ExACT Exact Analytical Conduction Toolbox

Size: px
Start display at page:

Download "ExACT Exact Analytical Conduction Toolbox"

Transcription

1 ExACT Exact Analytical Conduction Toolbox X23B60T0 case Kevin D. Cole and Lukas G. Brettmann April 28, 2014 "Copyright (c) by Kevin D. Cole and Lukas Brettmann" 1 Description Slab body initially at ambient temperature with cosine-periodic heat flux variation at x=0 and dissipating heat by convection into a zero temperature environment at x=l 2 Schematic 3 Governing Equations The boundary value problem defining the temperature is given by (1) ( ) ( ) ( ) "Cite this article as follows: Kevin D. Cole and Lukas Brettmann, Slab body initially at ambient temperature with cosine-periodic heat flux variation at x=0 and dissipating heat by convection into a zero temperature environment at x=l, Exact Analytical Conduction Toolbox, exact.unl.edu, 2014."

2 Where is the ambient temperature. To normalize the temperature the following dimensionless variables are employed: (2) Then the dimensionless boundary value problem is given by ( ) ( ) (3) ( ) 4 Dimensionless Temperature The temperature solution is given in series form by ( ) { ( ), ( ) ( ) -} (4) ( ) ( ) The solution method is similar to that given in [1, p. 204] using the large-cotime Green s function, but with cosine heating instead of steady heating. Note that the temperature has two series added together. The first part is the steady-periodic part, and the second series is the decaying-transient part. The steady periodic part shown above is a slowly converging series; this term can be replaced by a non-series form [1, chap. 9] to give the recommended form of the solution: ( ) * ( ( ) ( ) ) + ( ) (5) Here the notation Real refers to the real part of a complex expression for which 2

3 5 Intrinsic Verification The solution given in Eq. (5) has been verified in two ways. First the steady-periodic portion of the solution has been computed from the series form given in Eq. (4) and in the non-series form given in Eq. (5). These two forms were shown to agree within 8 decimal places, however higher precision is limited only by the machine precision. Second, at early time (t<0.02) the temperature is zero in the center of the body because heat from the boundary has not yet arrived. The zero temperature is produced mathematically by cancellation of the two terms in Eq. (5), which provides an opportunity for intrinsic verification. That is, Eq. (5) is the sum of a steady-periodic (sp) term and a complementary transient term (ct) of the form ( ) ( ) ( ) (6) At and at early time ( ) the temperature is zero: ( ) ( ) or ( ) ( ) (7) Table 1 shows the temperature at for several small times ( ) along with the steady-periodic and the complementary transient portions of the solution. The number of terms used to compute the series was chosen by examining the exponential [1, p. 153]. Table 1 demonstrates agreement to ten decimal places at early time, thus providing verification of the temperature expression and the computer program. The Matlab code used to produce this table is given in the Appendix. 3

4 Table 1: Dimensionless temperature at early time demonstrating intrinsic verification between steady-periodic (sp) and Complimentary transient (ct) portions of the solution. # terms E E E E E E E E E References 1. Cole, K.D., Beck, J. V., Haji-Sheikh, A., and Litkouhi, B., Heat Conduction Using Green s Functions, Second Edition, Taylor and Francis,

5 Figure 1: Temperature versus position for case X23B60T0 at several dimensionless times and at dimensionless frequency at Bi =1 Figure 2: Temperature versus time for case X23B60T0 at location x/l =0.5 for three dimensionless frequencies at Bi=1. 5

6 7 Appendix: Matlab Code % MATLAB function fdx23b60to.m % Slab X23 heated by cosine periodic heat transfer. % Provides for intrinsic verification at small time. % Lukas Brettmann, Kevin D. Cole, 28 May 2014 % input values % x location, normalized as x/l % t time, normalized as alpha*t/l/l % w frequency, normalized as w*l*l/alpha % output values % td temperature, normalized as (T - T0)/(q L/K) % td1 complementary transient portion of temperature % td2 steady-periodic portion of temperature % n number of series terms for comp. trans. portion % other quantities % bm eigenvalue for x21 case, pi*(m - 1/2) % beta complex quantity from steady-periodic solution % comments % slab of thickness L, conductivity k, diffusivity alpha % heat flux at x=0 has form q = q0 *cos(w*t) = real[ exp(i*w*t) ] %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [td,td1,td2,n] = fdx23b60t0(x,t,w,b2,n) % compute Fourier series portion of solution % Use exponential to choose the number of terms in series. % Last term in series will be of order exp(-23) = 1.E-10 kmax = 1 + (4./pi/pi*23./t)^(1/2); mmax=82; %if ( sizet > 1 ) dt = td(2) - td(1); % first entry might be zero %else %dt = td(1); %end %mmax=3*floor(1/2+1/pi*sqrt(a*log(10)/dt)); betar=feigxij(mmax,1.0e-15,b2); betav=betar(:,2); b2=b2; % initialize sum sum = 0.; for m=1:mmax; bm=betav(m); %Num=(bm^2+B2^2); RR=2*Num/(Num+B2)*exp(-bm^2*td1); % begin loop on k %for m=1:mmax a1 = (((bm*bm)/w)*exp(-bm*bm*t))/(((bm*bm)/w)^2+1); a2 = ((bm*bm+b2*b2)/(bm*bm+b2*b2+b2))*cos(bm*x); sum = sum - (1/w)*2.*a1*a2; % end of k loop td1 = sum; n = round(kmax); % save nearest integer, number of terms end % compute non-series form of steady-periodic portion sigma = sqrt(w)*sqrt(i); % note i is sqrt(-1), complex R=(sigma-b2)/(sigma+b2); 6

