Anomaly Detection. Davide Mottin, Konstantina Lazaridou. HassoPlattner Institute. Graph Mining course Winter Semester 2016

Size: px
Start display at page:

Download "Anomaly Detection. Davide Mottin, Konstantina Lazaridou. HassoPlattner Institute. Graph Mining course Winter Semester 2016"

Transcription

1 Anomaly Detection Davide Mottin, Konstantina Lazaridou HassoPlattner Institute Graph Mining course Winter Semester 2016

2 and Next week February 7, third round presentations Slides are due by February 6, You are invited to the KDD Open Day: February 15, starting at 4pm in building E, first floor. Please fill the course/lecturers evaluation form online We are looking for enthusiasts and motivated students for theses in data mining, database, graph mining Current graph mining theses include (but are not limited to) Graph database reusability Personalized graph summarization Supervised Graph Reconstruction If you are interested send an to 2

3 Acknowledgements Some part of this lecture is taken from: 3

4 Lecture road Feature based approaches Matrix factorization Matrix factorization 4

5 Anomaly detection An outlier is an observation that differs so much from the other observations as to arouse suspicion that it was generated by a different mechanism (Hawkins Definition of Outlier, 1980) No unique definition Context dependent 5

6 Anomalies Rare (e.g., rare combination of categorical attribute values) Isolated points in n-d spaces Surprising (don't fit well in our mental/statistical model == need too many bits under MDL) 6

7 The study of anomalies in graphs Unlabeled/Labeled (Attributed) Graphs Static/Dynamic Graphs Un-/Semi-/- Supervised Graph Techniques 7

8 Anomalies in Weighted Graphs Can we detect nodes that are different from the others? Can we explain why? Anomalies 8

9 Problem Sketch Embed into multidimensional space and analyze the points 9

10 OddBall: Approach 1. For each node, 1. Extract ego-net (=1-step neighborhood) 2. Extract features (#edges, total weight, etc.) features that could yield laws features fast to compute and interpret 2. Detect patterns: regularities 3. Detect anomalies: distance to patterns Akoglu, L., McGlohon, M. and Faloutsos, C.. Oddball: Spotting anomalies in weighted graphs. PAKDD,

11 Which Features? Ego-net features: N " : Number of neighbors of ego-net i E " : Number of edges in ego-net W " : Total weight of ego-net They follow power laws!!! E " N " ', 1 < α < 2 W " E "., β 1 λ " W " 1, 0.5 γ 1 λ " : Principal eigenvalue of the weighted adjacency matrix of the ego-net 11

12 Plotting features Fitting line (power law family) 12

13 Anomaly detection score out-line(i)= ;<= B ;CD B log y " Cx " Distance from fitting line Cx 9 : power law fitting line for a feature pair (x,y) The fitting line is experimentally found plotting pairs of features in a log-log plot Quantify the distance of x " from the fitting line Cx " 9 13

14 OddBall: anomaly detection 14

15 Lecture road Feature based approaches Matrix factorization Matrix factorization 15

16 Finding patterns with matrix factorization A Typical Procedure: Low-rank matrices Residual matrix Graph Adj. Matrix A A = F x G + R community anomalies An Illustrative Example Tong, H. and Lin, C.Y. Non-Negative Residual Matrix Factorization with Application to Graph Anomaly Detection. In SDM,

17 Improve Interpretation by Non-negativity A Typical Procedure: Graph Adjacency Matrix A community A = F x G + R anomalies Interpretation by Non-negativity Non-negative Matrix Factorization F >= 0; G >= 0 (for community detection) An Example Non-negative Residual Matrix Factorization R(i,j) >= 0; for A(i,j) > 0 (for anomaly detection) This Paper 17

18 Optimization Formulation Non-negative residuals => Construct a residual graph Weighted Frobenius Form Common in Any Matrix Factorization Weight Unique for this technique Non-negative residual 0/1 weight Common in Any Matrix Factorization Unique for this technique Non-negative residual 18

19 In the next episode Student Presentation Survey of other graph algorithms And not much more 19

20 Questions? 20

21 References Akoglu, L., McGlohon, M. and Faloutsos, C.. Oddball: Spotting anomalies in weighted graphs. PAKDD, Tong, H. and Lin, C.Y. Non-Negative Residual Matrix Factorization with Application to Graph Anomaly Detection. In SDM, Xing, E.P., Ng, A.Y., Jordan, M.I. and Russell, S. Distance metric learning with application to clustering with side-information. In NIPS,

Distance Metric Learning in Data Mining (Part II) Fei Wang and Jimeng Sun IBM TJ Watson Research Center

Distance Metric Learning in Data Mining (Part II) Fei Wang and Jimeng Sun IBM TJ Watson Research Center Distance Metric Learning in Data Mining (Part II) Fei Wang and Jimeng Sun IBM TJ Watson Research Center 1 Outline Part I - Applications Motivation and Introduction Patient similarity application Part II

More information

Node similarity and classification

Node similarity and classification Node similarity and classification Davide Mottin, Anton Tsitsulin HassoPlattner Institute Graph Mining course Winter Semester 2017 Acknowledgements Some part of this lecture is taken from: http://web.eecs.umich.edu/~dkoutra/tut/icdm14.html

More information

Overlapping Communities

Overlapping Communities Overlapping Communities Davide Mottin HassoPlattner Institute Graph Mining course Winter Semester 2017 Acknowledgements Most of this lecture is taken from: http://web.stanford.edu/class/cs224w/slides GRAPH

More information

Mixture of metrics optimization for machine learning problems

Mixture of metrics optimization for machine learning problems machine learning and Marek mieja Faculty of Mathematics and Computer Science, Jagiellonian University TFML 2015 B dlewo, February 16-21 How to select data representation and metric for a given data set?

