ME 515 Midterm Exam Due Monday Nov. 2, 2009 (You have time, so please be neat and clear)

Size: px
Start display at page:

Download "ME 515 Midterm Exam Due Monday Nov. 2, 2009 (You have time, so please be neat and clear)"

Transcription

1 ME 515 Midterm Exam Due Monday Nov. 2, 2009 (You have time, so please be neat and clear) A thermal burn occurs as a result of an elevation in tissue temperature above a threshold value for a finite period of time. The values of both the absolute temperature and the exposure time are crucial in determining the extent of injury. Temperature and time are not independent parameters affecting a burn; rather, clinical data indicate that a nonlinear coupling exists that fixes the severity of trauma. In general, the transient tissue temperature integrated over the time of exposure must be considered in creating a thermal lesion. The larger the value of this coupled integral, the greater the potential for injury. (For additional information, and the source of some of this information see: K. R. Diller, "Analysis of skin burns", in Heat Transfer in Medicine and Biology, Vol 2, Ed. Auraham Shitzer and R. C. Eberhart, Plenum Publishing Corp However, additional information is not required for this exam.) Numerous tests have been performed to determine the extent of burn injury from a temperature-time history. The damage function for burns has been expressed in terms of an Arrhenius relationship, as shown in Eq. 1, Table I, and Figure 1. T T 0 t t exp A 0 T T * (1)

2 Figure 1: Determination of Burn Injury from the Temperature-Time History Consider heat conduction in an x,y system which is governed by: T ( D T) S t where T is temperature expressed in C; the diffusivity, D, is K/c and has units of L 2 /time. The source term S has units of (Energy/unit area/unit time). The latter term is required since the most frequent cause of skin burns is associated with the application of a heat source. However, many times this heat source is applied as a boundary condition instead of an internal source

3 of heat. In that mode, the S term is zero and the boundary condition has a surface heat flux, q 0. A physical schematic of a skin layer is shown in figure 2 (Fig 3 from reference). The top layer is the epidermis which lies above the corium. At the bottom of the figure is the subcutaneous region. I have identified 4 thermally distinct regions in the figure with the necessary thermal properties listed in Table II. Figure 2: Depth of burn injury in skin: (I) Superficial burn; involves only the subcorneal layer. (IIA) Superficial partial thickness; involves some of basal layer. (IIB) Deep partial thickness; complete loss of the basal layer. (III) Full thickness; all epidermal elements are destroyed.

4 Table II: Thermal Properties of Skin Regions Region Material Diffusivity (cm 2 /s) 1 Corium (Epidermis also) 2 Subcutaneous Blood Vessels alpha * Sebaceous gland 0.05 Hair follicle The depth of this sample is 3.25 mm. One can assume no flux conditions on both sides of the specimen. The top and bottom surfaces will be subject to a series of boundary conditions. How to model the regions? This situation is a primary driving force for using finite elements! I have created a mesh that has Nx=35, Ny=30. Both directions include shadow node potentials. That is you do not necessarily need shadow nodes

5 I have also created a text file (grid.txt) that has 30 rows of data and 35 entries per row. The second row corresponds to y=0.0 mm (i.e. the surface). The second to last row is at a y = 3.25 mm depth. Assume delta_y = delta_x. Grid.txt

6 a.) Write a valid finite difference formulation for the governing equation using central finite difference expressions throughout. Convert your formulation to an ADI formulation, clearly showing the two step process for the implementation. b.) Develop the ADI numerical code to solve for the following boundary condition possibilities: 1.) Type I b.c. at top and bottom 2.) Type II b.c. at top Type I b.c. at bottom User-inputs specify the boundary condition options. REMEMBER, this is an ADI formulation of a parabolic PDE. You DO NOT iterate within a timestep. The w term added to your elliptic ADI formulation was a technique to converge for elliptic PDEs. The parabolic time derivative term acts as the w term previously. Since at t=0, all previous values are known, there are no iterations. One simply marches along in time. c.) For the following ICs and BCs determine when each of the first 3 burn levels occurs along the line labeled IIB. (See Table I and Fig. 1.) Line IIB is located at line 25 of the grid superimposed figure. T(x,y,0) = 37 C ; T(x,y=top,t>0) = 65 C ; T(x,y=bottom,t>0) = 37 C let alpha = 1 i.e. Run your program with dt = 25s. Report your thermal profiles at t = 0., 75., 250., and 500 seconds. (The Matlab contour function is helpful for this display.) Determine an approximate temperature along line IIB at t = 250s and use eq. 1 to estimate burn time. Once again, you will probably exceed a burn category before the skin section reached 250s. d.) Modify the value of alpha to 25, 50, 200 and repeat part c. Display the thermal field for alpha = 200 at t = 100s. Essentially, by increasing alpha one is giving an effective diffusivity to replace the advective component of the blood flow in the general advective-diffusive governing equation.