7 ex = exp( - sigma*x); e2b = exp(-2.*sigma); e2mx = exp(-sigma*(2. - x)); dum1 = exp(i*w*t) * (ex + R*e2mx)/(sigma*(1.-R*e2b)); td2 = real(dum1); td = td1 + td2; % total temp. is sum of two parts % end file % function callx23b60t0.m % Calling routine to print a table of temperature values % L. Brettmann, K. Cole 1/20/14 % input values % xmax max location, actually max x/l % t time value, normalized as alpha*t/l/l % w frequency, normalized as w*l*l/alpha % n number of times to be computed % fname 'name' of output file must be in single quotes as shown % output values % t time, subdivided as tmax/n, normalized as alpha*t/l/l % tmp1 steady-periodic part, non-series form % tmp2 decaying transient, Fourier series % tmp temperature normalized as (T - T0)/(q0 *L/k) % other comments % slab of thickness L, conductivity k, diffusivity alpha % heat flux at x=0 has form q = q0 *cos(w*t) = real[ exp(i*w*t) ] %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function eff = xcallx23b60t0(x,tmax,w,n,b2,fname) % open output file fid = fopen(char(fname),'w'); % print out table column headings head = ' x time freq T_ct T_sp T_total #terms'; fprintf(fid,'%s\n',[head]); for k = 1:n % loop over times % compute temperatures at each time t = tmax*k/n; [tmp,tmp1,tmp2,num] = fdx23b60t0(x,t,w,b2,n); % print out one row of table fprintf(fid,'%7.3f %7.3f %7.3f %14.10f %14.10f %14.10f %4d \n',[x,t,w,tmp1,tmp2,tmp,num]); end; fclose(fid); % close output file % end file %feigxij.m 6/20/07 Matlab subroutine written by James V. Beck based on programming and method of Prof. A. Haji-Sheikh, %Haji-Sheikh, A. and Beck, J.V., "An Efficient Method of Computing Eigenvalues in Heat Conduction", %Numerical Heat Transfer Part B: Fundamentals, Vol 38 No. 2, pp , %It gives the eigenvalues for the X11, X12, X13,..., X33 cases. X33 is the general case and includes the others. 7

8 %However, the X11, X12, X21, X22 eigenvalues are well-known, for X11 and X22, the eigenvalues are n *pi, for n = 1, 2, 3,.... %(Also n = 0 for X22.) For X12 and X21, the eigenvalues are (2*n-1)*pi/2 for n = 1, 2, 3, function XIJ=feigXIJ(m,B1,B2) %Input quantities %B1 is the one of the Biot numbers. For X31, it is for Bi_1. %B2 is the other Biot number. For X13, it is for Bi_2. Actually the eigenvalues for X13 and X31 are the same. %For the boundary condition of the first kind (given temperature), Bi value goes to infinity. Use BI1=1.0e+15 or BI2 = 1.0e+15. %For the case of bc of the seoond kind, the Bi value goes to zero. Use BI1=0 or BI2 = 0 %m is the number of eigenvalues %Accuracy: Machine accuracy is expected, about 14 decimal place accuracy BI1=B1; BI2=B2; AN=1:1:m; %Immediately below generates the X33 eigenvalues using the Haji subroutine CN =(AN-0.75)*pi; DN=(AN-0.5)*pi; D=1.22*(AN-1)+0.76; P23 = 1./AN; BX = BI1*BI2; BS = BI1 + BI2; GAM = *(sqrt((BS + BX+CN-pi/4.0)./(BS +BX+D))- (BS+BX+sqrt(D.*(CN-pi/4.0)))./(BS+BX+D)); X23 = (BI1+BI2-CN)./(BI1+BI2+CN); X13 = BX./(BX+0.2+BS*(pi*pi*(AN-0.5)/2.0)); G13=1+X13.*(1-X13).*(1-(0.85./AN)-( /AN).*(X13+1).*(X /AN)); E23 = GAM.*(P23.*X23 + (1.0 - P23).*tanh(X23)/tanh(1)) ; E13 = 2.0*G13.*X13; Y23=CN+pi*E23/4.0; Y13=DN+pi*E13/4.0; ZN =(Y13*BX./(BX+DN.^2)+Y23.*(1.0-BX./(BX+DN.^2))); for i=1:3 A0=(( *BS+BX-ZN.*ZN).*cos(ZN)-(6.0+BS) *ZN.*sin(ZN))/6.0; B0=(ZN.^2-BS-BX).*cos(ZN)+(2.0+BS)*ZN.*sin(ZN); C0=(ZN.^2-BX).*sin(ZN)-BS*ZN.*cos(ZN); A0=(1.0+BS)*sin(ZN)+2.0*ZN.*cos(ZN)-C0/2.0; E0=-C0./B0-(-A0.*C0.^3+A0.*C0.^2.*B0)./(3.0*A0.*C0.*C0.*B0-2.0*A0.*C0.*B0.^2+B0.^4); ZN = ZN+E0; end if BI1 == 0 & BI2 == 0 ZN(1)=0; end num=1:1:m; XIJ=[num' ZN']; 8

Handbook of Computational Analytical Heat Conduction

Handbook of Computational Analytical Heat Conduction Filippo de Monte, James V. Beck, et al. January 7, 2013 1 Contents 1. Problem description 2 2. Dimensional governing equations. 2 3. Dimensionless variables. 3 4. Dimensionless governing equations.. 3

More information

Handbook of Computational Analytical Heat Conduction

Handbook of Computational Analytical Heat Conduction Filippo de Monte, James V. Beck, et al. January 27, 2013 1 Contents 1. Problem description 2 2. Dimensional governing equations. 2 3. Dimensionless variables. 3 4. Dimensionless governing equations.. 3

More information

C(s) R(s) 1 C(s) C(s) C(s) = s - T. Ts + 1 = 1 s - 1. s + (1 T) Taking the inverse Laplace transform of Equation (5 2), we obtain

