ENVR 116 Introduction to Aerosol Science December 17, 2001 FINAL EXAMINATION

Size: px
Start display at page:

Download "ENVR 116 Introduction to Aerosol Science December 17, 2001 FINAL EXAMINATION"

Transcription

1 ENVR 116 Introduction to Aerosol Science December 17, 2001 FINAL EXAMINATION Please answer all questions on the attached sheets Answer Question No. 1 and 4 of the remaining 6 questions. No extra credit will be given for working extra questions. Each question has a weight of 20 points. If you work more than four of the optional questions, only the?rst four will be graded. USEFUL CONSTANTS viscosity 1.83 x 10 4 poises mean free path 6.80 x 10 2 µm k 1.38 x erg/k T 293 o C Es 33,000 statvolts/cm M (molecular weight of water)18 gm R 8.31 x 10 7 erg/(k mole) density of water 1.0 g/cm 3 1. Answer each question by circling the appropriate letter: A for always true S for sometimes true N for never true. A S (N) i. At least as much light scatters in the forward direction as at ninety degrees. A (S) N ii. Sixteen times as much light with wavelength of 0.4 µm (blue light) scatters from a particle as light with wavelength of 0.8 µm (red light). A (S) N iii. A particle for which size parameter has a value of 20 scatters more light than a particle for which size parameter has a value of 1. A (S) N iv. A particle will grow if the saturation ratio is greater than 1.0. (A) S N v. Increasing the atmospheric pressure will decrease the slip correction factor, if all else remains the same. (A) S N vi. The concentration of aerosol particles in a room is 10 3 /cm 3. The particles are monodisperse, and 0.5 µm in aerodynamic diameter. This concentration will probably remain fairly constant over a half hour. A S (N) vii. Consider two aerosols: one is monodisperse with aerodynamic diameter of 10 µm and the other is polydisperse with count median diameter of 10 µm and geometric standard deviation of 3. The number concentration of both aerosols is the same. Light from the same source and with the same intensity shines through each aerosol. More light will pass through the monodisperse aerosol than through the polydisperse aerosol. (A) S N viii. Smaller particles in outdoor air are less likely to carry an electrical charge than larger particles in outdoor air. (A) S N ix. Liquid sprays out the end of a small-diameter tube that has a high negative voltage applied to it. The liquid forms droplets that go into a vacuum. These droplets might explode before they fully evaporate. 1

2 (A) S N x. A particle 0.01 µm in diameter that has a density of 1 g/cm 3 is more likely to collect on a horizontal surface by diffusion than by gravitational settling. A S (N) xi. Two particles of different size each hold seven electronic charges. In the same electric?eld, the terminal electrical velocity for the larger particle will be greater than the terminal electrical velocity for the smaller particle. A (S) N xii. Two particles of different size are placed in a high concentration of unipolar ions within an electric?eld. The terminal electrical velocity for the larger particle will be greater than the terminal electrical velocity for the smaller particle. A (S) N xiii. Particles diffuse upward and downward at the same rate. A (S) N xiv. Given an ignition source and suf?cient oxygen, any material that will burn in open air can explode if its particle size is small enough. (A) S N xv. A cascade impactor is an excellent device to collect a sample of viable aerosol. (A) S N xvi. If aerosol concentration doubles, visual range is halved if all else remains the same. (A) S N xvii. A basketball 25 cm in diameter thrown horizontally into still air with a velocity of 500 cm/s and at a height of 1 meter will travel farther in air than a particle 1 µm in diameter thrown horizontally into the same gas from the same place and with the same velocity. (A) S N xviii. A?lter downstream of a probe that samples at a?ow twice isokinetic will collect more mass than it would if?ow were isokinetic. (A) S N xix. Water droplets that are 1 µm in diameter will in dry air at 20 C will take less than one second to evaporate. A (S) N xx. Electrostatic attraction is more effective than inertial impaction for collecting particles less than about 1 µm in diameter. 2. For air at 20 o C and 760 mm pressure, at what particle diameter is the apparent mean free path a minimum? Assume the particle density is 1 g/cm 3. Compute Cc using Cc = din µ m ( [ ]) d exp for several values of d (say, 1 µm, 0.5 µm, 0.1 µm, and 0.05 µm). For d = 1µm, Cc = Then calculate τ for the same values of d using For d = 1µm, τ = s. τ = 1 d 2 ρ p Cc Next, compute the mass of an aerosol particle from m = π 6 d3 ρ p for each of the d s chosen. ( For d = 1µm, m = gm) Finally, the apparent mean free path can be computed from 8kT l b = τ πm 2

3 and the results plotted on the graph (see attached. For d = 1µm, l B = cm). From the graph, estimate the minimum mean free path value.this is about 0.2 µm. 3a. Considering the maximum negative charge (in electrons) which a water droplet can carry, and also the Rayleigh limit, at what diameter will the Raleigh limit exceed the electron limit, or in other words, what is the minimum water droplet diameter at which a charged droplet can disintegrate on evaporation? Use 76.1 dyne/cm for the surface tension of water. The Raleigh limit is given by and the electron limit by Equating the two and solving for d gives n R = (1/e) 2πγ d 3 n e = d 2 4e d H2 O = 32πγ E 2 s = µm 3b. Suppose instead of water we are interested in mercury droplets. What is this minimum diameter for mercury droplets? Use dyne/cm for the surface tension of mercury. One can determine this minimum diameter for mercury by following the steps given in 3a above. Or an easier way is to divide the surface tension of water out of the 3a solution and multiply the result by the surface tension of mercury, i.e., d Hg = = 0.402µm 4a. Using Kelvin s equation, determine the particle diameter at which an ion will start to have water condense on it. This appears to occur when S = 4. With Kelvin s equation d = 4γ M RT lns = µm 4b. Will a sodium chloride particle (density = 1.77 g/cm 3 ) having a mass of 1.30 x grams and a single electrical charge grow when the saturation ratio is the same as in 4a above? Explain. A sodium chloride particle with a mass of 1.30 x grams will have a diameter of about 1.12 x 10 3 µm and it would not grow on its own. Even with the single electrical charge, the saturation ratio is not suf?cient to cause the particle to grow. 5. A raindrop (150 µm diameter) falls and as it falls it evaporates. According to Pruppacher and Klett (1978) one can estimate the increase in evaporation rate from the following two equations: For Re < 2.5 3

