Experimental model inverse-based hysteresis compensation on a piezoelectric actuator

Size: px
Start display at page:

Download "Experimental model inverse-based hysteresis compensation on a piezoelectric actuator"

Transcription

1 Experimental model inverse-based hysteresis compensation on a piezoelectric actuator R. OUBELLIL, 1 L. Ryba, 1 A. Voda, 1 M. Rakotondrabe, 2 1 GIPSA-lab, Grenoble Images Parole Signal Automatique 2 FEMTO-ST, Franche-Comté Electronique Mécanique Thermique et Optique Sciences et Technologies 9 octobre 2015 () Journées d Automatique GDR MACS 9 octobre / 27

2 Outline 1 Problem statement and aims of work. 2 System description and experimental setup. 3 Hysteresis modeling. Preisach model. Prandtl-Ishlinskii model. Modified Prandtl-Ishlinskii model. 4 Open-loop hysteresis compensation. Multiplicative inverse structure of Preisach model. Inverse Prandtl-Ishlinskii model. Inverse Modified Prandtl-Ishlinskii model. 5 Experimental results. 6 Conclusion. 2 / 27

3 Introduction Piezoelectric actuators are used at micro-/nanoscale (see Binning & Rohrer 1986). Hysteresis nonlinearity degrades piezoactuators performance (see Abramovitch 2007). Preisach model of hysteresis (see Preisach 1935) is the most used approach. Several alternatives to Preisach model (see Bobbio 1993). Comparison of Preisach model with its alternative models : classical Prandtl-Ishlinskii model. Modified Prandtl-Ishlinskii model (see Kuhnen 2001). 3 / 27

4 Introduction Piezoelectric actuators are used at micro-/nanoscale (see Binning & Rohrer 1986). Hysteresis nonlinearity degrades piezoactuators performance (see Abramovitch 2007). Preisach model of hysteresis (see Preisach 1935) is the most used approach. Several alternatives to Preisach model (see Bobbio 1993). Comparison of Preisach model with its alternative models : classical Prandtl-Ishlinskii model. Modified Prandtl-Ishlinskii model (see Kuhnen 2001). 3 / 27

5 Introduction Piezoelectric actuators are used at micro-/nanoscale (see Binning & Rohrer 1986). Hysteresis nonlinearity degrades piezoactuators performance (see Abramovitch 2007). Preisach model of hysteresis (see Preisach 1935) is the most used approach. Several alternatives to Preisach model (see Bobbio 1993). Comparison of Preisach model with its alternative models : classical Prandtl-Ishlinskii model. Modified Prandtl-Ishlinskii model (see Kuhnen 2001). 3 / 27

6 Introduction Piezoelectric actuators are used at micro-/nanoscale (see Binning & Rohrer 1986). Hysteresis nonlinearity degrades piezoactuators performance (see Abramovitch 2007). Preisach model of hysteresis (see Preisach 1935) is the most used approach. Several alternatives to Preisach model (see Bobbio 1993). Comparison of Preisach model with its alternative models : classical Prandtl-Ishlinskii model. Modified Prandtl-Ishlinskii model (see Kuhnen 2001). 3 / 27

7 Introduction Piezoelectric actuators are used at micro-/nanoscale (see Binning & Rohrer 1986). Hysteresis nonlinearity degrades piezoactuators performance (see Abramovitch 2007). Preisach model of hysteresis (see Preisach 1935) is the most used approach. Several alternatives to Preisach model (see Bobbio 1993). Comparison of Preisach model with its alternative models : classical Prandtl-Ishlinskii model. Modified Prandtl-Ishlinskii model (see Kuhnen 2001). 3 / 27

8 Introduction Piezoelectric actuators are used at micro-/nanoscale (see Binning & Rohrer 1986). Hysteresis nonlinearity degrades piezoactuators performance (see Abramovitch 2007). Preisach model of hysteresis (see Preisach 1935) is the most used approach. Several alternatives to Preisach model (see Bobbio 1993). Comparison of Preisach model with its alternative models : classical Prandtl-Ishlinskii model. Modified Prandtl-Ishlinskii model (see Kuhnen 2001). 3 / 27

9 Introduction Hysteresis in piezoelectric (PE) materials y x (a) U=0 Piezo Element at rest (b) U=0 Piezo Element expansion x retraction (c) U=0 Piezo Element x Operating principle of piezoelectric actuators. Hysteresis nonlinearity in PE actuators v p x Piezoelectric actuator capacitive sensor xp Piezoelectric actuator in open-loop. x p is the piezoactuator displacement. v px is the control input voltage. 4 / 27

10 Introduction Hysteresis in piezoelectric materials 1 60 V Hz Displacement (µm) V 50 V Displacement (µm) Hz 595 Hz Input voltage (V) Static hysteresis Input voltage (V) Dynamic or rate-dependent hysteresis. Displacement (µm) Displacement (µm) Dead-zone Saturation Input voltage (V) Symmetric hysteresis Input voltage (V) Asymmetric hysteresis. 5 / 27

11 Introduction Context & and problem statement Context : Accurate micropositioning with piezoelectric actuators. Problem statement : Hysteresis generates positioning errors. Displacement (µm) reference piezoactuator with hysteresis Tracking error (µm) Time (s) Triangle waveform tracking Time (s) Tracking error. Choose a precise and an easily implementable compensation approach. 6 / 27

12 Introduction Aims of work x -1 p r xp Open-loop compensation of hysteresis. H is the hysteresis. ˆ H 1 is the inverse hysteresis model Mathematical inverse. Multiplicative inverse structure. Modeling hysteresis for compensation. Classical Preisach model. Classical Prandtl-Ishlinskii (PI) model Modified Prandtl-Ishlinskii (MPI) model Experimental comparison : Multiplicative inverse structure of Preisach model, Inverse PI model, and Inverse MPI model. 7 / 27

13 System description and experimental setup Experimental setup of micro-/nanopositioning platform, GIPSA-lab The horizontal direction (X) Piezoelectric actuator Tritor T Capacitive sensor. Development PC. 8 / 27

14 Hysteresis modeling Classical Preisach model Preisach operator. Block diagram of the Preisach model. x p (t) = H(v px (t)) = µ(α,β)γ[v px (t)]dαdβ (1) α β µ(α, β) is the Preisach weighting function, γ[v px (t)] is the Preisach operator having an output of +1 or 0, α, β are the upper and lower switching values of the input v px (t). 9 / 27

15 Hysteresis modeling Classical Preisach model v px (t) > 0 x p (t) = N k=1 [X p(α k, β k 1 ) X p (α k, β k )] + X p (v px (t),β N ) (2) v px (t) < 0 x p (t) = N 1 k=1 [X p(α k, β k 1 ) X p (α k, β k )] + X p (α N,β N 1 ) X p (α N,v px (t)) (3) X p (α,β) = x pα x pαβ (4) x pα is the displacement when the input voltage increases from 0 to α. x pαβ is the displacement when the input voltage decreases from α to β. 10 / 27