More information

Lecture 2: Linear Algebra Review

Lecture 2: Linear Algebra Review CS 4980/6980: Introduction to Data Science c Spring 2018 Lecture 2: Linear Algebra Review Instructor: Daniel L. Pimentel-Alarcón Scribed by: Anh Nguyen and Kira Jordan This is preliminary work and has

More information

Thanks to Jure Leskovec, Stanford and Panayiotis Tsaparas, Univ. of Ioannina for slides

Thanks to Jure Leskovec, Stanford and Panayiotis Tsaparas, Univ. of Ioannina for slides Thanks to Jure Leskovec, Stanford and Panayiotis Tsaparas, Univ. of Ioannina for slides Web Search: How to Organize the Web? Ranking Nodes on Graphs Hubs and Authorities PageRank How to Solve PageRank

More information

Thanks to Jure Leskovec, Stanford and Panayiotis Tsaparas, Univ. of Ioannina for slides

Thanks to Jure Leskovec, Stanford and Panayiotis Tsaparas, Univ. of Ioannina for slides Thanks to Jure Leskovec, Stanford and Panayiotis Tsaparas, Univ. of Ioannina for slides Web Search: How to Organize the Web? Ranking Nodes on Graphs Hubs and Authorities PageRank How to Solve PageRank

More information

Topics in Natural Language Processing

Topics in Natural Language Processing Topics in Natural Language Processing Shay Cohen Institute for Language, Cognition and Computation University of Edinburgh Lecture 9 Administrativia Next class will be a summary Please email me questions

More information

Data Mining and Matrices

Data Mining and Matrices Data Mining and Matrices 08 Boolean Matrix Factorization Rainer Gemulla, Pauli Miettinen June 13, 2013 Outline 1 Warm-Up 2 What is BMF 3 BMF vs. other three-letter abbreviations 4 Binary matrices, tiles,

More information

Math 200 A and B: Linear Algebra Spring Term 2007 Course Description

Math 200 A and B: Linear Algebra Spring Term 2007 Course Description Math 200 A and B: Linear Algebra Spring Term 2007 Course Description February 25, 2007 Instructor: John Schmitt Warner 311, Ext. 5952 jschmitt@middlebury.edu Office Hours: Monday, Wednesday 11am-12pm,

More information

Graphs in Machine Learning

Graphs in Machine Learning Graphs in Machine Learning Michal Valko INRIA Lille - Nord Europe, France Partially based on material by: Ulrike von Luxburg, Gary Miller, Doyle & Schnell, Daniel Spielman January 27, 2015 MVA 2014/2015

More information

Anomaly (outlier) detection. Huiping Cao, Anomaly 1

Anomaly (outlier) detection. Huiping Cao, Anomaly 1 Anomaly (outlier) detection Huiping Cao, Anomaly 1 Outline General concepts What are outliers Types of outliers Causes of anomalies Challenges of outlier detection Outlier detection approaches Huiping

More information

Applying Latent Dirichlet Allocation to Group Discovery in Large Graphs

Applying Latent Dirichlet Allocation to Group Discovery in Large Graphs Lawrence Livermore National Laboratory Applying Latent Dirichlet Allocation to Group Discovery in Large Graphs Keith Henderson and Tina Eliassi-Rad keith@llnl.gov and eliassi@llnl.gov This work was performed

More information

CSE 494/598 Lecture-4: Correlation Analysis. **Content adapted from last year s slides

CSE 494/598 Lecture-4: Correlation Analysis. **Content adapted from last year s slides CSE 494/598 Lecture-4: Correlation Analysis LYDIA MANIKONDA HT TP://WWW.PUBLIC.ASU.EDU/~LMANIKON / **Content adapted from last year s slides Announcements Project-1 Due: February 12 th 2016 Analysis report:

More information

Anomaly Detection via Online Oversampling Principal Component Analysis

Anomaly Detection via Online Oversampling Principal Component Analysis Anomaly Detection via Online Oversampling Principal Component Analysis R.Sundara Nagaraj 1, C.Anitha 2 and Mrs.K.K.Kavitha 3 1 PG Scholar (M.Phil-CS), Selvamm Art Science College (Autonomous), Namakkal,

More information

Anomaly Detection via Online Over-Sampling Principal Component Analysis

Anomaly Detection via Online Over-Sampling Principal Component Analysis Anomaly Detection via Online Over-Sampling Principal Component Analysis Yi-Ren Yeh 1, Yuh-Jye Lee 2 and Yu-Chiang Frank Wang 1 1 Research Center for Information Technology Innovation, Academia Sinica 2

More information

Window-based Tensor Analysis on High-dimensional and Multi-aspect Streams

Window-based Tensor Analysis on High-dimensional and Multi-aspect Streams Window-based Tensor Analysis on High-dimensional and Multi-aspect Streams Jimeng Sun Spiros Papadimitriou Philip S. Yu Carnegie Mellon University Pittsburgh, PA, USA IBM T.J. Watson Research Center Hawthorne,