7 If one could integrate the transient temperature history at a node, one might be able to more accurately predict the extent of damage. Experimental data appears to support the follow damage integral: A A T exp( 2 ) 1 dt where A 1 and A 2 are discontinuous functions of temperature which provide an acceptable correlation with experimental data. A 1 = x s -1 ; A 2 = 5.0 x 10 4 K for 317 < T <= 323 (Kelvin) and A 1 = x s -1 ; A 2 = 8.0 x 10 4 K for 323 < T <= 333 (Kelvin) Using these values and expressions, First degree burns occur for > 0.1, Partial Second degree burns for > 1.0, Full Secondary burns for > 7500, and Third degree burns for > e.) Develop within your code a summation that measures for each node. Using the threshold damage values repeat (d) for alpha = 200 and compare your results. Report the time and temperature profile for damage values corresponding to first, partial second, and full second. In your code examine the nodes along (line 25). For the first two cases use dt = 0.1s. For the last case use dt = 250s. f.) Assume that there is a constant heat flux of 1 cal/(cm 2 s) applied to the surface of the skin. Repeat e with this boundary condition change. Use dt = 1.0s for the first two cases and dt = 50s for the last case. g.) Consider a heating pad that measures 1.5 ft x 1 ft and consumes 500 watts. If a patient lies on this pad is there a burn danger? Work out the situation and use your numerical skills to answer this problem.

8 Note: There are numerous ways to read a file into a Matlab program. This is only one strategy, but it might be helpful. % Read in data fid = fopen('grid.txt'); for j = ny:-1:1 for i = 1:nx G = fscanf(fid, '%d', 1); D(i,j) = diff(g+1); end end status = fclose(fid); You might have a diffusivity array D(i,j) but the input file has only 5 integers (0-4). So one could create an array of length 5 and store the 5 different diffusivity values, i.e. diff(g+1) locations. Then map those values for each node in the D(i,j) two dimensional array.

9 2.) Consider a 3-level time stepping scheme for a hyperbolic PDE U U t x 2 2 c Use central difference in time and central difference in space formulations. Recall, as in the 3-level parabolic stability analysis, that the spatial formulation is a function of. U U (1 ) U U 2 2 k k 1 k k 1 i i i i Perform a Fourier (Von Neumann) Stability analysis for this formulation. Be sure to express the stability constraints in terms of and c. What are the units of c? What non-dimensional number is constructed with c, delta_t, and delta_x? Be sure that your presentation is complete. Do not skip steps and show all work clearly.

Problem Set 4 Issued: Wednesday, March 18, 2015 Due: Wednesday, April 8, 2015

Problem Set 4 Issued: Wednesday, March 18, 2015 Due: Wednesday, April 8, 2015 MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING CAMBRIDGE, MASSACHUSETTS 0139.9 NUMERICAL FLUID MECHANICS SPRING 015 Problem Set 4 Issued: Wednesday, March 18, 015 Due: Wednesday,

More information

Math 7824 Spring 2010 Numerical solution of partial differential equations Classroom notes and homework

Math 7824 Spring 2010 Numerical solution of partial differential equations Classroom notes and homework Math 7824 Spring 2010 Numerical solution of partial differential equations Classroom notes and homework Jan Mandel University of Colorado Denver May 12, 2010 1/20/09: Sec. 1.1, 1.2. Hw 1 due 1/27: problems

More information

Finite Difference Methods for

Finite Difference Methods for CE 601: Numerical Methods Lecture 33 Finite Difference Methods for PDEs Course Coordinator: Course Coordinator: Dr. Suresh A. Kartha, Associate Professor, Department of Civil Engineering, IIT Guwahati.

More information

Sensitivity of the skin tissue on the activity of external heat sources

Sensitivity of the skin tissue on the activity of external heat sources Copyright c 23 Tech Science Press CMES, vol.4, no.3&4, pp.431-438, 23 Sensitivity of the skin tissue on the activity of external heat sources B. Mochnacki 1 E. Majchrzak 2 Abstract: In the paper the analysis

More information

Finite Difference Methods (FDMs) 1

Finite Difference Methods (FDMs) 1 Finite Difference Methods (FDMs) 1 1 st - order Approxima9on Recall Taylor series expansion: Forward difference: Backward difference: Central difference: 2 nd - order Approxima9on Forward difference: Backward

More information

12 The Heat equation in one spatial dimension: Simple explicit method and Stability analysis

12 The Heat equation in one spatial dimension: Simple explicit method and Stability analysis ATH 337, by T. Lakoba, University of Vermont 113 12 The Heat equation in one spatial dimension: Simple explicit method and Stability analysis 12.1 Formulation of the IBVP and the minimax property of its

More information

Numerical simulation of thermal response of the skin tissues

Numerical simulation of thermal response of the skin tissues Numerical simulation of thermal response of the skin tissues IULIA MARIA CÂRSTEA University of Medicine and Pharmacy "Carol Davila, Bucharest ROMANIA ION CÂRSTEA Faculty of Automation, Computers and Electronics

More information

Basic Aspects of Discretization

Basic Aspects of Discretization Basic Aspects of Discretization Solution Methods Singularity Methods Panel method and VLM Simple, very powerful, can be used on PC Nonlinear flow effects were excluded Direct numerical Methods (Field Methods)

More information

Finite Difference Methods (FDMs) 2

Finite Difference Methods (FDMs) 2 Finite Difference Methods (FDMs) 2 Time- dependent PDEs A partial differential equation of the form (15.1) where A, B, and C are constants, is called quasilinear. There are three types of quasilinear equations:

More information

6.079/6.975 S. Boyd & P. Parrilo October 29 30, Midterm exam

6.079/6.975 S. Boyd & P. Parrilo October 29 30, Midterm exam 6.079/6.975 S. Boyd & P. Parrilo October 29 30, 2009. Midterm exam This is a 24 hour take-home midterm exam. Please turn it in to Professor Pablo Parrilo, (Stata Center), on Friday October 30, at 5PM (or