16 Hysteresis modeling Classical Preisach model Approximation of X p (α,β) X p (α,β) = θ 0 β + θ 1 α + θ 2 β 2 + θ 3 βα + θ 4 α 2 +θ 5 β 3 + θ 6 β 2 α + θ 7 βα 2 + θ 8 α 3 (5) 40 Experimental Simulated data Displacement (µm) Input voltage (V) Experimental and identified Preisach model. + Capture asymmetric hysteresis. Its inverse is numerical. 11 / 27

17 Hysteresis model Classical Prandtl Ishlinskii Model Weighted backlash operator. x p (t) = H xrh [v px,x p0 ](t) = max{v px (t) r xh,min{v px (t) + r xh,x p (t T s )}}, (6) H r xh is the backlash operator, x p0 the initial state of the backlash, r xh is the threshold, T s is the sampling time. 12 / 27

18 Hysteresis model Classical Prandtl Ishlinskii Model backlash -r xh1 gain w x Hi r xh1 vpx(t) -r xh2 r xh2 xp(t) -r xhn rx HN Superposition of backlash operators w xh is the vector of weights. x p (t) = H x [v px ](t) = w xh T H r xh [v px,x p0 ](t), (7) Thresholds and initial states initialization : r xh i = i n + 1 max{v px}, i = 0,...,n, x p0i = 0, i = 0,...,n. (8) 13 / 27

19 Hysteresis modeling Classical Prandtl Ishlinskii Models (PI) Weights identification E x [v px, x p ](t) = H x [v px ](t) x p (t) (9) x p (t) is the measured output displacement. 40 Experimental Simulated data 40 Experimental Simulated data Displacement (µm) Displacement (µm) Input voltage (V) Before identification (PI). + Its inverse is analytic. Can not Capture asymmetric hysteresis Input voltage (V) After identification (PI). 14 / 27

20 Hysteresis modeling Modified Prandtl Ishlinskii Model Weighted backlash operator. Weighted dead-zone operator. x ps (t) = S rxs [x p ](t) = { max{x p (t) r xs,0}, r xs > 0 x p (t), r xs = 0 (10) S r xs r xs is the dead-zone, is threshold of dead-zone. 15 / 27

21 Hysteresis modeling Modified Prandtl Ishlinskii Model backlash -r xh1 r xh1 gain w x Hi backlash -rx S1 r X S1 gain w x S i vpx(t) -r xh2 r xh2 xp(t) xp(t) -r X S2 r X S2 xps(t) -r xhn rx HN Superposition of backlash operators. -r X SM r X SM Superposition of dead-zone operators. x ps (t) = S x [H x [v px ]](t) = w xs T S rxs [w xh T H rxh [v px,x p0 ]](t) (11) w xs is the vector of dead-zones weights. 16 / 27

22 Hysteresis modeling Modified Prandtl Ishlinskii Model (MPI) backlashes (r xh i,w xhi ) inverse dead-zones (r x S i,w x Si ) vpx(t) backlash -r xh1 r xh1 -r xh2 r xh2 gain w x Hi xp(t) Error xp(t) backlash -rx -r S1 X S2 r X S1 r X S2 gain w x S i xps(t) -r xhn rx HN Superposition of backlash operators. -r X SM r X SM Superposition of dead-zone operators. Weights identification E x [v px, x p ](t) = H x [v px ](t) Sx 1 [ x p ](t) = w T x H H rxh [v px,x p0 ](t) w T x S S r xs [ x p ](t) (12) w T x S are the weights of inverse dead-zones, S r x are the inverse dead-zones. 17 / 27

23 Hysteresis modeling Modified Prandtl Ishlinskii Model (MPI) Inverse dead-zones thresholds initialization : r x S i = i m + 1 max{x p}, i = 0,...,m, (13) r x S i is the inverse dead-zones thresholds. 40 Experimental Simulated data 40 Simulated data Experimental Displacement (µm) Displacement (µm) Input voltage (V) Before identification (MPI). + Can Capture asymmetric hysteresis. + Its inverse is analytic Input voltage (V) After identification (MPI). 18 / 27

24 Open-loop hysteresis compensation Multiplicative inverse structure for Preisach model Multiplicative inverse structure of Preisach model. x p (t) = H(v px (t)) = ρ(v px (t)) + Γ(v px (t)) (14) v px (t) = ρ 1 (v px (t))[x pr (t) Γ(v px (t))] (15) Approximated multiplicative inverse structure v px (t) = ρ 1 (v px (t T s ))[x pr (t) γ(v px (t T s ))] (16) T s is the sampling time. 19 / 27

25 Open-loop hysteresis compensation Inverse Classical and Modified Prandtl-Ishlinskii models inverse backlashes (r x H i?,w x Hi?) inverse dead-zones (r x S i,w x Si ) backlash -r xh1 r xh1 gain w x Hi backlash -rx S1 r X S1 gain w x S i vpx(t) -r xh2 r xh2 xp(t) xp(t) -r X S2 r X S2 xps(t) -r xhn rx HN -r X SM r X SM r x H i = i j=0 w xh j (r xh i r xh j ), i = 0,...,n, (17) w xh i w x H i = ( )( ),w w + i xh 0 w xh j w xh 0 + i 1 x H 0 = w xh j j=1 j=1 1 w xh 0,i = 1,...,n (18) 20 / 27

26 Experimental results Displacement (µm) uncompensated PI Preisach MPI Desired displacement (µm) Experimental hysteresis compensation for 1 Hz triangle input signal. In the saturated zone Uncompensated system : 10 %. Compensated system with inverse PI : 3.3 %. Compensated system with multiplicative inverse of Preisach : 1.2 %. Compensated system with inverse MPI : 0.5 %. 21 / 27

27 Experimental results Displacement ref PI MPI Preisach uncomp Tracking error (µm) PI MPI Preisach uncomp Time (s) Triangular waveform tracking (1 Hz) Time (s) Tracking error (1 Hz). Displacement (µm) ref PI GPI Preisach uncomp Tracking error (µm) PI MPI Preisach uncomp Time (s) Tracking waveform tracking (10 Hz) Time (s) Tracking error (10 Hz). 22 / 27

28 Experimental results 40 ref uncomp PI MPI Preisach 2 PI MPI Preisach uncomp Displacement (µm) Tracking error (µm) Time (s) Triangular waveform tracking (50 Hz) Time (s) Tracking error (50 Hz). Table: RMS and maximal tracking error - numerical values 1 Hz 10 Hz 50 Hz uncomp Preisach PI MPI rms (µm) max (µm) rms (µm) max (µm) rms (µm) max (µm) / 27

29 Conclusion Experimental validation on the horizontal (X) axis. Inverse multiplicative structure of Preisach model, + analytic, + compensates for asymmetric hysteresis. computationally intensive. Inverse Prandtl-Ishlinskii (PI) model, + analytic, + less time consuming. does not Compensate for asymmetric hysteresis. Modified inverse Prandtl-Ishlinskii (MPI) model, + analytic, + less time consuming, + compensate for asymmetric hysteresis. 24 / 27