4 f v = (Sc 1/3 Re 1/2) 2 and for Re> 2.5 f v = (Sc 1/3 Re 1/2) where Re is the Reynolds number, and Sc the Schmitt number, de?ned as the ratio of the kinematic viscosity to the gas diffusion coef?cient The term f is the ratio of the evaporation rate for the droplet moving in air to the evaporation rate for the droplet in still air. Estimate how much faster the falling raindrop will evaporate compared to a non-moving droplet of the same diameter. Since a 150 µm drop will have a terminal settling velocity outside of the Stokes region, it is necessary to use the relationship for the drag coef?cient, C D and Reynolds number, And then from Reist s equation estimating Re, C D Re 2 = ( 4 3 )( ) 3 ρ m ρ p 980 µ 2 = 158 Sc = Re = 10 ( log(c D Re 2 ) ) = 4.61 kinematic viscosity gas diffusion coef?cient = = f v = ( / /2 = 1.37 This indicates that a falling drop will evaporate 37% faster than a stationary drop. 6a. Using the plot given on the attached sheet, determine the ratio of Q ext for 0.75 µm particles when exposed to blue light (λ = 0.4 µm) as compared to red light (λ = 0.7 µm). Use m = Recalling that α = πd/λ, α for a wavelength of 0.7 µm is and for a wavelength of 0.4 µm is From the attached?gure, for m=1.33, Q ext = 2.5 when the wavelength is 0.7 µm and 4 when the wavelength is 4 µm. This gives a ratio of b. Now repeat the calculation for the same size particle but use m = i. What conclusions can you draw (if any) regarding the role of clean clouds and polluted clouds in global warming? Again, from the attached?gure, for m= i, Q ext = 2.5 when the wavelength is 0.7 µm and 3 when the wavelength is 4 µm. This gives a ratio of The presence of an absorbing component implies anthropogenic pollution. Light passing through clean clouds (no absorbing component) will have more of the short wavelength light scattered than the longer wavelength light. Since most of the incoming light is short wavelength, this means that the sun s energy is distributed more or less uniformly around the globe and retained since there is less long-wavelength light transmitted out of the earth s atmosphere through the clean clouds and energy (heat) accumulates. With dirty clouds incoming short wavelength energy is almost equally transmitted out of the atmosphere by the longer wavelengths so that there is little heat accumulation. Thus dirty air would be expected to enhance cooling of the earth s atmosphere, clean air would enhance its warming. 4

5 7. Given the following data collected in an experiment of coagulating particles: Seconds Concentration, p/cm Determine a value for the average coagulation coef?cient. What can you say about particle size from these data? The inverse of the concentration is plotted as a function of time. This plot should result in a straight line with the slope being equal to the coagulation coef?cient. The attached?gure shows such a plot for these data. The slope is determined to be cm 3 /s which should be compared to a value of cm 3 /s which is constant for all large aerosol particles (> 10µm). The particle diameter estimated to give a coagulation coef?cient of cm 3 /s is about 0.3 µm. 5

6

THE UNITED REPUBLIC OF TANZANIA MINISTRY OF EDUCATION AND VOCATIONAL TRAINING FORM TWO SECONDARY EDUCATION EXAMINATION, 2005.

THE UNITED REPUBLIC OF TANZANIA MINISTRY OF EDUCATION AND VOCATIONAL TRAINING FORM TWO SECONDARY EDUCATION EXAMINATION, 2005. THE UNITED REPUBLIC OF TANZANIA MINISTRY OF EDUCATION AND VOCATIONAL TRAINING FORM TWO SECONDARY EDUCATION EXAMINATION, 2005 0031 PHYSICS Time: 2 Hours 1. This paper consists of sections A, B and C. 2.

More information

Wet Collectors. Type 1: Spray Chamber Scrubber 10/30/2013. EVE 402 Air Pollution Generation and Control. Chapter #5 Lectures (Part 5)

Wet Collectors. Type 1: Spray Chamber Scrubber 10/30/2013. EVE 402 Air Pollution Generation and Control. Chapter #5 Lectures (Part 5) EVE 40 Air Pollution eneration and Control Chapter #5 Lectures (Part 5) Wet Collectors Water is used to either capture particulate or increase aerosol size Hygroscopic particles (those that attract and

More information

1. 4 2y 1 2 = x = x 1 2 x + 1 = x x + 1 = x = 6. w = 2. 5 x

1. 4 2y 1 2 = x = x 1 2 x + 1 = x x + 1 = x = 6. w = 2. 5 x .... VII x + x + = x x x 8 x x = x + a = a + x x = x + x x Solve the absolute value equations.. z = 8. x + 7 =. x =. x =. y = 7 + y VIII Solve the exponential equations.. 0 x = 000. 0 x+ = 00. x+ = 8.

More information

Differential Mobility Particle Sizer (Aerosol measurements)

Differential Mobility Particle Sizer (Aerosol measurements) Institute for Atmospheric and Climate Science - IACETH Atmospheric Physics Lab Work Differential Mobility Particle Sizer (Aerosol measurements) Abstract A differential mobility particle sizer (DMPS) is

More information

THE UNITED REPUBLIC OF TANZANIA MINISTRY OF EDUCATION AND VOCATIONAL TRAINING FORM TWO SECONDARY EDUCATION EXAMINATION, 2008.

THE UNITED REPUBLIC OF TANZANIA MINISTRY OF EDUCATION AND VOCATIONAL TRAINING FORM TWO SECONDARY EDUCATION EXAMINATION, 2008. THE UNITED REPUBLIC OF TANZANIA MINISTRY OF EDUCATION AND VOCATIONAL TRAINING FORM TWO SECONDARY EDUCATION EXAMINATION, 2008 0031 PHYSICS Time: 2 Hours 1. This paper consists of sections A, B and C. 2.