More information

Introduction to PDEs and Numerical Methods: Exam 1

Introduction to PDEs and Numerical Methods: Exam 1 Prof Dr Thomas Sonar, Institute of Analysis Winter Semester 2003/4 17122003 Introduction to PDEs and Numerical Methods: Exam 1 To obtain full points explain your solutions thoroughly and self-consistently

More information

These are just basic training slides, may vary from standards. Basic First Aid. 1

These are just basic training slides, may vary from standards. Basic First Aid.   1 These are just basic training slides, may vary from standards Basic First Aid www.askmaaz.com 1 What is 1 st Aid First Aid is an immediate and temporary care given to a victim of an accident or sudden

More information

Chapter 5 Types of Governing Equations. Chapter 5: Governing Equations

Chapter 5 Types of Governing Equations. Chapter 5: Governing Equations Chapter 5 Types of Governing Equations Types of Governing Equations (1) Physical Classification-1 Equilibrium problems: (1) They are problems in which a solution of a given PDE is desired in a closed domain

More information

Numerical Solution Techniques in Mechanical and Aerospace Engineering

Numerical Solution Techniques in Mechanical and Aerospace Engineering Numerical Solution Techniques in Mechanical and Aerospace Engineering Chunlei Liang LECTURE 3 Solvers of linear algebraic equations 3.1. Outline of Lecture Finite-difference method for a 2D elliptic PDE

More information

Computational aspects in numerical simulation of skin tissues

Computational aspects in numerical simulation of skin tissues Computational aspects in numerical simulation of skin tissues IULIA MARIA CÂRSTEA University of Medicine and Pharmacy "Carol Davila, Bucharest ROMANIA E_mail:nashucel@yahoo.com ION CÂRSTEA Faculty of Automation,

More information

Numerical Methods for Partial Differential Equations CAAM 452. Spring 2005

Numerical Methods for Partial Differential Equations CAAM 452. Spring 2005 Numerical Methods for Partial Differential Equations Instructor: Tim Warburton Class Location: Duncan Hall 1046 Class Time: 9:5am to 10:40am Office Hours: 10:45am to noon in DH 301 CAAM 45 Spring 005 Homeworks

More information

Chapter 5. Methods for Solving Elliptic Equations

Chapter 5. Methods for Solving Elliptic Equations Chapter 5. Methods for Solving Elliptic Equations References: Tannehill et al Section 4.3. Fulton et al (1986 MWR). Recommended reading: Chapter 7, Numerical Methods for Engineering Application. J. H.

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING CAMBRIDGE, MASSACHUSETTS NUMERICAL FLUID MECHANICS FALL 2011

MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING CAMBRIDGE, MASSACHUSETTS NUMERICAL FLUID MECHANICS FALL 2011 MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING CAMBRIDGE, MASSACHUSETTS 02139 2.29 NUMERICAL FLUID MECHANICS FALL 2011 QUIZ 2 The goals of this quiz 2 are to: (i) ask some general

More information

MATH 333: Partial Differential Equations

MATH 333: Partial Differential Equations MATH 333: Partial Differential Equations Problem Set 9, Final version Due Date: Tues., Nov. 29, 2011 Relevant sources: Farlow s book: Lessons 9, 37 39 MacCluer s book: Chapter 3 44 Show that the Poisson

More information

Diffusion / Parabolic Equations. PHY 688: Numerical Methods for (Astro)Physics

Diffusion / Parabolic Equations. PHY 688: Numerical Methods for (Astro)Physics Diffusion / Parabolic Equations Summary of PDEs (so far...) Hyperbolic Think: advection Real, finite speed(s) at which information propagates carries changes in the solution Second-order explicit methods

More information

LAB 1: MATLAB - Introduction to Programming. Objective:

LAB 1: MATLAB - Introduction to Programming. Objective: LAB 1: MATLAB - Introduction to Programming Objective: The objective of this laboratory is to review how to use MATLAB as a programming tool and to review a classic analytical solution to a steady-state

More information

Scientific Computing: An Introductory Survey

Scientific Computing: An Introductory Survey Scientific Computing: An Introductory Survey Chapter 11 Partial Differential Equations Prof. Michael T. Heath Department of Computer Science University of Illinois at Urbana-Champaign Copyright c 2002.

More information

Introduction to Partial Differential Equations

Introduction to Partial Differential Equations Introduction to Partial Differential Equations Philippe B. Laval KSU Current Semester Philippe B. Laval (KSU) 1D Heat Equation: Derivation Current Semester 1 / 19 Introduction The derivation of the heat

More information

Solving Differential Equations on 2-D Geometries with Matlab

Solving Differential Equations on 2-D Geometries with Matlab Solving Differential Equations on 2-D Geometries with Matlab Joshua Wall Drexel University Philadelphia, PA 19104 (Dated: April 28, 2014) I. INTRODUCTION Here we introduce the reader to solving partial

More information

Partial Differential Equations (PDEs) and the Finite Difference Method (FDM). An introduction

Partial Differential Equations (PDEs) and the Finite Difference Method (FDM). An introduction Page of 8 Partial Differential Equations (PDEs) and the Finite Difference Method (FDM). An introduction FILE:Chap 3 Partial Differential Equations-V6. Original: May 7, 05 Revised: Dec 9, 06, Feb 0, 07,