30 References G. Binning and H. Rohrer, Scanning Tunneling Microscopy, IBM Journal of Research and Development, vol. 30, no. 4, pp , D. Y. Abramovitch, S. B. Andersson, L. Y. Pao, and G. Schitter, A Tutorial on the Mechanisms, Dynamics, and Control of Atomic Force Microscopes, ACC 2007, pp , Jul S. Bobbio and G. Marrucci, A possible alternative to Preisach model of static hysteresis, Il Nuovo Cimento D, vol. 15, no. 5, pp , F. Preisach, Über die magnetische Nachwirkung, Zeitschrift für physik, vol. 94, no. 5-6, p , K. Kuhnen, Modeling, identification and compensation of complex hysteretic nonlinearities : A Modified Prandtl-Ishlinskii approach, European Journal of Control, vol. 9, no. 4, pp , / 27

31 THANK YOU FOR YOUR ATTENTION Raouia OUBELLIL PhD student GIPSA-lab, Grenoble Insititut of Technology 11 rue des Mathématiques, Saint Martin d Hères cedex Phone : Fax : gipsa-lab.grenoble-inp.fr 26 / 27

32 Questions? 27 / 27

Contrôle de position ultra-rapide d un objet nanométrique

Contrôle de position ultra-rapide d un objet nanométrique Contrôle de position ultra-rapide d un objet nanométrique présenté par Alina VODA alina.voda@gipsa-lab.grenoble-inp.fr sur la base de la thèse de Irfan AHMAD, co-encadrée avec Gildas BESANCON plate-forme

More information

works must be obtained from the IEE

works must be obtained from the IEE Title Eddy-current analysis using and stop hysterons vector Author(s) Matsuo, T; Osaka, Y; Shimasaki, M Citation IEEE TRANSACTIONS ON MAGNETICS (200 1172-1177 Issue Date 2000-07 URL http://hdl.handle.net/2433/39989

More information

Simultaneous Suppression of Badly-Damped Vibrations and Cross-couplings in a 2-DoF Piezoelectric Actuator, by using Feedforward Standard H approach

Simultaneous Suppression of Badly-Damped Vibrations and Cross-couplings in a 2-DoF Piezoelectric Actuator, by using Feedforward Standard H approach Simultaneous Suppression of Badly-Damped Vibrations and Cross-couplings in a 2-DoF Piezoelectric Actuator, by using Feedforward Standard H approach Didace HABINEZA, Micky RAKOTONDRABE and Yann LE GORREC

More information

Index. A Ang, W., 188 ARMAX, 217, 221 Atomic force microscopy (AFM), 2, 110, 111 Automated sperm immobilization system,

Index. A Ang, W., 188 ARMAX, 217, 221 Atomic force microscopy (AFM), 2, 110, 111 Automated sperm immobilization system, Index A Ang, W., 188 ARMAX, 217, 221 Atomic force microscopy (AFM), 2, 110, 111 Automated sperm immobilization system, 260 261 B Berkovitz, A., 258 Bouc Wen model FF control, 208 hysteresis modeling and

More information

Robust H Control of a Scanning Tunneling Microscope under Parametric Uncertainties

Robust H Control of a Scanning Tunneling Microscope under Parametric Uncertainties 2010 American Control Conference Marriott Waterfront, Baltimore, MD, USA June 30-July 02, 2010 FrC08.6 Robust H Control of a Scanning Tunneling Microscope under Parametric Uncertainties Irfan Ahmad, Alina

More information

Research Article Iterative Learning Control of Hysteresis in Piezoelectric Actuators

Research Article Iterative Learning Control of Hysteresis in Piezoelectric Actuators Mathematical Problems in Engineering, Article ID 85676, 6 pages http://dx.doi.org/1.1155/1/85676 Research Article Iterative Learning Control of Hysteresis in Piezoelectric Actuators Guilin Zhang, 1 Chengjin

More information

PIEZOELECTRIC actuators are widely applied in both

PIEZOELECTRIC actuators are widely applied in both Hysteresis Compensation in Piezoelectric Actuator Positioning Control Based on the Uncertainty and Disturbance Estimator Jinhao Chen, Beibei Ren and Qing-Chang Zhong Abstract Robust and precise control

More information

Presentation and improvement of an AFM-based system for the measurement of adhesion forces

Presentation and improvement of an AFM-based system for the measurement of adhesion forces Presentation and improvement of an M-based system for the measurement of adhesion forces Micky Rakotondrabe, Member, IEEE, and Patrick Rougeot bstract The aim of this paper is the presentation and improvement

More information

On Implementation of the Preisach Model Identification and Inversion for Hysteresis Compensation

On Implementation of the Preisach Model Identification and Inversion for Hysteresis Compensation Modeling, Identification and Control, Vol. 36, No. 3, 15, pp. 133 14, ISSN 189 138 On Implementation of the Preisach Model Identification and Inversion for Hysteresis Compensation Jon Åge Stakvik 1 Michael

More information

ROBUST CONTROL OF SYSTEMS WITH PIECEWISE LINEAR HYSTERESIS. Mohamed Mohamed Edardar

ROBUST CONTROL OF SYSTEMS WITH PIECEWISE LINEAR HYSTERESIS. Mohamed Mohamed Edardar ROBUST CONTROL OF SYSTEMS WITH PIECEWISE LINEAR HYSTERESIS By Mohamed Mohamed Edardar A DISSERTATION Submitted to Michigan State University in partial fulfillment of the requirements for the degree of

More information

Novel multirate control strategy for piezoelectric actuators

Novel multirate control strategy for piezoelectric actuators Novel multirate control strategy for piezoelectric actuators M Zareinejad 1 *, S M Rezaei 2, H H Najafabadi 2, S S Ghidary 3, A Abdullah 2, and M Saadat 4 1 Department of Mechanical Engineering, Amirkabir

More information

Adaptive Robust Precision Control of Piezoelectric Positioning Stages

Adaptive Robust Precision Control of Piezoelectric Positioning Stages Proceedings of the 5 IEEE/ASME International Conference on Advanced Intelligent Mechatronics Monterey, California, USA, 4-8 July, 5 MB3-3 Adaptive Robust Precision Control of Piezoelectric Positioning

More information

HYSTERESIS MODELING WITH PRANDTL-ISHLINSKII OPERATORS FOR LINEARIZATION OF A (BA/SR)TIO 3 BASED ACTUATOR

HYSTERESIS MODELING WITH PRANDTL-ISHLINSKII OPERATORS FOR LINEARIZATION OF A (BA/SR)TIO 3 BASED ACTUATOR U.P.B. Sci. Bull., Series A, Vol. 72, Iss. 2, 2010 ISSN 1223-7027 HYSTERESIS MODELING WITH PRANDTL-ISHLINSKII OPERATORS FOR LINEARIZATION OF A (BA/SR)TIO 3 BASED ACTUATOR Andreea Ioana UDREA 1, Alexandru

More information

Control of systems with hysteresis. Martin Brokate Zentrum Mathematik, TU München

Control of systems with hysteresis. Martin Brokate Zentrum Mathematik, TU München Control of systems with hysteresis Martin Brokate Zentrum Mathematik, TU München Elgersburger Arbeitstagung, Februar 2008 Ferromagnetic hysteresis magnetization magnetic field Minor hysteresis loops M

More information

New open-loop actuating method of piezoelectric actuators for removing hysteresis and creep

