M. Holschneider 1 A. Eicker 2 R. Schachtschneider 1 T. Mayer-Guerr 2 K. Ilk 2

Size: px
Start display at page:

Download "M. Holschneider 1 A. Eicker 2 R. Schachtschneider 1 T. Mayer-Guerr 2 K. Ilk 2"

Transcription

1 SPP project TREGMAT: Tailored Gravity Field Models for Mass Distributions and Mass Transport Phenomena in the Earth System by by M. 1 A. Eicker 2 R. Schachtschneider 1 T. Mayer-Guerr 2 K. Ilk 2 1 University of Potsdam, Institute of Mathematics, Applied and Industrial Mathematics Department 2 University of Bonn, Institute of Geodesy and Geoinformation

2 Other collaborators by Many more people have contributed A. Chambodut, B. Minchev, I. Panet, M. Mandea, I. Iglewska-Nowak

3 Content by

4 Mathematical I by Equivalent formulations are: Spline, Kriging, Bayesian We are looking for a field satisfying Laplace equation Φ = 0, in source free region. A priori knowledge: Φ is a Gaussian process with probability density P(Φ) e λγ(φ), Γ(Φ) is a generalized energy ( e.g. Kaula s rule in Gravity, Geomagnetic norms in Geomagnetism ). Realized through rotation invariant operator G Γ(Φ) =< Φ, GΦ >, Γ(Φ) = l=0 γ 2 l l ˆΦ l,m 2 m= l

5 Mathematical II by A priori knowledge is increased through measurements. Measurement are functionals of Φ plus noise ( i I ) α i =< L i, Φ > +ɛ i. Noise is modelled by Gaussian process e.g.δ xi, δ xi E(ɛ i ) = 0, E(ɛ i ɛ k ) = Σ i,k. This yields a posteriory probability density in model ( P(Φ) exp λγ(φ) + ) (L i Φ α i )Σ 1 i,j (L j Φ α j ) All the physical information is in Γ, L i and ɛ. The "best" model, given our knowledge is the uniquely determined most probable model Φ opt = argmin λγ(φ) + (L i Φ α i )Σ 1 i,j (L j Φ α j )

6 Direct inversion by Theoretically Φ opt can be computed directly ( e.g. Wahaba 1982 ) Let η i = G 1 L i, This is the optimal model given the single measurement L i. Then Φ opt = γ i η i, where γ i are solution of an explicitly known linear system. Problem: dimension of system is #{observations} 2 Possible solution: Compression of observational data ( Minchev et. al. ) Lower dimensional approximations

7 Linear Models by amounts to compute an approximation to the minimizer of the cost functional. Linear models: superposition of "a priori" basic F n s(x) = α n F n (x). where the sum is finite and α n R. Quality of approximation s s depends on choice of F n ( SH, mascons, wavelets, local splines ) Often F n are ONB but not necessary.

8 Requirements by Requirements for basic easy physical interpretation numerically easy to compute universal ( = span dense in L 2 ) simple transition between local and global models for the of potential fields F n = 0. Models are approximants of the form α n F n.

9 Normal equations by System matrix A i,j = F i (x j ). Minimization of cost function leads to normal equations for expansion coefficients x n from observations α with and (M + λλ) α = Σ 1 A α M i,j = (A Σ 1 A) i,j = k,l Λ i,j = Γ(F i, F j ). F i (x k )Σ 1 k,l F j(x l ) Optimal λ may be determined through cross validation / variance component estimation.

10 Covariance Matrix by The spherical harmonics form an ONB. Covariance matrix diagonal Λ i,j =< SH i, SH j >

11 Correlation observations by Observation in x l {Paris, Sidney}. M i,j = l SH i(x l )SH j (x l ). Matrix is not sparse observations in Sidney influence the local model in Europe.

12 Localizing : by No "natural" dilation operator. Consider Ω R the sphere of radius R, Ω R = {(x 1, x 2, x 3 ) : x x x 2 3 = R2 }. Definition of exterior wavelets Wx ext,d (y) = R y l=0 ( ) x l l d Q l (ˆx ŷ) x Int Ω R, y Ext Ω R y d is the called the degree and Q l = (2l + 1)P l is reproducing kernel of Σ l = span{y l,m : l m +l} f Σ l Q l f = δ l,l f Convolution defined as K s(x) = y =R K (ˆx ŷ) s(y) dσ(y). (1)

13 Wavelet as multipoles by evaluation of wavelets is based on the following Proposition Exterior and interior wavelet with d N 0 may be uniquely harmonically continued to R 3 R 3 \{x = y}. W ext,d x (y) = d+1 l=0 (2α d+1 l d+1 = ( 1) d+1 l=0 + α d l ) Rl! x l P l (ŷ x ˆx) y x l+1 (2β d+1 with explicit coefficients α k and β k. l βl d ) Rl! y l P l ( x y ŷ) y x l+1.

