A Dynamic model for requirements planning with application to supply chain optimization

Size: px
Start display at page:

Download "A Dynamic model for requirements planning with application to supply chain optimization"

Transcription

1 This summary presentation is based on: Graves, Stephen, D.B. Kletter and W.B. Hetzel. "A Dynamic Model for Requirements Planning with Application to Supply Chain Optimization." Operations Research 46, supp. no. 3 (1998): S A Dynamic model for requirements planning with application to supply chain optimization by Stephen Graves, David Kletter and William Hezel (1998) The Theory of Operations Management March 11, 2004 Presenter: Nicolas Miègeville

2 Objective of the paper Overcome limits of Materials Requirements Process models Capture key dynamics in the planning process Develop a new model for requirements planning in multi-stage production-inventory systems 7/6/ The Theory of Operations Management 2

3 Quick Review of MRP At each step of the process, production of finished good requires components MRP methodology: iteration of Multiperiod forecast of demand Production plan Requirements forecasts for components (offset leadtimes and yields) Assumptions: accuracy of forecasts Deterministic parameters Widely used in discrete parts manufacturing firms: MRP process is revised periodically Limits: deviations from the plan due to incertainty 7/6/ The Theory of Operations Management 3

4 Literature Review Few papers about dynamic modeling of requirements No attempt to model a dynamic forecast process, except: Graves (1986): two-stage production inventory system Health and Jackson (1994): MMFE Conversion forecasts-production plan comes from previous Graves works. 7/6/ The Theory of Operations Management 4

5 Methodology and Results We model: Forecasts as a stochastic process Conversion into production plan as a linear system We create: A single stage model production demand From which we can built general acyclic networks of multiple stages We try it on a real case (LFM program, Hetzel) 7/6/ The Theory of Operations Management 5

6 Overview Single-stage model Extension to multistage systems Case study of Kodak Conclusion 7/6/ The Theory of Operations Management 6

7 Overview Single-stage model Model Forecasts process Conversion into production outputs Measures of interest Optimality of the model Extension to multistage systems Case study of Kodak Conclusion 7/6/ The Theory of Operations Management 7

8 The forecast process model Discrete time At each period t: f t (t+i), i<=h f t (t+i)= Cte, i>h f t (t) is the observed demand Forecast revision: t t t 1 Units Demand forecasts Week i f ( t+ i) = f ( t+ i) f ( t+ i) i = 0,1, H f is iid random vector E[ f ] = 0, var[ f ] =Σ t t t d(t+i) i-period forecast error: f () t f () t t t i 7/6/ The Theory of Operations Management 8

9 The forecast process properties Property 1: The i-period forecast is an unbiased estimate of demand in period t Property 2: Each forecast revision improves the forecast i 1 f () t = f () t + f () t t t i t+ k k = 0 i 1 i 1 2 t t i = t k = k k= 0 k= 0 Var[ f ( t) f ( t)] Var[ f ( t)] σ Property 3: The variance of the forecast error over the horizon MUST equal the demand variance H [ 2 t( )] = [ t( ) t H+ 1( )] = σ k = ( ) k = 0 Var f t Var f t f t Tr 7/6/ The Theory of Operations Management 9

10 Production plan: assumptions At each period t: F t (t+i) is the planned production (i=0, actual completed) I t (t+i) is the planned inventory We introduce the plan revision: F( t+ i) = F( t+ i) F ( t+ i) t t t 1 We SET the production plan F t (t+i) so that I t (t+h)=ss>0 (cumulative revision to the PP=cumulative forecast revision) From the Fundamental conservation equation: I ( t+ i) = I ( t) + ( F( t+ k) f ( t+ k)) t t t t k = 1 H H We find: i F( t+ k) = f ( t+ k) t k= 0 k= 0 t We assume the schedule update as a linear system 7/6/ The Theory of Operations Management 10

11 Linear system assumption we model: H F ( t+ i) = w f ( t+ j) i= 0,1,, H t ij t j= 0 H i= 0 w ij = 1 0 w 1 ij w ij = proportion of the forecast revision for t+j that is added to the schedule of production outputs for t+i Weights express tradeoff between Smooth production and Inventory wij =1 / (H+1) wii =1 ; wij = 0 (i!=j) Decisions variables OR parameters 7/6/ The Theory of Operations Management 11