More information

Generation of monodisperse aerosols through condensation nuclei control

Generation of monodisperse aerosols through condensation nuclei control Air Pollution XV 505 Generation of monodisperse aerosols through condensation nuclei control H. M. Kadlimatti 1, S. Gangamma 2 & S. K. Varghese 3 1 Department of Mechanical Engineering, Basaveshwar Engineering

More information

Precipitation Processes METR σ is the surface tension, ρ l is the water density, R v is the Gas constant for water vapor, T is the air

Precipitation Processes METR σ is the surface tension, ρ l is the water density, R v is the Gas constant for water vapor, T is the air Precipitation Processes METR 2011 Introduction In order to grow things on earth, they need water. The way that the earth naturally irrigates is through snowfall and rainfall. Therefore, it is important

More information

THE UNITED REPUBLIC OF TANZANIA MINISTRY OF EDUCATION AND VOCATIONAL TRAINING FORM TWO SECONDARY EDUCATION EXAMINATION, 2010.

THE UNITED REPUBLIC OF TANZANIA MINISTRY OF EDUCATION AND VOCATIONAL TRAINING FORM TWO SECONDARY EDUCATION EXAMINATION, 2010. THE UNITED REPUBLIC OF TANZANIA MINISTRY OF EDUCATION AND VOCATIONAL TRAINING FORM TWO SECONDARY EDUCATION EXAMINATION, 2010 0031 PHYSICS Time: 2 Hours 1. This paper consists of sections A, B and C. 2.

More information

Southington High School 720 Pleasant Street Southington, CT 06489

Southington High School 720 Pleasant Street Southington, CT 06489 BLUE KNIGHTS Southington High School 720 Pleasant Street Southington, CT 06489 Phone: (860) 628-3229 Fax: (860) 628-3397 Home Page: www.southingtonschools.org Principal Brian Stranieri Assistant Principals

More information

THE UNITED REPUBLIC OF TANZANIA MINISTRY OF EDUCATION AND VOCATIONAL TRAINING FORM TWO SECONDARY EDUCATION EXAMINATION, 2009.

THE UNITED REPUBLIC OF TANZANIA MINISTRY OF EDUCATION AND VOCATIONAL TRAINING FORM TWO SECONDARY EDUCATION EXAMINATION, 2009. THE UNITED REPUBLIC OF TANZANIA MINISTRY OF EDUCATION AND VOCATIONAL TRAINING FORM TWO SECONDARY EDUCATION EXAMINATION, 2009 0031 PHYSICS Time: 2 Hours 1. This paper consists of sections A, B and C. 2.

More information

THE UNITED REPUBLIC OF TANZANIA NATIONAL EXAMINATIONS COUNCIL FORM TWO SECONDARY EDUCATION EXAMINATION

THE UNITED REPUBLIC OF TANZANIA NATIONAL EXAMINATIONS COUNCIL FORM TWO SECONDARY EDUCATION EXAMINATION THE UNITED REPUBLIC OF TANZANIA NATIONAL EXAMINATIONS COUNCIL FORM TWO SECONDARY EDUCATION EXAMINATION 0031 PHYSICS Time: 2:30 Hours Friday, 28 th November 2014 a.m. Instructions 1. This paper consists

More information

CHAPTER 8. AEROSOLS 8.1 SOURCES AND SINKS OF AEROSOLS

CHAPTER 8. AEROSOLS 8.1 SOURCES AND SINKS OF AEROSOLS 1 CHAPTER 8 AEROSOLS Aerosols in the atmosphere have several important environmental effects They are a respiratory health hazard at the high concentrations found in urban environments They scatter and

More information

1. Droplet Growth by Condensation

1. Droplet Growth by Condensation 1. Droplet Growth by Condensation It was shown before that a critical size r and saturation ratio S must be exceeded for a small solution droplet to become a cloud droplet. Before the droplet reaches the

More information

Summer Review Packet AP Calculus

Summer Review Packet AP Calculus Summer Review Packet AP Calculus ************************************************************************ Directions for this packet: On a separate sheet of paper, show your work for each problem in this

More information

Solutions to questions from chapter 11 in GEF Cloud Physics

Solutions to questions from chapter 11 in GEF Cloud Physics Solutions to questions from chapter 11 in GEF4310 - Cloud Physics i.h.h.karset@geo.uio.no Problem 1 a Draw a sketch of how the radius of a cloud droplet is changing in time. Just for radius up to 50 µm.

More information

I) Simplifying fractions: x x. 1) 1 1 y x. 1 1 x 1. 4 x. 13x. x y xy. x 2. Factoring: 10) 13) 12) III) Solving: x 9 Prime (using only) 11)

I) Simplifying fractions: x x. 1) 1 1 y x. 1 1 x 1. 4 x. 13x. x y xy. x 2. Factoring: 10) 13) 12) III) Solving: x 9 Prime (using only) 11) AP Calculus Summer Packet Answer Key Reminders:. This is not an assignment.. This will not be collected.. You WILL be assessed on these skills at various times throughout the course.. You are epected to

More information

Federal Board HSSC-I Examination Physics Model Question Paper

Federal Board HSSC-I Examination Physics Model Question Paper Roll No: Signature of Candidate: Answer Sheet No: Signature of Invigilator: Federal Board HSSC-I Examination Physics Model Question Paper SECTION A Time allowed: 25 minutes Marks: 17 Note: Section-A is

More information

Clouds associated with cold and warm fronts. Whiteman (2000)

Clouds associated with cold and warm fronts. Whiteman (2000) Clouds associated with cold and warm fronts Whiteman (2000) Dalton s law of partial pressures! The total pressure exerted by a mixture of gases equals the sum of the partial pressure of the gases! Partial

More information

SRI LANKAN PHYSICS OLYMPIAD COMPETITION 2008

SRI LANKAN PHYSICS OLYMPIAD COMPETITION 2008 SRI LANKAN PHYSICS OLYMPIAD COMPETITION 008 Time Allocated : 0 Hours Calculators are not allowed to use. Date of Examination : 1 07 008 Index No. :. Time : 9.30 a.m. - 11.30 a.m. INSTRUCTIONS Answer all

More information

Name Class Date STUDY GUIDE FOR CONTENT MASTERY

Name Class Date STUDY GUIDE FOR CONTENT MASTERY Atmosphere SECTION 11.1 Atmospheric Basics In your textbook, read about the composition of the atmosphere. Circle the letter of the choice that best completes the statement. 1. Most of Earth s atmosphere