14 Interpretation as wavelet by Actually these are wavelets! Consider restriction to sphere Ω R. For x < R and y Ω R Wx ext,d (y) = R y l=1 ( ) x l l d Q l (ˆx ŷ) y = R > x. y This may be written as ( b = Rx/ x, x = e a b ) W ext,d x (y) = W (d) a d b,a (y) = R (al) d e al Q l (ŷ b) l

15 Scaling of wavelets by The distance of the position of the poles to the surface of the earth is related to the scale

16 Interpretation by The are wavelets on the sphere Ω R. Their harmonic extension into outer are W ext,d a = log(r/ x ) 1 x /R the scale b = Rˆx the position

17 Euclidean limit by Stereographic mapping Ψ : H Ω R at north-pole N. Theorem ( M.H. and I. Iglewska-Nowak) The following limit exists pointwise for d N and y H. V d (y) := lim a d+2 W ext,d (Ψ(ay)) (2) a 0 e a N = lim a d+2 W int,d a 0 e a N (Ψ(ay)) (3) = lim a 2 ga,n d (Ψ(ay)) (4) a 0 = 2(d + 1)! R d 1 P d+1(1/ 1 + y/r 2 ) (1 + y/r 2 ) (d+2)/2. (5) Extension to directional wavelets ( PhD M. Hayn )

18 Covariance matrix by The family of wavelets is NOT an ONB, but (generzalized) correlations (i.e. quadratic form of generalized energy) are low

19 Data correlation by The correlation matrix M i,j = l SH i(x l )SH j (x l ) with respect to the observations is sparse local is possible.

20 Local Spline by Idea: (quasi) diagonalizing the quadratic form Γ. Γ(Φ) = l γ 2 l l m= l ˆΦ l,m 2, with ˆΦ l,m the Fourier coefficients of Φ on the Earth. Then set with small regularizing η > 0 W = 2l + 1 γ l e ηl P l Therefore Γ(W ) = (1 e 2ηl ) 1 (2η) 1 and < W x, GW y > C η, x y We have < W x, GW y > δ x (y) ( η 0).

21 Local Spline by Grid of positions choose η to optimize compromise between diagonality of Γk,l =< Wxk, GWxl > and finiteness of generalized energy. Problem: spatial localization of W itself cannot be improved without bounds. But: smaller details than these kernels need exponential increase of precision for measurements anyway

22 Mathematical for regional by Mathematical analysis based on operator K : (Earth) (Satellite), Φ χ data-region Upward h Φ Extremely ill posed problem: recovering details δφ = Φ Φ 0 to a prior global model Φ 0 from noisy observations Φ ɛ = Φ 0 + K δφ + ɛ, δφ ɛ = Φ ɛ Φ 0.

23 SVD decomposition allows optimal regularization by The SVD of K allows to consider regularizing approximants of K 1. K = n λ n φ n >< ψ n, K 1 N = N n=1 λ 1 n ψ n >< φ n Trade-off between reconstruction N and amplification of noise ɛ( N n=1 λ 2 n ) 1/2. δφ K 1 N δφɛ δφ K 1 1 K δφ + K ɛ = "bias"+"variance" N N For local numerical approximation of ψ and φ.

24 Mathematical for regional by, Dependence of reconstruction error position in modelling region noise level sattellite hight size of modelling region degree of global a priori model Φ 0. First results see Poster R. Schachtschneider.

25 Local prior information by Sometimes the prior information may be dependent Γ(Φ) = < Φ, G 1 Φ > + < Φ, G 2 Φ > solidearth ocean No reference to in the physical formulation. However, in practice (reasonably good approximative) computation easy with, Φ = α x W x + β y W y, x solidearth upon neglecting cross terms. y ocean

26 refinement strategy by global reference field (spherical harmonics) EGM96 regional refinement: splines 1 month of data, resolution n = 140 comparison to global 3-year solutions

27 refinement by Spline solution (06/2005) RMS: 57.7 cm

28 Differences compared to the ITG-Grace02s (n=120) by Spline solution (06/2005) GFZ-RL04 (06/2005) RMS: 6.6 cm RMS: 13.9 cm

29 Differences compared to the EIGEN-GL04c (n=120) by Spline solution (06/2005) GFZ-RL04 (06/2005) RMS: 9.3 cm RMS: 16.5 cm

30 Patching by

31 Global Refinement by

32 Differences compared to ITG-Grace02s (n=140) by RMS: 9.98 cm

33 Temporal variations by Yearly period Sumatra-Andaman Earthquake

34 Conclusions by localized are useful tool in local theory of local needs more progress GRACE models can compete with global solutions regional temporal variations can be modelled

GRACE impact in geodesy and geophysics. R. Biancale (GRGS-CNES Toulouse), M. Diament (IPG Paris)

GRACE impact in geodesy and geophysics. R. Biancale (GRGS-CNES Toulouse), M. Diament (IPG Paris) GRACE impact in geodesy and geophysics R. Biancale (GRGS-CNES Toulouse), M. Diament (IPG Paris) Improvement of gravity models Since 2002 the GRACE mission has changed some goals in geodesy. It has become

More information

Two-step data analysis for future satellite gravity field solutions: a simulation study

Two-step data analysis for future satellite gravity field solutions: a simulation study BOLLETTINO DI GEOFISICA TEORICA ED APPLICATA VOL. 40, N. 3-4, pp.6-66; SEP.-DEC. 999 Two-step data analysis for future satellite gravity field solutions: a simulation study J. KUSCHE, K. H. ILK and S.