More information

HYPERGRAPH BASED SEMI-SUPERVISED LEARNING ALGORITHMS APPLIED TO SPEECH RECOGNITION PROBLEM: A NOVEL APPROACH

HYPERGRAPH BASED SEMI-SUPERVISED LEARNING ALGORITHMS APPLIED TO SPEECH RECOGNITION PROBLEM: A NOVEL APPROACH HYPERGRAPH BASED SEMI-SUPERVISED LEARNING ALGORITHMS APPLIED TO SPEECH RECOGNITION PROBLEM: A NOVEL APPROACH Hoang Trang 1, Tran Hoang Loc 1 1 Ho Chi Minh City University of Technology-VNU HCM, Ho Chi

More information

UNIVERSITY of PENNSYLVANIA CIS 520: Machine Learning Final, Fall 2013

UNIVERSITY of PENNSYLVANIA CIS 520: Machine Learning Final, Fall 2013 UNIVERSITY of PENNSYLVANIA CIS 520: Machine Learning Final, Fall 2013 Exam policy: This exam allows two one-page, two-sided cheat sheets; No other materials. Time: 2 hours. Be sure to write your name and

More information

Faloutsos, Tong ICDE, 2009

Faloutsos, Tong ICDE, 2009 Large Graph Mining: Patterns, Tools and Case Studies Christos Faloutsos Hanghang Tong CMU Copyright: Faloutsos, Tong (29) 2-1 Outline Part 1: Patterns Part 2: Matrix and Tensor Tools Part 3: Proximity

More information

Lecture 9: SVD, Low Rank Approximation

Lecture 9: SVD, Low Rank Approximation CSE 521: Design and Analysis of Algorithms I Spring 2016 Lecture 9: SVD, Low Rank Approimation Lecturer: Shayan Oveis Gharan April 25th Scribe: Koosha Khalvati Disclaimer: hese notes have not been subjected

More information

An Overview of Outlier Detection Techniques and Applications

An Overview of Outlier Detection Techniques and Applications Machine Learning Rhein-Neckar Meetup An Overview of Outlier Detection Techniques and Applications Ying Gu connygy@gmail.com 28.02.2016 Anomaly/Outlier Detection What are anomalies/outliers? The set of

More information

Statistics 202: Data Mining. c Jonathan Taylor. Week 2 Based in part on slides from textbook, slides of Susan Holmes. October 3, / 1

Statistics 202: Data Mining. c Jonathan Taylor. Week 2 Based in part on slides from textbook, slides of Susan Holmes. October 3, / 1 Week 2 Based in part on slides from textbook, slides of Susan Holmes October 3, 2012 1 / 1 Part I Other datatypes, preprocessing 2 / 1 Other datatypes Document data You might start with a collection of

More information

Lecture: Local Spectral Methods (1 of 4)

Lecture: Local Spectral Methods (1 of 4) Stat260/CS294: Spectral Graph Methods Lecture 18-03/31/2015 Lecture: Local Spectral Methods (1 of 4) Lecturer: Michael Mahoney Scribe: Michael Mahoney Warning: these notes are still very rough. They provide

More information

Part I. Other datatypes, preprocessing. Other datatypes. Other datatypes. Week 2 Based in part on slides from textbook, slides of Susan Holmes

Part I. Other datatypes, preprocessing. Other datatypes. Other datatypes. Week 2 Based in part on slides from textbook, slides of Susan Holmes Week 2 Based in part on slides from textbook, slides of Susan Holmes Part I Other datatypes, preprocessing October 3, 2012 1 / 1 2 / 1 Other datatypes Other datatypes Document data You might start with

More information

Learning Eigenfunctions: Links with Spectral Clustering and Kernel PCA

Learning Eigenfunctions: Links with Spectral Clustering and Kernel PCA Learning Eigenfunctions: Links with Spectral Clustering and Kernel PCA Yoshua Bengio Pascal Vincent Jean-François Paiement University of Montreal April 2, Snowbird Learning 2003 Learning Modal Structures

More information

Statistical Pattern Recognition

Statistical Pattern Recognition Statistical Pattern Recognition Feature Extraction Hamid R. Rabiee Jafar Muhammadi, Alireza Ghasemi, Payam Siyari Spring 2014 http://ce.sharif.edu/courses/92-93/2/ce725-2/ Agenda Dimensionality Reduction

More information

CS570 Data Mining. Anomaly Detection. Li Xiong. Slide credits: Tan, Steinbach, Kumar Jiawei Han and Micheline Kamber.

CS570 Data Mining. Anomaly Detection. Li Xiong. Slide credits: Tan, Steinbach, Kumar Jiawei Han and Micheline Kamber. CS570 Data Mining Anomaly Detection Li Xiong Slide credits: Tan, Steinbach, Kumar Jiawei Han and Micheline Kamber April 3, 2011 1 Anomaly Detection Anomaly is a pattern in the data that does not conform

More information

Introduction to Machine Learning. PCA and Spectral Clustering. Introduction to Machine Learning, Slides: Eran Halperin

Introduction to Machine Learning. PCA and Spectral Clustering. Introduction to Machine Learning, Slides: Eran Halperin 1 Introduction to Machine Learning PCA and Spectral Clustering Introduction to Machine Learning, 2013-14 Slides: Eran Halperin Singular Value Decomposition (SVD) The singular value decomposition (SVD)

More information

Learning a Degree-Augmented Distance Metric from a Network. Bert Huang, U of Maryland Blake Shaw, Foursquare Tony Jebara, Columbia U