12 Smoothing production 4 3 units 2 1 f(t) F(t) I(t) periods F(t) constant ; needed capacity = 1 ; Average inventory = 1,5 7/6/ The Theory of Operations Management 12

13 Minimizing inventory cost 4 3 units 2 1 f(t) F(t) I(t) periods F(t) = f(t) ; needed capacity = 4 ; Average inventory = 0 7/6/ The Theory of Operations Management 13

14 Measures of interest we note: F = W f t t (H+1) by (H+1) matrix We obtain : F t H i µ B W ft i i= 0 = + We can now measure the smoothness AND the stability of the production outputs, given by: (see section 1.3, Measures of Interest, in the Graves, Kletter, and Hetzel paper) And if we consider the stock: (see section 1.3, Measures of Interest, in the Graves, Kletter, and Hetzel paper) 7/6/ The Theory of Operations Management 14

15 Global view smoothness and stability of the production outputs smoothness and stability of the forecasts for the upstream stages var ( F ) = WΣW t var[ f t ] =Σ Service level = stock out probability EI ( ) > kσ ( I) t t = ss How to choose W? 7/6/ The Theory of Operations Management 15

16 Optimization problem Tradeoff between production smoothing and inventory: min var[ Ft ( t)] subject to = Min(required capacity) var[ It ( t)] K 2 = constraint on amount of ss H i= 0 w ij = 1 j 7/6/ The Theory of Operations Management 16

17 Resolution (1/2) Lagrangian relaxation: L( λ) = min var[ F( t)] + λvar[ I ( t)] λk t t 2 We assume: 2 σ 0 2 σ1 0 = σ H 1 2 σ H Forecast revisions are uncorrelated We get a decomposition into H+1 subproblems H H H j ij j ij j j= 0 i= 0 i= 0 L( λ) = L ( λ) λk L( λ) = min ( w σ ) + λ ( b σ ) 7/6/ The Theory of Operations Management 17

18 Resolution (2/2) Convex program Karush-Kuhn-Tucker are necessary AND sufficient w + λ ( w + + w = u ) = γ ij 0 j kj kj k= i Which can be transformed H w = P( λ) w i = 0, 2,, j ij i 0 j w = P( λ) w R ( λ) i = j + 1,, H ij i 0 j i j Which defines all elements (with the convexity constraint) H j= 0 w ij = 1 7/6/ The Theory of Operations Management 18

19 Solution The Matrix W is symmetric about the diagonal and the offdiagonal Wij >0, increasing and strictly convex over i=1 j Wij >0, decreasing and strictly convex over i=j H The optimal value of each subproblem is L w j H 2 j( λ) = jjσ j = 0,1,, we show: k (1 α) λ wj+ k, j= wj k, j= α whereα (1 α) = + ( λ+ 4) And then: L( λ) = minvar[ F( t)] + λvar[ I ( t)] λk λ tr( Σ) λk ( λ + 4) t 2 t 2 7/6/ The Theory of Operations Management 19

20 Computation W 1 λ λ λ 1 λ λ λ λ = λ λ λ λ 1 λ + 1 λ λ 7/6/ The Theory of Operations Management 20

21 interpretation Wjj1 when Lambda increases low inventory but no production smoothness (See Figures 2 and 3 on pages S43 of the Graves, Kletter, and Hetzel paper) Wjj(1/H+1) when Lambda 0 High inventory but great production smoothness 7/6/ The Theory of Operations Management 21

22 Overview Single-stage model Extension to multistage systems Case study of Kodak Conclusion 7/6/ The Theory of Operations Management 22

23 Multi stage model assumptions Acyclic network on n stages, m end-items stages, m<n 1 m End items forecasts independent Downstream stages decoupled from upstream ones. Each stage works like the single-one model We note: f, i = 1,, n i F, i = 1,, n i We find again: F = W f for each stagei i i i 7/6/ The Theory of Operations Management 23

24 Stages linkage assumptions At each period, each stage must translate outputs into production starts We use a linear system G = A F i i i Ai can model leadtimes, yields, etc. Push or pull policies f i We show that each is an iid random vector All previous assumptions are satisfied 7/6/ The Theory of Operations Management 24