More information

Supporting Information

Supporting Information Supporting Information Harig and Simons 1.173/pnas.178519 SI Text Determination of Noise. Gravity Recovery and Climate Experiment (GRACE) data are released as spherical harmonic coefficients along with

More information

Wavelet Modeling of the Gravity Field over Japan

Wavelet Modeling of the Gravity Field over Japan 29 the colored noise by the applied wavelet method with weights homogeneous in space and dependent on scale at one hand, and to keep in mind the difficulty in determining proper relative weights to respective

More information

9.520: Class 20. Bayesian Interpretations. Tomaso Poggio and Sayan Mukherjee

9.520: Class 20. Bayesian Interpretations. Tomaso Poggio and Sayan Mukherjee 9.520: Class 20 Bayesian Interpretations Tomaso Poggio and Sayan Mukherjee Plan Bayesian interpretation of Regularization Bayesian interpretation of the regularizer Bayesian interpretation of quadratic

More information

Inverse problem and optimization

Inverse problem and optimization Inverse problem and optimization Laurent Condat, Nelly Pustelnik CNRS, Gipsa-lab CNRS, Laboratoire de Physique de l ENS de Lyon Decembre, 15th 2016 Inverse problem and optimization 2/36 Plan 1. Examples

More information

Representation of inhomogeneous, non-separable covariances by sparse wavelet-transformed matrices

Representation of inhomogeneous, non-separable covariances by sparse wavelet-transformed matrices Representation of inhomogeneous, non-separable covariances by sparse wavelet-transformed matrices Andreas Rhodin, Harald Anlauf German Weather Service (DWD) Workshop on Flow-dependent aspects of data assimilation,

More information

MCMC Sampling for Bayesian Inference using L1-type Priors

MCMC Sampling for Bayesian Inference using L1-type Priors MÜNSTER MCMC Sampling for Bayesian Inference using L1-type Priors (what I do whenever the ill-posedness of EEG/MEG is just not frustrating enough!) AG Imaging Seminar Felix Lucka 26.06.2012 , MÜNSTER Sampling

More information

GRACE Gravity Model GGM02

GRACE Gravity Model GGM02 GRACE Gravity Model GGM02 The GGM02S gravity model was estimated with 363 days (spanning April 2002 through December 2003) of GRACE K-band range-rate, attitude, and accelerometer data. No Kaula constraint,

More information

Direct Learning: Linear Classification. Donglin Zeng, Department of Biostatistics, University of North Carolina

Direct Learning: Linear Classification. Donglin Zeng, Department of Biostatistics, University of North Carolina Direct Learning: Linear Classification Logistic regression models for classification problem We consider two class problem: Y {0, 1}. The Bayes rule for the classification is I(P(Y = 1 X = x) > 1/2) so

More information

Multiresolution Analysis

Multiresolution Analysis Multiresolution Analysis DS-GA 1013 / MATH-GA 2824 Optimization-based Data Analysis http://www.cims.nyu.edu/~cfgranda/pages/obda_fall17/index.html Carlos Fernandez-Granda Frames Short-time Fourier transform

More information

Satellite image deconvolution using complex wavelet packets

Satellite image deconvolution using complex wavelet packets Satellite image deconvolution using complex wavelet packets André Jalobeanu, Laure Blanc-Féraud, Josiane Zerubia ARIANA research group INRIA Sophia Antipolis, France CNRS / INRIA / UNSA www.inria.fr/ariana

More information

Recent Developments in Numerical Methods for 4d-Var

Recent Developments in Numerical Methods for 4d-Var Recent Developments in Numerical Methods for 4d-Var Mike Fisher Slide 1 Recent Developments Numerical Methods 4d-Var Slide 2 Outline Non-orthogonal wavelets on the sphere: - Motivation: Covariance Modelling

More information

Recovery of Sparse Signals from Noisy Measurements Using an l p -Regularized Least-Squares Algorithm

Recovery of Sparse Signals from Noisy Measurements Using an l p -Regularized Least-Squares Algorithm Recovery of Sparse Signals from Noisy Measurements Using an l p -Regularized Least-Squares Algorithm J. K. Pant, W.-S. Lu, and A. Antoniou University of Victoria August 25, 2011 Compressive Sensing 1 University

More information

Deep Learning: Approximation of Functions by Composition

Deep Learning: Approximation of Functions by Composition Deep Learning: Approximation of Functions by Composition Zuowei Shen Department of Mathematics National University of Singapore Outline 1 A brief introduction of approximation theory 2 Deep learning: approximation

More information

Singular value decomposition. If only the first p singular values are nonzero we write. U T o U p =0

Singular value decomposition. If only the first p singular values are nonzero we write. U T o U p =0 Singular value decomposition If only the first p singular values are nonzero we write G =[U p U o ] " Sp 0 0 0 # [V p V o ] T U p represents the first p columns of U U o represents the last N-p columns

More information

Uniformly bounded sets of orthonormal polynomials on the sphere

Uniformly bounded sets of orthonormal polynomials on the sphere Uniformly bounded sets of orthonormal polynomials on the sphere J. Marzo & J. Ortega-Cerdà Universitat de Barcelona October 13, 2014 Some previous results W. Rudin (80), Inner function Conjecture : There

More information

Sparsity in system identification and data-driven control

Sparsity in system identification and data-driven control 1 / 40 Sparsity in system identification and data-driven control Ivan Markovsky This signal is not sparse in the "time domain" 2 / 40 But it is sparse in the "frequency domain" (it is weighted sum of six

More information

10 Least-squares collocation

10 Least-squares collocation 10 Least-squares collocation 10.1 Principles of least-squares collocation The principle of collocation is very simple. The anomalous potential T outside the earth is a harmonic function, that is, it satisfies

More information

Int= surface density change (cm/yr water equivalent)

Int= surface density change (cm/yr water equivalent) Earth s changing mass distribution: Making the most of GRACE Frederik J Simons F. A. Dahlen, Jessica C. Hawthorne, Dong V. Wang Princeton University Mark A. Wieczorek IPG Paris Lei Wang Ohio State University

More information

Lecture 1: Introduction to low-rank tensor representation/approximation. Center for Uncertainty Quantification. Alexander Litvinenko

Lecture 1: Introduction to low-rank tensor representation/approximation. Center for Uncertainty Quantification. Alexander Litvinenko tifica Lecture 1: Introduction to low-rank tensor representation/approximation Alexander Litvinenko http://sri-uq.kaust.edu.sa/ KAUST Figure : KAUST campus, 5 years old, approx. 7000 people (include 1400