Learning a Degree-Augmented Distance Metric from a Network. Bert Huang, U of Maryland Blake Shaw, Foursquare Tony Jebara, Columbia U Learning a Degree-Augmented Distance Metric from a Network Bert Huang, U of Maryland Blake Shaw, Foursquare Tony Jebara, Columbia U Beyond Mahalanobis: Supervised Large-Scale Learning of Similarity NIPS

More information

Statistics 100 Exam 2 March 8, 2017

Statistics 100 Exam 2 March 8, 2017 STAT 100 EXAM 2 Spring 2017 (This page is worth 1 point. Graded on writing your name and net id clearly and circling section.) PRINT NAME (Last name) (First name) net ID CIRCLE SECTION please! L1 (MWF

More information

ECEN 689 Special Topics in Data Science for Communications Networks

ECEN 689 Special Topics in Data Science for Communications Networks ECEN 689 Special Topics in Data Science for Communications Networks Nick Duffield Department of Electrical & Computer Engineering Texas A&M University Lecture 8 Random Walks, Matrices and PageRank Graphs

More information

Learning from Sensor Data: Set II. Behnaam Aazhang J.S. Abercombie Professor Electrical and Computer Engineering Rice University

Learning from Sensor Data: Set II. Behnaam Aazhang J.S. Abercombie Professor Electrical and Computer Engineering Rice University Learning from Sensor Data: Set II Behnaam Aazhang J.S. Abercombie Professor Electrical and Computer Engineering Rice University 1 6. Data Representation The approach for learning from data Probabilistic

More information

Efficient Subgraph Matching by Postponing Cartesian Products. Matthias Barkowsky

Efficient Subgraph Matching by Postponing Cartesian Products. Matthias Barkowsky Efficient Subgraph Matching by Postponing Cartesian Products Matthias Barkowsky 5 Subgraph Isomorphism - Approaches search problem: find all embeddings of a query graph in a data graph NP-hard, but can

More information

Density-Based Clustering

Density-Based Clustering Density-Based Clustering idea: Clusters are dense regions in feature space F. density: objects volume ε here: volume: ε-neighborhood for object o w.r.t. distance measure dist(x,y) dense region: ε-neighborhood

More information

Spectral Analysis of k-balanced Signed Graphs

Spectral Analysis of k-balanced Signed Graphs Spectral Analysis of k-balanced Signed Graphs Leting Wu 1, Xiaowei Ying 1, Xintao Wu 1, Aidong Lu 1 and Zhi-Hua Zhou 2 1 University of North Carolina at Charlotte, USA, {lwu8,xying, xwu,alu1}@uncc.edu

More information

Detecting Anomalies in Bipartite Graphs with Mutual Dependency Principles

Detecting Anomalies in Bipartite Graphs with Mutual Dependency Principles Detecting Anomalies in Bipartite Graphs with Mutual Dependency Principles Hanbo Dai Feida Zhu Ee-Peng Lim HweeHwa Pang School of Information Systems, Singapore Management University hanbodai28, fdzhu,

More information

Nonlinear Dimensionality Reduction. Jose A. Costa

Nonlinear Dimensionality Reduction. Jose A. Costa Nonlinear Dimensionality Reduction Jose A. Costa Mathematics of Information Seminar, Dec. Motivation Many useful of signals such as: Image databases; Gene expression microarrays; Internet traffic time

More information

CS 277: Data Mining. Mining Web Link Structure. CS 277: Data Mining Lectures Analyzing Web Link Structure Padhraic Smyth, UC Irvine

CS 277: Data Mining. Mining Web Link Structure. CS 277: Data Mining Lectures Analyzing Web Link Structure Padhraic Smyth, UC Irvine CS 277: Data Mining Mining Web Link Structure Class Presentations In-class, Tuesday and Thursday next week 2-person teams: 6 minutes, up to 6 slides, 3 minutes/slides each person 1-person teams 4 minutes,

More information

Social Choice and Networks

Social Choice and Networks Social Choice and Networks Elchanan Mossel UC Berkeley All rights reserved Logistics 1 Different numbers for the course: Compsci 294 Section 063 Econ 207A Math C223A Stat 206A Room: Cory 241 Time TuTh

More information

Section 7.3: SYMMETRIC MATRICES AND ORTHOGONAL DIAGONALIZATION

Section 7.3: SYMMETRIC MATRICES AND ORTHOGONAL DIAGONALIZATION Section 7.3: SYMMETRIC MATRICES AND ORTHOGONAL DIAGONALIZATION When you are done with your homework you should be able to Recognize, and apply properties of, symmetric matrices Recognize, and apply properties

More information

Self Similar (Scale Free, Power Law) Networks (I)

Self Similar (Scale Free, Power Law) Networks (I) Self Similar (Scale Free, Power Law) Networks (I) E6083: lecture 4 Prof. Predrag R. Jelenković Dept. of Electrical Engineering Columbia University, NY 10027, USA {predrag}@ee.columbia.edu February 7, 2007

More information

Com2: Fast Automatic Discovery of Temporal ( Comet ) Communities

Com2: Fast Automatic Discovery of Temporal ( Comet ) Communities Com2: Fast Automatic Discovery of Temporal ( Comet ) Communities Miguel Araujo CMU/University of Porto maraujo@cs.cmu.edu Christos Faloutsos* Carnegie Mellon University christos@cs.cmu.edu Spiros Papadimitriou

