CS570 Data Mining. Anomaly Detection. Li Xiong. Slide credits: Tan, Steinbach, Kumar Jiawei Han and Micheline Kamber.

Size: px
Start display at page:

Download "CS570 Data Mining. Anomaly Detection. Li Xiong. Slide credits: Tan, Steinbach, Kumar Jiawei Han and Micheline Kamber."

Transcription

1 CS570 Data Mining Anomaly Detection Li Xiong Slide credits: Tan, Steinbach, Kumar Jiawei Han and Micheline Kamber April 3,

2 Anomaly Detection Anomaly is a pattern in the data that does not conform to the expected behavior outliers, exceptions, peculiarities, surprise

3 Point Anomalies Contextual Anomalies Collective Anomalies Type of Anomaly

4 Point Anomalies An individual data instance is anomalous w.r.t. the data Y N 1 o 1 O 3 o 2 N 2 X

5 Contextual Anomalies An individual data instance is anomalous within a context Requires a notion of context Also referred to as conditional anomalies* Normal Anomaly * Xiuyao Song, Mingxi Wu, Christopher Jermaine, Sanjay Ranka, Conditional Anomaly Detection, IEEE Transactions on Data and Knowledge Engineering, 2006.

6 Collective Anomalies A collection of related data instances is anomalous Requires a relationship among data instances Sequential Data Spatial Data Graph Data The individual instances within a collective anomaly are not anomalous by themselves Anomalous Subsequence

7 Anomalies often have significant impact Cyber intrusions Credit card fraud Health condition anomaly Anomaly Detection Crust deformation anomaly

8 Black Swan Theory The impact of rare events is huge and highly underrated Black swan event The event is a surprise The event has a major impact. After its first recording, the event is rationalized by hindsight Almost all scientific discoveries, historical events are black swan events April 3, 2011 Data Mining: Concepts and Techniques 8

9 Anomaly Detection Related problems Rare Class Mining Chance discovery Anomaly Detection Novelty Detection Exception Mining Mining needle in a haystack. So much hay and so little time Noise Removal Black Swan

10 Intrusion Detection: Intrusion Detection Process of monitoring the events occurring in a computer system or network for intrusions Intrusions are attempts to bypass the security mechanisms of a computer or network Approaches Traditional signature-based intrusion detection systems are based on signatures of known attacks Anomaly detection

11 Fraud Detection Fraud detection detection of criminal activities occurring in commercial organizations Types of fraud Credit card fraud Insurance claim fraud Mobile / cell phone fraud Insider trading Challenges Fast and accurate real-time detection Misclassification cost is very high

12 Image Processing Detecting outliers in a image monitored over time Detecting anomalous regions within an image Used in mammography image analysis video surveillance satellite image analysis Key Challenges Detecting collective anomalies Data sets are very large Anomaly

13 Anomaly Detection Supervised Anomaly Detection Labels available for both normal data and anomalies Classification Semi-supervised Anomaly Detection Labels available only for normal data Classification Unsupervised Anomaly Detection No labels assumed Based on the assumption that anomalies are very rare compared to normal data

14 Output of Anomaly Detection Label Each test instance is given a normal or anomaly label Score Each test instance is assigned an anomaly score Allows the output to be ranked Requires an additional threshold parameter

15 Classification Based Techniques Main idea: build a classification model for normal (and anomalous (rare)) events based on labeled training data, and use it to classify each new unseen event Categories: Supervised classification techniques Require knowledge of both normal and anomaly class Build classifier to distinguish between normal and known anomalies Semi-supervised classification techniques Require knowledge of normal class only! Use modified classification model to learn the normal behavior and then detect any deviations from normal behavior as anomalous

16 Advantages: Classification Based Techniques Supervised classification techniques Models that can be easily understood High accuracy in detecting many kinds of known anomalies Semi-supervised classification techniques Models that can be easily understood Normal behavior can be accurately learned Drawbacks: Supervised classification techniques Require both labels from both normal and anomaly class Cannot detect unknown and emerging anomalies Semi-supervised classification techniques Require labels from normal class Possible high false alarm rate - previously unseen (yet legitimate) data records may be recognized as anomalies

17 Challenge Supervised Anomaly Detection Classification models must be able to handle skewed (imbalanced) class distributions Misclassification cost for the rare class tend to be high

18 Supervised Classification Techniques Blackbox approaches Manipulating data records (oversampling / undersampling / generating artificial examples) Whitebox approaches Adapt classification models Design new classification models Cost-sensitive classification techniques Ensemble based algorithms (SMOTEBoost, RareBoost

19 Manipulating Data Records Over-sampling the rare class [Ling98] Make the duplicates of the rare events until the data set contains as many examples as the majority class => balance the classes Down-sizing (undersampling) the majority class [Kubat97] Sample the data records from majority class (Randomly, Near miss examples, Examples far from minority class examples (far from decision boundaries) Generating artificial anomalies SMOTE (Synthetic Minority Over-sampling TEchnique) [Chawla02] - new rare class examples are generated inside the regions of existing rare class examples Artificial anomalies are generated around the edges of the sparsely populated data regions [Fan01]

20 Adapting Existing Rule Based Classifiers Case specific feature weighting [Cardey97] Increases the weight for rare class examples in decision tree learning Weight dynamically generated based on the path taken by that example Case specific rule weighting [Grzymala00] LERS (Learning from Examples based on Rough Sets) increases the rule strength for all rules describing the rare class

21 Rare Class Detection Evaluation True positive rate, true negative rate, false positive rate, false negative rate Precision/recall Implications due to imbalanced class distribution Base rate fallacy April 3, 2011 Data Mining: Concepts and Techniques 21

22 Base Rate Fallacy (Axelsson, 1999)

23 Base Rate Fallacy Even though the test is 99% certain, your chance of having the disease is 1/100, because the population of healthy people is much larger than sick people

24 Semi-supervised Classification Techniques Use modified classification model to learn the normal behavior and then detect any deviations from normal behavior as anomalous Recent approaches: Neural network based approaches Support Vector machines (SVM) based approaches Markov model based approaches Rule-based approaches

25 Using Support Vector Machines One class classification problem computes a spherically shaped decision boundary with minimal volume around a training set of objects.