More information

Evolution equations with spectral methods: the case of the wave equation

Evolution equations with spectral methods: the case of the wave equation Evolution equations with spectral methods: the case of the wave equation Jerome.Novak@obspm.fr Laboratoire de l Univers et de ses Théories (LUTH) CNRS / Observatoire de Paris, France in collaboration with

More information

Regularization Parameter Estimation for Least Squares: A Newton method using the χ 2 -distribution

Regularization Parameter Estimation for Least Squares: A Newton method using the χ 2 -distribution Regularization Parameter Estimation for Least Squares: A Newton method using the χ 2 -distribution Rosemary Renaut, Jodi Mead Arizona State and Boise State September 2007 Renaut and Mead (ASU/Boise) Scalar

More information

Regularizing inverse problems. Damping and smoothing and choosing...

Regularizing inverse problems. Damping and smoothing and choosing... Regularizing inverse problems Damping and smoothing and choosing... 141 Regularization The idea behind SVD is to limit the degree of freedom in the model and fit the data to an acceptable level. Retain

More information

An Introduction to Wavelets and some Applications

An Introduction to Wavelets and some Applications An Introduction to Wavelets and some Applications Milan, May 2003 Anestis Antoniadis Laboratoire IMAG-LMC University Joseph Fourier Grenoble, France An Introduction to Wavelets and some Applications p.1/54

More information

Uncertainty of Poisson wavelets

Uncertainty of Poisson wavelets Uncertainty of Poisson wavelets I. Iglewska-Nowak August 5, 06 Abstract We compute the uncertainty product of Poisson wavelets over n-dimensional sphere and show that its limiting value reaches minimum.

More information

Towards combined global monthly gravity field solutions

Towards combined global monthly gravity field solutions source: https://doi.org/10.7892/boris.44108 downloaded: 13.3.2017 Towards combined global monthly gravity field solutions A. Jäggi 1, U. Meyer 1, G. Beutler 1, M. Weigelt 2, T. van Dam 2, T. Mayer-Gürr

More information

Spatial Process Estimates as Smoothers: A Review

Spatial Process Estimates as Smoothers: A Review Spatial Process Estimates as Smoothers: A Review Soutir Bandyopadhyay 1 Basic Model The observational model considered here has the form Y i = f(x i ) + ɛ i, for 1 i n. (1.1) where Y i is the observed

More information

Hilbert Space Methods for Reduced-Rank Gaussian Process Regression

Hilbert Space Methods for Reduced-Rank Gaussian Process Regression Hilbert Space Methods for Reduced-Rank Gaussian Process Regression Arno Solin and Simo Särkkä Aalto University, Finland Workshop on Gaussian Process Approximation Copenhagen, Denmark, May 2015 Solin &

More information

Lecture Notes 5: Multiresolution Analysis

Lecture Notes 5: Multiresolution Analysis Optimization-based data analysis Fall 2017 Lecture Notes 5: Multiresolution Analysis 1 Frames A frame is a generalization of an orthonormal basis. The inner products between the vectors in a frame and

More information

Least Squares Regression

Least Squares Regression E0 70 Machine Learning Lecture 4 Jan 7, 03) Least Squares Regression Lecturer: Shivani Agarwal Disclaimer: These notes are a brief summary of the topics covered in the lecture. They are not a substitute

More information

y(x) = x w + ε(x), (1)

y(x) = x w + ε(x), (1) Linear regression We are ready to consider our first machine-learning problem: linear regression. Suppose that e are interested in the values of a function y(x): R d R, here x is a d-dimensional vector-valued

More information

4 Bias-Variance for Ridge Regression (24 points)

4 Bias-Variance for Ridge Regression (24 points) Implement Ridge Regression with λ = 0.00001. Plot the Squared Euclidean test error for the following values of k (the dimensions you reduce to): k = {0, 50, 100, 150, 200, 250, 300, 350, 400, 450, 500,

More information

Least Squares Regression

Least Squares Regression CIS 50: Machine Learning Spring 08: Lecture 4 Least Squares Regression Lecturer: Shivani Agarwal Disclaimer: These notes are designed to be a supplement to the lecture. They may or may not cover all the

More information

Linear Diffusion and Image Processing. Outline

Linear Diffusion and Image Processing. Outline Outline Linear Diffusion and Image Processing Fourier Transform Convolution Image Restoration: Linear Filtering Diffusion Processes for Noise Filtering linear scale space theory Gauss-Laplace pyramid for

More information

Inversion of Phase Data for a Phase Velocity Map 101. Summary for CIDER12 Non-Seismologists

Inversion of Phase Data for a Phase Velocity Map 101. Summary for CIDER12 Non-Seismologists Inversion of Phase Data for a Phase Velocity Map 101 Summary for CIDER12 Non-Seismologists 1. Setting up a Linear System of Equations This is a quick-and-dirty, not-peer reviewed summary of how a dataset

More information

These slides follow closely the (English) course textbook Pattern Recognition and Machine Learning by Christopher Bishop

These slides follow closely the (English) course textbook Pattern Recognition and Machine Learning by Christopher Bishop Music and Machine Learning (IFT68 Winter 8) Prof. Douglas Eck, Université de Montréal These slides follow closely the (English) course textbook Pattern Recognition and Machine Learning by Christopher Bishop

More information

Inverse problems in statistics

Inverse problems in statistics Inverse problems in statistics Laurent Cavalier (Université Aix-Marseille 1, France) YES, Eurandom, 10 October 2011 p. 1/27 Table of contents YES, Eurandom, 10 October 2011 p. 2/27 Table of contents 1)