C(s) R(s) 1 C(s) C(s) C(s) = s - T. Ts + 1 = 1 s - 1. s + (1 T) Taking the inverse Laplace transform of Equation (5 2), we obtain analyses of the step response, ramp response, and impulse response of the second-order systems are presented. Section 5 4 discusses the transient-response analysis of higherorder systems. Section 5 5 gives

More information

Chapter 4 TRANSIENT HEAT CONDUCTION

Chapter 4 TRANSIENT HEAT CONDUCTION Heat and Mass Transfer: Fundamentals & Applications Fourth Edition Yunus A. Cengel, Afshin J. Ghajar McGraw-Hill, 2011 Chapter 4 TRANSIENT HEAT CONDUCTION LUMPED SYSTEM ANALYSIS Interior temperature of

More information

TRANSIENT HEAT CONDUCTION

TRANSIENT HEAT CONDUCTION TRANSIENT HEAT CONDUCTION Many heat conduction problems encountered in engineering applications involve time as in independent variable. This is transient or Unsteady State Heat Conduction. The goal of

More information

Chapter 3: Transient Heat Conduction

Chapter 3: Transient Heat Conduction 3-1 Lumped System Analysis 3- Nondimensional Heat Conduction Equation 3-3 Transient Heat Conduction in Semi-Infinite Solids 3-4 Periodic Heating Y.C. Shih Spring 009 3-1 Lumped System Analysis (1) In heat

More information

ME 515 Midterm Exam Due Monday Nov. 2, 2009 (You have time, so please be neat and clear)

ME 515 Midterm Exam Due Monday Nov. 2, 2009 (You have time, so please be neat and clear) ME 515 Midterm Exam Due Monday Nov. 2, 2009 (You have time, so please be neat and clear) A thermal burn occurs as a result of an elevation in tissue temperature above a threshold value for a finite period

More information

MODELING OF CONJUGATE HEAT TRANSFER IN AN ELECTRICALLY HEATED MICROTUBE

MODELING OF CONJUGATE HEAT TRANSFER IN AN ELECTRICALLY HEATED MICROTUBE MODELING OF CONJUGATE HEAT TRANSFER IN AN ELECTRICALLY HEATED MICROTUBE 140 Kevin Cole 1 *, Barbaros Çetin 2 1 Mechanical and Materials Engineering W342 Nebraska Hall University of Nebraska Lincoln, Lincoln,

More information

Faculté Polytechnique

Faculté Polytechnique Faculté Polytechnique The use of heat transfer functions for heat flow computation through multilayer walls Master Thesis Xavier Botey i Bassols Under the supervision of teachers Mr. Eric DUMONT Mr. Renato

More information

000=0 001=1 010=2 011=3 100=4 101=5 110=6 111=7 000=0 100=4 010=2 110=6 001=1 101=5 011=3 111=7

000=0 001=1 010=2 011=3 100=4 101=5 110=6 111=7 000=0 100=4 010=2 110=6 001=1 101=5 011=3 111=7 8 CHAPTER : Fourier Series The second idea behind the FFT concerns how to get the correct h k s into the final DFT s of size. If the subscripts to 7 of the h k s are written in binary form, as shown in

More information

Chapter 4: Transient Heat Conduction. Dr Ali Jawarneh Department of Mechanical Engineering Hashemite University

Chapter 4: Transient Heat Conduction. Dr Ali Jawarneh Department of Mechanical Engineering Hashemite University Chapter 4: Transient Heat Conduction Dr Ali Jawarneh Department of Mechanical Engineering Hashemite University Objectives When you finish studying this chapter, you should be able to: Assess when the spatial

More information

Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras. Module - 01 Lecture - 16

Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras. Module - 01 Lecture - 16 Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras Module - 01 Lecture - 16 In the last lectures, we have seen one-dimensional boundary value

More information

Numerical Heat and Mass Transfer

Numerical Heat and Mass Transfer Master degree in Mechanical Engineering Numerical Heat and Mass Transfer 02-Transient Conduction Fausto Arpino f.arpino@unicas.it Outline Introduction Conduction ü Heat conduction equation ü Boundary conditions

More information

HEAT CONDUCTION USING GREEN S FUNCTIONS

HEAT CONDUCTION USING GREEN S FUNCTIONS HEAT CONDUCTION USING GREEN S FUNCTIONS Preface to the first edition Preface to the second edition Author Biographies Nomenclature TABLE OF CONTENTS FOR SECOND EDITION December 2009 Page viii x xii xiii

More information

Project Two. James K. Peterson. March 26, Department of Biological Sciences and Department of Mathematical Sciences Clemson University

Project Two. James K. Peterson. March 26, Department of Biological Sciences and Department of Mathematical Sciences Clemson University Project Two James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University March 26, 2019 Outline 1 Cooling Models 2 Estimating the Cooling Rate k 3 Typical

More information

Appendix C - Persistence length 183. Consider an ideal chain with N segments each of length a, such that the contour length L c is

Appendix C - Persistence length 183. Consider an ideal chain with N segments each of length a, such that the contour length L c is Appendix C - Persistence length 183 APPENDIX C - PERSISTENCE LENGTH Consider an ideal chain with N segments each of length a, such that the contour length L c is L c = Na. (C.1) If the orientation of each

More information

Introduction to Heat and Mass Transfer. Week 7

Introduction to Heat and Mass Transfer. Week 7 Introduction to Heat and Mass Transfer Week 7 Example Solution Technique Using either finite difference method or finite volume method, we end up with a set of simultaneous algebraic equations in terms