More information

GAW - WCCAP recommendation for aerosol inlets and sampling tubes

GAW - WCCAP recommendation for aerosol inlets and sampling tubes GAW - WCCAP recommendation for aerosol inlets and sampling tubes Alfred Wiedensohler, Wolfram Birmili, Leibniz Institute for Tropospheric Research, Leipzig, Germany John Ogren, NOAA ESRL GMD, Boulder,

More information

Initiation of rain in nonfreezing clouds

Initiation of rain in nonfreezing clouds Collision-coalescence Topics: Initiation of rain in nonfreezing clouds ( warm rain process) Droplet terminal fall speed Collision efficiency Growth equations Initiation of rain in nonfreezing clouds We

More information

5 Years (10 Semester) Integrated UG/PG Program in Physics & Electronics

5 Years (10 Semester) Integrated UG/PG Program in Physics & Electronics Courses Offered: 5 Years (10 ) Integrated UG/PG Program in Physics & Electronics 2 Years (4 ) Course M. Sc. Physics (Specialization in Material Science) In addition to the presently offered specialization,

More information

Transport and Fate; Contaminants in the Atmosphere II

Transport and Fate; Contaminants in the Atmosphere II Transport and Fate; Contaminants in the Atmosphere II Conrad D. Volz, DrPH, MPH-Course Director Bridgeside Point100 Technology DriveSuite 564, BRIDGPittsburgh, PA 15219-3130office 412-648-8541: cell 724-316-5408

More information

C12 technical supplement

C12 technical supplement C12 technical supplement scientific notation 2 density, unit conversion 3 gravitational force 4 light:wavelengths, etc. 5 thermal radiation (overview) 6 thermal radiation (stefan-boltzmann law) 7 thermal

More information

THE UNITED REPUBLIC OF TANZANIA MINISTRY OF EDUCATION AND VOCATIONAL TRAINING FORM TWO SECONDARY EDUCATION EXAMINATION, 2007.

THE UNITED REPUBLIC OF TANZANIA MINISTRY OF EDUCATION AND VOCATIONAL TRAINING FORM TWO SECONDARY EDUCATION EXAMINATION, 2007. THE UNITED REPUBLIC OF TANZANIA MINISTRY OF EDUCATION AND VOCATIONAL TRAINING FORM TWO SECONDARY EDUCATION EXAMINATION, 2007 0031 PHYSICS Time: 2 Hours 1. This paper consists of sections A, B and C. 2.

More information

A mass is suspended by a string from a fixed point. The mass moves with constant speed along a circular path in a [1 mark] horizontal plane.

A mass is suspended by a string from a fixed point. The mass moves with constant speed along a circular path in a [1 mark] horizontal plane. T6 [200 marks] 1. A mass is suspended by a string from a fixed point. The mass moves with constant speed along a circular path in a horizontal plane. The resultant force acting on the mass is A. zero.

More information

2 D. Terminal velocity can be solved for by equating Fd and Fg Fg = 1/6πd 3 g ρ LIQ = 1/8 Cd π d 2 ρ air u

2 D. Terminal velocity can be solved for by equating Fd and Fg Fg = 1/6πd 3 g ρ LIQ = 1/8 Cd π d 2 ρ air u ecture 8 Collection Growth of iquid Hydrometeors. I. Terminal velocity The terminal velocity of an object is the maximum speed an object will accelerate to by gravity. At terminal velocity, a balance of

More information

ENVR 416 Aerosol Technology - Laboratory Session Fall 2007

ENVR 416 Aerosol Technology - Laboratory Session Fall 2007 ENVR 416 Aerosol Technology - Laboratory Session Fall 2007 CALIBRATION AND USE OF THE OPTICAL MICROSCOPE The objective of this lab is for you to become familiar with use of the optical microscope to measure

More information

CALCULUS AB/BC SUMMER REVIEW PACKET (Answers)

CALCULUS AB/BC SUMMER REVIEW PACKET (Answers) Name CALCULUS AB/BC SUMMER REVIEW PACKET (Answers) I. Simplify. Identify the zeros, vertical asymptotes, horizontal asymptotes, holes and sketch each rational function. Show the work that leads to your

More information

Forces and Motion in One Dimension

Forces and Motion in One Dimension Nicholas J. Giordano www.cengage.com/physics/giordano Forces and Motion in One Dimension Applications of Newton s Laws We will learn how Newton s Laws apply in various situations We will begin with motion

More information

Chapter 13 - States of Matter. Section 13.1 The nature of Gases

Chapter 13 - States of Matter. Section 13.1 The nature of Gases Chapter 13 - States of Matter Section 13.1 The nature of Gases Kinetic energy and gases Kinetic energy: the energy an object has because of its motion Kinetic theory: all matter is made if particles in

More information

Precipitation. GEOG/ENST 2331 Lecture 12 Ahrens: Chapter 7

Precipitation. GEOG/ENST 2331 Lecture 12 Ahrens: Chapter 7 Precipitation GEOG/ENST 2331 Lecture 12 Ahrens: Chapter 7 Last lecture! Atmospheric stability! Condensation! Cloud condensation nuclei (CCN)! Types of clouds Precipitation! Why clouds don t fall! Terminal

More information

Summer Review Packet. for students entering. IB Math SL

Summer Review Packet. for students entering. IB Math SL Summer Review Packet for students entering IB Math SL The problems in this packet are designed to help you review topics that are important to your success in IB Math SL. Please attempt the problems on

More information

CHAPTER 16 A MACROSCOPIC DESCRIPTION OF MATTER

CHAPTER 16 A MACROSCOPIC DESCRIPTION OF MATTER CHAPTER 16 A MACROSCOPIC DESCRIPTION OF MATTER This brief chapter provides an introduction to thermodynamics. The goal is to use phenomenological descriptions of the microscopic details of matter in order

More information

Welcome to AP Calculus!