More information

Manifold Coarse Graining for Online Semi-supervised Learning

Manifold Coarse Graining for Online Semi-supervised Learning for Online Semi-supervised Learning Mehrdad Farajtabar, Amirreza Shaban, Hamid R. Rabiee, Mohammad H. Rohban Digital Media Lab, Department of Computer Engineering, Sharif University of Technology, Tehran,

More information

MATH 829: Introduction to Data Mining and Analysis Clustering II

MATH 829: Introduction to Data Mining and Analysis Clustering II his lecture is based on U. von Luxburg, A Tutorial on Spectral Clustering, Statistics and Computing, 17 (4), 2007. MATH 829: Introduction to Data Mining and Analysis Clustering II Dominique Guillot Departments

More information

Statistical Machine Learning

Statistical Machine Learning Statistical Machine Learning Christoph Lampert Spring Semester 2015/2016 // Lecture 12 1 / 36 Unsupervised Learning Dimensionality Reduction 2 / 36 Dimensionality Reduction Given: data X = {x 1,..., x

More information

Community Detection. fundamental limits & efficient algorithms. Laurent Massoulié, Inria

Community Detection. fundamental limits & efficient algorithms. Laurent Massoulié, Inria Community Detection fundamental limits & efficient algorithms Laurent Massoulié, Inria Community Detection From graph of node-to-node interactions, identify groups of similar nodes Example: Graph of US

More information

Preprocessing & dimensionality reduction

Preprocessing & dimensionality reduction Introduction to Data Mining Preprocessing & dimensionality reduction CPSC/AMTH 445a/545a Guy Wolf guy.wolf@yale.edu Yale University Fall 2016 CPSC 445 (Guy Wolf) Dimensionality reduction Yale - Fall 2016

More information

Topic Models and Applications to Short Documents

Topic Models and Applications to Short Documents Topic Models and Applications to Short Documents Dieu-Thu Le Email: dieuthu.le@unitn.it Trento University April 6, 2011 1 / 43 Outline Introduction Latent Dirichlet Allocation Gibbs Sampling Short Text

More information

Multivariate Statistical Analysis

Multivariate Statistical Analysis Multivariate Statistical Analysis Fall 2011 C. L. Williams, Ph.D. Lecture 4 for Applied Multivariate Analysis Outline 1 Eigen values and eigen vectors Characteristic equation Some properties of eigendecompositions

More information

Deep Learning Basics Lecture 7: Factor Analysis. Princeton University COS 495 Instructor: Yingyu Liang

Deep Learning Basics Lecture 7: Factor Analysis. Princeton University COS 495 Instructor: Yingyu Liang Deep Learning Basics Lecture 7: Factor Analysis Princeton University COS 495 Instructor: Yingyu Liang Supervised v.s. Unsupervised Math formulation for supervised learning Given training data x i, y i

More information

Data-dependent representations: Laplacian Eigenmaps

Data-dependent representations: Laplacian Eigenmaps Data-dependent representations: Laplacian Eigenmaps November 4, 2015 Data Organization and Manifold Learning There are many techniques for Data Organization and Manifold Learning, e.g., Principal Component

More information

Math 116 Practice for Exam 2

Math 116 Practice for Exam 2 Math 6 Practice for Exam Generated October 6, 5 Name: Instructor: Section Number:. This exam has 5 questions. Note that the problems are not of equal difficulty, so you may want to skip over and return

More information

Chapter 4 Systems of Linear Equations; Matrices

Chapter 4 Systems of Linear Equations; Matrices Chapter 4 Systems of Linear Equations; Matrices Section 5 Inverse of a Square Matrix Learning Objectives for Section 4.5 Inverse of a Square Matrix The student will be able to identify identity matrices

More information

Lecture 1: From Data to Graphs, Weighted Graphs and Graph Laplacian

Lecture 1: From Data to Graphs, Weighted Graphs and Graph Laplacian Lecture 1: From Data to Graphs, Weighted Graphs and Graph Laplacian Radu Balan February 5, 2018 Datasets diversity: Social Networks: Set of individuals ( agents, actors ) interacting with each other (e.g.,

More information

Topic III.2: Maximum Entropy Models

Topic III.2: Maximum Entropy Models Topic III.2: Maximum Entropy Models Discrete Topics in Data Mining Universität des Saarlandes, Saarbrücken Winter Semester 2012/13 T III.2-1 Topic III.2: Maximum Entropy Models 1. The Maximum Entropy Principle

More information

Week Quadratic forms. Principal axes theorem. Text reference: this material corresponds to parts of sections 5.5, 8.2,

Week Quadratic forms. Principal axes theorem. Text reference: this material corresponds to parts of sections 5.5, 8.2, Math 051 W008 Margo Kondratieva Week 10-11 Quadratic forms Principal axes theorem Text reference: this material corresponds to parts of sections 55, 8, 83 89 Section 41 Motivation and introduction Consider

More information

ELEC6910Q Analytics and Systems for Social Media and Big Data Applications Lecture 3 Centrality, Similarity, and Strength Ties

ELEC6910Q Analytics and Systems for Social Media and Big Data Applications Lecture 3 Centrality, Similarity, and Strength Ties ELEC6910Q Analytics and Systems for Social Media and Big Data Applications Lecture 3 Centrality, Similarity, and Strength Ties Prof. James She james.she@ust.hk 1 Last lecture 2 Selected works from Tutorial

More information

DS Machine Learning and Data Mining I. Alina Oprea Associate Professor, CCIS Northeastern University

DS Machine Learning and Data Mining I. Alina Oprea Associate Professor, CCIS Northeastern University DS 4400 Machine Learning and Data Mining I Alina Oprea Associate Professor, CCIS Northeastern University January 17 2019 Logistics HW 1 is on Piazza and Gradescope Deadline: Friday, Jan. 25, 2019 Office

More information

Welcome to Physics 212

Welcome to Physics 212 Welcome to Physics 212 http://online.physics.uiuc.edu/courses/phys212 This lecture is VERY full. Please sit next to someone nice. Find out the best thing that happened to them during the winter break!