New open-loop actuating method of piezoelectric actuators for removing hysteresis and creep REVIEW OF SCIENTIFIC INSTRUMENTS VOLUME 71, NUMBER 9 SEPTEMBER 2000 New open-loop actuating method of piezoelectric actuators for removing hysteresis and creep Hewon Jung, Jong Youp Shim, and DaeGab Gweon

More information

A Preisach Model for Quantifying Hysteresis in an Atomic Force Microscope

A Preisach Model for Quantifying Hysteresis in an Atomic Force Microscope A Preisach Model for Quantifying Hysteresis in an Atomic Force Microscope Ralph C. Smith, Murti Salapaka and Luke Cherveny, Center for Research in Scientific Computation, North Carolina State Univ., Raleigh,

More information

IMECE IMECE ADAPTIVE ROBUST REPETITIVE CONTROL OF PIEZOELECTRIC ACTUATORS

IMECE IMECE ADAPTIVE ROBUST REPETITIVE CONTROL OF PIEZOELECTRIC ACTUATORS Proceedings Proceedings of IMECE5 of 5 5 ASME 5 ASME International International Mechanical Mechanical Engineering Engineering Congress Congress and Exposition and Exposition November November 5-, 5-,

More information

Chapter 2 Self-Sensing Measurement in Piezoelectric Cantilevered Actuators for Micromanipulation and Microassembly Contexts

Chapter 2 Self-Sensing Measurement in Piezoelectric Cantilevered Actuators for Micromanipulation and Microassembly Contexts Chapter 2 Self-Sensing Measurement in Piezoelectric Cantilevered Actuators for Micromanipulation and Microassembly Contexts Ioan Alexandru Ivan, Micky Rakotondrabe, Philippe Lutz, and Nicolas Chaillet

More information

Creep characteristics of piezoelectric actuators

Creep characteristics of piezoelectric actuators REVIEW OF SCIENTIFIC INSTRUMENTS VOLUME 71, NUMBER 4 APRIL 2000 Creep characteristics of piezoelectric actuators Hewon Jung a) and Dae-Gab Gweon Department of Mechanical Engineering ME3265, Korea Advanced

More information

Intelligent Control of a SPM System Design with Parameter Variations

Intelligent Control of a SPM System Design with Parameter Variations Intelligent Control of a SPM System Design with Parameter Variations Jium-Ming Lin and Po-Kuang Chang Abstract This research is to use fuzzy controller in the outer-loop to reduce the hysteresis effect

More information

Technical Report PZT-Silicon Cantilever Benders

Technical Report PZT-Silicon Cantilever Benders Radiant Technologies, Inc. 2021 Girard SE Albuquerque, NM 876 Tel: 505-842-8007 Fax: 505-842-0366 Technical Report PZT-Silicon Cantilever Benders Subject: Displacement Measurements of Silicon Cantilevers

More information

Pour obtenir le grade de. Arrêté ministériel : 7 août «Irfan AHMAD»

Pour obtenir le grade de. Arrêté ministériel : 7 août «Irfan AHMAD» THÈSE Pour obtenir le grade de DOCTEUR DE L UNIVERSITÉ DE GRENOBLE Spécialité : AUTOMATIQUE - PRODUCTIQUE Arrêté ministériel : 7 août 2006 Présentée par «Irfan AHMAD» Thèse dirigée par «Alina VODA» et

More information

A COMPARISON OF CONTROL ARCHITECTURES FOR ATOMIC FORCE MICROSCOPES. Jeffrey A. Butterworth, Lucy Y. Pao, and Daniel Y. Abramovitch ABSTRACT

A COMPARISON OF CONTROL ARCHITECTURES FOR ATOMIC FORCE MICROSCOPES. Jeffrey A. Butterworth, Lucy Y. Pao, and Daniel Y. Abramovitch ABSTRACT Asian Journal of Control, Vol., No., pp. 1 6, Month 28 Published online in Wiley InterScience (www.interscience.wiley.com) DOI: 1.12/asjc. Brief Paper A COMPARISON OF CONTROL ARCHITECTURES FOR ATOMIC FORCE

More information

Hysteresis Compensation for Smart Actuators Using Inverse Generalized Prandtl-Ishlinskii model

Hysteresis Compensation for Smart Actuators Using Inverse Generalized Prandtl-Ishlinskii model 9 American Control Conference Hyatt Regency Riverfront, St. Louis, MO, USA June 1-1, 9 WeA9.6 Hysteresis Compensation for Smart Actuators Using Inverse Generalized Prandtl-Ishlinskii model Mohammad Al

More information

«Modelling of piezoelectric actuators : an EMR approach»

«Modelling of piezoelectric actuators : an EMR approach» EMR 15 Lille Sept. 215 Summer School EMR 15 Energetic Macroscopic Representation «Modelling of piezoelectric actuators : an EMR approach» Dr. C.Giraud-Audine (1), Dr. F. Giraud (2) L2EP, (1) Arts et Métiers

More information

Comparison of basic ferromagnetic coil hysteresis models

Comparison of basic ferromagnetic coil hysteresis models Comparison of basic ferromagnetic coil hysteresis models I. Biondić, R. Topalović, K. Miličević Faculty of Electrical Engineering Osijek Abstract In this paper scalar hysteresis models are discussed such

More information

Discrete Modeling and Sliding Mode Control of Piezoelectric Actuators

Discrete Modeling and Sliding Mode Control of Piezoelectric Actuators Discrete Modeling and Sliding Mode Control of Piezoelectric Actuators A Thesis Submitted to the College of Graduate Studies and Research In Partial Fulfillment of the Requirements For the Degree of Doctor

More information

Modeling of Piezoelectric Tube Actuators

Modeling of Piezoelectric Tube Actuators Modeling of Piezoelectric Tube Actuators Osamah M. El Rifai, and Kamal Youcef-Toumi Department of Mechanical Engineering Massachusetts Institute of Technology 77 Massachusetts Avenue Room 3-348, Cambridge,

More information

Using a Model of Hysteresis for Linearization of Piezo Bender Distortion

Using a Model of Hysteresis for Linearization of Piezo Bender Distortion Paper 38 Using a Model of Hysteresis for Linearization of Piezo Bender Distortion M. Pelic and R. Staniek Institute of Mechanical Technology Poznan University of Technology, Poland Civil-Comp Press, 212

More information

Institute for Electron Microscopy and Nanoanalysis Graz Centre for Electron Microscopy

Institute for Electron Microscopy and Nanoanalysis Graz Centre for Electron Microscopy Institute for Electron Microscopy and Nanoanalysis Graz Centre for Electron Microscopy Micromechanics Ass.Prof. Priv.-Doz. DI Dr. Harald Plank a,b a Institute of Electron Microscopy and Nanoanalysis, Graz

More information

Model-Based Vibration Suppression in Piezoelectric Tube Scanners through Induced Voltage Feedback

Model-Based Vibration Suppression in Piezoelectric Tube Scanners through Induced Voltage Feedback 28 American Control Conference Westin Seattle Hotel, Seattle, Washington, USA June 11-13, 28 ThA8.1 Model-Based Vibration Suppression in Piezoelectric Tube Scanners through Induced Voltage Feedback Johannes