More information

Partial differential equations

Partial differential equations Partial differential equations Many problems in science involve the evolution of quantities not only in time but also in space (this is the most common situation)! We will call partial differential equation

More information

Applied Mathematics 205. Unit III: Numerical Calculus. Lecturer: Dr. David Knezevic

Applied Mathematics 205. Unit III: Numerical Calculus. Lecturer: Dr. David Knezevic Applied Mathematics 205 Unit III: Numerical Calculus Lecturer: Dr. David Knezevic Unit III: Numerical Calculus Chapter III.3: Boundary Value Problems and PDEs 2 / 96 ODE Boundary Value Problems 3 / 96

More information

Advection / Hyperbolic PDEs. PHY 604: Computational Methods in Physics and Astrophysics II

Advection / Hyperbolic PDEs. PHY 604: Computational Methods in Physics and Astrophysics II Advection / Hyperbolic PDEs Notes In addition to the slides and code examples, my notes on PDEs with the finite-volume method are up online: https://github.com/open-astrophysics-bookshelf/numerical_exercises

More information

1 Finite difference example: 1D implicit heat equation

1 Finite difference example: 1D implicit heat equation 1 Finite difference example: 1D implicit heat equation 1.1 Boundary conditions Neumann and Dirichlet We solve the transient heat equation ρc p t = ( k ) (1) on the domain L/2 x L/2 subject to the following

More information

Fall Exam II. Wed. Nov. 9, 2005

Fall Exam II. Wed. Nov. 9, 2005 Fall 005 10.34 Eam II. Wed. Nov. 9 005 (SOLUTION) Read through the entire eam before beginning work and budget your time. You are researching drug eluting stents and wish to understand better how the drug

More information

Unicellular vs. Multicellular Organisms Worksheet

Unicellular vs. Multicellular Organisms Worksheet Name Date Unicellular vs. Multicellular Organisms Worksheet Instructions for VIVED Science 1. Open the Plant Cell Structures and Animal (Human) Cell Structures sessions and follow the instructions. 2.

More information

2.3. Quantitative Properties of Finite Difference Schemes. Reading: Tannehill et al. Sections and

2.3. Quantitative Properties of Finite Difference Schemes. Reading: Tannehill et al. Sections and 3 Quantitative Properties of Finite Difference Schemes 31 Consistency, Convergence and Stability of FD schemes Reading: Tannehill et al Sections 333 and 334 Three important properties of FD schemes: Consistency

More information

Numerical simulation of human thermal comfort in indoor environment

Numerical simulation of human thermal comfort in indoor environment Numerical simulation of human thermal comfort in indoor environment TIBERIU SPIRCU 1, IULIA MARIA CÂRSTEA 2, ION CARSTEA 3 1, 2 University of Medicine and Pharmacy "Carol Davila, Bucharest ROMANIA E_mail:spircut@yahoo.com

More information

Modeling the Spread of Frostbite. Mehmet Badur. Mike Gibbons. Kara Johnson

Modeling the Spread of Frostbite. Mehmet Badur. Mike Gibbons. Kara Johnson Modeling the Spread of Frostbite Mehmet Badur Mike Gibbons Kara Johnson BENG 221 October 25, 213 Contents Problem Statement... 3 Background and Model... 3 Numerical analysis... 7 Conclusion... 11 References...

More information

Chapter 5 HIGH ACCURACY CUBIC SPLINE APPROXIMATION FOR TWO DIMENSIONAL QUASI-LINEAR ELLIPTIC BOUNDARY VALUE PROBLEMS

Chapter 5 HIGH ACCURACY CUBIC SPLINE APPROXIMATION FOR TWO DIMENSIONAL QUASI-LINEAR ELLIPTIC BOUNDARY VALUE PROBLEMS Chapter 5 HIGH ACCURACY CUBIC SPLINE APPROXIMATION FOR TWO DIMENSIONAL QUASI-LINEAR ELLIPTIC BOUNDARY VALUE PROBLEMS 5.1 Introduction When a physical system depends on more than one variable a general

More information

University of Jordan School of Medicine MD Program Curriculum

University of Jordan School of Medicine MD Program Curriculum University of Jordan School of Medicine MD Program Curriculum Course Title: General Histology Course number: 0502111 Credit Hours: 2 credits Academic Year Level: 1st year, 2nd semester 2016/2017 Course

More information

FDM for parabolic equations

FDM for parabolic equations FDM for parabolic equations Consider the heat equation where Well-posed problem Existence & Uniqueness Mass & Energy decreasing FDM for parabolic equations CNFD Crank-Nicolson + 2 nd order finite difference

More information

Numerical Methods for PDEs

Numerical Methods for PDEs Numerical Methods for PDEs Partial Differential Equations (Lecture 1, Week 1) Markus Schmuck Department of Mathematics and Maxwell Institute for Mathematical Sciences Heriot-Watt University, Edinburgh

More information

Examining the Effect of Temperature on Reaction Rate

Examining the Effect of Temperature on Reaction Rate 1 Purpose: To measure reaction rate at different temperatures for the reaction between persulfate ions, S2O8-2, and iodide ions, I -, and thereby determine the activation energy and frequency factor for

More information

Video 15: PDE Classification: Elliptic, Parabolic and Hyperbolic March Equations 11, / 20