Welcome to AP Calculus! Welcome to AP Calculus! This packet is meant to help you review some of the mathematics that lead up to calculus. Of course, all mathematics up until this point has simply been a build-up to calculus,

More information

!"#$%&'(&)*$%&+",#$$-$%&+./#-+ (&)*$%&+%"-$+0!#1%&

!#$%&'(&)*$%&+,#$$-$%&+./#-+ (&)*$%&+%-$+0!#1%& !"#$%&'(&)*$%&",#$$-$%&./#- (&)*$%&%"-$0!#1%&23 44444444444444444444444444444444444444444444444444444444444444444444 &53.67689:5;978?58"@A9;8=B!=89C7DE,6=8FG=CD=CF(76F9C7D!)#!/($"%*$H!I"%"&1/%/.!"JK$&3

More information

Exercises Evaporation (page 451) 23.2 Condensation (pages )

Exercises Evaporation (page 451) 23.2 Condensation (pages ) Exercises 23.1 Evaporation (page 451) 1. The four forms in which matter exists solid, liquid, gas, and plasma are called. 2. Water that is left out in an open container will eventually. 3. Is the following

More information

Last Name: First Name Network-ID Discussion Section: Discussion TA Name: Write your seat number on the answer sheet

Last Name: First Name Network-ID Discussion Section: Discussion TA Name: Write your seat number on the answer sheet Last Name: First Name Network-ID Discussion Section: Discussion TA Name: Write your seat number on the answer sheet Instructions Turn off your cell phone and put it away. Calculators may not be shared.

More information

Exam 2: Cloud Physics April 16, 2008 Physical Meteorology Questions 1-10 are worth 5 points each. Questions are worth 10 points each.

Exam 2: Cloud Physics April 16, 2008 Physical Meteorology Questions 1-10 are worth 5 points each. Questions are worth 10 points each. Exam : Cloud Physics April, 8 Physical Meteorology 344 Name Questions - are worth 5 points each. Questions -5 are worth points each.. Rank the concentrations of the following from lowest () to highest

More information

1 A 3 C 2 B 4 D. 5. During which month does the minimum duration of insolation occur in New York State? 1 February 3 September 2 July 4 December

1 A 3 C 2 B 4 D. 5. During which month does the minimum duration of insolation occur in New York State? 1 February 3 September 2 July 4 December INSOLATION REVIEW 1. The map below shows isolines of average daily insolation received in calories per square centimeter per minute at the Earth s surface. If identical solar collectors are placed at the

More information

Energy: Warming the earth and Atmosphere. air temperature. Overview of the Earth s Atmosphere 9/10/2012. Composition. Chapter 3.

Energy: Warming the earth and Atmosphere. air temperature. Overview of the Earth s Atmosphere 9/10/2012. Composition. Chapter 3. Overview of the Earth s Atmosphere Composition 99% of the atmosphere is within 30km of the Earth s surface. N 2 78% and O 2 21% The percentages represent a constant amount of gas but cycles of destruction

More information

Graupel and Hail Growth

Graupel and Hail Growth Graupel and Hail Growth I. Growth of large ice particles In this section we look at some basics of graupeln and hail growth. Important components of graupeln and hail growth models include production of

More information

C H A P T E R 5 ENVIRONMENTAL PROTECTION AGENCY. APTI 413: Control of Particulate Matter Emissions. Student Manual Chapter 5.

C H A P T E R 5 ENVIRONMENTAL PROTECTION AGENCY. APTI 413: Control of Particulate Matter Emissions. Student Manual Chapter 5. Chapter 5 C H A P T E R 5 ENVIRONMENTAL PROTECTION AGENCY APTI 413: Control of Particulate Matter Emissions Student Manual Chapter 5 C H A P T E R 5 A P T I : 4 1 3 C O N T R O L O F P A R T I C U L A

More information

Warm Cloud Processes. Some definitions. Two ways to make big drops: Effects of cloud condensation nuclei

Warm Cloud Processes. Some definitions. Two ways to make big drops: Effects of cloud condensation nuclei Warm Cloud Processes Dr. Christopher M. Godfrey University of North Carolina at Asheville Warm clouds lie completely below the 0 isotherm 0 o C Some definitions Liquid water content (LWC) Amount of liquid

More information

Module 5: Rise and Fall of the Clockwork Universe. You should be able to demonstrate and show your understanding of:

Module 5: Rise and Fall of the Clockwork Universe. You should be able to demonstrate and show your understanding of: OCR B Physics H557 Module 5: Rise and Fall of the Clockwork Universe You should be able to demonstrate and show your understanding of: 5.2: Matter Particle model: A gas consists of many very small, rapidly

More information

INDUCTIVELY COUPLED PLASMA MASS SPECTROMETRY

INDUCTIVELY COUPLED PLASMA MASS SPECTROMETRY INDUCTIVELY COUPLED PLASMA MASS SPECTROMETRY Edited by AKBAR MONTASER George Washington University Washington, D.C. 20052, USA WILEY-VCH New York Chichester Weinheim Brisbane Singapore Toronto CONTENTS

More information

Molecular mass is the sum of the atomic masses of all of the atoms in the molecule

Molecular mass is the sum of the atomic masses of all of the atoms in the molecule PERIODIC TABLE IA 1 PERIODIC TABLE IA 2 V. MATTER-Matter is anything that occupies space and has mass. Symbols and Formulas Symbols represent individual atoms of an element: H O Cl Br Ag Formulas represent

More information

5. Use the graph below to determine the displacement of the object at the end of the first seven seconds.

5. Use the graph below to determine the displacement of the object at the end of the first seven seconds. Name: Hour: 1. The slope of the tangent on a position-time graph equals the: Sem 1 Exam Review Advanced Physics 2015-2016 2. The area under the curve on a velocity-time graph equals the: 3. The graph below

More information

Unit 8 Kinetic Theory of Gases. Chapter 13-14

Unit 8 Kinetic Theory of Gases. Chapter 13-14 Unit 8 Kinetic Theory of Gases Chapter 13-14 This tutorial is designed to help students understand scientific measurements. Objectives for this unit appear on the next slide. Each objective is linked to

More information

Contact resistance and TLM measurements

Contact resistance and TLM measurements Contact resistance and TLM measurements In measuring resistance with the four-point-probe or van der Pauw methods, we used 4 contacts (2 for current, 2 for voltage) to determine the sheet resistance of

More information

Summer Review Packet. for students entering. AP Calculus BC

Summer Review Packet. for students entering. AP Calculus BC Summer Review Packet for students entering AP Calculus BC The problems in this packet are designed to help you review topics that are important to your success in AP Calculus. Please attempt the problems