More information

Piezo Theory: Chapter 1 - Physics & Design

Piezo Theory: Chapter 1 - Physics & Design Piezoelectric effect inverse piezoelectric effect The result of external forces to a piezoelectric material is positive and negative electrical charges at the surface of the material. If electrodes are

More information

Section 4. Nonlinear Circuits

Section 4. Nonlinear Circuits Section 4 Nonlinear Circuits 1 ) Voltage Comparators V P < V N : V o = V ol V P > V N : V o = V oh One bit A/D converter, Practical gain : 10 3 10 6 V OH and V OL should be far apart enough Response Time:

More information

- 1 FEMTO-ST and SAMMI group activities - 2 Observer techniques applied to piezocantilevers - 3 Self sensing of piezocantilevers

- 1 FEMTO-ST and SAMMI group activities - 2 Observer techniques applied to piezocantilevers - 3 Self sensing of piezocantilevers Talk 1: Observer techniques appied to the control of piezoelectric microactuators Micky RAKOTONDRABE, Cédric Clévy, Ioan Alexandru Ivan and Nicolas Chaillet, FEMTO-ST (Besançon, France) - 1 FEMTO-ST and

More information

UDE-Based Trajectory Tracking Control of Piezoelectric Stages

UDE-Based Trajectory Tracking Control of Piezoelectric Stages 645 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 63, NO. 1, OCTOBER 216 UDE-Based Trajectory Tracking Control of Piezoelectric Stages Jinhao Chen, Student Member, IEEE, Beibei Ren, Member, IEEE, and

More information

Scanning Probe Microscopy. EMSE-515 F. Ernst

Scanning Probe Microscopy. EMSE-515 F. Ernst Scanning Probe Microscopy EMSE-515 F. Ernst 1 Literature 2 3 Scanning Probe Microscopy: The Lab on a Tip by Ernst Meyer,Ans Josef Hug,Roland Bennewitz 4 Scanning Probe Microscopy and Spectroscopy : Theory,

More information

Research Article Research on Hysteresis of Piezoceramic Actuator Based on the Duhem Model

Research Article Research on Hysteresis of Piezoceramic Actuator Based on the Duhem Model The Scientific World Journal Volume 213, Article ID 814919, 6 pages http://dx.doi.org/1.1155/213/814919 Research Article Research on Hysteresis of Piezoceramic Actuator Based on the Duhem Model Miaolei

More information

Voltage/frequency proportional control of stick-slip micropositioning systems.

Voltage/frequency proportional control of stick-slip micropositioning systems. Voltage/frequency proportional control of stick-slip micropositioning systems. Micky Rakotondrabe, Yassine Haddab, Philippe Lutz To cite this version: Micky Rakotondrabe, Yassine Haddab, Philippe Lutz.

More information

Adaptive RBF Neural Network Sliding Mode Control for a DEAP Linear Actuator

Adaptive RBF Neural Network Sliding Mode Control for a DEAP Linear Actuator Available online at www.ijpe-online.com Vol. 3, No. 4, July 07, pp. 400-408 DOI: 0.3940/ijpe.7.04.p7.400408 Adaptive RBF Neural Network Sliding Mode Control for a DEAP Linear Actuator Dehui Qiu a, *, Yu

More information

An Acoustic Emission Approach to Assess Remaining Useful Life of Aging Structures under Fatigue Loading PI: Mohammad Modarres

An Acoustic Emission Approach to Assess Remaining Useful Life of Aging Structures under Fatigue Loading PI: Mohammad Modarres An Acoustic Emission Approach to Assess Remaining Useful Life of Aging Structures under Fatigue Loading PI: Mohammad Modarres Outline Objective Motivation, acoustic emission (AE) background, approaches

More information

1. Introduction Micromanipulation has been attracting growing interest in recent years. There are many applications in which slave

1. Introduction Micromanipulation has been attracting growing interest in recent years. There are many applications in which slave Robotica: page of 5. 29 Cambridge University Press doi:.7/s2635747999336 To enhance transparency of a piezo-actuated tele-micromanipulator using passive bilateral control R. Seifabadi,,, S.. Rezaei,, S.

More information

PPF Control of a Piezoelectric Tube Scanner

PPF Control of a Piezoelectric Tube Scanner Proceedings of the 44th IEEE Conference on Decision Control, the European Control Conference 5 Seville, Spain, December 1-15, 5 MoB15. PPF Control of a Piezoelectric Tube Scanner (Invited Paper) M. Ratnam,

More information

MS482 Materials Characterization ( 재료분석 ) Lecture Note 11: Scanning Probe Microscopy. Byungha Shin Dept. of MSE, KAIST

MS482 Materials Characterization ( 재료분석 ) Lecture Note 11: Scanning Probe Microscopy. Byungha Shin Dept. of MSE, KAIST 2015 Fall Semester MS482 Materials Characterization ( 재료분석 ) Lecture Note 11: Scanning Probe Microscopy Byungha Shin Dept. of MSE, KAIST 1 Course Information Syllabus 1. Overview of various characterization

More information

Original citation: Guo, Z., Tian, Y., Liu, C., Wang, F., Liu, Xianping, Shirinzadeh, B. and Zhang, D. (2015) Design and control methodology of a 3-DOF flexure-based mechanism for micro/nanopositioning.

More information

A FORCE AND DISPLACEMENT SELF-SENSING METHOD FOR A MRI COMPATIBLE TWEEZER END EFFECTOR

A FORCE AND DISPLACEMENT SELF-SENSING METHOD FOR A MRI COMPATIBLE TWEEZER END EFFECTOR A FORCE AND DISPLACEMENT SELF-SENSING METHOD FOR A MRI COMPATIBLE TWEEZER END EFFECTOR A Thesis Presented to The Academic Faculty by Timothy S. McPherson In Partial Fulfillment of the Requirements for

More information

198 IEEE/ASME TRANSACTIONS ON MECHATRONICS, VOL. 10, NO. 2, APRIL G. Song, Jinqiang Zhao, Xiaoqin Zhou, and J. Alexis De Abreu-García

198 IEEE/ASME TRANSACTIONS ON MECHATRONICS, VOL. 10, NO. 2, APRIL G. Song, Jinqiang Zhao, Xiaoqin Zhou, and J. Alexis De Abreu-García 198 IEEE/ASME TRANSACTIONS ON MECHATRONICS, VOL. 10, NO. 2, APRIL 2005 Tracking Control of a Piezoceramic Actuator With Hysteresis Compensation Using Inverse Preisach Model G. Song, Jinqiang Zhao, Xiaoqin

More information

A serial-kinematic nanopositioner for high-speed atomic force microscopy

A serial-kinematic nanopositioner for high-speed atomic force microscopy REVIEW OF SCIENTIFIC INSTRUMENTS 85, 105104 (2014) A serial-kinematic nanopositioner for high-speed atomic force microscopy Sachin P. Wadikhaye, a) Yuen Kuan Yong, and S. O. Reza Moheimani School of Electrical

More information

CONTROL OF SYSTEMS WITH HYSTERESIS USING SERVOCOMPENSATORS. Alexander James Esbrook