More information

Markov Chains, Random Walks on Graphs, and the Laplacian

Markov Chains, Random Walks on Graphs, and the Laplacian Markov Chains, Random Walks on Graphs, and the Laplacian CMPSCI 791BB: Advanced ML Sridhar Mahadevan Random Walks! There is significant interest in the problem of random walks! Markov chain analysis! Computer

More information

Data science with multilayer networks: Mathematical foundations and applications

Data science with multilayer networks: Mathematical foundations and applications Data science with multilayer networks: Mathematical foundations and applications CDSE Days University at Buffalo, State University of New York Monday April 9, 2018 Dane Taylor Assistant Professor of Mathematics

More information

Anomaly Detection via Over-sampling Principal Component Analysis

Anomaly Detection via Over-sampling Principal Component Analysis Anomaly Detection via Over-sampling Principal Component Analysis Yi-Ren Yeh, Zheng-Yi Lee, and Yuh-Jye Lee Abstract Outlier detection is an important issue in data mining and has been studied in different

More information

Anomaly Detection. Jing Gao. SUNY Buffalo

Anomaly Detection. Jing Gao. SUNY Buffalo Anomaly Detection Jing Gao SUNY Buffalo 1 Anomaly Detection Anomalies the set of objects are considerably dissimilar from the remainder of the data occur relatively infrequently when they do occur, their

More information

Finding Hot Spots in ArcGIS Online: Minimizing the Subjectivity of Visual Analysis. Nicholas M. Giner Esri Parrish S.

Finding Hot Spots in ArcGIS Online: Minimizing the Subjectivity of Visual Analysis. Nicholas M. Giner Esri Parrish S. Finding Hot Spots in ArcGIS Online: Minimizing the Subjectivity of Visual Analysis Nicholas M. Giner Esri Parrish S. Henderson FBI Agenda The subjectivity of maps What is Hot Spot Analysis? Why do Hot

More information

8/6/2010 Assignment Previewer

8/6/2010 Assignment Previewer Week 5 Tuesday Homework (1322085) Question 123456789101112131415161718 1. Question DetailsSCalcET6 2.8.AE.01. [679727] EXAMPLE 1 The graph of a function f is given to the left. Use it to sketch the graph

More information

Network Embedding as Matrix Factorization: Unifying DeepWalk, LINE, PTE, and node2vec

Network Embedding as Matrix Factorization: Unifying DeepWalk, LINE, PTE, and node2vec Network Embedding as Matrix Factorization: Unifying DeepWalk, LINE, PTE, and node2vec Jiezhong Qiu Tsinghua University February 21, 2018 Joint work with Yuxiao Dong (MSR), Hao Ma (MSR), Jian Li (IIIS,

More information

Analysis of Spectral Kernel Design based Semi-supervised Learning

Analysis of Spectral Kernel Design based Semi-supervised Learning Analysis of Spectral Kernel Design based Semi-supervised Learning Tong Zhang IBM T. J. Watson Research Center Yorktown Heights, NY 10598 Rie Kubota Ando IBM T. J. Watson Research Center Yorktown Heights,

More information

EE595A Submodular functions, their optimization and applications Spring 2011

EE595A Submodular functions, their optimization and applications Spring 2011 EE595A Submodular functions, their optimization and applications Spring 2011 Prof. Jeff Bilmes University of Washington, Seattle Department of Electrical Engineering Winter Quarter, 2011 http://ee.washington.edu/class/235/2011wtr/index.html

More information

Proximity-Based Anomaly Detection using Sparse Structure Learning

Proximity-Based Anomaly Detection using Sparse Structure Learning Proximity-Based Anomaly Detection using Sparse Structure Learning Tsuyoshi Idé (IBM Tokyo Research Lab) Aurelie C. Lozano, Naoki Abe, and Yan Liu (IBM T. J. Watson Research Center) 2009/04/ SDM 2009 /

More information

CSEP 521 Applied Algorithms. Richard Anderson Winter 2013 Lecture 1

CSEP 521 Applied Algorithms. Richard Anderson Winter 2013 Lecture 1 CSEP 521 Applied Algorithms Richard Anderson Winter 2013 Lecture 1 CSEP 521 Course Introduction CSEP 521, Applied Algorithms Monday s, 6:30-9:20 pm CSE 305 and Microsoft Building 99 Instructor Richard

More information

Covariance to PCA. CS 510 Lecture #14 February 23, 2018

Covariance to PCA. CS 510 Lecture #14 February 23, 2018 Covariance to PCA CS 510 Lecture 14 February 23, 2018 Overview: Goal Assume you have a gallery (database) of images, and a probe (test) image. The goal is to find the database image that is most similar

More information

C-14 Finding the Right Synergy from GLMs and Machine Learning

C-14 Finding the Right Synergy from GLMs and Machine Learning C-14 Finding the Right Synergy from GLMs and Machine Learning 2010 CAS Annual Meeting Claudine Modlin November 8, 2010 Slide 1 Definitions Parametric modeling Objective: build a predictive model User makes