25 Overview Single-stage model Extension to multistage systems Case study of Kodak Conclusion 7/6/ The Theory of Operations Management 25

26 Kodak issue Multistage system: film making supply chain. Three steps, with Growth of items Growth of value Decrease of leadtimes How to determine optimal safety stock level at each stage? Use DRP model Wide data collection W = I (no production smoothing) Estimation of forecasts covariance matrix A captures yields 7/6/ The Theory of Operations Management 26

27 Practical results -20 % recommendation Inventory pushed upstream Risk pooling Lowest value Shortcomings of DRP model: Lead time variability Stationary average demand 7/6/ The Theory of Operations Management 27

28 Overview Single-stage model Extension to multistage systems Case study of Kodak Conclusion 7/6/ The Theory of Operations Management 28

29 Conclusion Model a single inventory production system as a linear system Multistage Network: Production plan Material flow Forecast of demand Production plan Forecast of demand Information flow Following research topics 7/6/ The Theory of Operations Management 29

Production Planning and Control

Production Planning and Control Production Planning and Control MAERIAL REQUIREMEN PLANNING Haeryip Sihombing BMFP 453 4 Universiti eknikal Malaysia Melaka (UeM) HAERY SIHOMBING First widely available software implementation of a manufacturing

More information

Calculation exercise 1 MRP, JIT, TOC and SOP. Dr Jussi Heikkilä

Calculation exercise 1 MRP, JIT, TOC and SOP. Dr Jussi Heikkilä Calculation exercise 1 MRP, JIT, TOC and SOP Dr Jussi Heikkilä Problem 1: MRP in XYZ Company fixed lot size Item A Period 1 2 3 4 5 6 7 8 9 10 Gross requirements 71 46 49 55 52 47 51 48 56 51 Scheduled

More information

2001, Dennis Bricker Dept of Industrial Engineering The University of Iowa. DP: Producing 2 items page 1

2001, Dennis Bricker Dept of Industrial Engineering The University of Iowa. DP: Producing 2 items page 1 Consider a production facility which can be devoted in each period to one of two products. For simplicity, we assume that the production rate is deterministic and that production is always at full capacity.

More information

Advances in Continuous Replenishment Systems. Edmund W. Schuster. Massachusetts Institute of Technology

Advances in Continuous Replenishment Systems. Edmund W. Schuster. Massachusetts Institute of Technology Advances in Continuous Replenishment Systems Edmund W. Schuster Massachusetts Institute of Technology TRADITIONAL REPLENISHMENT SYSTEM DEMAND FLOW SUPPLIER DISTRIBUTOR WAREHOUSE RETAIL STORES CONSUMER

More information

An ARIMA Supply Chain Model with a Generalized Ordering Policy

An ARIMA Supply Chain Model with a Generalized Ordering Policy University of Tennessee, Knoxville Trace: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 12-2004 An ARIMA Supply Chain Model with a Generalized Ordering Policy Vuttichai

More information

Information Sharing In Supply Chains: An Empirical and Theoretical Valuation

Information Sharing In Supply Chains: An Empirical and Theoretical Valuation Case 11/17/215 Information Sharing In Supply Chains: An Empirical and Theoretical Valuation Ruomeng Cui (Kelley School of Business) Gad Allon (Kellogg School of Management) Achal Bassamboo (Kellogg School

More information

Inventory Control with Convex Costs

Inventory Control with Convex Costs Inventory Control with Convex Costs Jian Yang and Gang Yu Department of Industrial and Manufacturing Engineering New Jersey Institute of Technology Newark, NJ 07102 yang@adm.njit.edu Department of Management

More information

Computer Science, Informatik 4 Communication and Distributed Systems. Simulation. Discrete-Event System Simulation. Dr.