CONTROL OF SYSTEMS WITH HYSTERESIS USING SERVOCOMPENSATORS. Alexander James Esbrook CONTROL OF SYSTEMS WITH HYSTERESIS USING SERVOCOMPENSATORS By Alexander James Esbrook A DISSERTATION Submitted to Michigan State University in partial fulfillment of the requirements for the degree of

More information

Deflection Control of SMA-actuated Beam-like Structures in Nonlinear Large Deformation Mode

Deflection Control of SMA-actuated Beam-like Structures in Nonlinear Large Deformation Mode American Journal of Computational and Applied Mathematics 214, 4(5): 167-185 DOI: 1.5923/j.ajcam.21445.3 Deflection Control of SMA-actuated Beam-like Structures in Nonlinear Large Deformation Mode Mohammad

More information

Hysteresis modelling by Preisach Operators in Piezoelectricity

Hysteresis modelling by Preisach Operators in Piezoelectricity Hysteresis modelling by Preisach Operators in Piezoelectricity Barbara Kaltenbacher 1 Thomas Hegewald Manfred Kaltenbacher Department of Sensor Technology University of Erlangen 1 DFG research group Inverse

More information

Two Degree of Freedom Control for Nanopositioning Systems: Fundamental Limitations, Control Design, and Related Trade-offs

Two Degree of Freedom Control for Nanopositioning Systems: Fundamental Limitations, Control Design, and Related Trade-offs 29 American Control Conference Hyatt Regency Riverfront, St. Louis, MO, USA June 1-12, 29 WeC9.3 Two Degree of Freedom Control for Nanopositioning Systems: Fundamental Limitations, Control Design, and

More information

Modeling of Piezoelectric Actuators Based on Bayesian Regularization Back Propagation Neural Network

Modeling of Piezoelectric Actuators Based on Bayesian Regularization Back Propagation Neural Network American Journal of Nanotechnology (): -6, 00 ISSN 949-06 00 Science Publications Modeling of Piezoelectric Actuators Based on Bayesian Regularization Back Propagation Neural Network Wen Wang, Zhu Zhu,

More information

Inverse-feedforward of charge-controlled piezopositioners q,qq

Inverse-feedforward of charge-controlled piezopositioners q,qq Available online at www.sciencedirect.com Mechatronics 8 (8) 73 8 Inverse-feedforward of charge-controlled piezopositioners q,qq G.M. Claton a, *, S. Tien a, A.J. Fleming b, S.O.R. Moheimani b, S. Devasia

More information

«EMR and inversion-based control of a multi-piezo-actuator system»

«EMR and inversion-based control of a multi-piezo-actuator system» EMR 15 Lille June 2015 Summer School EMR 15 Energetic Macroscopic Representation «EMR and inversion-based control of a multi-piezo-actuator system» Dr. Thanh Hung NGUYEN, Prof. Betty LEMAIRE-SEMAIL, L2EP,

More information

EXPERIMENTAL INVESTIGATION OF PIEZOELECTRIC TUBE ACTUATORS DYNAMICS

EXPERIMENTAL INVESTIGATION OF PIEZOELECTRIC TUBE ACTUATORS DYNAMICS EXPERIMENTAL INVESTIGATION OF PIEZOELECTRIC TUBE ACTUATORS DYNAMICS 1 WISAM SABEK, 2 ALMAHAAL-MANA, 3 MORTEZA MOHAMMADZAHERI, 4 ABDUL RAFEY SIDDIQUI, 5 BILAL EL ASSADI, 6 MOHAMMAD-HASSAN MOHAMMAD-KHORASANI,

More information

Inverse Control of a Piezoelectric Actuator for Precise Operation of a Micromotion

Inverse Control of a Piezoelectric Actuator for Precise Operation of a Micromotion Inverse Control of a Piezoelectric Actuator for Precise Operation of a Micromotion Stage Mr Jayesh Minase School of Mechanical Engineering, University of Adelaide, Adelaide, Australia, 55 jayesh.minase@adelaide.edu.au

More information

TRING-module : a high-range and high-precision 2DoF microsystem dedicated to a modular micromanipulation station.

TRING-module : a high-range and high-precision 2DoF microsystem dedicated to a modular micromanipulation station. TRING-module : a high-range and high-precision DoF microsystem dedicated to a modular micromanipulation station. Micky Rakotondrabe, Yassine Haddab, Philippe Lutz To cite this version: Micky Rakotondrabe,

More information

An Operator Based Modeling and Compensation of VCM Actuator Pivot Friction in a 1.8-inch HDD

An Operator Based Modeling and Compensation of VCM Actuator Pivot Friction in a 1.8-inch HDD Proceedings of the 7th World Congress The International Federation of Automatic Control An Operator Based Modeling and Compensation of VCM Actuator Pivot Friction in a.8-inch HDD C. Du L. Xie J. Zhang

More information

Piezoelectric Actuation in a High Bandwidth Valve

Piezoelectric Actuation in a High Bandwidth Valve Ferroelectrics, 408:32 40, 2010 Copyright Taylor & Francis Group, LLC ISSN: 0015-0193 print / 1563-5112 online DOI: 10.1080/00150193.2010.484994 Piezoelectric Actuation in a High Bandwidth Valve D. T.

More information

MODELING AND CONTROL OF MAGNETOSTRICTIVE ACTUATORS

MODELING AND CONTROL OF MAGNETOSTRICTIVE ACTUATORS University of Kentucky UKnowledge University of Kentucky Master's Theses Graduate School 25 MODELING AND CONTROL OF MAGNETOSTRICTIVE ACTUATORS Wei Zhang University of Kentucky Click here to let us know

More information

DYNAMICS MODELING AND CONTROL SYSTEM DESIGN FOR SHAPE MEMORY ALLOY ACTUATORS IN SEON KIM

DYNAMICS MODELING AND CONTROL SYSTEM DESIGN FOR SHAPE MEMORY ALLOY ACTUATORS IN SEON KIM DYNAMICS MODELING AND CONTROL SYSTEM DESIGN FOR SHAPE MEMORY ALLOY ACTUATORS IN SEON KIM A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF

More information

Control of Dynamics-Coupling Effects in Piezo-Actuator for High-Speed AFM Operation

Control of Dynamics-Coupling Effects in Piezo-Actuator for High-Speed AFM Operation Control of Dynamics-Coupling Effects in Piezo-Actuator for High-Speed AFM Operation Szuchi Tien Qingze Zou S. Devasia Mechanical Engineering Department, Box 356, Univ. of Washington, Seattle, Washington

More information

Inverse Control of a Piezoelectric Actuator for Precise Operation of a Micromotion

Inverse Control of a Piezoelectric Actuator for Precise Operation of a Micromotion Inverse Control of a Piezoelectric Actuator for Precise Operation of a Micromotion Stage Mr Jayesh Minase School of Mechanical Engineering, University of Adelaide, Adelaide, Australia, 55 jayesh.minase@adelaide.edu.au

More information

Control of a flexible beam actuated by macro-fiber composite patches: II. Hysteresis and creep compensation, experimental results

Control of a flexible beam actuated by macro-fiber composite patches: II. Hysteresis and creep compensation, experimental results This document contains a post-print version of the paper Control of a flexible beam actuated by macro-fiber composite patches: II. Hysteresis and creep compensation, experimental results authored by J.