More information

A SIMILARITY SOLUTION OF FIN EQUATION WITH VARIABLE THERMAL CONDUCTIVITY AND HEAT TRANSFER COEFFICIENT

A SIMILARITY SOLUTION OF FIN EQUATION WITH VARIABLE THERMAL CONDUCTIVITY AND HEAT TRANSFER COEFFICIENT Mathematical and Computational Applications, Vol. 11, No. 1, pp. 25-30, 2006. Association for Scientific Research A SIMILARITY SOLUTION OF FIN EQUATION WITH VARIABLE THERMAL CONDUCTIVITY AND HEAT TRANSFER

More information

Transient Heat Transfer Experiment. ME 331 Introduction to Heat Transfer. June 1 st, 2017

Transient Heat Transfer Experiment. ME 331 Introduction to Heat Transfer. June 1 st, 2017 Transient Heat Transfer Experiment ME 331 Introduction to Heat Transfer June 1 st, 2017 Abstract The lumped capacitance assumption for transient conduction was tested for three heated spheres; a gold plated

More information

Steady-state Green s function solution for moving media with axial conduction

Steady-state Green s function solution for moving media with axial conduction University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Mechanical & Materials Engineering Faculty Publications Mechanical & Materials Engineering, Department of 6-2010 Steady-state

More information

Appendix A MoReRT Controllers Design Demo Software

Appendix A MoReRT Controllers Design Demo Software Appendix A MoReRT Controllers Design Demo Software The use of the proposed Model-Reference Robust Tuning (MoReRT) design methodology, described in Chap. 4, to tune a two-degree-of-freedom (2DoF) proportional

More information

Laplace Transform Analysis of Signals and Systems

Laplace Transform Analysis of Signals and Systems Laplace Transform Analysis of Signals and Systems Transfer Functions Transfer functions of CT systems can be found from analysis of Differential Equations Block Diagrams Circuit Diagrams 5/10/04 M. J.

More information

Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil engineering Indian Institute of Technology, Madras. Module - 01 Lecture - 17

Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil engineering Indian Institute of Technology, Madras. Module - 01 Lecture - 17 Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil engineering Indian Institute of Technology, Madras Module - 01 Lecture - 17 In the last class, we were looking at this general one-dimensional

More information

Time-Dependent Conduction :

Time-Dependent Conduction : Time-Dependent Conduction : The Lumped Capacitance Method Chapter Five Sections 5.1 thru 5.3 Transient Conduction A heat transfer process for which the temperature varies with time, as well as location

More information

Diffusion with particle accounting

Diffusion with particle accounting 4/30/0 Random walk, etc. iffusion, planar iffusion with particle accounting In steady-state plasmas the rate at which plasma is lost to the walls is equal to the rate at which it is created. If the plasma

More information

LAB 1: MATLAB - Introduction to Programming. Objective:

LAB 1: MATLAB - Introduction to Programming. Objective: LAB 1: MATLAB - Introduction to Programming Objective: The objective of this laboratory is to review how to use MATLAB as a programming tool and to review a classic analytical solution to a steady-state

More information

Elements of Floating-point Arithmetic

Elements of Floating-point Arithmetic Elements of Floating-point Arithmetic Sanzheng Qiao Department of Computing and Software McMaster University July, 2012 Outline 1 Floating-point Numbers Representations IEEE Floating-point Standards Underflow

More information

Lab 5: Post Processing and Solving Conduction Problems. Objective:

Lab 5: Post Processing and Solving Conduction Problems. Objective: Lab 5: Post Processing and Solving Conduction Problems Objective: The objective of this lab is to use the tools we have developed in MATLAB and SolidWorks to solve conduction heat transfer problems that

More information

Project Two. Outline. James K. Peterson. March 27, Cooling Models. Estimating the Cooling Rate k. Typical Cooling Project Matlab Session

Project Two. Outline. James K. Peterson. March 27, Cooling Models. Estimating the Cooling Rate k. Typical Cooling Project Matlab Session Project Two James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University March 27, 2018 Outline Cooling Models Estimating the Cooling Rate k Typical Cooling

More information

2.29 Numerical Fluid Mechanics Spring 2015 Lecture 13

2.29 Numerical Fluid Mechanics Spring 2015 Lecture 13 REVIEW Lecture 12: Spring 2015 Lecture 13 Grid-Refinement and Error estimation Estimation of the order of convergence and of the discretization error Richardson s extrapolation and Iterative improvements

More information

Lab 4: Kirchhoff migration (Matlab version)

Lab 4: Kirchhoff migration (Matlab version) Due Date: Oktober 29th, 2012 TA: Mandy Wong (mandyman@sep.stanford.edu) Lab 4: Kirchhoff migration (Matlab version) Robert U. Terwilliger 1 ABSTRACT In this computer exercise you will modify the Kirchhoff

More information

F04JGF NAG Fortran Library Routine Document

F04JGF NAG Fortran Library Routine Document F4 Simultaneous Linear Equations F4JGF NAG Fortran Library Routine Document Note. Before using this routine, please read the Users Note for your implementation to check the interpretation of bold italicised

More information

1 Solutions in cylindrical coordinates: Bessel functions

1 Solutions in cylindrical coordinates: Bessel functions 1 Solutions in cylindrical coordinates: Bessel functions 1.1 Bessel functions Bessel functions arise as solutions of potential problems in cylindrical coordinates. Laplace s equation in cylindrical coordinates

More information

(Refer Slide Time: 1:13)

(Refer Slide Time: 1:13) Chemical Reaction Engineering 2 (Heterogeneous Reactors) Professor K. Krishnaiah Department of Chemical Engineering Indian Institute of Technology, Madras Lecture 08 Shrinking core model continued for

More information

Homework 1 Solutions

Homework 1 Solutions 18-9 Signals and Systems Profs. Byron Yu and Pulkit Grover Fall 18 Homework 1 Solutions Part One 1. (8 points) Consider the DT signal given by the algorithm: x[] = 1 x[1] = x[n] = x[n 1] x[n ] (a) Plot

More information

Nonhomogeneous Linear Differential Equations with Constant Coefficients - (3.4) Method of Undetermined Coefficients