Computer Science, Informatik 4 Communication and Distributed Systems. Simulation. Discrete-Event System Simulation. Dr. Simulation Discrete-Event System Simulation Chapter 0 Output Analysis for a Single Model Purpose Objective: Estimate system performance via simulation If θ is the system performance, the precision of the

More information

On service level measures in stochastic inventory control

On service level measures in stochastic inventory control On service level measures in stochastic inventory control Dr. Roberto Rossi The University of Edinburgh Business School, The University of Edinburgh, UK roberto.rossi@ed.ac.uk Friday, June the 21th, 2013

More information

A PARAMETRIC DECOMPOSITION BASED APPROACH FOR MULTI-CLASS CLOSED QUEUING NETWORKS WITH SYNCHRONIZATION STATIONS

A PARAMETRIC DECOMPOSITION BASED APPROACH FOR MULTI-CLASS CLOSED QUEUING NETWORKS WITH SYNCHRONIZATION STATIONS A PARAMETRIC DECOMPOSITION BASED APPROACH FOR MULTI-CLASS CLOSED QUEUING NETWORKS WITH SYNCHRONIZATION STATIONS Kumar Satyam and Ananth Krishnamurthy Department of Decision Sciences and Engineering Systems,

More information

Optimum Power Allocation in Fading MIMO Multiple Access Channels with Partial CSI at the Transmitters

Optimum Power Allocation in Fading MIMO Multiple Access Channels with Partial CSI at the Transmitters Optimum Power Allocation in Fading MIMO Multiple Access Channels with Partial CSI at the Transmitters Alkan Soysal Sennur Ulukus Department of Electrical and Computer Engineering University of Maryland,

More information

A Customer-Item Decomposition Approach to Stochastic Inventory Systems with Correlation

A Customer-Item Decomposition Approach to Stochastic Inventory Systems with Correlation A Customer-Item Decomposition Approach to Stochastic Inventory Systems with Correlation Yimin Yu Saif Benjaafar Program in Industrial and Systems Engineering University of Minnesota, Minneapolis, MN 55455

More information

Discussion by. Valerie A. Ramey

Discussion by. Valerie A. Ramey The Roles of Comovement and Inventory Investment in the Reduction of Output Volatility by Owen Irvine and Scott Schuh Discussion by Valerie A. Ramey Summary of Variance Decompositions of Output (Table

More information

Slides 12: Output Analysis for a Single Model

Slides 12: Output Analysis for a Single Model Slides 12: Output Analysis for a Single Model Objective: Estimate system performance via simulation. If θ is the system performance, the precision of the estimator ˆθ can be measured by: The standard error

More information

Single-stage Approximations for Optimal Policies in Serial Inventory Systems with Non-stationary Demand

Single-stage Approximations for Optimal Policies in Serial Inventory Systems with Non-stationary Demand Single-stage Approximations for Optimal Policies in Serial Inventory Systems with Non-stationary Demand Kevin H. Shang Fuqua School of Business, Duke University, Durham, North Carolina 27708, USA khshang@duke.edu

More information

Forecasting. Dr. Richard Jerz rjerz.com

Forecasting. Dr. Richard Jerz rjerz.com Forecasting Dr. Richard Jerz 1 1 Learning Objectives Describe why forecasts are used and list the elements of a good forecast. Outline the steps in the forecasting process. Describe at least three qualitative

More information

Section Notes 9. Midterm 2 Review. Applied Math / Engineering Sciences 121. Week of December 3, 2018

Section Notes 9. Midterm 2 Review. Applied Math / Engineering Sciences 121. Week of December 3, 2018 Section Notes 9 Midterm 2 Review Applied Math / Engineering Sciences 121 Week of December 3, 2018 The following list of topics is an overview of the material that was covered in the lectures and sections

More information

Stochastic (Random) Demand Inventory Models

Stochastic (Random) Demand Inventory Models Stochastic (Random) Demand Inventory Models George Liberopoulos 1 The Newsvendor model Assumptions/notation Single-period horizon Uncertain demand in the period: D (parts) assume continuous random variable

More information

Financial Optimization ISE 347/447. Lecture 21. Dr. Ted Ralphs

Financial Optimization ISE 347/447. Lecture 21. Dr. Ted Ralphs Financial Optimization ISE 347/447 Lecture 21 Dr. Ted Ralphs ISE 347/447 Lecture 21 1 Reading for This Lecture C&T Chapter 16 ISE 347/447 Lecture 21 2 Formalizing: Random Linear Optimization Consider the

More information

Stochastic inventory system with two types of services

Stochastic inventory system with two types of services Int. J. Adv. Appl. Math. and Mech. 2() (204) 20-27 ISSN: 2347-2529 Available online at www.ijaamm.com International Journal of Advances in Applied Mathematics and Mechanics Stochastic inventory system