26 Anomaly Detection Supervised Anomaly Detection Semi-supervised Anomaly Detection Unsupervised Anomaly Detection Graphical based Statistical based Nearest neighbor based techniques

27 The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again. Graphical Approaches Boxplot (1-D), Scatter plot (2-D), Spin plot (3-D) Limitations Time consuming Subjective

28 Statistical Approaches Assume a parametric model describing the distribution of the data (e.g., normal distribution) Apply a statistical test that depends on Data distribution Parameter of distribution (e.g., mean, variance) Number of expected outliers (confidence limit)

29 Grubbs Test Detect outliers in univariate data Assume data comes from normal distribution Detects one outlier at a time, remove the outlier, and repeat H 0 : There is no outlier in data H A : There is at least one outlier Grubbs test statistic: Reject H 0 if: G > ( N 1) N G = max N t 2 X s ( α/ N, N 2) 2 + t 2 X ( α/ N, N 2)

30 Statistical-based Likelihood Approach Assume the data set D contains samples from a mixture of two probability distributions: M (majority distribution) A (anomalous distribution) General Approach: Initially, assume all the data points belong to M Let L t (D) be the log likelihood of D at time t For each point x t that belongs to M, move it to A Let L t+1 (D) be the new log likelihood. Compute the difference, = L t (D) L t+1 (D) If > c (some threshold), then x t is declared as an anomaly and moved permanently from M to A

31 Limitations of Statistical Approaches Most of the tests are for a single attribute In many cases, data distribution may not be known For high dimensional data, it may be difficult to estimate the true distribution

32 Distance-based Approaches Data is represented as a vector of features Three major approaches Nearest-neighbor based Density based Clustering based

33 Nearest Neighbor Based Techniques Key assumption: normal points have close neighbors while anomalies are located far from other points General two-step approach 1. Compute neighborhood for each data record 2. Analyze the neighborhood to determine whether data record is anomaly or not Categories: Distance based methods Anomalies are data points most distant from other points Density based methods Anomalies are data points in low density regions

34 Nearest Neighbor Based Techniques Distance based approaches A point O in a dataset is an DB(p, d) outlier if at least fraction p of the points in the data set lies greater than distance d from the point O* Density based approaches Compute local densities of particular regions and declare instances in low density regions as potential anomalies Approaches Local Outlier Factor (LOF) Connectivity Outlier Factor (COF ) Multi-Granularity Deviation Factor (MDEF) *Knorr, Ng,Algorithms for Mining Distance-Based Outliers in Large Datasets, VLDB98

35 Local Outlier Factor (LOF)* For each data point q compute the distance to the k-th nearest neighbor (k-distance) Compute reachability distance (reach-dist) for each data example q with respect to data example p as: reach-dist(q, p) = max{k-distance(p), d(q,p)} Compute local reachability density (lrd) of data example q as inverse of the average reachabaility distance based on the MinPts nearest neighbors of data example q MinPts lrd(q) = reach_ dist ( q, p) Compaute LOF(q) as ratio of average local reachability density of q s k- nearest neighbors and local reachability density of the data record q LOF(q) = p p MinPts 1 lrd( p) MinPts lrd( q) * - Breunig, et al, LOF: Identifying Density-Based Local Outliers, KDD 2000.

36 Advantages of Density based Techniques Local Outlier Factor (LOF) approach Example: Distance from p 3 to nearest neighbor Distance from p 2 to nearest neighbor p 3 p 2 p 1 In the NN approach, p 2 is not considered as outlier, while the LOF approach find both p 1 and p 2 as outliers NN approach may consider p 3 as outlier, but LOF approach does not

37 Density based approach Using Support Vector Machines Main idea [Steinwart05] : Normal data records belong to high density data regions Anomalies belong to low density data regions Use unsupervised approach to learn high density and low density data regions Use SVM to classify data density level

38 Key assumption Clustering Based Techniques normal data records belong to large and dense clusters, while anomalies belong do not belong to any of the clusters or form very small clusters Anomalies detected using clustering based methods can be: Data records that do not fit into any cluster (residuals from clustering) Small clusters Low density clusters or local anomalies (far from other points within the same cluster)

Anomaly Detection. Jing Gao. SUNY Buffalo

Anomaly Detection. Jing Gao. SUNY Buffalo Anomaly Detection Jing Gao SUNY Buffalo 1 Anomaly Detection Anomalies the set of objects are considerably dissimilar from the remainder of the data occur relatively infrequently when they do occur, their

More information

Anomaly (outlier) detection. Huiping Cao, Anomaly 1

Anomaly (outlier) detection. Huiping Cao, Anomaly 1 Anomaly (outlier) detection Huiping Cao, Anomaly 1 Outline General concepts What are outliers Types of outliers Causes of anomalies Challenges of outlier detection Outlier detection approaches Huiping

More information

Data Mining for Anomaly Detection

Data Mining for Anomaly Detection Data Mining for Anomaly Detection Aleksandar Lazarevic United Technologies Research Center Arindam Banerjee, Varun Chandola, Vipin Kumar, Jaideep Srivastava University of Minnesota Tutorial at the European

More information

Unsupervised Anomaly Detection for High Dimensional Data

Unsupervised Anomaly Detection for High Dimensional Data Unsupervised Anomaly Detection for High Dimensional Data Department of Mathematics, Rowan University. July 19th, 2013 International Workshop in Sequential Methodologies (IWSM-2013) Outline of Talk Motivation

More information

An Overview of Outlier Detection Techniques and Applications

An Overview of Outlier Detection Techniques and Applications Machine Learning Rhein-Neckar Meetup An Overview of Outlier Detection Techniques and Applications Ying Gu connygy@gmail.com 28.02.2016 Anomaly/Outlier Detection What are anomalies/outliers? The set of