More information

Köhler Curve. Covers Reading Material in Chapter 10.3 Atmospheric Sciences 5200 Physical Meteorology III: Cloud Physics

Köhler Curve. Covers Reading Material in Chapter 10.3 Atmospheric Sciences 5200 Physical Meteorology III: Cloud Physics Köhler Curve Covers Reading Material in Chapter 10.3 Atmospheric Sciences 5200 Physical Meteorology III: Cloud Physics Review of Kelvin Effect Gibbs Energy for formation of a drop G = G &'()*+, G ).'+

More information

Physics 2101, Final Exam, Form A

Physics 2101, Final Exam, Form A Physics 2101, Final Exam, Form A December 11, 2007 Name: SOLUTIONS Section: (Circle one) 1 (Rupnik, MWF 7:40am) 2 (Rupnik, MWF 9:40am) 3 (González, MWF 2:40pm) 4 (Pearson, TTh 9:10am) 5 (Pearson, TTh 12:10pm)

More information

Lecture 26. Regional radiative effects due to anthropogenic aerosols. Part 2. Haze and visibility.

Lecture 26. Regional radiative effects due to anthropogenic aerosols. Part 2. Haze and visibility. Lecture 26. Regional radiative effects due to anthropogenic aerosols. Part 2. Haze and visibility. Objectives: 1. Attenuation of atmospheric radiation by particulates. 2. Haze and Visibility. Readings:

More information

Name Class Date. How do mixtures differ from elements and compounds? How can mixtures be separated? What are solutions?

Name Class Date. How do mixtures differ from elements and compounds? How can mixtures be separated? What are solutions? CHAPTER 3 3 Mixtures SECTION Elements, Compounds, and Mixtures BEFORE YOU READ After you read this section, you should be able to answer these questions: How do mixtures differ from elements and compounds?

More information

Federal Board HSSC-II Examination Physics Model Question Paper (Curriculum 2000 PTB)

Federal Board HSSC-II Examination Physics Model Question Paper (Curriculum 2000 PTB) Roll No: Signature of Candidate: Answer Sheet No: Signature of Invigilator: Federal Board HSSC-II Examination Physics Model Question Paper (Curriculum 2000 PTB) SECTION A Time allowed: 25 minutes Marks:

More information

An object moves back and forth, as shown in the position-time graph. At which points is the velocity positive?

An object moves back and forth, as shown in the position-time graph. At which points is the velocity positive? 1 The slope of the tangent on a position-time graph equals the instantaneous velocity 2 The area under the curve on a velocity-time graph equals the: displacement from the original position to its position

More information

Melting of ice particles:

Melting of ice particles: Melting of ice particles: When ice particles fall below 0 C they begin to melt, but the process takes some time since heat transfer needs to occur (heat from ambient environment has to supply the latent

More information

13.1 The Nature of Gases (refer to pg )

13.1 The Nature of Gases (refer to pg ) 13.1 The Nature of Gases (refer to pg. 420-424) Essential Understanding any other state of matter. Temperature and pressure affect gases much more than they affect Lesson Summary Kinetic Theory and a Model

More information

Albertson AP Calculus AB AP CALCULUS AB SUMMER PACKET DUE DATE: The beginning of class on the last class day of the first week of school.

Albertson AP Calculus AB AP CALCULUS AB SUMMER PACKET DUE DATE: The beginning of class on the last class day of the first week of school. Albertson AP Calculus AB Name AP CALCULUS AB SUMMER PACKET 2015 DUE DATE: The beginning of class on the last class day of the first week of school. This assignment is to be done at you leisure during the

More information

Name Date Class STATES OF MATTER. SECTION 13.1 THE NATURE OF GASES (pages )

Name Date Class STATES OF MATTER. SECTION 13.1 THE NATURE OF GASES (pages ) Name Date Class 13 STATES OF MATTER SECTION 13.1 THE NATURE OF GASES (pages 385 389) This section introduces the kinetic theory and describes how it applies to gases. It defines gas pressure and explains

More information

EAS1600 Spring 2014 Lab 06 ATMOSPHERIC AEROSOLS

EAS1600 Spring 2014 Lab 06 ATMOSPHERIC AEROSOLS Objectives EAS1600 Spring 2014 Lab 06 ATMOSPHERIC AEROSOLS During the course of this lab we will investigate some basic connections between aerosols and climate. We will look at the aerosol scattering

More information

Problem Session (afternoon, 9/19/11)

Problem Session (afternoon, 9/19/11) Problem Session (afternoon, 9/19/11) CCN growth; supersaturation in a updraft (finish up last few slides from Lecture 12) Atmospheric Aerosols (2 page notes + spreadsheet) Computing CCN spectra (spreadsheet)

More information

2σ e s (r,t) = e s (T)exp( rr v ρ l T ) = exp( ) 2σ R v ρ l Tln(e/e s (T)) e s (f H2 O,r,T) = f H2 O

2σ e s (r,t) = e s (T)exp( rr v ρ l T ) = exp( ) 2σ R v ρ l Tln(e/e s (T)) e s (f H2 O,r,T) = f H2 O Formulas/Constants, Physics/Oceanography 4510/5510 B Atmospheric Physics II N A = 6.02 10 23 molecules/mole (Avogadro s number) 1 mb = 100 Pa 1 Pa = 1 N/m 2 Γ d = 9.8 o C/km (dry adiabatic lapse rate)

More information

INTRODUCTORY CHEMISTRY Concepts and Critical Thinking Seventh Edition by Charles H. Corwin

INTRODUCTORY CHEMISTRY Concepts and Critical Thinking Seventh Edition by Charles H. Corwin Lecture INTRODUCTORY CHEMISTRY Concepts and Critical Thinking Seventh Edition by Charles H. Corwin Gases by Christopher G. Hamaker Illinois State University Properties of Gases There are five important

More information

7. Aerosols and Climate

7. Aerosols and Climate 7. Aerosols and Climate I. Scattering 1. When radiation impinges on a medium of small particles, scattering of some of the radiation occurs in all directions. The portion scattered backward is called the

More information

Incoming Magnet Precalculus / Functions Summer Review Assignment

Incoming Magnet Precalculus / Functions Summer Review Assignment Incoming Magnet recalculus / Functions Summer Review ssignment Students, This assignment should serve as a review of the lgebra and Geometry skills necessary for success in recalculus. These skills were