More information

Gravity Inversion Using Point Mass Distribution

Gravity Inversion Using Point Mass Distribution University of Stuttgart Institut of Geodesy Gravity Inversion Using Point Mass Distribution Master Thesis in study program GEOENGINE University of Stuttgart Yuchen Han Stuttgart, June 2017 Supervisor:

More information

Computer Vision & Digital Image Processing

Computer Vision & Digital Image Processing Computer Vision & Digital Image Processing Image Restoration and Reconstruction I Dr. D. J. Jackson Lecture 11-1 Image restoration Restoration is an objective process that attempts to recover an image

More information

Gravity and action at a distance

Gravity and action at a distance Gravitational waves Gravity and action at a distance Newtonian gravity: instantaneous action at a distance Maxwell's theory of electromagnetism: E and B fields at distance D from charge/current distribution:

More information

Random projections. 1 Introduction. 2 Dimensionality reduction. Lecture notes 5 February 29, 2016

Random projections. 1 Introduction. 2 Dimensionality reduction. Lecture notes 5 February 29, 2016 Lecture notes 5 February 9, 016 1 Introduction Random projections Random projections are a useful tool in the analysis and processing of high-dimensional data. We will analyze two applications that use

More information

2D Wavelets. Hints on advanced Concepts

2D Wavelets. Hints on advanced Concepts 2D Wavelets Hints on advanced Concepts 1 Advanced concepts Wavelet packets Laplacian pyramid Overcomplete bases Discrete wavelet frames (DWF) Algorithme à trous Discrete dyadic wavelet frames (DDWF) Overview

More information

Unbiased Risk Estimation as Parameter Choice Rule for Filter-based Regularization Methods

Unbiased Risk Estimation as Parameter Choice Rule for Filter-based Regularization Methods Unbiased Risk Estimation as Parameter Choice Rule for Filter-based Regularization Methods Frank Werner 1 Statistical Inverse Problems in Biophysics Group Max Planck Institute for Biophysical Chemistry,

More information

Calculating Accurate Waveforms for LIGO and LISA Data Analysis

Calculating Accurate Waveforms for LIGO and LISA Data Analysis Calculating Accurate Waveforms for LIGO and LISA Data Analysis Lee Lindblom Theoretical Astrophysics, Caltech HEPL-KIPAC Seminar, Stanford 17 November 2009 Results from the Caltech/Cornell Numerical Relativity

More information

3. Some tools for the analysis of sequential strategies based on a Gaussian process prior

3. Some tools for the analysis of sequential strategies based on a Gaussian process prior 3. Some tools for the analysis of sequential strategies based on a Gaussian process prior E. Vazquez Computer experiments June 21-22, 2010, Paris 21 / 34 Function approximation with a Gaussian prior Aim:

More information

ECE 8201: Low-dimensional Signal Models for High-dimensional Data Analysis

ECE 8201: Low-dimensional Signal Models for High-dimensional Data Analysis ECE 8201: Low-dimensional Signal Models for High-dimensional Data Analysis Lecture 7: Matrix completion Yuejie Chi The Ohio State University Page 1 Reference Guaranteed Minimum-Rank Solutions of Linear

More information

Sparse linear models

Sparse linear models Sparse linear models Optimization-Based Data Analysis http://www.cims.nyu.edu/~cfgranda/pages/obda_spring16 Carlos Fernandez-Granda 2/22/2016 Introduction Linear transforms Frequency representation Short-time

More information

Linear Regression Linear Regression with Shrinkage

Linear Regression Linear Regression with Shrinkage Linear Regression Linear Regression ith Shrinkage Introduction Regression means predicting a continuous (usually scalar) output y from a vector of continuous inputs (features) x. Example: Predicting vehicle

More information

The Chi-squared Distribution of the Regularized Least Squares Functional for Regularization Parameter Estimation

The Chi-squared Distribution of the Regularized Least Squares Functional for Regularization Parameter Estimation The Chi-squared Distribution of the Regularized Least Squares Functional for Regularization Parameter Estimation Rosemary Renaut DEPARTMENT OF MATHEMATICS AND STATISTICS Prague 2008 MATHEMATICS AND STATISTICS

More information

Linear Models for Regression

Linear Models for Regression Linear Models for Regression Seungjin Choi Department of Computer Science and Engineering Pohang University of Science and Technology 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea seungjin@postech.ac.kr

More information

Frequentist-Bayesian Model Comparisons: A Simple Example

Frequentist-Bayesian Model Comparisons: A Simple Example Frequentist-Bayesian Model Comparisons: A Simple Example Consider data that consist of a signal y with additive noise: Data vector (N elements): D = y + n The additive noise n has zero mean and diagonal

More information

Sparse Legendre expansions via l 1 minimization

Sparse Legendre expansions via l 1 minimization Sparse Legendre expansions via l 1 minimization Rachel Ward, Courant Institute, NYU Joint work with Holger Rauhut, Hausdorff Center for Mathematics, Bonn, Germany. June 8, 2010 Outline Sparse recovery

More information

Inverse problems Total Variation Regularization Mark van Kraaij Casa seminar 23 May 2007 Technische Universiteit Eindh ove n University of Technology

Inverse problems Total Variation Regularization Mark van Kraaij Casa seminar 23 May 2007 Technische Universiteit Eindh ove n University of Technology Inverse problems Total Variation Regularization Mark van Kraaij Casa seminar 23 May 27 Introduction Fredholm first kind integral equation of convolution type in one space dimension: g(x) = 1 k(x x )f(x