More information

Anomaly Detection via Online Oversampling Principal Component Analysis

Anomaly Detection via Online Oversampling Principal Component Analysis Anomaly Detection via Online Oversampling Principal Component Analysis R.Sundara Nagaraj 1, C.Anitha 2 and Mrs.K.K.Kavitha 3 1 PG Scholar (M.Phil-CS), Selvamm Art Science College (Autonomous), Namakkal,

More information

Expert Systems with Applications

Expert Systems with Applications Expert Systems with Applications 36 (29) 5718 5727 Contents lists available at ScienceDirect Expert Systems with Applications journal homepage: www.elsevier.com/locate/eswa Cluster-based under-sampling

More information

Data Mining: Concepts and Techniques. (3 rd ed.) Chapter 8. Chapter 8. Classification: Basic Concepts

Data Mining: Concepts and Techniques. (3 rd ed.) Chapter 8. Chapter 8. Classification: Basic Concepts Data Mining: Concepts and Techniques (3 rd ed.) Chapter 8 1 Chapter 8. Classification: Basic Concepts Classification: Basic Concepts Decision Tree Induction Bayes Classification Methods Rule-Based Classification

More information

Holdout and Cross-Validation Methods Overfitting Avoidance

Holdout and Cross-Validation Methods Overfitting Avoidance Holdout and Cross-Validation Methods Overfitting Avoidance Decision Trees Reduce error pruning Cost-complexity pruning Neural Networks Early stopping Adjusting Regularizers via Cross-Validation Nearest

More information

Data Mining. Preamble: Control Application. Industrial Researcher s Approach. Practitioner s Approach. Example. Example. Goal: Maintain T ~Td

Data Mining. Preamble: Control Application. Industrial Researcher s Approach. Practitioner s Approach. Example. Example. Goal: Maintain T ~Td Data Mining Andrew Kusiak 2139 Seamans Center Iowa City, Iowa 52242-1527 Preamble: Control Application Goal: Maintain T ~Td Tel: 319-335 5934 Fax: 319-335 5669 andrew-kusiak@uiowa.edu http://www.icaen.uiowa.edu/~ankusiak

More information

A Comparative Evaluation of Anomaly Detection Techniques for Sequence Data. Technical Report

A Comparative Evaluation of Anomaly Detection Techniques for Sequence Data. Technical Report A Comparative Evaluation of Anomaly Detection Techniques for Sequence Data Technical Report Department of Computer Science and Engineering University of Minnesota 4-192 EECS Building 200 Union Street SE

More information

SUPERVISED LEARNING: INTRODUCTION TO CLASSIFICATION

SUPERVISED LEARNING: INTRODUCTION TO CLASSIFICATION SUPERVISED LEARNING: INTRODUCTION TO CLASSIFICATION 1 Outline Basic terminology Features Training and validation Model selection Error and loss measures Statistical comparison Evaluation measures 2 Terminology

More information

Introduction to Machine Learning

Introduction to Machine Learning Introduction to Machine Learning CS4731 Dr. Mihail Fall 2017 Slide content based on books by Bishop and Barber. https://www.microsoft.com/en-us/research/people/cmbishop/ http://web4.cs.ucl.ac.uk/staff/d.barber/pmwiki/pmwiki.php?n=brml.homepage

More information

ML in Practice: CMSC 422 Slides adapted from Prof. CARPUAT and Prof. Roth

ML in Practice: CMSC 422 Slides adapted from Prof. CARPUAT and Prof. Roth ML in Practice: CMSC 422 Slides adapted from Prof. CARPUAT and Prof. Roth N-fold cross validation Instead of a single test-training split: train test Split data into N equal-sized parts Train and test

More information

MASTER. Anomaly detection on event logs an unsupervised algorithm on ixr-messages. Severins, J.D. Award date: Link to publication

MASTER. Anomaly detection on event logs an unsupervised algorithm on ixr-messages. Severins, J.D. Award date: Link to publication MASTER Anomaly detection on event logs an unsupervised algorithm on ixr-messages Severins, J.D. Award date: 2016 Link to publication Disclaimer This document contains a student thesis (bachelor's or master's),

More information

Anomaly Detection via Over-sampling Principal Component Analysis

Anomaly Detection via Over-sampling Principal Component Analysis Anomaly Detection via Over-sampling Principal Component Analysis Yi-Ren Yeh, Zheng-Yi Lee, and Yuh-Jye Lee Abstract Outlier detection is an important issue in data mining and has been studied in different

More information

Ensemble Methods. NLP ML Web! Fall 2013! Andrew Rosenberg! TA/Grader: David Guy Brizan

Ensemble Methods. NLP ML Web! Fall 2013! Andrew Rosenberg! TA/Grader: David Guy Brizan Ensemble Methods NLP ML Web! Fall 2013! Andrew Rosenberg! TA/Grader: David Guy Brizan How do you make a decision? What do you want for lunch today?! What did you have last night?! What are your favorite

More information

Graph-Based Anomaly Detection with Soft Harmonic Functions

Graph-Based Anomaly Detection with Soft Harmonic Functions Graph-Based Anomaly Detection with Soft Harmonic Functions Michal Valko Advisor: Milos Hauskrecht Computer Science Department, University of Pittsburgh, Computer Science Day 2011, March 18 th, 2011. Anomaly

More information

Anomaly Detection using Support Vector Machine

Anomaly Detection using Support Vector Machine Anomaly Detection using Support Vector Machine Dharminder Kumar 1, Suman 2, Nutan 3 1 GJUS&T Hisar 2 Research Scholar, GJUS&T Hisar HCE Sonepat 3 HCE Sonepat Abstract: Support vector machine are among

More information

International Journal of Scientific & Engineering Research, Volume 7, Issue 2, February ISSN

International Journal of Scientific & Engineering Research, Volume 7, Issue 2, February ISSN International Journal of Scientific & Engineering Research, Volume 7, Issue 2, February-2016 9 Automated Methodology for Context Based Semantic Anomaly Identification in Big Data Hema.R 1, Vidhya.V 2,

More information

Contents Lecture 4. Lecture 4 Linear Discriminant Analysis. Summary of Lecture 3 (II/II) Summary of Lecture 3 (I/II)

