Incorporation of Asynchronous Generators as PQ Model in Load Flow Analysis for Power Systems with Wind Generation

Incorporation of Asynchronous Generators as PQ Model in Load Flow Analysis for Power Systems with Wind Generation Incorporation of Asynchronous Generators as PQ Model in Load Flow Analysis for Power Systems with Wind Generation James Ranjith Kumar. R, Member, IEEE, Amit Jain, Member, IEEE, Power Systems Division,

More information

Linear Programming. H. R. Alvarez A., Ph. D. 1

Linear Programming. H. R. Alvarez A., Ph. D. 1 Linear Programming H. R. Alvarez A., Ph. D. 1 Introduction It is a mathematical technique that allows the selection of the best course of action defining a program of feasible actions. The objective of

More information

Dynamic Decomposition for Monitoring and Decision Making in Electric Power Systems

Dynamic Decomposition for Monitoring and Decision Making in Electric Power Systems Dynamic Decomposition for Monitoring and Decision Making in Electric Power Systems Contributed Talk at NetSci 2007 May 20, 2007 Le Xie (lx@ece.cmu.edu) Advisor: Marija Ilic Outline Motivation Problem Statement

More information

Optimal Performance Enhancement of Capacitor in Radial Distribution System Using Fuzzy and HSA

Optimal Performance Enhancement of Capacitor in Radial Distribution System Using Fuzzy and HSA IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, Volume 9, Issue 2 Ver. I (Mar Apr. 2014), PP 26-32 Optimal Performance Enhancement of Capacitor in

More information

2 NETWORK FORMULATION

2 NETWORK FORMULATION NTWRK FRMUATN NTRDUCTRY RMARKS For performing any power system studies on the digital computer, the first step is to construct a suitable mathematical model of the power system network The mathematical

More information

Chapter 7 Network Flow Problems, I

Chapter 7 Network Flow Problems, I Chapter 7 Network Flow Problems, I Network flow problems are the most frequently solved linear programming problems. They include as special cases, the assignment, transportation, maximum flow, and shortest

More information

Power system modelling under the phasor approximation

Power system modelling under the phasor approximation ELEC0047 - Power system dynamics, control and stability Thierry Van Cutsem t.vancutsem@ulg.ac.be www.montefiore.ulg.ac.be/~vct October 2018 1 / 16 Electromagnetic transient vs. phasor-mode simulations

More information

Linear and Integer Programming - ideas

Linear and Integer Programming - ideas Linear and Integer Programming - ideas Paweł Zieliński Institute of Mathematics and Computer Science, Wrocław University of Technology, Poland http://www.im.pwr.wroc.pl/ pziel/ Toulouse, France 2012 Literature

More information

Module 6 : Preventive, Emergency and Restorative Control. Lecture 27 : Normal and Alert State in a Power System. Objectives

Module 6 : Preventive, Emergency and Restorative Control. Lecture 27 : Normal and Alert State in a Power System. Objectives Module 6 : Preventive, Emergency and Restorative Control Lecture 27 : Normal and Alert State in a Power System Objectives In this lecture you will learn the following Different states in a power system

More information

Capacitor Placement for Economical Electrical Systems using Ant Colony Search Algorithm

Capacitor Placement for Economical Electrical Systems using Ant Colony Search Algorithm Capacitor Placement for Economical Electrical Systems using Ant Colony Search Algorithm Bharat Solanki Abstract The optimal capacitor placement problem involves determination of the location, number, type

More information

Corrective Control to Handle Forecast Uncertainty: A Chance Constrained Optimal Power Flow

Corrective Control to Handle Forecast Uncertainty: A Chance Constrained Optimal Power Flow 1 Corrective Control to Handle Forecast Uncertainty: A Chance Constrained Optimal Power Flow Line Roald, Sidhant Misra, Thilo Krause, and Göran Andersson arxiv:169.2194v1 [math.oc] 7 Sep 216 Abstract Higher

More information

Bringing Renewables to the Grid. John Dumas Director Wholesale Market Operations ERCOT

Bringing Renewables to the Grid. John Dumas Director Wholesale Market Operations ERCOT Bringing Renewables to the Grid John Dumas Director Wholesale Market Operations ERCOT 2011 Summer Seminar August 2, 2011 Quick Overview of ERCOT The ERCOT Market covers ~85% of Texas overall power usage

More information

Module 3 : Sequence Components and Fault Analysis

Module 3 : Sequence Components and Fault Analysis Module 3 : Sequence Components and Fault Analysis Lecture 12 : Sequence Modeling of Power Apparatus Objectives In this lecture we will discuss Per unit calculation and its advantages. Modeling aspects

More information

Coordinated Multilateral Trades for Electric Power Networks: Theory and Implementation. Felix F. Wu and Pravin Varaiya

Coordinated Multilateral Trades for Electric Power Networks: Theory and Implementation. Felix F. Wu and Pravin Varaiya PWP-031 Coordinated Multilateral Trades for Electric Power Networks: Theory and Implementation Felix F. Wu and Pravin Varaiya June 1995 This paper is part of the working papers series of the Program on