More information

IGRF-12 GFZ candidates

IGRF-12 GFZ candidates IGRF-12 GFZ candidates V. Lesur 1, M. Rother 1, I. Wardinski 1, R. Schachtschneider 1, M. Hamoudi 2, A. Chambodut 3 October 1, 2014 1 Helmholtz Centre Potsdam, GFZ German Research centre for Geosciences,

More information

Econ 2148, fall 2017 Gaussian process priors, reproducing kernel Hilbert spaces, and Splines

Econ 2148, fall 2017 Gaussian process priors, reproducing kernel Hilbert spaces, and Splines Econ 2148, fall 2017 Gaussian process priors, reproducing kernel Hilbert spaces, and Splines Maximilian Kasy Department of Economics, Harvard University 1 / 37 Agenda 6 equivalent representations of the

More information

Chapter 5 Fast Multipole Methods

Chapter 5 Fast Multipole Methods Computational Electromagnetics; Chapter 1 1 Chapter 5 Fast Multipole Methods 5.1 Near-field and far-field expansions Like the panel clustering, the Fast Multipole Method (FMM) is a technique for the fast

More information

Covariance function estimation in Gaussian process regression

Covariance function estimation in Gaussian process regression Covariance function estimation in Gaussian process regression François Bachoc Department of Statistics and Operations Research, University of Vienna WU Research Seminar - May 2015 François Bachoc Gaussian

More information

The Fractional Fourier Transform with Applications in Optics and Signal Processing

The Fractional Fourier Transform with Applications in Optics and Signal Processing * The Fractional Fourier Transform with Applications in Optics and Signal Processing Haldun M. Ozaktas Bilkent University, Ankara, Turkey Zeev Zalevsky Tel Aviv University, Tel Aviv, Israel M. Alper Kutay

More information

Compressive sensing of low-complexity signals: theory, algorithms and extensions

Compressive sensing of low-complexity signals: theory, algorithms and extensions Compressive sensing of low-complexity signals: theory, algorithms and extensions Laurent Jacques March 7, 9, 1, 14, 16 and 18, 216 9h3-12h3 (incl. 3 ) Graduate School in Systems, Optimization, Control

More information

Contents. Preface to the Third Edition (2007) Preface to the Second Edition (1992) Preface to the First Edition (1985) License and Legal Information

Contents. Preface to the Third Edition (2007) Preface to the Second Edition (1992) Preface to the First Edition (1985) License and Legal Information Contents Preface to the Third Edition (2007) Preface to the Second Edition (1992) Preface to the First Edition (1985) License and Legal Information xi xiv xvii xix 1 Preliminaries 1 1.0 Introduction.............................

More information

Solving the 3D Laplace Equation by Meshless Collocation via Harmonic Kernels

Solving the 3D Laplace Equation by Meshless Collocation via Harmonic Kernels Solving the 3D Laplace Equation by Meshless Collocation via Harmonic Kernels Y.C. Hon and R. Schaback April 9, Abstract This paper solves the Laplace equation u = on domains Ω R 3 by meshless collocation

More information

Spectral Graph Wavelets on the Cortical Connectome and Regularization of the EEG Inverse Problem

Spectral Graph Wavelets on the Cortical Connectome and Regularization of the EEG Inverse Problem Spectral Graph Wavelets on the Cortical Connectome and Regularization of the EEG Inverse Problem David K Hammond University of Oregon / NeuroInformatics Center International Conference on Industrial and

More information

Chapter One. The Calderón-Zygmund Theory I: Ellipticity

Chapter One. The Calderón-Zygmund Theory I: Ellipticity Chapter One The Calderón-Zygmund Theory I: Ellipticity Our story begins with a classical situation: convolution with homogeneous, Calderón- Zygmund ( kernels on R n. Let S n 1 R n denote the unit sphere

More information

Statistically-Based Regularization Parameter Estimation for Large Scale Problems

Statistically-Based Regularization Parameter Estimation for Large Scale Problems Statistically-Based Regularization Parameter Estimation for Large Scale Problems Rosemary Renaut Joint work with Jodi Mead and Iveta Hnetynkova March 1, 2010 National Science Foundation: Division of Computational

More information

MATH 590: Meshfree Methods

MATH 590: Meshfree Methods MATH 590: Meshfree Methods Chapter 14: The Power Function and Native Space Error Estimates Greg Fasshauer Department of Applied Mathematics Illinois Institute of Technology Fall 2010 fasshauer@iit.edu

More information

High Dimensional Discriminant Analysis

High Dimensional Discriminant Analysis High Dimensional Discriminant Analysis Charles Bouveyron 1,2, Stéphane Girard 1, and Cordelia Schmid 2 1 LMC IMAG, BP 53, Université Grenoble 1, 38041 Grenoble cedex 9 France (e-mail: charles.bouveyron@imag.fr,

More information

Groundwater permeability

Groundwater permeability Groundwater permeability Easy to solve the forward problem: flow of groundwater given permeability of aquifer Inverse problem: determine permeability from flow (usually of tracers With some models enough

More information

PHASELESS SAMPLING AND RECONSTRUCTION OF REAL-VALUED SIGNALS IN SHIFT-INVARIANT SPACES

PHASELESS SAMPLING AND RECONSTRUCTION OF REAL-VALUED SIGNALS IN SHIFT-INVARIANT SPACES PHASELESS SAMPLING AND RECONSTRUCTION OF REAL-VALUED SIGNALS IN SHIFT-INVARIANT SPACES CHENG CHENG, JUNZHENG JIANG AND QIYU SUN Abstract. Sampling in shift-invariant spaces is a realistic model for signals