Contents Lecture 4. Lecture 4 Linear Discriminant Analysis. Summary of Lecture 3 (II/II) Summary of Lecture 3 (I/II) Contents Lecture Lecture Linear Discriminant Analysis Fredrik Lindsten Division of Systems and Control Department of Information Technology Uppsala University Email: fredriklindsten@ituuse Summary of lecture

More information

Lecture 2. Judging the Performance of Classifiers. Nitin R. Patel

Lecture 2. Judging the Performance of Classifiers. Nitin R. Patel Lecture 2 Judging the Performance of Classifiers Nitin R. Patel 1 In this note we will examine the question of how to udge the usefulness of a classifier and how to compare different classifiers. Not only

More information

Introduction to Machine Learning Midterm Exam

Introduction to Machine Learning Midterm Exam 10-701 Introduction to Machine Learning Midterm Exam Instructors: Eric Xing, Ziv Bar-Joseph 17 November, 2015 There are 11 questions, for a total of 100 points. This exam is open book, open notes, but

More information

Outlier Detection Using Rough Set Theory

Outlier Detection Using Rough Set Theory Outlier Detection Using Rough Set Theory Feng Jiang 1,2, Yuefei Sui 1, and Cungen Cao 1 1 Key Laboratory of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences,

More information

Using HDDT to avoid instances propagation in unbalanced and evolving data streams

Using HDDT to avoid instances propagation in unbalanced and evolving data streams Using HDDT to avoid instances propagation in unbalanced and evolving data streams IJCNN 2014 Andrea Dal Pozzolo, Reid Johnson, Olivier Caelen, Serge Waterschoot, Nitesh V Chawla and Gianluca Bontempi 07/07/2014

More information

Data Mining Based Anomaly Detection In PMU Measurements And Event Detection

Data Mining Based Anomaly Detection In PMU Measurements And Event Detection Data Mining Based Anomaly Detection In PMU Measurements And Event Detection P. Banerjee, S. Pandey, M. Zhou, A. Srivastava, Y. Wu Smart Grid Demonstration and Research Investigation Lab (SGDRIL) Energy

More information

8. Classifier Ensembles for Changing Environments

8. Classifier Ensembles for Changing Environments 1 8. Classifier Ensembles for Changing Environments 8.1. Streaming data and changing environments. 8.2. Approach 1: Change detection. An ensemble method 8.2. Approach 2: Constant updates. Classifier ensembles

More information

SYSTEMATIC CONSTRUCTION OF ANOMALY DETECTION BENCHMARKS FROM REAL DATA. Outlier Detection And Description Workshop 2013

SYSTEMATIC CONSTRUCTION OF ANOMALY DETECTION BENCHMARKS FROM REAL DATA. Outlier Detection And Description Workshop 2013 SYSTEMATIC CONSTRUCTION OF ANOMALY DETECTION BENCHMARKS FROM REAL DATA Outlier Detection And Description Workshop 2013 Authors Andrew Emmott emmott@eecs.oregonstate.edu Thomas Dietterich tgd@eecs.oregonstate.edu

More information

A Family of Joint Sparse PCA Algorithms for Anomaly Localization in Network Data Streams. Ruoyi Jiang

A Family of Joint Sparse PCA Algorithms for Anomaly Localization in Network Data Streams. Ruoyi Jiang A Family of Joint Sparse PCA Algorithms for Anomaly Localization in Network Data Streams By Ruoyi Jiang Submitted to the graduate degree program in Department of Electrical Engineering and Computer Science

More information

Data Mining. 3.6 Regression Analysis. Fall Instructor: Dr. Masoud Yaghini. Numeric Prediction

Data Mining. 3.6 Regression Analysis. Fall Instructor: Dr. Masoud Yaghini. Numeric Prediction Data Mining 3.6 Regression Analysis Fall 2008 Instructor: Dr. Masoud Yaghini Outline Introduction Straight-Line Linear Regression Multiple Linear Regression Other Regression Models References Introduction

More information

Density-Based Clustering

Density-Based Clustering Density-Based Clustering idea: Clusters are dense regions in feature space F. density: objects volume ε here: volume: ε-neighborhood for object o w.r.t. distance measure dist(x,y) dense region: ε-neighborhood

More information

Anomaly Detection in Logged Sensor Data. Master s thesis in Complex Adaptive Systems JOHAN FLORBÄCK

Anomaly Detection in Logged Sensor Data. Master s thesis in Complex Adaptive Systems JOHAN FLORBÄCK Anomaly Detection in Logged Sensor Data Master s thesis in Complex Adaptive Systems JOHAN FLORBÄCK Department of Applied Mechanics CHALMERS UNIVERSITY OF TECHNOLOGY Göteborg, Sweden 2015 MASTER S THESIS

More information

An overview of Boosting. Yoav Freund UCSD

An overview of Boosting. Yoav Freund UCSD An overview of Boosting Yoav Freund UCSD Plan of talk Generative vs. non-generative modeling Boosting Alternating decision trees Boosting and over-fitting Applications 2 Toy Example Computer receives telephone

More information

Introduction to Statistical Inference

Introduction to Statistical Inference Structural Health Monitoring Using Statistical Pattern Recognition Introduction to Statistical Inference Presented by Charles R. Farrar, Ph.D., P.E. Outline Introduce statistical decision making for Structural

More information

Finding Multiple Outliers from Multidimensional Data using Multiple Regression

Finding Multiple Outliers from Multidimensional Data using Multiple Regression Finding Multiple Outliers from Multidimensional Data using Multiple Regression L. Sunitha 1*, Dr M. Bal Raju 2 1* CSE Research Scholar, J N T U Hyderabad, Telangana (India) 2 Professor and principal, K

More information

Surprise Detection in Science Data Streams Kirk Borne Dept of Computational & Data Sciences George Mason University

Surprise Detection in Science Data Streams Kirk Borne Dept of Computational & Data Sciences George Mason University Surprise Detection in Science Data Streams Kirk Borne Dept of Computational & Data Sciences George Mason University kborne@gmu.edu, http://classweb.gmu.edu/kborne/ Outline Astroinformatics Example Application:

More information

Lecture 4 Discriminant Analysis, k-nearest Neighbors

Lecture 4 Discriminant Analysis, k-nearest Neighbors Lecture 4 Discriminant Analysis, k-nearest Neighbors Fredrik Lindsten Division of Systems and Control Department of Information Technology Uppsala University. Email: fredrik.lindsten@it.uu.se fredrik.lindsten@it.uu.se

More information

Evaluating Electricity Theft Detectors in Smart Grid Networks. Group 5:

Evaluating Electricity Theft Detectors in Smart Grid Networks. Group 5: Evaluating Electricity Theft Detectors in Smart Grid Networks Group 5: Ji, Xinyu Rivera, Asier Agenda Introduction Background Electricity Theft Detectors and Attacks Results Discussion Conclusion 2 Introduction

More information

Bayesian Networks Inference with Probabilistic Graphical Models

Bayesian Networks Inference with Probabilistic Graphical Models 4190.408 2016-Spring Bayesian Networks Inference with Probabilistic Graphical Models Byoung-Tak Zhang intelligence Lab Seoul National University 4190.408 Artificial (2016-Spring) 1 Machine Learning? Learning

More information

Change Detection in Multivariate Data

Change Detection in Multivariate Data Change Detection in Multivariate Data Likelihood and Detectability Loss Giacomo Boracchi July, 8 th, 2016 giacomo.boracchi@polimi.it TJ Watson, IBM NY Examples of CD Problems: Anomaly Detection Examples

More information

Applied Machine Learning Annalisa Marsico

Applied Machine Learning Annalisa Marsico Applied Machine Learning Annalisa Marsico OWL RNA Bionformatics group Max Planck Institute for Molecular Genetics Free University of Berlin 22 April, SoSe 2015 Goals Feature Selection rather than Feature

More information

CS145: INTRODUCTION TO DATA MINING

CS145: INTRODUCTION TO DATA MINING CS145: INTRODUCTION TO DATA MINING 5: Vector Data: Support Vector Machine Instructor: Yizhou Sun yzsun@cs.ucla.edu October 18, 2017 Homework 1 Announcements Due end of the day of this Thursday (11:59pm)

More information

Face Recognition Using Laplacianfaces He et al. (IEEE Trans PAMI, 2005) presented by Hassan A. Kingravi

Face Recognition Using Laplacianfaces He et al. (IEEE Trans PAMI, 2005) presented by Hassan A. Kingravi Face Recognition Using Laplacianfaces He et al. (IEEE Trans PAMI, 2005) presented by Hassan A. Kingravi Overview Introduction Linear Methods for Dimensionality Reduction Nonlinear Methods and Manifold

More information

Classifier performance evaluation

Classifier performance evaluation Classifier performance evaluation Václav Hlaváč Czech Technical University in Prague Czech Institute of Informatics, Robotics and Cybernetics 166 36 Prague 6, Jugoslávských partyzánu 1580/3, Czech Republic

More information

Machine learning comes from Bayesian decision theory in statistics. There we want to minimize the expected value of the loss function.

Machine learning comes from Bayesian decision theory in statistics. There we want to minimize the expected value of the loss function. Bayesian learning: Machine learning comes from Bayesian decision theory in statistics. There we want to minimize the expected value of the loss function. Let y be the true label and y be the predicted

More information

Anomaly Detection for the CERN Large Hadron Collider injection magnets

Anomaly Detection for the CERN Large Hadron Collider injection magnets Anomaly Detection for the CERN Large Hadron Collider injection magnets Armin Halilovic KU Leuven - Department of Computer Science In cooperation with CERN 2018-07-27 0 Outline 1 Context 2 Data 3 Preprocessing

More information

Machine Learning Linear Classification. Prof. Matteo Matteucci

Machine Learning Linear Classification. Prof. Matteo Matteucci Machine Learning Linear Classification Prof. Matteo Matteucci Recall from the first lecture 2 X R p Regression Y R Continuous Output X R p Y {Ω 0, Ω 1,, Ω K } Classification Discrete Output X R p Y (X)

More information

Clustering. CSL465/603 - Fall 2016 Narayanan C Krishnan

Clustering. CSL465/603 - Fall 2016 Narayanan C Krishnan Clustering CSL465/603 - Fall 2016 Narayanan C Krishnan ckn@iitrpr.ac.in Supervised vs Unsupervised Learning Supervised learning Given x ", y " "%& ', learn a function f: X Y Categorical output classification

More information

LARGE SCALE ANOMALY DETECTION AND CLUSTERING USING RANDOM WALKS

LARGE SCALE ANOMALY DETECTION AND CLUSTERING USING RANDOM WALKS LARGE SCALE ANOMALY DETECTION AND CLUSTERING USING RANDOM WALKS A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy in the School of Information Technologies at

More information

CSE 546 Final Exam, Autumn 2013

CSE 546 Final Exam, Autumn 2013 CSE 546 Final Exam, Autumn 0. Personal info: Name: Student ID: E-mail address:. There should be 5 numbered pages in this exam (including this cover sheet).. You can use any material you brought: any book,

More information

IV Course Spring 14. Graduate Course. May 4th, Big Spatiotemporal Data Analytics & Visualization

IV Course Spring 14. Graduate Course. May 4th, Big Spatiotemporal Data Analytics & Visualization Spatiotemporal Data Visualization IV Course Spring 14 Graduate Course of UCAS May 4th, 2014 Outline What is spatiotemporal data? How to analyze spatiotemporal data? How to visualize spatiotemporal data?