More information

Formative Assessment: Uniform Acceleration

Formative Assessment: Uniform Acceleration Formative Assessment: Uniform Acceleration Name 1) A truck on a straight road starts from rest and accelerates at 3.0 m/s 2 until it reaches a speed of 24 m/s. Then the truck travels for 20 s at constant

More information

CURRICULUM AND ASSESSMENT POLICY STATEMENT GRADE 12 PHYSICAL SCIENCES: PHYSICS (P1) SEPTEMBER 2015

CURRICULUM AND ASSESSMENT POLICY STATEMENT GRADE 12 PHYSICAL SCIENCES: PHYSICS (P1) SEPTEMBER 2015 PHYSICAL SCIENCES/ P1 1 SEPTEMBER 2015 CAPE WINELANDS EDUCATION DISTRICT CURRICULUM AND ASSESSMENT POLICY STATEMENT GRADE 12 PHYSICAL SCIENCES: PHYSICS (P1) SEPTEMBER 2015 MARKS 150 TIME 3 hours This question

More information

Name Date Class STATES OF MATTER. Match the correct state of matter with each description of water by writing a letter on each line.

Name Date Class STATES OF MATTER. Match the correct state of matter with each description of water by writing a letter on each line. 10 STATES OF MATTER SECTION 10.1 THE NATURE OF GASES (pages 267 272) This section describes how the kinetic theory applies to gases. It defines gas pressure and explains how temperature is related to the

More information

INTRODUCTORY CHEMISTRY Concepts and Critical Thinking

INTRODUCTORY CHEMISTRY Concepts and Critical Thinking INTRODUCTORY CHEMISTRY Concepts and Critical Thinking Sixth Edition by Charles H. Corwin Chapter 11 The Gaseous State by Christopher Hamaker 2011 Pearson Education, Inc. Chapter 11 1 Properties of Gases

More information

Chapter 10. Intermolecular Forces II Liquids and Phase Diagrams

Chapter 10. Intermolecular Forces II Liquids and Phase Diagrams Chapter 10 Intermolecular Forces II Liquids and Phase Diagrams Liquids Properties & Structure Vaporization and Condensation Kinetic Energy and Temperature Molecules in a liquid are constantly in motion

More information

BIOLOGICAL WARFARE AGENT SLURRY DROPLET METHODOLOGY

BIOLOGICAL WARFARE AGENT SLURRY DROPLET METHODOLOGY BIOLOGICAL WARFARE AGENT SLURRY DROPLET METHODOLOGY 30 th Annual AAAR Conference Rosen Shingle Creek, Orlando, Florida 3-7 October 2011 by Timothy Bauer, Z24 Naval Surface Warfare Center Dahlgren Division

More information

1. Base your answer to the following question on the weather map below, which shows a weather system that is affecting part of the United States.

1. Base your answer to the following question on the weather map below, which shows a weather system that is affecting part of the United States. 1. Base your answer to the following question on the weather map below, which shows a weather system that is affecting part of the United States. Which sequence of events forms the clouds associated with

More information

1. A measure of a medium s stiffness (it s resistance to compression) is given in terms of the bulk modulus, B, defined by

1. A measure of a medium s stiffness (it s resistance to compression) is given in terms of the bulk modulus, B, defined by 1. A measure of a medium s stiffness (it s resistance to compression) is given in terms of the bulk modulus, B, defined by B V P V a) Assuming isothermal compression, derive a formula for the bulk modulus

More information

CFD calculations of the test 2-4 experiments. Author: G. de With

CFD calculations of the test 2-4 experiments. Author: G. de With CFD calculations of the test 2-4 experiments Author: G. de With 34. Model setup and boundary conditions Dimensions CFD model: x=1000m / y=100m / z=2000m. CFD Model: Transient simulation, with steady-state

More information

The Atmosphere EVPP 110 Lecture Fall 2003 Dr. Largen

The Atmosphere EVPP 110 Lecture Fall 2003 Dr. Largen 1 Physical Environment: EVPP 110 Lecture Fall 2003 Dr. Largen 2 Physical Environment: Atmosphere Composition Heat transfer Atmospheric moisture Atmospheric circulation Weather and climate 3 Physical Environment:

More information

Atmosphere, Weather & Climate Review for Unit Assessment (Can be taken on Study Island Due Mon., 11/26/12)

Atmosphere, Weather & Climate Review for Unit Assessment (Can be taken on Study Island Due Mon., 11/26/12) Name Class Period Atmosphere, Weather & Climate Review for Unit Assessment (Can be taken on Study Island Due Mon., 11/26/12) 1. When hot and cold air meet, the hot air rises to the top. Which process causes

More information

Contents of the Supplemental Information

Contents of the Supplemental Information Contents of the Supplemental Information Fig. S1. Description of sampling regions for the micromilled septa 47407A and 47407B. Table S2. Results of isotope-dillution ICP-MS determined Mg/Ca and Sr/Ca ratios

More information

Matter and Thermal Energy

Matter and Thermal Energy Section States of Matter Can you identify the states of matter present in the photo shown? Kinetic Theory The kinetic theory is an explanation of how particles in matter behave. Kinetic Theory The three

More information

34.3. Resisted Motion. Introduction. Prerequisites. Learning Outcomes

34.3. Resisted Motion. Introduction. Prerequisites. Learning Outcomes Resisted Motion 34.3 Introduction This Section returns to the simple models of projectiles considered in Section 34.1. It explores the magnitude of air resistance effects and the effects of including simple

More information

VARIABLE MASS PROBLEMS

VARIABLE MASS PROBLEMS VARIABLE MASS PROBLEMS Question 1 (**) A rocket is moving vertically upwards relative to the surface of the earth. The motion takes place close to the surface of the earth and it is assumed that g is the

More information

Name : Roll No. :.. Invigilator s Signature :.. CS/B.Tech/SEM-2/PH-201/2010 2010 ENGINEERING PHYSICS Time Allotted : 3 Hours Full Marks : 70 The figures in the margin indicate full marks. Candidates are

More information

Name Date Class THE NATURE OF GASES

Name Date Class THE NATURE OF GASES 13.1 THE NATURE OF GASES Section Review Objectives Describe the assumptions of the kinetic theory as it applies to gases Interpret gas pressure in terms of kinetic theory Define the relationship between