More information

Stochastic Spectral Approaches to Bayesian Inference

Stochastic Spectral Approaches to Bayesian Inference Stochastic Spectral Approaches to Bayesian Inference Prof. Nathan L. Gibson Department of Mathematics Applied Mathematics and Computation Seminar March 4, 2011 Prof. Gibson (OSU) Spectral Approaches to

More information

MATH 590: Meshfree Methods

MATH 590: Meshfree Methods MATH 590: Meshfree Methods Chapter 1 Part 3: Radial Basis Function Interpolation in MATLAB Greg Fasshauer Department of Applied Mathematics Illinois Institute of Technology Fall 2014 fasshauer@iit.edu

More information

Statistics 202: Data Mining. c Jonathan Taylor. Week 2 Based in part on slides from textbook, slides of Susan Holmes. October 3, / 1

Statistics 202: Data Mining. c Jonathan Taylor. Week 2 Based in part on slides from textbook, slides of Susan Holmes. October 3, / 1 Week 2 Based in part on slides from textbook, slides of Susan Holmes October 3, 2012 1 / 1 Part I Other datatypes, preprocessing 2 / 1 Other datatypes Document data You might start with a collection of

More information

Part I. Other datatypes, preprocessing. Other datatypes. Other datatypes. Week 2 Based in part on slides from textbook, slides of Susan Holmes

Part I. Other datatypes, preprocessing. Other datatypes. Other datatypes. Week 2 Based in part on slides from textbook, slides of Susan Holmes Week 2 Based in part on slides from textbook, slides of Susan Holmes Part I Other datatypes, preprocessing October 3, 2012 1 / 1 2 / 1 Other datatypes Other datatypes Document data You might start with

More information

Tutorial on Principal Component Analysis

Tutorial on Principal Component Analysis Tutorial on Principal Component Analysis Copyright c 1997, 2003 Javier R. Movellan. This is an open source document. Permission is granted to copy, distribute and/or modify this document under the terms

More information

9.1 Orthogonal factor model.

9.1 Orthogonal factor model. 36 Chapter 9 Factor Analysis Factor analysis may be viewed as a refinement of the principal component analysis The objective is, like the PC analysis, to describe the relevant variables in study in terms

More information

An Overview of Sparsity with Applications to Compression, Restoration, and Inverse Problems

An Overview of Sparsity with Applications to Compression, Restoration, and Inverse Problems An Overview of Sparsity with Applications to Compression, Restoration, and Inverse Problems Justin Romberg Georgia Tech, School of ECE ENS Winter School January 9, 2012 Lyon, France Applied and Computational

More information

Geophysical Data Analysis: Discrete Inverse Theory

Geophysical Data Analysis: Discrete Inverse Theory Geophysical Data Analysis: Discrete Inverse Theory MATLAB Edition William Menke Lamont-Doherty Earth Observatory and Department of Earth and Environmental Sciences Columbia University. ' - Palisades, New

More information

Regularized Least Squares

Regularized Least Squares Regularized Least Squares Ryan M. Rifkin Google, Inc. 2008 Basics: Data Data points S = {(X 1, Y 1 ),...,(X n, Y n )}. We let X simultaneously refer to the set {X 1,...,X n } and to the n by d matrix whose

More information

arxiv: v1 [math.na] 1 May 2013

arxiv: v1 [math.na] 1 May 2013 arxiv:3050089v [mathna] May 03 Approximation Properties of a Gradient Recovery Operator Using a Biorthogonal System Bishnu P Lamichhane and Adam McNeilly May, 03 Abstract A gradient recovery operator based

More information

1. Nonlinear Equations. This lecture note excerpted parts from Michael Heath and Max Gunzburger. f(x) = 0

1. Nonlinear Equations. This lecture note excerpted parts from Michael Heath and Max Gunzburger. f(x) = 0 Numerical Analysis 1 1. Nonlinear Equations This lecture note excerpted parts from Michael Heath and Max Gunzburger. Given function f, we seek value x for which where f : D R n R n is nonlinear. f(x) =

More information

An example of Bayesian reasoning Consider the one-dimensional deconvolution problem with various degrees of prior information.

An example of Bayesian reasoning Consider the one-dimensional deconvolution problem with various degrees of prior information. An example of Bayesian reasoning Consider the one-dimensional deconvolution problem with various degrees of prior information. Model: where g(t) = a(t s)f(s)ds + e(t), a(t) t = (rapidly). The problem,

More information

Geometric Modeling Summer Semester 2012 Linear Algebra & Function Spaces

Geometric Modeling Summer Semester 2012 Linear Algebra & Function Spaces Geometric Modeling Summer Semester 2012 Linear Algebra & Function Spaces (Recap) Announcement Room change: On Thursday, April 26th, room 024 is occupied. The lecture will be moved to room 021, E1 4 (the

More information

Cosmology & CMB. Set5: Data Analysis. Davide Maino

Cosmology & CMB. Set5: Data Analysis. Davide Maino Cosmology & CMB Set5: Data Analysis Davide Maino Gaussian Statistics Statistical isotropy states only two-point correlation function is needed and it is related to power spectrum Θ(ˆn) = lm Θ lm Y lm (ˆn)

More information

Joint Inversion of GPS site displacements, ocean bottom pressure models and GRACE gravimetry

Joint Inversion of GPS site displacements, ocean bottom pressure models and GRACE gravimetry Joint Inversion of GPS site displacements, ocean bottom pressure models and GRACE gravimetry Status JIGOG project R. Rietbroek, J. Kusche, Ch. Dahle, F. Flechtner, R. Schmidt, J. Schröter, M.J.F. Jansen,