More information

MATH 325 LEC Q1 WINTER 2015 OUTLINE

MATH 325 LEC Q1 WINTER 2015 OUTLINE MATH 325 LEC Q1 WINTER 2015 OUTLINE COURSE TITLE: LINEAR ALGEBRA III Lecture time and location: MWF 12:00-12:50 CAB 269 Instructor: Xi Chen Phone: 780-492-1704 Email: xichen@math.ualberta.ca Office and

More information

Web Structure Mining Nodes, Links and Influence

Web Structure Mining Nodes, Links and Influence Web Structure Mining Nodes, Links and Influence 1 Outline 1. Importance of nodes 1. Centrality 2. Prestige 3. Page Rank 4. Hubs and Authority 5. Metrics comparison 2. Link analysis 3. Influence model 1.

More information

Here are some helpful websites you may find useful if your child gets stuck on the summer packet or would like to do some additional work online.

Here are some helpful websites you may find useful if your child gets stuck on the summer packet or would like to do some additional work online. 2015 Mathematics Packet for Rising 7 th Graders In addition, the Middle School Mathematics Department is asking your child to work on the attached summer math review packet. This packet reviews key concepts

More information

Learning Communities in Mathematics (LiCMATH)

Learning Communities in Mathematics (LiCMATH) Learning Communities in Mathematics (LiCMATH) The Pomona College Mathematics Department has established Learning Communities in Mathematics (LiCMATH, pronounced Like Math ) to provide an honors-level experience

More information

Lecture Slides. Elementary Statistics Eleventh Edition. by Mario F. Triola. and the Triola Statistics Series 3.1-1

Lecture Slides. Elementary Statistics Eleventh Edition. by Mario F. Triola. and the Triola Statistics Series 3.1-1 Lecture Slides Elementary Statistics Eleventh Edition and the Triola Statistics Series by Mario F. Triola 3.1-1 Chapter 3 Statistics for Describing, Exploring, and Comparing Data 3-1 Review and Preview

More information

Overview of clustering analysis. Yuehua Cui

Overview of clustering analysis. Yuehua Cui Overview of clustering analysis Yuehua Cui Email: cuiy@msu.edu http://www.stt.msu.edu/~cui A data set with clear cluster structure How would you design an algorithm for finding the three clusters in this

More information

Nonlinear Dimensionality Reduction

Nonlinear Dimensionality Reduction Outline Hong Chang Institute of Computing Technology, Chinese Academy of Sciences Machine Learning Methods (Fall 2012) Outline Outline I 1 Kernel PCA 2 Isomap 3 Locally Linear Embedding 4 Laplacian Eigenmap

More information

Clicker Registration

Clicker Registration Reminders Website: https://ulysses.phys.wvu.edu/plasma/?q=physics101 Lecture slides online after class, as well as other stuff Join the Facebook group discussion page: www.facebook.com/groups/645609775590472

More information

ECE 521. Lecture 11 (not on midterm material) 13 February K-means clustering, Dimensionality reduction

ECE 521. Lecture 11 (not on midterm material) 13 February K-means clustering, Dimensionality reduction ECE 521 Lecture 11 (not on midterm material) 13 February 2017 K-means clustering, Dimensionality reduction With thanks to Ruslan Salakhutdinov for an earlier version of the slides Overview K-means clustering

More information

Dimension reduction, PCA & eigenanalysis Based in part on slides from textbook, slides of Susan Holmes. October 3, Statistics 202: Data Mining

Dimension reduction, PCA & eigenanalysis Based in part on slides from textbook, slides of Susan Holmes. October 3, Statistics 202: Data Mining Dimension reduction, PCA & eigenanalysis Based in part on slides from textbook, slides of Susan Holmes October 3, 2012 1 / 1 Combinations of features Given a data matrix X n p with p fairly large, it can

More information

Algorithms for Calculating Statistical Properties on Moving Points

Algorithms for Calculating Statistical Properties on Moving Points Algorithms for Calculating Statistical Properties on Moving Points Dissertation Proposal Sorelle Friedler Committee: David Mount (Chair), William Gasarch Samir Khuller, Amitabh Varshney January 14, 2009

More information

Term Filtering with Bounded Error

Term Filtering with Bounded Error Term Filtering with Bounded Error Zi Yang, Wei Li, Jie Tang, and Juanzi Li Knowledge Engineering Group Department of Computer Science and Technology Tsinghua University, China {yangzi, tangjie, ljz}@keg.cs.tsinghua.edu.cn

More information

Algorithm Design and Analysis

Algorithm Design and Analysis Algorithm Design and Analysis LECTURE 22 Maximum Flow Applications Image segmentation Project selection Extensions to Max Flow Sofya Raskhodnikova 11/07/2016 S. Raskhodnikova; based on slides by E. Demaine,

More information

ALGEBRA II SEMESTER EXAMS PRACTICE MATERIALS SEMESTER (1.2-1) What is the inverse of f ( x) 2x 9? (A) (B) x x (C) (D) 2. (1.