More information

OPTIMAL DISPATCH OF REAL POWER GENERATION USING PARTICLE SWARM OPTIMIZATION: A CASE STUDY OF EGBIN THERMAL STATION

OPTIMAL DISPATCH OF REAL POWER GENERATION USING PARTICLE SWARM OPTIMIZATION: A CASE STUDY OF EGBIN THERMAL STATION OPTIMAL DISPATCH OF REAL POWER GENERATION USING PARTICLE SWARM OPTIMIZATION: A CASE STUDY OF EGBIN THERMAL STATION Onah C. O. 1, Agber J. U. 2 and Ikule F. T. 3 1, 2, 3 Department of Electrical and Electronics

More information

The Impact of Distributed Generation on Power Transmission Grid Dynamics

The Impact of Distributed Generation on Power Transmission Grid Dynamics The Impact of Distributed Generation on Power Transmission Grid Dynamics D. E. Newman B. A. Carreras M. Kirchner I. Dobson Physics Dept. University of Alaska Fairbanks AK 99775 Depart. Fisica Universidad

More information

Optimal Capacitor placement in Distribution Systems with Distributed Generators for Voltage Profile improvement by Particle Swarm Optimization

Optimal Capacitor placement in Distribution Systems with Distributed Generators for Voltage Profile improvement by Particle Swarm Optimization Optimal Capacitor placement in Distribution Systems with Distributed Generators for Voltage Profile improvement by Particle Swarm Optimization G. Balakrishna 1, Dr. Ch. Sai Babu 2 1 Associate Professor,

More information

Course notes for EE394V Restructured Electricity Markets: Locational Marginal Pricing

Course notes for EE394V Restructured Electricity Markets: Locational Marginal Pricing Course notes for EE394V Restructured Electricity Markets: Locational Marginal Pricing Ross Baldick Copyright c 2013 Ross Baldick www.ece.utexas.edu/ baldick/classes/394v/ee394v.html Title Page 1 of 132

More information

SSSC Modeling and Damping Controller Design for Damping Low Frequency Oscillations

SSSC Modeling and Damping Controller Design for Damping Low Frequency Oscillations SSSC Modeling and Damping Controller Design for Damping Low Frequency Oscillations Mohammed Osman Hassan, Ahmed Khaled Al-Haj Assistant Professor, Department of Electrical Engineering, Sudan University

More information

Module 2. DC Circuit. Version 2 EE IIT, Kharagpur

Module 2. DC Circuit. Version 2 EE IIT, Kharagpur Module DC Circuit Lesson 4 Loop Analysis of resistive circuit in the context of dc voltages and currents Objectives Meaning of circuit analysis; distinguish between the terms mesh and loop. To provide

More information

A Unified Framework for Defining and Measuring Flexibility in Power System

A Unified Framework for Defining and Measuring Flexibility in Power System J A N 1 1, 2 0 1 6, A Unified Framework for Defining and Measuring Flexibility in Power System Optimization and Equilibrium in Energy Economics Workshop Jinye Zhao, Tongxin Zheng, Eugene Litvinov Outline

More information

Power Grid State Estimation after a Cyber-Physical Attack under the AC Power Flow Model

Power Grid State Estimation after a Cyber-Physical Attack under the AC Power Flow Model Power Grid State Estimation after a Cyber-Physical Attack under the AC Power Flow Model Saleh Soltan, Gil Zussman Department of Electrical Engineering Columbia University, New York, NY Email: {saleh,gil}@ee.columbia.edu

More information

Module 4-2 Methods of Quantitative Reliability Analysis

Module 4-2 Methods of Quantitative Reliability Analysis Module 4-2 Methods of Quantitative Reliability Analysis Chanan Singh Texas A&M University METHODS OF QUANTITATIVE RELIABILITY ANALYSIS ANALYTICAL METHODS - STATE SPACE USING MARKOV PROCESSES - NETWORK

More information

A Progressive Hedging Approach to Multistage Stochastic Generation and Transmission Investment Planning

A Progressive Hedging Approach to Multistage Stochastic Generation and Transmission Investment Planning A Progressive Hedging Approach to Multistage Stochastic Generation and Transmission Investment Planning Yixian Liu Ramteen Sioshansi Integrated Systems Engineering Department The Ohio State University

More information

Monte Carlo simulation for evaluating retail wheeling effects

Monte Carlo simulation for evaluating retail wheeling effects Electric Power Systems Research 60 (2002) 137 144 www.elsevier.com/locate/epsr Monte Carlo simulation for evaluating retail wheeling effects A.G. Bakirtzis a, *, Yong-Ha Kim b,1, A.P. Sakis Meliopoulos

More information

ECE 422/522 Power System Operations & Planning/Power Systems Analysis II : 7 - Transient Stability

ECE 422/522 Power System Operations & Planning/Power Systems Analysis II : 7 - Transient Stability ECE 4/5 Power System Operations & Planning/Power Systems Analysis II : 7 - Transient Stability Spring 014 Instructor: Kai Sun 1 Transient Stability The ability of the power system to maintain synchronism

More information

POWER SYSTEM DYNAMIC SECURITY ASSESSMENT CLASSICAL TO MODERN APPROACH

POWER SYSTEM DYNAMIC SECURITY ASSESSMENT CLASSICAL TO MODERN APPROACH Abstract POWER SYSTEM DYNAMIC SECURITY ASSESSMENT CLASSICAL TO MODERN APPROACH A.H.M.A.Rahim S.K.Chakravarthy Department of Electrical Engineering K.F. University of Petroleum and Minerals Dhahran. Dynamic

More information