Nonhomogeneous Linear Differential Equations with Constant Coefficients - (3.4) Method of Undetermined Coefficients Nonhomogeneous Linear Differential Equations with Constant Coefficients - (3.4) Method of Undetermined Coefficients Consider an nth-order nonhomogeneous linear differential equation with constant coefficients:

More information

Elements of Floating-point Arithmetic

Elements of Floating-point Arithmetic Elements of Floating-point Arithmetic Sanzheng Qiao Department of Computing and Software McMaster University July, 2012 Outline 1 Floating-point Numbers Representations IEEE Floating-point Standards Underflow

More information

Unified Power Flow Controller (UPFC) Based Damping Controllers for Damping Low Frequency Oscillations in a Power System

Unified Power Flow Controller (UPFC) Based Damping Controllers for Damping Low Frequency Oscillations in a Power System Unified Power Flow Controller (UPFC) Based Damping Controllers for Damping Low Frequency Oscillations in a Power System (Ms) N Tambey, Non-member Prof M L Kothari, Member This paper presents a systematic

More information

Heat Transfer in a Slab

Heat Transfer in a Slab Heat Transfer in a Slab Consider a large planar solid whose thickness (y-direction) is L. What is the temperature history of the slab if it is suddenly brought into contact with a fluid at temperature

More information

Chapter 5 MATHEMATICAL MODELING OF THE EVACATED SOLAR COLLECTOR. 5.1 Thermal Model of Solar Collector System

Chapter 5 MATHEMATICAL MODELING OF THE EVACATED SOLAR COLLECTOR. 5.1 Thermal Model of Solar Collector System Chapter 5 MATHEMATICAL MODELING OF THE EVACATED SOLAR COLLECTOR This chapter deals with analytical method of finding out the collector outlet working fluid temperature. A dynamic model of the solar collector

More information

3.3 Unsteady State Heat Conduction

3.3 Unsteady State Heat Conduction 3.3 Unsteady State Heat Conduction For many applications, it is necessary to consider the variation of temperature with time. In this case, the energy equation for classical heat conduction, eq. (3.8),

More information

ME201/MTH21/ME400/CHE400 ASSIGNMENT #7 PROBLEM 1 Newton's Law of Cooling in Transient Conduction 1. Introduction This notebook uses Mathematica to solve problem 1 of Assignment #7, in which we analyze

More information

Conduction Heat Transfer. Fourier Law of Heat Conduction. Thermal Resistance Networks. Resistances in Series. x=l Q x+ Dx. insulated x+ Dx.

Conduction Heat Transfer. Fourier Law of Heat Conduction. Thermal Resistance Networks. Resistances in Series. x=l Q x+ Dx. insulated x+ Dx. Conduction Heat Transfer Reading Problems 17-1 17-6 17-35, 17-57, 17-68, 17-81, 17-88, 17-110 18-1 18-2 18-14, 18-20, 18-34, 18-52, 18-80, 18-104 Fourier Law of Heat Conduction insulated x+ Dx x=l Q x+

More information

Heat and Mass Transfer Prof. S.P. Sukhatme Department of Mechanical Engineering Indian Institute of Technology, Bombay

Heat and Mass Transfer Prof. S.P. Sukhatme Department of Mechanical Engineering Indian Institute of Technology, Bombay Heat and Mass Transfer Prof. S.P. Sukhatme Department of Mechanical Engineering Indian Institute of Technology, Bombay Lecture No. 18 Forced Convection-1 Welcome. We now begin our study of forced convection

More information

Chapter 5. Finite Automata

Chapter 5. Finite Automata Chapter 5 Finite Automata 5.1 Finite State Automata Capable of recognizing numerous symbol patterns, the class of regular languages Suitable for pattern-recognition type applications, such as the lexical

More information

(Refer Slide Time: 01:30)

(Refer Slide Time: 01:30) Networks and Systems Prof V.G K.Murti Department of Electrical Engineering Indian Institute of Technology, Madras Lecture - 11 Fourier Series (5) Continuing our discussion of Fourier series today, we will

More information

Chapter 5 Time-Dependent Conduction

Chapter 5 Time-Dependent Conduction Chapter 5 Time-Dependent Conduction 5.1 The Lumped Capacitance Method This method assumes spatially uniform solid temperature at any instant during the transient process. It is valid if the temperature

More information

Finite Element Modules for Enhancing Undergraduate Transport Courses: Application to Fuel Cell Fundamentals

Finite Element Modules for Enhancing Undergraduate Transport Courses: Application to Fuel Cell Fundamentals Finite Element Modules for Enhancing Undergraduate Transport Courses: Application to Fuel Cell Fundamentals Originally published in 007 American Society for Engineering Education Conference Proceedings

More information

Fundamentals of Transport Processes Prof. Kumaran Indian Institute of Science, Bangalore Chemical Engineering

Fundamentals of Transport Processes Prof. Kumaran Indian Institute of Science, Bangalore Chemical Engineering Fundamentals of Transport Processes Prof. Kumaran Indian Institute of Science, Bangalore Chemical Engineering Module No # 05 Lecture No # 25 Mass and Energy Conservation Cartesian Co-ordinates Welcome

More information

Appendix C: Recapitulation of Numerical schemes

Appendix C: Recapitulation of Numerical schemes Appendix C: Recapitulation of Numerical schemes August 31, 2009) SUMMARY: Certain numerical schemes of general use are regrouped here in order to facilitate implementations of simple models C1 The tridiagonal

More information

1 Finite difference example: 1D implicit heat equation

1 Finite difference example: 1D implicit heat equation 1 Finite difference example: 1D implicit heat equation 1.1 Boundary conditions Neumann and Dirichlet We solve the transient heat equation ρc p t = ( k ) (1) on the domain L/2 x L/2 subject to the following