More information

Step 1. Step 2. g l = g v. dg = 0 We have shown that over a plane surface of water. g v g l = ρ v R v T ln e/e sat. this can be rewritten

Step 1. Step 2. g l = g v. dg = 0 We have shown that over a plane surface of water. g v g l = ρ v R v T ln e/e sat. this can be rewritten The basic question is what makes the existence of a droplet thermodynamically preferable to the existence only of water vapor. We have already derived an expression for the saturation vapor pressure over

More information

Appendix- B POST-TEST QUESTION PAPER BASED ON PROGRAMMED INSTRUCTION (LINEAR PROGRAMME) OF IX STANDARD PHYSICAL SCIENCE

Appendix- B POST-TEST QUESTION PAPER BASED ON PROGRAMMED INSTRUCTION (LINEAR PROGRAMME) OF IX STANDARD PHYSICAL SCIENCE Appendix- B POST-TEST QUESTION PAPER BASED ON PROGRAMMED INSTRUCTION (LINEAR PROGRAMME) OF IX STANDARD PHYSICAL SCIENCE 1. To change a state of rest or to stop the motion of a body we apply a) direction

More information

LECTURE 5 SUMMARY OF KEY IDEAS

LECTURE 5 SUMMARY OF KEY IDEAS LECTURE 5 SUMMARY OF KEY IDEAS Etching is a processing step following lithography: it transfers a circuit image from the photoresist to materials form which devices are made or to hard masking or sacrificial

More information

Chapter 3- Energy Balance and Temperature

Chapter 3- Energy Balance and Temperature Chapter 3- Energy Balance and Temperature Understanding Weather and Climate Aguado and Burt Influences on Insolation Absorption Reflection/Scattering Transmission 1 Absorption An absorber gains energy

More information

- intermolecular forces forces that exist between molecules

- intermolecular forces forces that exist between molecules Chapter 11: Intermolecular Forces, Liquids, and Solids - intermolecular forces forces that exist between molecules 11.1 A Molecular Comparison of Liquids and Solids - gases - average kinetic energy of

More information

Appendix B: Skills Handbook

Appendix B: Skills Handbook Appendix B: Skills Handbook Effective communication is an important part of science. To avoid confusion when measuring and doing mathematical calculations, there are accepted conventions and practices

More information

ATM 10. Severe and Unusual Weather. Prof. Richard Grotjahn.

ATM 10. Severe and Unusual Weather. Prof. Richard Grotjahn. ATM 10 Severe and Unusual Weather Prof. Richard Grotjahn http://atm.ucdavis.edu/~grotjahn/course/atm10/index.html Lecture topics: Optics: Scattering Sky Colors and Rays Optics: refraction Mirages and Refraction

More information

2. To study circular motion, two students use the hand-held device shown above, which consists of a rod on which a spring scale is attached.

2. To study circular motion, two students use the hand-held device shown above, which consists of a rod on which a spring scale is attached. 1. A ball of mass M attached to a string of length L moves in a circle in a vertical plane as shown above. At the top of the circular path, the tension in the string is twice the weight of the ball. At

More information

CHAPTER 13. States of Matter. Kinetic = motion. Polar vs. Nonpolar. Gases. Hon Chem 13.notebook

CHAPTER 13. States of Matter. Kinetic = motion. Polar vs. Nonpolar. Gases. Hon Chem 13.notebook CHAPTER 13 States of Matter States that the tiny particles in all forms of matter are in constant motion. Kinetic = motion A gas is composed of particles, usually molecules or atoms, with negligible volume

More information

Physics Curriculum. * Optional Topics, Questions, and Activities. Topics

Physics Curriculum. * Optional Topics, Questions, and Activities. Topics * Optional Topics, Questions, and Activities Physics Curriculum Topics 1. Introduction to Physics a. Areas of science b. Areas of physics c. Scientific method * d. SI System of Units e. Graphing 2. Kinematics

More information

Measurement Matter and Density. Name: Period:

Measurement Matter and Density. Name: Period: Measurement Matter and Density Name: Period: Studying Physics and Chemistry Physics Tells us how fast objects move or how much it takes to get objects to, turn or stop. Chemistry Explains how different

More information

SAMPLE FINAL EXAM (Closed Book)

SAMPLE FINAL EXAM (Closed Book) PHYS 111-01 SAMPLE FINAL EXAM (Closed Book) 1. DO NOT OPEN THE EXAM UNTIL TOLD TO DO SO. NAME: (Given) (Family) 2. For the problems, write clearly and neatly and be sure to show your work. Answers without

More information

Coimisiún na Scrúduithe Stáit State Examinations Commission

Coimisiún na Scrúduithe Stáit State Examinations Commission 2014. M35 Coimisiún na Scrúduithe Stáit State Examinations Commission LEAVING CERTIFICATE EXAMINATION, 2014 PHYSICS ORDINARY LEVEL MONDAY, 16 JUNE MORNING, 9:30 TO 12:30 Answer three questions from Section

More information

Effect of Turbulent Enhancemnt of Collision-coalescence on Warm Rain Formation in Maritime Shallow Convection

Effect of Turbulent Enhancemnt of Collision-coalescence on Warm Rain Formation in Maritime Shallow Convection Effect of Turbulent Enhancemnt of Collision-coalescence on Warm Rain Formation in Maritime Shallow Convection A. A. WYSZOGRODZKI 1 W. W. GRABOWSKI 1,, L.-P. WANG 2, AND O. AYALA 2 1 NATIONAL CENTER FOR

More information

TABLE OF CONTENTS. Dust Suppression Upgrade 2016 Memorandum Drift Distances and Overspray Considerations File 2270

TABLE OF CONTENTS. Dust Suppression Upgrade 2016 Memorandum Drift Distances and Overspray Considerations File 2270 TABLE OF CONTENTS 1 PURPOSE OF MEMORANDUM... 2 2 EXECUTIVE SUMMARY... 2 3 GENERAL FACTORS AFFECTING DROPLET DRIFT DISTANCE... 3 3.1 Droplet size... 3 3.2 Wind Speed... 4 3.3 Evaporation... 4 4 SITE SPECIFIC

More information