Video 15: PDE Classification: Elliptic, Parabolic and Hyperbolic March Equations 11, / 20 Video 15: : Elliptic, Parabolic and Hyperbolic Equations March 11, 2015 Video 15: : Elliptic, Parabolic and Hyperbolic March Equations 11, 2015 1 / 20 Table of contents 1 Video 15: : Elliptic, Parabolic

More information

AM 205: lecture 14. Last time: Boundary value problems Today: Numerical solution of PDEs

AM 205: lecture 14. Last time: Boundary value problems Today: Numerical solution of PDEs AM 205: lecture 14 Last time: Boundary value problems Today: Numerical solution of PDEs ODE BVPs A more general approach is to formulate a coupled system of equations for the BVP based on a finite difference

More information

CVEEN 7330 Modeling Exercise 2c

CVEEN 7330 Modeling Exercise 2c CVEEN 7330 Modeling Exercise 2c Table of Contents Table of Contents... 1 Objectives:... 2 FLAC Input:... 2 DEEPSOIL INPUTS:... 5 Required Outputs from FLAC:... 6 Required Output from DEEPSOIL:... 6 Additional

More information

Part 1. The diffusion equation

Part 1. The diffusion equation Differential Equations FMNN10 Graded Project #3 c G Söderlind 2016 2017 Published 2017-11-27. Instruction in computer lab 2017-11-30/2017-12-06/07. Project due date: Monday 2017-12-11 at 12:00:00. Goals.

More information

ExACT Exact Analytical Conduction Toolbox

ExACT Exact Analytical Conduction Toolbox ExACT Exact Analytical Conduction Toolbox X23B60T0 case Kevin D. Cole and Lukas G. Brettmann April 28, 2014 "Copyright (c) by Kevin D. Cole and Lukas Brettmann" 1 Description Slab body initially at ambient

More information

The Finite Difference Method

The Finite Difference Method Chapter 5. The Finite Difference Method This chapter derives the finite difference equations that are used in the conduction analyses in the next chapter and the techniques that are used to overcome computational

More information

PARAMETRIC STUDY OF FRACTIONAL BIOHEAT EQUATION IN SKIN TISSUE WITH SINUSOIDAL HEAT FLUX. 1. Introduction

PARAMETRIC STUDY OF FRACTIONAL BIOHEAT EQUATION IN SKIN TISSUE WITH SINUSOIDAL HEAT FLUX. 1. Introduction Fractional Differential Calculus Volume 5, Number 1 (15), 43 53 doi:10.7153/fdc-05-04 PARAMETRIC STUDY OF FRACTIONAL BIOHEAT EQUATION IN SKIN TISSUE WITH SINUSOIDAL HEAT FLUX R. S. DAMOR, SUSHIL KUMAR

More information

Redhouane Henda Department of Chemical Engineering Lund University, Lund, Sweden Nov , 2006

Redhouane Henda Department of Chemical Engineering Lund University, Lund, Sweden Nov , 2006 Redhouane Henda Department of Chemical Engineering Lund University, Lund, Sweden Nov. 13-16, 2006 1 Rationale Process simulation successful tool for design, optimization and control of chemical processes

More information

EGR 111 Heat Transfer

EGR 111 Heat Transfer EGR 111 Heat Transfer The purpose of this lab is to use MATLAB to determine the heat transfer in a 1-dimensional system. New MATLAB commands: (none) 1. Heat Transfer 101 Heat Transfer is thermal energy

More information

LAB 5. INTRODUCTION Finite Difference Method

LAB 5. INTRODUCTION Finite Difference Method LAB 5 In previous two computer labs, you have seen how the analytical techniques for solving electrostatic problems can be approximately solved using numerical methods. For example, you have approximated

More information

Design of optimal Runge-Kutta methods

Design of optimal Runge-Kutta methods Design of optimal Runge-Kutta methods David I. Ketcheson King Abdullah University of Science & Technology (KAUST) D. Ketcheson (KAUST) 1 / 36 Acknowledgments Some parts of this are joint work with: Aron

More information

Partial Differential Equations II

Partial Differential Equations II Partial Differential Equations II CS 205A: Mathematical Methods for Robotics, Vision, and Graphics Justin Solomon CS 205A: Mathematical Methods Partial Differential Equations II 1 / 28 Almost Done! Homework

More information

Numerical algorithms for one and two target optimal controls

Numerical algorithms for one and two target optimal controls Numerical algorithms for one and two target optimal controls Sung-Sik Kwon Department of Mathematics and Computer Science, North Carolina Central University 80 Fayetteville St. Durham, NC 27707 Email:

More information

Computer Applications in Engineering and Construction Programming Assignment #9 Principle Stresses and Flow Nets in Geotechnical Design

Computer Applications in Engineering and Construction Programming Assignment #9 Principle Stresses and Flow Nets in Geotechnical Design CVEN 302-501 Computer Applications in Engineering and Construction Programming Assignment #9 Principle Stresses and Flow Nets in Geotechnical Design Date distributed : 12/2/2015 Date due : 12/9/2015 at

More information

Module 1: Introduction to Finite Difference Method and Fundamentals of CFD Lecture 1: Finite Difference Method

Module 1: Introduction to Finite Difference Method and Fundamentals of CFD Lecture 1: Finite Difference Method file:///d:/chitra/nptel_phase2/mechanical/cfd/lecture1/1_1.htm 1 of 1 6/19/2012 4:29 PM The Lecture deals with: Classification of Partial Differential Equations Boundary and Initial Conditions Finite Differences