More information

Approximation by Conditionally Positive Definite Functions with Finitely Many Centers

Approximation by Conditionally Positive Definite Functions with Finitely Many Centers Approximation by Conditionally Positive Definite Functions with Finitely Many Centers Jungho Yoon Abstract. The theory of interpolation by using conditionally positive definite function provides optimal

More information

Algebraic Theory of Entanglement

Algebraic Theory of Entanglement Algebraic Theory of (arxiv: 1205.2882) 1 (in collaboration with T.R. Govindarajan, A. Queiroz and A.F. Reyes-Lega) 1 Physics Department, Syracuse University, Syracuse, N.Y. and The Institute of Mathematical

More information

FORMULA SHEET FOR QUIZ 2 Exam Date: November 8, 2017

FORMULA SHEET FOR QUIZ 2 Exam Date: November 8, 2017 MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Physics 8.07: Electromagnetism II November 5, 207 Prof. Alan Guth FORMULA SHEET FOR QUIZ 2 Exam Date: November 8, 207 A few items below are marked

More information

Chapter 2 Interpolation

Chapter 2 Interpolation Chapter 2 Interpolation Experiments usually produce a discrete set of data points (x i, f i ) which represent the value of a function f (x) for a finite set of arguments {x 0...x n }. If additional data

More information

Statistical Machine Learning

Statistical Machine Learning Statistical Machine Learning Christoph Lampert Spring Semester 2015/2016 // Lecture 12 1 / 36 Unsupervised Learning Dimensionality Reduction 2 / 36 Dimensionality Reduction Given: data X = {x 1,..., x

More information

Kernel Methods. Machine Learning A W VO

Kernel Methods. Machine Learning A W VO Kernel Methods Machine Learning A 708.063 07W VO Outline 1. Dual representation 2. The kernel concept 3. Properties of kernels 4. Examples of kernel machines Kernel PCA Support vector regression (Relevance

More information

State Space Representation of Gaussian Processes

State Space Representation of Gaussian Processes State Space Representation of Gaussian Processes Simo Särkkä Department of Biomedical Engineering and Computational Science (BECS) Aalto University, Espoo, Finland June 12th, 2013 Simo Särkkä (Aalto University)

More information

Reproducing formulas associated with symbols

Reproducing formulas associated with symbols Reproducing formulas associated with symbols Filippo De Mari Ernesto De Vito Università di Genova, Italy Modern Methods of Time-Frequency Analysis II Workshop on Applied Coorbit space theory September

More information

Machine Learning. B. Unsupervised Learning B.2 Dimensionality Reduction. Lars Schmidt-Thieme, Nicolas Schilling

Machine Learning. B. Unsupervised Learning B.2 Dimensionality Reduction. Lars Schmidt-Thieme, Nicolas Schilling Machine Learning B. Unsupervised Learning B.2 Dimensionality Reduction Lars Schmidt-Thieme, Nicolas Schilling Information Systems and Machine Learning Lab (ISMLL) Institute for Computer Science University

More information

Minimal Element Interpolation in Functions of High-Dimension

Minimal Element Interpolation in Functions of High-Dimension Minimal Element Interpolation in Functions of High-Dimension J. D. Jakeman, A. Narayan, D. Xiu Department of Mathematics Purdue University West Lafayette, Indiana Random Model as a function We can consider

More information

On the Noise Model of Support Vector Machine Regression. Massimiliano Pontil, Sayan Mukherjee, Federico Girosi

On the Noise Model of Support Vector Machine Regression. Massimiliano Pontil, Sayan Mukherjee, Federico Girosi MASSACHUSETTS INSTITUTE OF TECHNOLOGY ARTIFICIAL INTELLIGENCE LABORATORY and CENTER FOR BIOLOGICAL AND COMPUTATIONAL LEARNING DEPARTMENT OF BRAIN AND COGNITIVE SCIENCES A.I. Memo No. 1651 October 1998

More information

PH.D. PRELIMINARY EXAMINATION MATHEMATICS

PH.D. PRELIMINARY EXAMINATION MATHEMATICS UNIVERSITY OF CALIFORNIA, BERKELEY Dept. of Civil and Environmental Engineering FALL SEMESTER 2014 Structural Engineering, Mechanics and Materials NAME PH.D. PRELIMINARY EXAMINATION MATHEMATICS Problem

More information

Topics in Fourier analysis - Lecture 2.

Topics in Fourier analysis - Lecture 2. Topics in Fourier analysis - Lecture 2. Akos Magyar 1 Infinite Fourier series. In this section we develop the basic theory of Fourier series of periodic functions of one variable, but only to the extent

More information

Ordinary Least Squares and its applications

Ordinary Least Squares and its applications Ordinary Least Squares and its applications Dr. Mauro Zucchelli University Of Verona December 5, 2016 Dr. Mauro Zucchelli Ordinary Least Squares and its applications December 5, 2016 1 / 48 Contents 1

More information

The Helmholtz theorem at last!

The Helmholtz theorem at last! Problem. The Helmholtz theorem at last! Recall in class the Helmholtz theorem that says that if if E =0 then E can be written as E = φ () if B =0 then B can be written as B = A (2) (a) Let n be a unit

More information

Hierarchical Modeling for Univariate Spatial Data

Hierarchical Modeling for Univariate Spatial Data Hierarchical Modeling for Univariate Spatial Data Geography 890, Hierarchical Bayesian Models for Environmental Spatial Data Analysis February 15, 2011 1 Spatial Domain 2 Geography 890 Spatial Domain This

More information