More information

Research Article Forward and Reverse Movements of a Linear Positioning Stage Based on the Parasitic Motion Principle

Research Article Forward and Reverse Movements of a Linear Positioning Stage Based on the Parasitic Motion Principle Advances in Mechanical Engineering, Article ID 45256, 7 pages http://dx.doi.org/1.1155/214/45256 Research Article Forward and Reverse Movements of a Linear Positioning Stage Based on the Parasitic Motion

More information

Tracking control of piezoelectric actuator system using inverse hysteresis model

Tracking control of piezoelectric actuator system using inverse hysteresis model International Journal of Applied Electromagnetics and Mechanics 33 (21) 1555 1564 1555 DOI 1.3233/JAE-21-1284 IOS Press Tracking control of piezoelectric actuator system using inverse hysteresis model

More information

Hysteresis Compensation of Piezoelectric Actuators in Dual-Stage Hard Disk Drives

Hysteresis Compensation of Piezoelectric Actuators in Dual-Stage Hard Disk Drives Proceedings of 211 8th Asian Control Conference (ASCC) Kaohsiung, Taiwan, May 15-18, 211 TuB3.2 Hysteresis Compensation of Piezoelectric Actuators in Dual-Stage Hard Disk Drives Yan Zhi Tan 1, Chee Khiang

More information

Hybrid Digital Control of Piezoelectric Actuators

Hybrid Digital Control of Piezoelectric Actuators Hybrid Digital Control of Piezoelectric Actuators Mohsen Bazghaleh School of Mechanical Engineering The University of Adelaide South Australia 5005 Australia A thesis submitted in fulfilment of the requirements

More information

Observer and Robust H Control of a 2-DOF Piezoelectric Actuator Equipped with Self-Measurement

Observer and Robust H Control of a 2-DOF Piezoelectric Actuator Equipped with Self-Measurement IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED DECEMBER, 27 Observer and Robust H Control of a 2-DOF Piezoelectric Actuator Equipped with Self-Measurement Omar Aljanaideh, and Micky Rakotondrabe

More information

Active Tremor Compensation in Handheld Instrument for Microsurgery

Active Tremor Compensation in Handheld Instrument for Microsurgery Active Tremor Compensation in Handheld Instrument for Microsurgery Wei Tech Ang School of Mechanical & Aerospace Engineering Nanyang Technological University Singapore wtang@ntu.edu.sg 1 Contributors Cameron

More information

TECHNICAL RESEARCH REPORT

TECHNICAL RESEARCH REPORT TECHNICAL RESEARCH REPORT Adaptive Identification and Control of Hysteresis in Smart Material Actuators by Xiaobo Tan, John S. Baras CDCSS TR - (ISR TR -4) C + - D S CENTER FOR DYNAMICS AND CONTROL OF

More information

A Multiplay Model for Rate-Independent and Rate-Dependent Hysteresis with Nonlocal Memory

A Multiplay Model for Rate-Independent and Rate-Dependent Hysteresis with Nonlocal Memory Joint 48th IEEE Conference on Decision and Control and 8th Chinese Control Conference Shanghai, PR China, December 6-8, 9 FrC A Multiplay Model for Rate-Independent and Rate-Dependent Hysteresis with onlocal

More information

U1 is zero based because its noninverting terminal is connected to circuit common. Therefore, the circuit reference voltage is 0 V.

U1 is zero based because its noninverting terminal is connected to circuit common. Therefore, the circuit reference voltage is 0 V. When you have completed this exercise, you will be able to operate a zener-clamped op amp comparator circuit using dc and ac voltages. You will verify your results with an oscilloscope. U1 is zero based

More information

Lecture 4 Scanning Probe Microscopy (SPM)

Lecture 4 Scanning Probe Microscopy (SPM) Lecture 4 Scanning Probe Microscopy (SPM) General components of SPM; Tip --- the probe; Cantilever --- the indicator of the tip; Tip-sample interaction --- the feedback system; Scanner --- piezoelectric

More information

Control Engineering BDA30703

Control Engineering BDA30703 Control Engineering BDA30703 Lecture 3: Performance characteristics of an instrument Prepared by: Ramhuzaini bin Abd. Rahman Expected Outcomes At the end of this lecture, students should be able to; 1)

More information

Time-Optimal Motion Control of Piezoelectric Actuator: STM Application

Time-Optimal Motion Control of Piezoelectric Actuator: STM Application Time-Optimal Motion Control of Piezoelectric Actuator: STM Application Yongai Xu, Peter H. Mecl Abstract This paper exaes the problem of time-optimal motion control in the context of Scanning Tunneling

More information

Santosh Devasia Mechanical Eng. Dept., UW

Santosh Devasia Mechanical Eng. Dept., UW Nano-positioning Santosh Devasia Mechanical Eng. Dept., UW http://faculty.washington.edu/devasia/ Outline of Talk 1. Why Nano-positioning 2. Sensors for Nano-positioning 3. Actuators for Nano-positioning

More information

(Scanning Probe Microscopy)

(Scanning Probe Microscopy) (Scanning Probe Microscopy) Ing-Shouh Hwang (ishwang@phys.sinica.edu.tw) Institute of Physics, Academia Sinica, Taipei, Taiwan References 1. G. Binnig, H. Rohrer, C. Gerber, and Weibel, Phys. Rev. Lett.

More information

An ARX-Based PID-Sliding Mode Control on Velocity Tracking Control of a Stick-Slip Piezoelectric-Driven Actuator

An ARX-Based PID-Sliding Mode Control on Velocity Tracking Control of a Stick-Slip Piezoelectric-Driven Actuator Modern Mechanical Engineering, 2015, 5, 10-19 Published Online February 2015 in SciRes. http://www.scirp.org/journal/mme http://dx.doi.org/10.4236/mme.2015.51002 An ARX-Based PID-Sliding Mode Control on

More information

Generalized Prandtl-Ishlinskii Hysteresis Model and its Analytical Inverse for Compensation of Hysteresis in Smart Actuators. Mohammed Al Janaideh

Generalized Prandtl-Ishlinskii Hysteresis Model and its Analytical Inverse for Compensation of Hysteresis in Smart Actuators. Mohammed Al Janaideh Generalized Prandtl-Ishlinskii Hysteresis Model and its Analytical Inverse for Compensation of Hysteresis in Smart Actuators Mohammed Al Janaideh A Thesis in The Department of Mechanical and Industrial

More information

Frictional force measurement during stick-slip motion of a piezoelectric walker

Frictional force measurement during stick-slip motion of a piezoelectric walker Frictional force measurement during stick-slip motion of a piezoelectric walker V Shrikanth, K R Y Simha and M S Bobji Department of Mechanical Engineering Indian Institute of Science Bangalore, India-560012

More information

COMPUTER REALIZATION OF THE CONTINUOUS PREISACH HYSTERESIS MODEL

COMPUTER REALIZATION OF THE CONTINUOUS PREISACH HYSTERESIS MODEL P. Iványi Računalno ostvarenje Preisachova modela kontinuirane histereze ISSN 1330-3651 (Print), ISSN 1848-6339 (Online) UDC/UDK 539.389.4:519.85 COMPUTER REALIZATION OF THE CONTINUOUS PREISACH HYSTERESIS