More information

Module A BODY PLAN & ORGANIZATION

Module A BODY PLAN & ORGANIZATION Module A BODY PLAN & ORGANIZATION Topic from Anatomical position Body planes & sections Body cavities & regions Directional terms Basic terminology Levels of organization Survey of body systems 1. Describe

More information

Introduction to Partial Differential Equations

Introduction to Partial Differential Equations Introduction to Partial Differential Equations Philippe B. Laval KSU Current Semester Philippe B. Laval (KSU) Key Concepts Current Semester 1 / 25 Introduction The purpose of this section is to define

More information

SOE3213/4: CFD Lecture 3

SOE3213/4: CFD Lecture 3 CFD { SOE323/4: CFD Lecture 3 @u x @t @u y @t @u z @t r:u = 0 () + r:(uu x ) = + r:(uu y ) = + r:(uu z ) = @x @y @z + r 2 u x (2) + r 2 u y (3) + r 2 u z (4) Transport equation form, with source @x Two

More information

Computational Fluid Dynamics-1(CFDI)

Computational Fluid Dynamics-1(CFDI) بسمه تعالی درس دینامیک سیالات محاسباتی 1 دوره کارشناسی ارشد دانشکده مهندسی مکانیک دانشگاه صنعتی خواجه نصیر الدین طوسی Computational Fluid Dynamics-1(CFDI) Course outlines: Part I A brief introduction to

More information

1. Background: The SVD and the best basis (questions selected from Ch. 6- Can you fill in the exercises?)

1. Background: The SVD and the best basis (questions selected from Ch. 6- Can you fill in the exercises?) Math 35 Exam Review SOLUTIONS Overview In this third of the course we focused on linear learning algorithms to model data. summarize: To. Background: The SVD and the best basis (questions selected from

More information

M.Sc. in Meteorology. Numerical Weather Prediction

M.Sc. in Meteorology. Numerical Weather Prediction M.Sc. in Meteorology UCD Numerical Weather Prediction Prof Peter Lynch Meteorology & Climate Centre School of Mathematical Sciences University College Dublin Second Semester, 2005 2006. In this section

More information

Elements of Matlab and Simulink Lecture 7

Elements of Matlab and Simulink Lecture 7 Elements of Matlab and Simulink Lecture 7 Emanuele Ruffaldi 12th May 2009 Copyright 2009,Emanuele Ruffaldi. This work is licensed under the Creative Commons Attribution-ShareAlike License. PARTIAL DIFFERENTIAL

More information

University of Illinois at Urbana-Champaign College of Engineering

University of Illinois at Urbana-Champaign College of Engineering University of Illinois at Urbana-Champaign College of Engineering CEE 570 Finite Element Methods (in Solid and Structural Mechanics) Spring Semester 2014 Quiz #2 April 14, 2014 Name: SOLUTION ID#: PS1.:

More information

A two level finite difference scheme for one dimensional PennesÕ bioheat equation

A two level finite difference scheme for one dimensional PennesÕ bioheat equation Applied Mathematics and Computation 171 (5) 3 331 wwwelseviercom/locate/amc A two level finite difference scheme for one dimensional PennesÕ bioheat equation Jennifer J Zhao a,1, Jun Zhang b, *,, Ning

More information

A Matlab Tutorial for Diffusion-Convection-Reaction Equations using DGFEM

A Matlab Tutorial for Diffusion-Convection-Reaction Equations using DGFEM MIDDLE EAST TECHNICAL UNIVERSITY Ankara, Turkey INSTITUTE OF APPLIED MATHEMATICS http://iam.metu.edu.tr arxiv:1502.02941v1 [math.na] 10 Feb 2015 A Matlab Tutorial for Diffusion-Convection-Reaction Equations

More information

Welcome to Math 257/316 - Partial Differential Equations

Welcome to Math 257/316 - Partial Differential Equations Welcome to Math 257/316 - Partial Differential Equations Instructor: Mona Rahmani email: mrahmani@math.ubc.ca Office: Mathematics Building 110 Office hours: Mondays 2-3 pm, Wednesdays and Fridays 1-2 pm.

More information

Nusselt, Rayleigh, Grashof, And Prandtl: Direct Calculation of A Userdefined Convective Heat Flux

Nusselt, Rayleigh, Grashof, And Prandtl: Direct Calculation of A Userdefined Convective Heat Flux Nusselt, Rayleigh, Grashof, And Prandtl: Direct Calculation of A Userdefined Convective Heat Flux J. F. Hansen Thoratec Corporation 6035 Stoneridge Drive, Pleasanton CA 94588, USA fhansen@thoratec.com

More information

Elliptic Problems / Multigrid. PHY 604: Computational Methods for Physics and Astrophysics II

Elliptic Problems / Multigrid. PHY 604: Computational Methods for Physics and Astrophysics II Elliptic Problems / Multigrid Summary of Hyperbolic PDEs We looked at a simple linear and a nonlinear scalar hyperbolic PDE There is a speed associated with the change of the solution Explicit methods

More information

Introduction to Heat and Mass Transfer. Week 9

Introduction to Heat and Mass Transfer. Week 9 Introduction to Heat and Mass Transfer Week 9 補充! Multidimensional Effects Transient problems with heat transfer in two or three dimensions can be considered using the solutions obtained for one dimensional

More information

EE263 Midterm Exam. This is a 24 hour take-home midterm. Please turn it in at Bytes Cafe in the Packard building, 24 hours after you pick it up.