More information

IMBALANCED DATA. Phishing. Admin 9/30/13. Assignment 3: - how did it go? - do the experiments help? Assignment 4. Course feedback

IMBALANCED DATA. Phishing. Admin 9/30/13. Assignment 3: - how did it go? - do the experiments help? Assignment 4. Course feedback 9/3/3 Admin Assignment 3: - how did it go? - do the experiments help? Assignment 4 IMBALANCED DATA Course feedback David Kauchak CS 45 Fall 3 Phishing 9/3/3 Setup Imbalanced data. for hour, google collects

More information

FINAL: CS 6375 (Machine Learning) Fall 2014

FINAL: CS 6375 (Machine Learning) Fall 2014 FINAL: CS 6375 (Machine Learning) Fall 2014 The exam is closed book. You are allowed a one-page cheat sheet. Answer the questions in the spaces provided on the question sheets. If you run out of room for

More information

EEL 851: Biometrics. An Overview of Statistical Pattern Recognition EEL 851 1

EEL 851: Biometrics. An Overview of Statistical Pattern Recognition EEL 851 1 EEL 851: Biometrics An Overview of Statistical Pattern Recognition EEL 851 1 Outline Introduction Pattern Feature Noise Example Problem Analysis Segmentation Feature Extraction Classification Design Cycle

More information

Tools of AI. Marcin Sydow. Summary. Machine Learning

Tools of AI. Marcin Sydow. Summary. Machine Learning Machine Learning Outline of this Lecture Motivation for Data Mining and Machine Learning Idea of Machine Learning Decision Table: Cases and Attributes Supervised and Unsupervised Learning Classication

More information

Data Exploration vis Local Two-Sample Testing

Data Exploration vis Local Two-Sample Testing Data Exploration vis Local Two-Sample Testing 0 20 40 60 80 100 40 20 0 20 40 Freeman, Kim, and Lee (2017) Astrostatistics at Carnegie Mellon CMU Astrostatistics Network Graph 2017 (not including collaborations

More information

ADVANCED ALGORITHMS FOR KNOWLEDGE DISCOVERY FROM IMBALANCED AND ADVERSARIAL DATA

ADVANCED ALGORITHMS FOR KNOWLEDGE DISCOVERY FROM IMBALANCED AND ADVERSARIAL DATA ADVANCED ALGORITHMS FOR KNOWLEDGE DISCOVERY FROM IMBALANCED AND ADVERSARIAL DATA A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy in the School of Information

More information

Logic and machine learning review. CS 540 Yingyu Liang

Logic and machine learning review. CS 540 Yingyu Liang Logic and machine learning review CS 540 Yingyu Liang Propositional logic Logic If the rules of the world are presented formally, then a decision maker can use logical reasoning to make rational decisions.

More information

CSE 5243 INTRO. TO DATA MINING

CSE 5243 INTRO. TO DATA MINING CSE 5243 INTRO. TO DATA MINING Data & Data Preprocessing & Classification (Basic Concepts) Huan Sun, CSE@The Ohio State University Slides adapted from UIUC CS412, Fall 2017, by Prof. Jiawei Han Chapter

More information

Università di Pisa A.A Data Mining II June 13th, < {A} {B,F} {E} {A,B} {A,C,D} {F} {B,E} {C,D} > t=0 t=1 t=2 t=3 t=4 t=5 t=6 t=7

Università di Pisa A.A Data Mining II June 13th, < {A} {B,F} {E} {A,B} {A,C,D} {F} {B,E} {C,D} > t=0 t=1 t=2 t=3 t=4 t=5 t=6 t=7 Università di Pisa A.A. 2016-2017 Data Mining II June 13th, 2017 Exercise 1 - Sequential patterns (6 points) a) (3 points) Given the following input sequence < {A} {B,F} {E} {A,B} {A,C,D} {F} {B,E} {C,D}

More information

Available online at ScienceDirect. Procedia Computer Science 96 (2016 )

Available online at   ScienceDirect. Procedia Computer Science 96 (2016 ) Available online at www.sciencedirect.com ScienceDirect Procedia Computer Science 96 (2016 ) 139 146 20th International Conference on Knowledge Based and Intelligent Information and Engineering Systems

More information

IAENG International Journal of Computer Science, 43:1, IJCS_43_1_09. Intrusion Detection System Using PCA and Kernel PCA Methods

IAENG International Journal of Computer Science, 43:1, IJCS_43_1_09. Intrusion Detection System Using PCA and Kernel PCA Methods Intrusion Detection System Using PCA and Kernel PCA Methods Z. Elkhadir, K. Chougdali, and M. Benattou Abstract The network traffic data used to build an intrusion detection system is frequently enormous

More information

Computer Vision Group Prof. Daniel Cremers. 10a. Markov Chain Monte Carlo

Computer Vision Group Prof. Daniel Cremers. 10a. Markov Chain Monte Carlo Group Prof. Daniel Cremers 10a. Markov Chain Monte Carlo Markov Chain Monte Carlo In high-dimensional spaces, rejection sampling and importance sampling are very inefficient An alternative is Markov Chain

More information

Roberto Perdisci^+, Guofei Gu^, Wenke Lee^ presented by Roberto Perdisci. ^Georgia Institute of Technology, Atlanta, GA, USA

Roberto Perdisci^+, Guofei Gu^, Wenke Lee^ presented by Roberto Perdisci. ^Georgia Institute of Technology, Atlanta, GA, USA U s i n g a n E n s e m b l e o f O n e - C l a s s S V M C l a s s i f i e r s t o H a r d e n P a y l o a d - B a s e d A n o m a l y D e t e c t i o n S y s t e m s Roberto Perdisci^+, Guofei Gu^, Wenke

More information

Introduction to Signal Detection and Classification. Phani Chavali

Introduction to Signal Detection and Classification. Phani Chavali Introduction to Signal Detection and Classification Phani Chavali Outline Detection Problem Performance Measures Receiver Operating Characteristics (ROC) F-Test - Test Linear Discriminant Analysis (LDA)

More information

Data Mining Classification: Basic Concepts, Decision Trees, and Model Evaluation

Data Mining Classification: Basic Concepts, Decision Trees, and Model Evaluation Data Mining Classification: Basic Concepts, Decision Trees, and Model Evaluation Lecture Notes for Chapter 4 Part I Introduction to Data Mining by Tan, Steinbach, Kumar Adapted by Qiang Yang (2010) Tan,Steinbach,