More information

ENGI 9420 Lecture Notes 8 - PDEs Page 8.01

ENGI 9420 Lecture Notes 8 - PDEs Page 8.01 ENGI 940 Lecture Notes 8 - PDEs Page 8.01 8. Partial Differential Equations Partial differential equations (PDEs) are equations involving functions of more than one variable and their partial derivatives

More information

G01NBF NAG Fortran Library Routine Document

G01NBF NAG Fortran Library Routine Document G01NBF NAG Fortran Library Routine Document Note. Before using this routine, please read the Users Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent

More information

ENGI 9420 Lecture Notes 8 - PDEs Page 8.01

ENGI 9420 Lecture Notes 8 - PDEs Page 8.01 ENGI 940 ecture Notes 8 - PDEs Page 8.0 8. Partial Differential Equations Partial differential equations (PDEs) are equations involving functions of more than one variable and their partial derivatives

More information

R Function Tutorial in Module 8.2

R Function Tutorial in Module 8.2 R Function Tutorial in Module 8.2 Introduction to Computational Science: Modeling and Simulation for the Sciences, 2 nd Edition Angela B. Shiflet and George W. Shiflet Wofford College 2014 by Princeton

More information

Effective Borehole Thermal Resistance of A Single U-Tube Ground Heat Exchanger

Effective Borehole Thermal Resistance of A Single U-Tube Ground Heat Exchanger Numerical Heat Transfer, Part A: Applications An International Journal of Computation and Methodology ISSN: 1040-7782 (Print) 1521-0634 (Online) Journal homepage: http://www.tandfonline.com/loi/unht20

More information

Chemical Reaction Engineering II Prof. A. K. Suresh Department of Chemical Engineering Indian Institute of Technology, Bombay

Chemical Reaction Engineering II Prof. A. K. Suresh Department of Chemical Engineering Indian Institute of Technology, Bombay Chemical Reaction Engineering II Prof A K Suresh Department of Chemical Engineering Indian Institute of Technology, Bombay Lecture - 24 GLR-5: Transition to Instantaneous reaction; Reaction regimes in

More information

Sandia National Laboratories, P. O. Box 5800, Albuquerque, NM 87185, USA

Sandia National Laboratories, P. O. Box 5800, Albuquerque, NM 87185, USA Progress In Electromagnetics Research M, Vol. 23, 299 3, 22 LINEAR DIFFUSION INTO A FARADAY CAGE K. C. Chen *, Y. T. Lin, L. K. Warne, and K. O. Merewether Sandia National Laboratories, P. O. Box 58, Albuquerque,

More information

Chap 4. State-Space Solutions and

Chap 4. State-Space Solutions and Chap 4. State-Space Solutions and Realizations Outlines 1. Introduction 2. Solution of LTI State Equation 3. Equivalent State Equations 4. Realizations 5. Solution of Linear Time-Varying (LTV) Equations

More information

Numerical software for the inverse estimation of the temperature-dependent thermal properties in heat conduction

Numerical software for the inverse estimation of the temperature-dependent thermal properties in heat conduction Advanced Computational Methods and Experiments in Heat Transfer XII 121 Numerical software for the inverse estimation of the temperature-dependent thermal properties in heat conduction J. Zueco & G. Monreal

More information

Lecture 4. Programming

Lecture 4. Programming Lecture 4 Advanced Matlab Programming Announcements Hands-on Session on Friday 1318 EB Read Chapters 3-6 in your MATLAB book HW 2 opens up Friday evening Today Numerical analysis - I Visualization I Some

More information

Using Excel to Implement the Finite Difference Method for 2-D Heat Transfer in a Mechanical Engineering Technology Course

Using Excel to Implement the Finite Difference Method for 2-D Heat Transfer in a Mechanical Engineering Technology Course Paper ID #9196 Using Excel to Implement the Finite Difference Method for -D Heat ransfer in a Mechanical Engineering echnology Course Mr. Robert Edwards, Pennsylvania State University, Erie Bob Edwards

More information

INSTRUCTOR: PM DR. MAZLAN ABDUL WAHID TEXT: Heat Transfer A Practical Approach by Yunus A. Cengel Mc Graw Hill

INSTRUCTOR: PM DR. MAZLAN ABDUL WAHID  TEXT: Heat Transfer A Practical Approach by Yunus A. Cengel Mc Graw Hill M 792: IUO: M D. MZL BDUL WID http://www.fkm.utm.my/~mazlan X: eat ransfer ractical pproach by Yunus. engel Mc Graw ill hapter ransient eat onduction ssoc rof Dr. Mazlan bdul Wahid aculty of Mechanical

More information

Review: Conduction. Breaking News

Review: Conduction. Breaking News CH EN 3453 Heat Transfer Review: Conduction Breaking News No more homework (yay!) Final project reports due today by 8:00 PM Email PDF version to report@chen3453.com Review grading rubric on Project page

More information

(Refer Slide Time: 01:17)

(Refer Slide Time: 01:17) Heat and Mass Transfer Prof. S.P. Sukhatme Department of Mechanical Engineering Indian Institute of Technology, Bombay Lecture No. 7 Heat Conduction 4 Today we are going to look at some one dimensional

More information

Introduction to Probability and Statistics (Continued)

Introduction to Probability and Statistics (Continued) Introduction to Probability and Statistics (Continued) Prof. icholas Zabaras Center for Informatics and Computational Science https://cics.nd.edu/ University of otre Dame otre Dame, Indiana, USA Email:

More information

Research Article An Analytical Development of the Hyperbolic Behaviour of Micro Thermoelectric Coolers

Research Article An Analytical Development of the Hyperbolic Behaviour of Micro Thermoelectric Coolers Mathematical Problems in Engineering Volume 15, Article ID 697639, 1 pages http://dx.doi.org/1.1155/15/697639 Research Article An Analytical Development of the Hyperbolic Behaviour of Micro Thermoelectric