EE263 Midterm Exam. This is a 24 hour take-home midterm. Please turn it in at Bytes Cafe in the Packard building, 24 hours after you pick it up. EE263 Midterm Exam This is a 24 hour take-home midterm. Please turn it in at Bytes Cafe in the Packard building, 24 hours after you pick it up. You may use any books, notes, or computer programs (e.g.,

More information

Introduction to Computational Fluid Dynamics

Introduction to Computational Fluid Dynamics AML2506 Biomechanics and Flow Simulation Day Introduction to Computational Fluid Dynamics Session Speaker Dr. M. D. Deshpande M.S. Ramaiah School of Advanced Studies - Bangalore 1 Session Objectives At

More information

Physics 584 Computational Methods

Physics 584 Computational Methods Physics 584 Computational Methods Introduction to Matlab and Numerical Solutions to Ordinary Differential Equations Ryan Ogliore April 18 th, 2016 Lecture Outline Introduction to Matlab Numerical Solutions

More information

2.29 Numerical Fluid Mechanics Spring 2015 Lecture 13

2.29 Numerical Fluid Mechanics Spring 2015 Lecture 13 REVIEW Lecture 12: Spring 2015 Lecture 13 Grid-Refinement and Error estimation Estimation of the order of convergence and of the discretization error Richardson s extrapolation and Iterative improvements

More information

Numerical Methods for Partial Differential Equations: an Overview.

Numerical Methods for Partial Differential Equations: an Overview. Numerical Methods for Partial Differential Equations: an Overview math652_spring2009@colorstate PDEs are mathematical models of physical phenomena Heat conduction Wave motion PDEs are mathematical models

More information

Section 26.1: Reporting Conventions. Section 26.2: Fluxes Through Boundaries. Section 26.3: Forces on Boundaries

Section 26.1: Reporting Conventions. Section 26.2: Fluxes Through Boundaries. Section 26.3: Forces on Boundaries Chapter 26. Alphanumeric Reporting FLUENT provides tools for computing and reporting integral quantities at surfaces and boundaries. These tools enable you to find the mass flow rate and heat transfer

More information

Review for Exam 2 Ben Wang and Mark Styczynski

Review for Exam 2 Ben Wang and Mark Styczynski Review for Exam Ben Wang and Mark Styczynski This is a rough approximation of what we went over in the review session. This is actually more detailed in portions than what we went over. Also, please note

More information

Introduction to Heat and Mass Transfer. Week 7

Introduction to Heat and Mass Transfer. Week 7 Introduction to Heat and Mass Transfer Week 7 Example Solution Technique Using either finite difference method or finite volume method, we end up with a set of simultaneous algebraic equations in terms

More information

Qualifying Examination

Qualifying Examination Summer 24 Day. Monday, September 5, 24 You have three hours to complete this exam. Work all problems. Start each problem on a All problems are 2 points. Please email any electronic files in support of

More information

LibMesh Experience and Usage

LibMesh Experience and Usage LibMesh Experience and Usage John W. Peterson peterson@cfdlab.ae.utexas.edu and Roy H. Stogner roystgnr@cfdlab.ae.utexas.edu Univ. of Texas at Austin September 9, 2008 1 Introduction 2 Weighted Residuals

More information

) (d o f. For the previous layer in a neural network (just the rightmost layer if a single neuron), the required update equation is: 2.

) (d o f. For the previous layer in a neural network (just the rightmost layer if a single neuron), the required update equation is: 2. 1 Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.034 Artificial Intelligence, Fall 2011 Recitation 8, November 3 Corrected Version & (most) solutions

More information

Lab 5: Post Processing and Solving Conduction Problems. Objective:

Lab 5: Post Processing and Solving Conduction Problems. Objective: Lab 5: Post Processing and Solving Conduction Problems Objective: The objective of this lab is to use the tools we have developed in MATLAB and SolidWorks to solve conduction heat transfer problems that

More information

Tutorial 2. Introduction to numerical schemes

Tutorial 2. Introduction to numerical schemes 236861 Numerical Geometry of Images Tutorial 2 Introduction to numerical schemes c 2012 Classifying PDEs Looking at the PDE Au xx + 2Bu xy + Cu yy + Du x + Eu y + Fu +.. = 0, and its discriminant, B 2

More information

The method of lines (MOL) for the diffusion equation

The method of lines (MOL) for the diffusion equation Chapter 1 The method of lines (MOL) for the diffusion equation The method of lines refers to an approximation of one or more partial differential equations with ordinary differential equations in just

More information

Project 4: Navier-Stokes Solution to Driven Cavity and Channel Flow Conditions

Project 4: Navier-Stokes Solution to Driven Cavity and Channel Flow Conditions Project 4: Navier-Stokes Solution to Driven Cavity and Channel Flow Conditions R. S. Sellers MAE 5440, Computational Fluid Dynamics Utah State University, Department of Mechanical and Aerospace Engineering

More information

1. Introduction. Hang Qian 1 Iowa State University

1. Introduction. Hang Qian 1 Iowa State University Users Guide to the VARDAS Package Hang Qian 1 Iowa State University 1. Introduction The Vector Autoregression (VAR) model is widely used in macroeconomics. However, macroeconomic data are not always observed

More information

Math 116 First Midterm October 17, 2014

Math 116 First Midterm October 17, 2014 Math 116 First Midterm October 17, 2014 Name: Instructor: Section: 1. Do not open this exam until you are told to do so. 2. This exam has 9 pages including this cover AND IS DOUBLE SIDED. There are 9 problems.