More information

ENTROPY FILTER FOR ANOMALY DETECTION WITH EDDY CURRENT REMOTE FIELD SENSORS

ENTROPY FILTER FOR ANOMALY DETECTION WITH EDDY CURRENT REMOTE FIELD SENSORS ENTROPY FILTER FOR ANOMALY DETECTION WITH EDDY CURRENT REMOTE FIELD SENSORS By Farid Sheikhi May 2014 A Thesis submitted to the School of Graduate Studies and Research in partial fulfillment of the requirements

More information

Learning Classification with Auxiliary Probabilistic Information Quang Nguyen Hamed Valizadegan Milos Hauskrecht

Learning Classification with Auxiliary Probabilistic Information Quang Nguyen Hamed Valizadegan Milos Hauskrecht Learning Classification with Auxiliary Probabilistic Information Quang Nguyen Hamed Valizadegan Milos Hauskrecht Computer Science Department University of Pittsburgh Outline Introduction Learning with

More information

CS 484 Data Mining. Classification 7. Some slides are from Professor Padhraic Smyth at UC Irvine

CS 484 Data Mining. Classification 7. Some slides are from Professor Padhraic Smyth at UC Irvine CS 484 Data Mining Classification 7 Some slides are from Professor Padhraic Smyth at UC Irvine Bayesian Belief networks Conditional independence assumption of Naïve Bayes classifier is too strong. Allows

More information

A Framework for Adaptive Anomaly Detection Based on Support Vector Data Description

A Framework for Adaptive Anomaly Detection Based on Support Vector Data Description A Framework for Adaptive Anomaly Detection Based on Support Vector Data Description Min Yang, HuanGuo Zhang, JianMing Fu, and Fei Yan School of Computer, State Key Laboratory of Software Engineering, Wuhan

More information

Introduction to Machine Learning. PCA and Spectral Clustering. Introduction to Machine Learning, Slides: Eran Halperin

Introduction to Machine Learning. PCA and Spectral Clustering. Introduction to Machine Learning, Slides: Eran Halperin 1 Introduction to Machine Learning PCA and Spectral Clustering Introduction to Machine Learning, 2013-14 Slides: Eran Halperin Singular Value Decomposition (SVD) The singular value decomposition (SVD)

More information

ECE662: Pattern Recognition and Decision Making Processes: HW TWO

ECE662: Pattern Recognition and Decision Making Processes: HW TWO ECE662: Pattern Recognition and Decision Making Processes: HW TWO Purdue University Department of Electrical and Computer Engineering West Lafayette, INDIANA, USA Abstract. In this report experiments are

More information

Learning with multiple models. Boosting.

Learning with multiple models. Boosting. CS 2750 Machine Learning Lecture 21 Learning with multiple models. Boosting. Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square Learning with multiple models: Approach 2 Approach 2: use multiple models

More information

COMP 5331: Knowledge Discovery and Data Mining

COMP 5331: Knowledge Discovery and Data Mining COMP 5331: Knowledge Discovery and Data Mining Acknowledgement: Slides modified by Dr. Lei Chen based on the slides provided by Tan, Steinbach, Kumar And Jiawei Han, Micheline Kamber, and Jian Pei 1 10

More information

Text Mining. Dr. Yanjun Li. Associate Professor. Department of Computer and Information Sciences Fordham University

Text Mining. Dr. Yanjun Li. Associate Professor. Department of Computer and Information Sciences Fordham University Text Mining Dr. Yanjun Li Associate Professor Department of Computer and Information Sciences Fordham University Outline Introduction: Data Mining Part One: Text Mining Part Two: Preprocessing Text Data

More information

Intro. ANN & Fuzzy Systems. Lecture 15. Pattern Classification (I): Statistical Formulation

Intro. ANN & Fuzzy Systems. Lecture 15. Pattern Classification (I): Statistical Formulation Lecture 15. Pattern Classification (I): Statistical Formulation Outline Statistical Pattern Recognition Maximum Posterior Probability (MAP) Classifier Maximum Likelihood (ML) Classifier K-Nearest Neighbor

More information

Data Mining und Maschinelles Lernen

Data Mining und Maschinelles Lernen Data Mining und Maschinelles Lernen Ensemble Methods Bias-Variance Trade-off Basic Idea of Ensembles Bagging Basic Algorithm Bagging with Costs Randomization Random Forests Boosting Stacking Error-Correcting

More information

FRaC: A Feature-Modeling Approach for Semi-Supervised and Unsupervised Anomaly Detection

FRaC: A Feature-Modeling Approach for Semi-Supervised and Unsupervised Anomaly Detection Noname manuscript No. (will be inserted by the editor) FRaC: A Feature-Modeling Approach for Semi-Supervised and Unsupervised Anomaly Detection Keith Noto Carla Brodley Donna Slonim Received: date / Accepted:

More information

Handling imbalanced datasets by reconstruction rules in decomposition schemes

Handling imbalanced datasets by reconstruction rules in decomposition schemes Handling imbalanced datasets by reconstruction rules in decomposition schemes Roberto D Ambrosio To cite this version: Roberto D Ambrosio. Handling imbalanced datasets by reconstruction rules in decomposition

More information

ECS289: Scalable Machine Learning

ECS289: Scalable Machine Learning ECS289: Scalable Machine Learning Cho-Jui Hsieh UC Davis Oct 18, 2016 Outline One versus all/one versus one Ranking loss for multiclass/multilabel classification Scaling to millions of labels Multiclass

More information

A CUSUM approach for online change-point detection on curve sequences

A CUSUM approach for online change-point detection on curve sequences ESANN 22 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning. Bruges Belgium, 25-27 April 22, i6doc.com publ., ISBN 978-2-8749-49-. Available

More information

Performance Comparison of K-Means and Expectation Maximization with Gaussian Mixture Models for Clustering EE6540 Final Project

Performance Comparison of K-Means and Expectation Maximization with Gaussian Mixture Models for Clustering EE6540 Final Project Performance Comparison of K-Means and Expectation Maximization with Gaussian Mixture Models for Clustering EE6540 Final Project Devin Cornell & Sushruth Sastry May 2015 1 Abstract In this article, we explore