More information

Mysterious Origin of Hysteresis

Mysterious Origin of Hysteresis Backlash, Bifurcation, and Buckling, and the Mysterious Origin of Hysteresis Dennis S. Bernstein Department of Aerospace Engineering, University of Michigan, Ann Arbor, MI, USA Research by JinHyoung Oh,

More information

Robust motion tracking control of piezoelectric actuation systems

Robust motion tracking control of piezoelectric actuation systems University of Wollongong Research Online Faculty of Engineering - Papers (Archive) Faculty of Engineering and Information Sciences 26 Robust motion tracking control of piezoelectric actuation systems Hwee

More information

Nanopositioning Fuzzy Control for Piezoelectric Actuators

Nanopositioning Fuzzy Control for Piezoelectric Actuators International Journal of Engineering & Technology IJET-IJENS Vol:10 No:01 50 Nanopositioning Fuzzy Control for Piezoelectric Actuators Basem M. Badr and Wahied. G. Ali Abstract This paper aims to design

More information

Pre-stressed Curved Actuators: Characterization and Modeling of their Piezoelectric Behavior

Pre-stressed Curved Actuators: Characterization and Modeling of their Piezoelectric Behavior Pre-stressed Curved Actuators: Characterization and Modeling of their Piezoelectric Behavior Karla Mossi 1, Zoubeida Ounaies 1,RalphSmith 2 and Brian Ball 2 1 Virginia Commonwealth University, Richmond,

More information

SOLID-STATE smart actuators such as piezoelectric,

SOLID-STATE smart actuators such as piezoelectric, Recursive Memory-based Hysteresis Modeling for Solid-state Smart Actuators SAEID BASHASH, 1 NADER JALILI, 1, *PHILLIP EVANS AND MARCELO J. DAPINO 1 Smart Structures and NEMS Laboratory, Department of Mechanical

More information

A REVIEW AND COMPARISON OF HYSTERESIS MODELS FOR MAGNETOSTRICTIVE MATERIALS

A REVIEW AND COMPARISON OF HYSTERESIS MODELS FOR MAGNETOSTRICTIVE MATERIALS A REVIEW AND COMPARISON OF HYSTERESIS MODELS FOR MAGNETOSTRICTIVE MATERIALS Sina Valadkhan, Department of Mechanical Engineering, University of Waterloo, email: svaladkh@uwaterloo.ca Kirsten Morris, Department

More information

F 10 Electrical Poling of Polymers

F 10 Electrical Poling of Polymers University of Potsdam, Institute of Physics Advanced lab experiments May 28, 2002 F 10 Electrical Poling of Polymers Tutor: Dr. Michael Wegener * Contents 1 Introduction 2 2 Tasks 3 3 Theoretical background

More information

Plug-In Robust Compensator for a 3 DOF Piezoelectric Nanorobotic Positioner

Plug-In Robust Compensator for a 3 DOF Piezoelectric Nanorobotic Positioner Proceedings of the 17th World Congress The International Federation of Automatic Control Seoul, Korea, July 6-11, 28 Plug-In Robust Compensator for a 3 DOF Piezoelectric Nanorobotic Positioner Abdoulaye

More information

Thermal deformation compensation of a composite beam using piezoelectric actuators

Thermal deformation compensation of a composite beam using piezoelectric actuators INSTITUTE OF PHYSICS PUBLISHING Smart Mater. Struct. 13 (24) 3 37 SMART MATERIALS AND STRUCTURES PII: S964-1726(4)7973-8 Thermal deformation compensation of a composite beam using piezoelectric actuators

More information

Douglas Russell, Student Member, IEEE, Andrew J. Fleming, Member, IEEE and Sumeet S. Aphale, Member, IEEE

Douglas Russell, Student Member, IEEE, Andrew J. Fleming, Member, IEEE and Sumeet S. Aphale, Member, IEEE 214 American Control Conference ACC) June 4-6, 214. Portland, Oregon, USA Simultaneous Optimization of Damping and Tracking Controller Parameters via Selective Pole Placement for Enhanced Positioning Bandwidth

More information

Atomic and molecular interactions. Scanning probe microscopy.

Atomic and molecular interactions. Scanning probe microscopy. Atomic and molecular interactions. Scanning probe microscopy. Balázs Kiss Nanobiotechnology and Single Molecule Research Group, Department of Biophysics and Radiation Biology 27. November 2013. 2 Atomic

More information

SMART materials, e.g., magnetostrictives, piezoelectrics,

SMART materials, e.g., magnetostrictives, piezoelectrics, IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 50, NO. 6, JUNE 2005 827 Adaptive Identification and Control of Hysteresis in Smart Materials Xiaobo Tan, Member, IEEE, and John S. Baras, Fellow, IEEE Abstract

More information

Scanning Force Microscopy

Scanning Force Microscopy Scanning Force Microscopy Roland Bennewitz Rutherford Physics Building 405 Phone 398-3058 roland.bennewitz@mcgill.ca Scanning Probe is moved along scan lines over a sample surface 1 Force Microscopy Data

More information

IEEE/ASME TRANSACTIONS ON MECHATRONICS, VOL. 18, NO. 3, JUNE

IEEE/ASME TRANSACTIONS ON MECHATRONICS, VOL. 18, NO. 3, JUNE IEEE/ASME TRANSACTIONS ON MECHATRONICS, VOL. 18, NO. 3, JUNE 2013 1113 A Novel Piezoelectric Strain Sensor for Simultaneous Damping and Tracking Control of a High-Speed Nanopositioner Yuen Kuan Yong, Member,

More information

Classification of Dielectrics & Applications

Classification of Dielectrics & Applications Classification of Dielectrics & Applications DIELECTRICS Non-Centro- Symmetric Piezoelectric Centro- Symmetric Pyroelectric Non- Pyroelectric Ferroelectrics Non-Ferroelectric Piezoelectric Effect When

More information

Contact Force-Controlled SPM System Design with Fuzzy Controller

Contact Force-Controlled SPM System Design with Fuzzy Controller Contact Force-Controlled SPM System Design with Fuzzy Controller PO-KUANG CHANG, JIUM-MING LIN Institute of Technology and Science Chung-Hua University 707, Sec. 2 Wu-Fu Rd., Hsin-Chu, Taiwan, 30012 REPUBLIC

More information

Power Factor Improvement

Power Factor Improvement Salman bin AbdulazizUniversity College of Engineering Electrical Engineering Department EE 2050Electrical Circuit Laboratory Power Factor Improvement Experiment # 4 Objectives: 1. To introduce the concept

More information

Research Article A Modified Comprehensive Model for Piezoelectric Stack Actuators and Corresponding Parameter Identification Method

Research Article A Modified Comprehensive Model for Piezoelectric Stack Actuators and Corresponding Parameter Identification Method Advances in Materials Science and Engineering Volume 215, Article ID 215836, 11 pages http://dx.doi.org/1.1155/215/215836 Research Article A Modified Comprehensive Model for Piezoelectric Stack Actuators

More information