More information

56:171 Operations Research Midterm Exam - October 26, 1989 Instructor: D.L. Bricker

56:171 Operations Research Midterm Exam - October 26, 1989 Instructor: D.L. Bricker 56:171 Operations Research Midterm Exam - October 26, 1989 Instructor: D.L. Bricker Answer all of Part One and two (of the four) problems of Part Two Problem: 1 2 3 4 5 6 7 8 TOTAL Possible: 16 12 20 10

More information

Applications. Stephen J. Stoyan, Maged M. Dessouky*, and Xiaoqing Wang

Applications. Stephen J. Stoyan, Maged M. Dessouky*, and Xiaoqing Wang Introduction to Large-Scale Linear Programming and Applications Stephen J. Stoyan, Maged M. Dessouky*, and Xiaoqing Wang Daniel J. Epstein Department of Industrial and Systems Engineering, University of

More information

A Stochastic-Oriented NLP Relaxation for Integer Programming

A Stochastic-Oriented NLP Relaxation for Integer Programming A Stochastic-Oriented NLP Relaxation for Integer Programming John Birge University of Chicago (With Mihai Anitescu (ANL/U of C), Cosmin Petra (ANL)) Motivation: The control of energy systems, particularly

More information

Decomposition Techniques in Mathematical Programming

Decomposition Techniques in Mathematical Programming Antonio J. Conejo Enrique Castillo Roberto Minguez Raquel Garcia-Bertrand Decomposition Techniques in Mathematical Programming Engineering and Science Applications Springer Contents Part I Motivation and

More information

MFx Macroeconomic Forecasting

MFx Macroeconomic Forecasting MFx Macroeconomic Forecasting IMFx This training material is the property of the International Monetary Fund (IMF) and is intended for use in IMF Institute for Capacity Development (ICD) courses. Any reuse

More information

Reinforcement Learning

Reinforcement Learning Reinforcement Learning March May, 2013 Schedule Update Introduction 03/13/2015 (10:15-12:15) Sala conferenze MDPs 03/18/2015 (10:15-12:15) Sala conferenze Solving MDPs 03/20/2015 (10:15-12:15) Aula Alpha

More information

Operations Management

Operations Management 3-1 Forecasting Operations Management William J. Stevenson 8 th edition 3-2 Forecasting CHAPTER 3 Forecasting McGraw-Hill/Irwin Operations Management, Eighth Edition, by William J. Stevenson Copyright

More information

Full terms and conditions of use:

Full terms and conditions of use: This article was downloaded by: [148.251.232.83] On: 13 November 2018, At: 16:50 Publisher: Institute for Operations Research and the Management Sciences (INFORMS) INFORMS is located in Maryland, USA INFORMS

More information

Introduction to Forecasting

Introduction to Forecasting Introduction to Forecasting Introduction to Forecasting Predicting the future Not an exact science but instead consists of a set of statistical tools and techniques that are supported by human judgment

More information

A A Multi-Echelon Inventory Model for a Reparable Item with one-for. for- one Replenishment

A A Multi-Echelon Inventory Model for a Reparable Item with one-for. for- one Replenishment A A Multi-Echelon Inventory Model for a Reparable Item with one-for for- one Replenishment Steve Graves, 1985 Management Science, 31(10) Presented by Hongmin Li This summary presentation is based on: Graves,

More information

Supply planning optimization for linear production system with stochastic lead-times and quality control

Supply planning optimization for linear production system with stochastic lead-times and quality control Supply planning optimization for linear production system with stochastic lead-times and quality control O Ben Ammar, B Bettayeb, Alexandre Dolgui To cite this version: O Ben Ammar, B Bettayeb, Alexandre

More information

An economic application of machine learning: Nowcasting Thai exports using global financial market data and time-lag lasso

An economic application of machine learning: Nowcasting Thai exports using global financial market data and time-lag lasso An economic application of machine learning: Nowcasting Thai exports using global financial market data and time-lag lasso PIER Exchange Nov. 17, 2016 Thammarak Moenjak What is machine learning? Wikipedia