More information

Your Project Proposals

Your Project Proposals Your Project Proposals l See description in Learning Suite Remember your example instance! l Examples Look at Irvine Data Set to get a feel of what data sets look like l Stick with supervised classification

More information

Advanced Statistical Methods: Beyond Linear Regression

Advanced Statistical Methods: Beyond Linear Regression Advanced Statistical Methods: Beyond Linear Regression John R. Stevens Utah State University Notes 3. Statistical Methods II Mathematics Educators Worshop 28 March 2009 1 http://www.stat.usu.edu/~jrstevens/pcmi

More information

9/26/17. Ridge regression. What our model needs to do. Ridge Regression: L2 penalty. Ridge coefficients. Ridge coefficients

9/26/17. Ridge regression. What our model needs to do. Ridge Regression: L2 penalty. Ridge coefficients. Ridge coefficients What our model needs to do regression Usually, we are not just trying to explain observed data We want to uncover meaningful trends And predict future observations Our questions then are Is β" a good estimate

More information

When Dictionary Learning Meets Classification

When Dictionary Learning Meets Classification When Dictionary Learning Meets Classification Bufford, Teresa 1 Chen, Yuxin 2 Horning, Mitchell 3 Shee, Liberty 1 Mentor: Professor Yohann Tendero 1 UCLA 2 Dalhousie University 3 Harvey Mudd College August

More information

Introduction to Machine Learning Midterm Exam Solutions

Introduction to Machine Learning Midterm Exam Solutions 10-701 Introduction to Machine Learning Midterm Exam Solutions Instructors: Eric Xing, Ziv Bar-Joseph 17 November, 2015 There are 11 questions, for a total of 100 points. This exam is open book, open notes,

More information

Computational Genomics

Computational Genomics Computational Genomics http://www.cs.cmu.edu/~02710 Introduction to probability, statistics and algorithms (brief) intro to probability Basic notations Random variable - referring to an element / event

More information

MTH 517 COURSE PROJECT

MTH 517 COURSE PROJECT MTH 517 COURSE PROJECT Anomaly Detection in Time Series Aditya Degala - 12051 Shreesh Laddha - 12679 1 Introduction In data mining, anomaly detection (or outlier detection) is the identification of items,

More information

Instance-based Learning CE-717: Machine Learning Sharif University of Technology. M. Soleymani Fall 2016

Instance-based Learning CE-717: Machine Learning Sharif University of Technology. M. Soleymani Fall 2016 Instance-based Learning CE-717: Machine Learning Sharif University of Technology M. Soleymani Fall 2016 Outline Non-parametric approach Unsupervised: Non-parametric density estimation Parzen Windows Kn-Nearest

More information

Pattern Recognition and Machine Learning

Pattern Recognition and Machine Learning Christopher M. Bishop Pattern Recognition and Machine Learning ÖSpri inger Contents Preface Mathematical notation Contents vii xi xiii 1 Introduction 1 1.1 Example: Polynomial Curve Fitting 4 1.2 Probability

More information

Support Vector Machines. Introduction to Data Mining, 2 nd Edition by Tan, Steinbach, Karpatne, Kumar

Support Vector Machines. Introduction to Data Mining, 2 nd Edition by Tan, Steinbach, Karpatne, Kumar Data Mining Support Vector Machines Introduction to Data Mining, 2 nd Edition by Tan, Steinbach, Karpatne, Kumar 02/03/2018 Introduction to Data Mining 1 Support Vector Machines Find a linear hyperplane

More information

Machine learning for pervasive systems Classification in high-dimensional spaces

Machine learning for pervasive systems Classification in high-dimensional spaces Machine learning for pervasive systems Classification in high-dimensional spaces Department of Communications and Networking Aalto University, School of Electrical Engineering stephan.sigg@aalto.fi Version

More information

CS534 Machine Learning - Spring Final Exam

CS534 Machine Learning - Spring Final Exam CS534 Machine Learning - Spring 2013 Final Exam Name: You have 110 minutes. There are 6 questions (8 pages including cover page). If you get stuck on one question, move on to others and come back to the

More information

Machine Learning, Fall 2009: Midterm

Machine Learning, Fall 2009: Midterm 10-601 Machine Learning, Fall 009: Midterm Monday, November nd hours 1. Personal info: Name: Andrew account: E-mail address:. You are permitted two pages of notes and a calculator. Please turn off all

More information

Reverse Nearest Neighbors in Unsupervised Distance-Based Outlier Detection. I.Priyanka 1. Research Scholar,Bharathiyar University. G.

Reverse Nearest Neighbors in Unsupervised Distance-Based Outlier Detection. I.Priyanka 1. Research Scholar,Bharathiyar University. G. Journal of Analysis and Computation (JAC) (An International Peer Reviewed Journal), www.ijaconline.com, ISSN 0973-2861 International Conference on Emerging Trends in IOT & Machine Learning, 2018 Reverse

More information

ECS289: Scalable Machine Learning

ECS289: Scalable Machine Learning ECS289: Scalable Machine Learning Cho-Jui Hsieh UC Davis Oct 27, 2015 Outline One versus all/one versus one Ranking loss for multiclass/multilabel classification Scaling to millions of labels Multiclass

More information

Algorithm-Independent Learning Issues

Algorithm-Independent Learning Issues Algorithm-Independent Learning Issues Selim Aksoy Department of Computer Engineering Bilkent University saksoy@cs.bilkent.edu.tr CS 551, Spring 2007 c 2007, Selim Aksoy Introduction We have seen many learning

More information

CLUe Training An Introduction to Machine Learning in R with an example from handwritten digit recognition

CLUe Training An Introduction to Machine Learning in R with an example from handwritten digit recognition CLUe Training An Introduction to Machine Learning in R with an example from handwritten digit recognition Ad Feelders Universiteit Utrecht Department of Information and Computing Sciences Algorithmic Data

More information

Least Squares Classification

Least Squares Classification Least Squares Classification Stephen Boyd EE103 Stanford University November 4, 2017 Outline Classification Least squares classification Multi-class classifiers Classification 2 Classification data fitting

More information