More information

Before we look at numerical methods, it is important to understand the types of equations we will be dealing with.

Before we look at numerical methods, it is important to understand the types of equations we will be dealing with. Chapter 1. Partial Differential Equations (PDEs) Required Readings: Chapter of Tannehill et al (text book) Chapter 1 of Lapidus and Pinder (Numerical Solution of Partial Differential Equations in Science

More information

Introduction to Heat Transfer Analysis

Introduction to Heat Transfer Analysis Introduction to Heat Transfer Analysis Thermal Network Solutions with TNSolver Bob Cochran Applied Computational Heat Transfer Seattle, WA TNSolver@heattransfer.org ME 331 Introduction to Heat Transfer

More information

One dimensional steady state diffusion, with and without source. Effective transfer coefficients

One dimensional steady state diffusion, with and without source. Effective transfer coefficients One dimensional steady state diffusion, with and without source. Effective transfer coefficients 2 mars 207 For steady state situations t = 0) and if convection is not present or negligible the transport

More information

Multi-Factor Finite Differences

Multi-Factor Finite Differences February 17, 2017 Aims and outline Finite differences for more than one direction The θ-method, explicit, implicit, Crank-Nicolson Iterative solution of discretised equations Alternating directions implicit

More information

Numerical Hydraulics

Numerical Hydraulics ETHZ, Fall 017 Numerical Hydraulics Assignment 4 Numerical solution of 1D solute transport using Matlab http://www.bafg.de/ http://warholian.com Numerical Hydraulics Assignment 4 ETH 017 1 Introduction

More information

Skin Damage Visualizer TiVi60 User Manual

Skin Damage Visualizer TiVi60 User Manual Skin Damage Visualizer TiVi60 User Manual PIONEERS IN TISSUE VIABILITY IMAGING User Manual 3.2 Version 3.2 October 2013 Dear Valued Customer! TiVi60 Skin Damage Visualizer Welcome to the WheelsBridge Skin

More information

22.56J Noninvasive Imaging in Biology and Medicine Instructor: Prof. Alan Jasanoff Fall 2005, TTh 1-2:30

22.56J Noninvasive Imaging in Biology and Medicine Instructor: Prof. Alan Jasanoff Fall 2005, TTh 1-2:30 22.56J Noninvasive Imaging in Biology and Medicine Instructor: Prof. Alan Jasanoff Fall 2005, TTh 1-2:30 Sample problems HW1 1. Look up (e.g. in the CRC Manual of Chemistry and Physics www.hbcpnetbase.com)

More information

Introduction to Heat and Mass Transfer. Week 8

Introduction to Heat and Mass Transfer. Week 8 Introduction to Heat and Mass Transfer Week 8 Next Topic Transient Conduction» Analytical Method Plane Wall Radial Systems Semi-infinite Solid Multidimensional Effects Analytical Method Lumped system analysis

More information

A Study of Transonic Flow and Airfoils. Presented by: Huiliang Lui 30 th April 2007

A Study of Transonic Flow and Airfoils. Presented by: Huiliang Lui 30 th April 2007 A Study of Transonic Flow and Airfoils Presented by: Huiliang Lui 3 th April 7 Contents Background Aims Theory Conservation Laws Irrotational Flow Self-Similarity Characteristics Numerical Modeling Conclusion

More information

Partial Differential Equations

Partial Differential Equations Next: Using Matlab Up: Numerical Analysis for Chemical Previous: Ordinary Differential Equations Subsections Finite Difference: Elliptic Equations The Laplace Equations Solution Techniques Boundary Conditions

More information

Created: 2/3/96 Modified: September 29, Author: Theresa Julia Zielinski Page 1

Created: 2/3/96 Modified: September 29, Author: Theresa Julia Zielinski Page 1 Exploring Orthonormal Functions by Theresa Julia Zielinski Department of Chemistry, Medical Technology, and Physics Monmouth University West Long Branch, NJ 7764-898 tzielins@monmouth.edu Copyright 7 by

More information

Finite difference methods for the diffusion equation

Finite difference methods for the diffusion equation Finite difference methods for the diffusion equation D150, Tillämpade numeriska metoder II Olof Runborg May 0, 003 These notes summarize a part of the material in Chapter 13 of Iserles. They are based

More information

Math 216 First Midterm 18 October, 2018

Math 216 First Midterm 18 October, 2018 Math 16 First Midterm 18 October, 018 This sample exam is provided to serve as one component of your studying for this exam in this course. Please note that it is not guaranteed to cover the material that

More information

MATH 251 Final Examination August 14, 2015 FORM A. Name: Student Number: Section:

MATH 251 Final Examination August 14, 2015 FORM A. Name: Student Number: Section: MATH 251 Final Examination August 14, 2015 FORM A Name: Student Number: Section: This exam has 11 questions for a total of 150 points. Show all your work! In order to obtain full credit for partial credit

More information

q t = F q x. (1) is a flux of q due to diffusion. Although very complex parameterizations for F q

q t = F q x. (1) is a flux of q due to diffusion. Although very complex parameterizations for F q ! Revised Tuesday, December 8, 015! 1 Chapter 7: Diffusion Copyright 015, David A. Randall 7.1! Introduction Diffusion is a macroscopic statistical description of microscopic advection. Here microscopic

More information