More information

ME201/MTH281/ME400/CHE400 Newton's Law of Cooling

ME201/MTH281/ME400/CHE400 Newton's Law of Cooling ME1/MTH281/ME0/CHE0 Newton's Law of Cooling 1. Introduction This notebook uses Mathematica to solve the problem presented in class, in section 5.1 of the notes. The problem is one of transient heat conduction

More information

HYPENS Manual. Fausto Sessego, Alessandro Giua, Carla Seatzu. February 7, 2008

HYPENS Manual. Fausto Sessego, Alessandro Giua, Carla Seatzu. February 7, 2008 HYPENS Manual Fausto Sessego, Alessandro Giua, Carla Seatzu February 7, 28 HYPENS is an open source tool to simulate timed discrete, continuous and hybrid Petri nets. It has been developed in Matlab to

More information

EECE 301 Signals & Systems Prof. Mark Fowler

EECE 301 Signals & Systems Prof. Mark Fowler EECE 3 Signals & Systems Prof. Mark Fowler Note Set #9 C-T Systems: Laplace Transform Transfer Function Reading Assignment: Section 6.5 of Kamen and Heck /7 Course Flow Diagram The arrows here show conceptual

More information

6 Non-homogeneous Heat Problems

6 Non-homogeneous Heat Problems 6 Non-homogeneous Heat Problems Up to this point all the problems we have considered for the heat or wave equation we what we call homogeneous problems. This means that for an interval < x < l the problems

More information

MECH 375, Heat Transfer Handout #5: Unsteady Conduction

MECH 375, Heat Transfer Handout #5: Unsteady Conduction 1 MECH 375, Heat Transfer Handout #5: Unsteady Conduction Amir Maleki, Fall 2018 2 T H I S PA P E R P R O P O S E D A C A N C E R T R E AT M E N T T H AT U S E S N A N O PA R T I - C L E S W I T H T U

More information

6.641 Electromagnetic Fields, Forces, and Motion

6.641 Electromagnetic Fields, Forces, and Motion MIT OpenCourseWare http://ocw.mit.edu 6.641 Electromagnetic Fields, Forces, and Motion Spring 9 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 6.641,

More information

HANDOUT E.22 - EXAMPLES ON STABILITY ANALYSIS

HANDOUT E.22 - EXAMPLES ON STABILITY ANALYSIS Example 1 HANDOUT E. - EXAMPLES ON STABILITY ANALYSIS Determine the stability of the system whose characteristics equation given by 6 3 = s + s + 3s + s + s + s +. The above polynomial satisfies the necessary

More information

QUESTION ANSWER. . e. Fourier number:

QUESTION ANSWER. . e. Fourier number: QUESTION 1. (0 pts) The Lumped Capacitance Method (a) List and describe the implications of the two major assumptions of the lumped capacitance method. (6 pts) (b) Define the Biot number by equations and

More information

Exponential Functions Dr. Laura J. Pyzdrowski

Exponential Functions Dr. Laura J. Pyzdrowski 1 Names: (4 communication points) About this Laboratory An exponential function is an example of a function that is not an algebraic combination of polynomials. Such functions are called trancendental

More information

Quantum Mechanics for Scientists and Engineers. David Miller

Quantum Mechanics for Scientists and Engineers. David Miller Quantum Mechanics for Scientists and Engineers David Miller Particles in potential wells The finite potential well Insert video here (split screen) Finite potential well Lesson 7 Particles in potential

More information

UNIVERSITY OF SOUTHAMPTON. A foreign language dictionary (paper version) is permitted provided it contains no notes, additions or annotations.

UNIVERSITY OF SOUTHAMPTON. A foreign language dictionary (paper version) is permitted provided it contains no notes, additions or annotations. UNIVERSITY OF SOUTHAMPTON MATH055W SEMESTER EXAMINATION 03/4 MATHEMATICS FOR ELECTRONIC & ELECTRICAL ENGINEERING Duration: 0 min Solutions Only University approved calculators may be used. A foreign language

More information

qxbxg. That is, the heat rate within the object is everywhere constant. From Fourier s

qxbxg. That is, the heat rate within the object is everywhere constant. From Fourier s PROBLEM.1 KNOWN: Steady-state, one-dimensional heat conduction through an axisymmetric shape. FIND: Sketch temperature distribution and explain shape of curve. ASSUMPTIONS: (1) Steady-state, one-dimensional

More information

Documentation of the Solutions to the SFPE Heat Transfer Verification Cases

Documentation of the Solutions to the SFPE Heat Transfer Verification Cases Documentation of the Solutions to the SFPE Heat Transfer Verification Cases Prepared by a Task Group of the SFPE Standards Making Committee on Predicting the Thermal Performance of Fire Resistive Assemblies

More information

Lecture 2. Tensor Unfoldings. Charles F. Van Loan

Lecture 2. Tensor Unfoldings. Charles F. Van Loan From Matrix to Tensor: The Transition to Numerical Multilinear Algebra Lecture 2. Tensor Unfoldings Charles F. Van Loan Cornell University The Gene Golub SIAM Summer School 2010 Selva di Fasano, Brindisi,

More information

Computer simulation of radioactive decay

Computer simulation of radioactive decay Computer simulation of radioactive decay y now you should have worked your way through the introduction to Maple, as well as the introduction to data analysis using Excel Now we will explore radioactive

More information

Introduction to Finite Di erence Methods

Introduction to Finite Di erence Methods Introduction to Finite Di erence Methods ME 448/548 Notes Gerald Recktenwald Portland State University Department of Mechanical Engineering gerry@pdx.edu ME 448/548: Introduction to Finite Di erence Approximation