More information

Constrained Optimization

Constrained Optimization 1 / 22 Constrained Optimization ME598/494 Lecture Max Yi Ren Department of Mechanical Engineering, Arizona State University March 30, 2015 2 / 22 1. Equality constraints only 1.1 Reduced gradient 1.2 Lagrange

More information

Replenishment Planning for Stochastic Inventory System with Shortage Cost

Replenishment Planning for Stochastic Inventory System with Shortage Cost Replenishment Planning for Stochastic Inventory System with Shortage Cost Roberto Rossi UCC, Ireland S. Armagan Tarim HU, Turkey Brahim Hnich IUE, Turkey Steven Prestwich UCC, Ireland Inventory Control

More information

A Single-Unit Decomposition Approach to Multiechelon Inventory Systems

A Single-Unit Decomposition Approach to Multiechelon Inventory Systems OPERATIONS RESEARCH Vol. 56, No. 5, September October 2008, pp. 1089 1103 issn 0030-364X eissn 1526-5463 08 5605 1089 informs doi 10.1287/opre.1080.0620 2008 INFORMS A Single-Unit Decomposition Approach

More information

Chapter 11. Output Analysis for a Single Model Prof. Dr. Mesut Güneş Ch. 11 Output Analysis for a Single Model

Chapter 11. Output Analysis for a Single Model Prof. Dr. Mesut Güneş Ch. 11 Output Analysis for a Single Model Chapter Output Analysis for a Single Model. Contents Types of Simulation Stochastic Nature of Output Data Measures of Performance Output Analysis for Terminating Simulations Output Analysis for Steady-state

More information

UCLA STAT 233 Statistical Methods in Biomedical Imaging

UCLA STAT 233 Statistical Methods in Biomedical Imaging UCLA STAT 233 Statistical Methods in Biomedical Imaging Instructor: Ivo Dinov, Asst. Prof. In Statistics and Neurology University of California, Los Angeles, Spring 2004 http://www.stat.ucla.edu/~dinov/

More information

We present a method for setting release times for jobs with due dates in a stochastic

We present a method for setting release times for jobs with due dates in a stochastic Using Simulation-Based Optimization Tito Homem-de-Mello Alexander Shapiro Mark L. Spearman School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0205 We

More information

Lecture 1: March 7, 2018

Lecture 1: March 7, 2018 Reinforcement Learning Spring Semester, 2017/8 Lecture 1: March 7, 2018 Lecturer: Yishay Mansour Scribe: ym DISCLAIMER: Based on Learning and Planning in Dynamical Systems by Shie Mannor c, all rights

More information

Tutorial: Optimal Control of Queueing Networks

Tutorial: Optimal Control of Queueing Networks Department of Mathematics Tutorial: Optimal Control of Queueing Networks Mike Veatch Presented at INFORMS Austin November 7, 2010 1 Overview Network models MDP formulations: features, efficient formulations

More information

Appointment Scheduling with Discrete Random Durations

Appointment Scheduling with Discrete Random Durations MATHEMATICS OF OPERATIONS RESEARCH Vol. 36, No. 2, May 2011, pp. 240 257 issn 0364-765X eissn 1526-5471 11 3602 0240 doi 10.1287/moor.1110.0489 2011 INFORMS Appointment Scheduling with Discrete Random

More information

Technical Memorandum Number 758. The Multiple-Family ELSP with Safety Stocks. Serge M. Karalli and A. Dale Flowers

Technical Memorandum Number 758. The Multiple-Family ELSP with Safety Stocks. Serge M. Karalli and A. Dale Flowers Technical Memorandum Number 758 The Multiple-Family ELSP with Safety Stocks by Serge M. Karalli and A. Dale Flowers January 2003 Department of Operations Weatherhead School of Management Case Western Reserve

More information

Motivation. Lecture 2 Topics from Optimization and Duality. network utility maximization (NUM) problem:

Motivation. Lecture 2 Topics from Optimization and Duality. network utility maximization (NUM) problem: CDS270 Maryam Fazel Lecture 2 Topics from Optimization and Duality Motivation network utility maximization (NUM) problem: consider a network with S sources (users), each sending one flow at rate x s, through

More information

Are Base-stock Policies Optimal in Inventory Problems with Multiple Delivery Modes?