ALGEBRA II SEMESTER EXAMS PRACTICE MATERIALS SEMESTER (1.2-1) What is the inverse of f ( x) 2x 9? (A) (B) x x (C) (D) 2. (1. 04-05 SEMESTER EXAMS. (.-) What is the inverse of f ( ) 9? f f f f ( ) 9 ( ) 9 9 ( ) ( ) 9. (.-) If 4 f ( ) 8, what is f ( )? f( ) ( 8) 4 f ( ) 8 4 4 f( ) 6 4 f( ) ( 8). (.4-) Which statement must be true

More information

Semi Supervised Distance Metric Learning

Semi Supervised Distance Metric Learning Semi Supervised Distance Metric Learning wliu@ee.columbia.edu Outline Background Related Work Learning Framework Collaborative Image Retrieval Future Research Background Euclidean distance d( x, x ) =

More information

CSE 546 Final Exam, Autumn 2013

CSE 546 Final Exam, Autumn 2013 CSE 546 Final Exam, Autumn 0. Personal info: Name: Student ID: E-mail address:. There should be 5 numbered pages in this exam (including this cover sheet).. You can use any material you brought: any book,

More information

Teaching a Prestatistics Course: Propelling Non-STEM Students Forward

Teaching a Prestatistics Course: Propelling Non-STEM Students Forward Teaching a Prestatistics Course: Propelling Non-STEM Students Forward Jay Lehmann College of San Mateo MathNerdJay@aol.com www.pearsonhighered.com/lehmannseries Learning Is in the Details Detailing concepts

More information

Correlation Preserving Unsupervised Discretization. Outline

Correlation Preserving Unsupervised Discretization. Outline Correlation Preserving Unsupervised Discretization Jee Vang Outline Paper References What is discretization? Motivation Principal Component Analysis (PCA) Association Mining Correlation Preserving Discretization

More information

Int Math 1 Statistic and Probability. Name:

Int Math 1 Statistic and Probability. Name: Name: Int Math 1 1. Juan wants to rent a house. He gathers data on many similar houses. The distance from the center of the city, x, and the monthly rent for each house, y, are shown in the scatter plot.

More information

Data Analysis and Manifold Learning Lecture 3: Graphs, Graph Matrices, and Graph Embeddings

Data Analysis and Manifold Learning Lecture 3: Graphs, Graph Matrices, and Graph Embeddings Data Analysis and Manifold Learning Lecture 3: Graphs, Graph Matrices, and Graph Embeddings Radu Horaud INRIA Grenoble Rhone-Alpes, France Radu.Horaud@inrialpes.fr http://perception.inrialpes.fr/ Outline

More information

ARTIFICIAL NEURAL NETWORKS گروه مطالعاتي 17 بهار 92

ARTIFICIAL NEURAL NETWORKS گروه مطالعاتي 17 بهار 92 ARTIFICIAL NEURAL NETWORKS گروه مطالعاتي 17 بهار 92 BIOLOGICAL INSPIRATIONS Some numbers The human brain contains about 10 billion nerve cells (neurons) Each neuron is connected to the others through 10000

More information

Data Mining. Preamble: Control Application. Industrial Researcher s Approach. Practitioner s Approach. Example. Example. Goal: Maintain T ~Td

Data Mining. Preamble: Control Application. Industrial Researcher s Approach. Practitioner s Approach. Example. Example. Goal: Maintain T ~Td Data Mining Andrew Kusiak 2139 Seamans Center Iowa City, Iowa 52242-1527 Preamble: Control Application Goal: Maintain T ~Td Tel: 319-335 5934 Fax: 319-335 5669 andrew-kusiak@uiowa.edu http://www.icaen.uiowa.edu/~ankusiak

More information

Surprise Detection in Multivariate Astronomical Data Kirk Borne George Mason University

Surprise Detection in Multivariate Astronomical Data Kirk Borne George Mason University Surprise Detection in Multivariate Astronomical Data Kirk Borne George Mason University kborne@gmu.edu, http://classweb.gmu.edu/kborne/ Outline What is Surprise Detection? Example Application: The LSST

More information

Cholesky Decomposition Rectification for Non-negative Matrix Factorization

Cholesky Decomposition Rectification for Non-negative Matrix Factorization Cholesky Decomposition Rectification for Non-negative Matrix Factorization Tetsuya Yoshida Graduate School of Information Science and Technology, Hokkaido University N-14 W-9, Sapporo 060-0814, Japan yoshida@meme.hokudai.ac.jp

More information

Franklin High School AB Calculus Prerequisite Work

Franklin High School AB Calculus Prerequisite Work Franklin High School AB Calculus Prerequisite Work Below you will find an assignment set based on the prerequisites needed for the AB Calculus curriculum taught at Franklin High School. The problems assigned

More information

Announcements: You can turn in homework until 6pm, slot on wall across from 2202 Bren. Make sure you use the correct slot! (Stats 8, closest to wall)

Announcements: You can turn in homework until 6pm, slot on wall across from 2202 Bren. Make sure you use the correct slot! (Stats 8, closest to wall) Announcements: You can turn in homework until 6pm, slot on wall across from 2202 Bren. Make sure you use the correct slot! (Stats 8, closest to wall) We will cover Chs. 5 and 6 first, then 3 and 4. Mon,

More information

From: Albert Saiz To: MCP Incoming Class Reference: Working Hard on your Quantitative Skills to make the Most out of the MCP Program at MIT

From: Albert Saiz To: MCP Incoming Class Reference: Working Hard on your Quantitative Skills to make the Most out of the MCP Program at MIT From: Albert Saiz To: MCP Incoming Class Reference: Working Hard on your Quantitative Skills to make the Most out of the MCP Program at MIT Dear Student, Welcome to the MCP program at MIT. During your

More information