More information

Solving Linear Systems of ODEs with Matlab

Solving Linear Systems of ODEs with Matlab Solving Linear Systems of ODEs with Matlab James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University October 27, 2013 Outline Linear Systems Numerically

More information

One-Sided Difference Formula for the First Derivative

One-Sided Difference Formula for the First Derivative POLYTECHNIC UNIVERSITY Department of Computer and Information Science One-Sided Difference Formula for the First Derivative K. Ming Leung Abstract: Derive a one-sided formula for the first derive of a

More information

Homework 5 - Solutions

Homework 5 - Solutions Spring Math 54 Homework 5 - Solutions BF 3.4.4. d. The spline interpolation routine below produces the following coefficients: i a i b i c i d i -..869948.75637848.656598 -.5.9589.487644.9847639.887.9863.34456976.489747

More information

Jim Lambers Math 1B Fall Quarter Final Exam Solution (Version A)

Jim Lambers Math 1B Fall Quarter Final Exam Solution (Version A) Jim Lambers Math 1B Fall Quarter 004-05 Final Exam Solution (Version A) 1. Suppose that a culture initially contains 500 bacteria, and that the population doubles every hours. What is the population after

More information

Section 4.2 Logarithmic Functions & Applications

Section 4.2 Logarithmic Functions & Applications 34 Section 4.2 Logarithmic Functions & Applications Recall that exponential functions are one-to-one since every horizontal line passes through at most one point on the graph of y = b x. So, an exponential

More information

57:022 Principles of Design II Final Exam Solutions - Spring 1997

57:022 Principles of Design II Final Exam Solutions - Spring 1997 57:022 Principles of Design II Final Exam Solutions - Spring 1997 Part: I II III IV V VI Total Possible Pts: 52 10 12 16 13 12 115 PART ONE Indicate "+" if True and "o" if False: + a. If a component's

More information

Modified lumped model for Transient heat conduction in spherical shape

Modified lumped model for Transient heat conduction in spherical shape American International Journal of Research in Science, Technology, Engineering & Mathematics Available online at http://www.iasir.net ISSN (Print): 2328-3491, ISSN (Online): 2328-3580, ISSN (CD-ROM): 2328-3629

More information

Chapter 1, Section 1.2, Example 9 (page 13) and Exercise 29 (page 15). Use the Uniqueness Tool. Select the option ẋ = x

Chapter 1, Section 1.2, Example 9 (page 13) and Exercise 29 (page 15). Use the Uniqueness Tool. Select the option ẋ = x Use of Tools from Interactive Differential Equations with the texts Fundamentals of Differential Equations, 5th edition and Fundamentals of Differential Equations and Boundary Value Problems, 3rd edition

More information

Chain-configuration and rate dependent rheological properties in transient networks

Chain-configuration and rate dependent rheological properties in transient networks Electronic Supplementary Material (ESI) for Soft Matter. This journal is The Royal Society of Chemistry 204 Supplementary Information Chain-configuration and rate dependent rheological properties in transient

More information

The concentration of a drug in blood. Exponential decay. Different realizations. Exponential decay with noise. dc(t) dt.

The concentration of a drug in blood. Exponential decay. Different realizations. Exponential decay with noise. dc(t) dt. The concentration of a drug in blood Exponential decay C12 concentration 2 4 6 8 1 C12 concentration 2 4 6 8 1 dc(t) dt = µc(t) C(t) = C()e µt 2 4 6 8 1 12 time in minutes 2 4 6 8 1 12 time in minutes

More information

Homework #2 Due Monday, April 18, 2012

Homework #2 Due Monday, April 18, 2012 12.540 Homework #2 Due Monday, April 18, 2012 Matlab solution codes are given in HW02_2012.m This code uses cells and contains the solutions to all the questions. Question 1: Non-linear estimation problem

More information

Math 552 Scientific Computing II Spring SOLUTIONS: Homework Set 1

Math 552 Scientific Computing II Spring SOLUTIONS: Homework Set 1 Math 552 Scientific Computing II Spring 21 SOLUTIONS: Homework Set 1 ( ) a b 1 Let A be the 2 2 matrix A = By hand, use Gaussian elimination with back c d substitution to obtain A 1 by solving the two

More information

10.34 Numerical Methods Applied to Chemical Engineering

10.34 Numerical Methods Applied to Chemical Engineering 10.34 Numerical Methods Applied to Chemical Engineering Quiz 1 This quiz consists of three problems worth 0, 40 and 40 points respectively. The problem statements are found on pages, 3 and 5 in this exam

More information

Consider a volume Ω enclosing a mass M and bounded by a surface δω. d dt. q n ds. The Work done by the body on the surroundings is.

Consider a volume Ω enclosing a mass M and bounded by a surface δω. d dt. q n ds. The Work done by the body on the surroundings is. The Energy Balance Consider a volume Ω enclosing a mass M and bounded by a surface δω. δω At a point x, the density is ρ, the local velocity is v, and the local Energy density is U. U v The rate of change

More information

1D Verification Examples

1D Verification Examples 1 Introduction 1D Verification Examples Software verification involves comparing the numerical solution with an analytical solution. The objective of this example is to compare the results from CTRAN/W

More information

Solutions Block 5: Multiple Integration. Pretest 1. 54

Solutions Block 5: Multiple Integration. Pretest 1. 54 Pretest 1. 54 lock 5: Multiple Integration In the expression (kai j), it is assumed that in the pareni=1 j=1 thesized-sum, i is treated as being constant (notice the "flavor" of the notion of independent

More information

Numerical Solution of f(x) = 0

Numerical Solution of f(x) = 0 Numerical Solution of f(x) = 0 Gerald W. Recktenwald Department of Mechanical Engineering Portland State University gerry@pdx.edu ME 350: Finding roots of f(x) = 0 Overview Topics covered in these slides

More information