Are Base-stock Policies Optimal in Inventory Problems with Multiple Delivery Modes? Are Base-stoc Policies Optimal in Inventory Problems with Multiple Delivery Modes? Qi Feng School of Management, the University of Texas at Dallas Richardson, TX 7508-0688, USA Guillermo Gallego Department

More information

X t = a t + r t, (7.1)

X t = a t + r t, (7.1) Chapter 7 State Space Models 71 Introduction State Space models, developed over the past 10 20 years, are alternative models for time series They include both the ARIMA models of Chapters 3 6 and the Classical

More information

MARKOV DECISION PROCESSES (MDP) AND REINFORCEMENT LEARNING (RL) Versione originale delle slide fornita dal Prof. Francesco Lo Presti

MARKOV DECISION PROCESSES (MDP) AND REINFORCEMENT LEARNING (RL) Versione originale delle slide fornita dal Prof. Francesco Lo Presti 1 MARKOV DECISION PROCESSES (MDP) AND REINFORCEMENT LEARNING (RL) Versione originale delle slide fornita dal Prof. Francesco Lo Presti Historical background 2 Original motivation: animal learning Early

More information

Type 1. Type 1 Type 2 Type 2 M 4 M 1 B 41 B 71 B 31 B 51 B 32 B 11 B 12 B 22 B 61 M 3 M 2 B 21

Type 1. Type 1 Type 2 Type 2 M 4 M 1 B 41 B 71 B 31 B 51 B 32 B 11 B 12 B 22 B 61 M 3 M 2 B 21 Design and Operation of Manufacturing Systems The Control-Point Policy by Stanley B. Gershwin Institute Massachusetts Technology of Cambridge, 02139 USA Massachusetts I I E Annual Conference Orlando, Florida,

More information

Multiperiod Blend Scheduling Problem

Multiperiod Blend Scheduling Problem ExxonMobil Multiperiod Blend Scheduling Problem Juan Pablo Ruiz Ignacio E. Grossmann Department of Chemical Engineering Center for Advanced Process Decision-making University Pittsburgh, PA 15213 1 Motivation

More information

Optimal and Heuristic Echelon ( r, nq, T ) Policies in Serial Inventory Systems with Fixed Costs

Optimal and Heuristic Echelon ( r, nq, T ) Policies in Serial Inventory Systems with Fixed Costs OPERATIONS RESEARCH Vol. 58, No. 2, March April 2010, pp. 414 427 issn 0030-364X eissn 1526-5463 10 5802 0414 informs doi 10.1287/opre.1090.0734 2010 INFORMS Optimal and Heuristic Echelon ( r, nq, T )

More information

Single-stage Approximations for Optimal Policies in Serial Inventory Systems with Non-stationary Demand

Single-stage Approximations for Optimal Policies in Serial Inventory Systems with Non-stationary Demand Single-stage Approximations for Optimal Policies in Serial Inventory Systems with Non-stationary Demand Kevin H. Shang Fuqua School of Business, Duke University, Durham, North Carolina 27708, USA khshang@duke.edu

More information

An approach to make statistical forecasting of products with stationary/seasonal patterns

An approach to make statistical forecasting of products with stationary/seasonal patterns An approach to make statistical forecasting of products with stationary/seasonal patterns Carlos A. Castro-Zuluaga (ccastro@eafit.edu.co) Production Engineer Department, Universidad Eafit Medellin, Colombia

More information

Pattern Classification, and Quadratic Problems

Pattern Classification, and Quadratic Problems Pattern Classification, and Quadratic Problems (Robert M. Freund) March 3, 24 c 24 Massachusetts Institute of Technology. 1 1 Overview Pattern Classification, Linear Classifiers, and Quadratic Optimization

More information

AN INDEFINITE-QUADRATIC-PROGRAMMING MODEL FORA CONTINUOUS-PRODUCTION PROBLEM

AN INDEFINITE-QUADRATIC-PROGRAMMING MODEL FORA CONTINUOUS-PRODUCTION PROBLEM R734 Philips Res. Repts 25,244-254,1970 AN INDEFINITE-QUADRATIC-PROGRAMMING MODEL FORA CONTINUOUS-PRODUCTION PROBLEM by F. A. LOOTSMA and J. D. PEARSON Abstract A model is presented for a problem of scheduling

More information

JOINT PRICING AND PRODUCTION PLANNING FOR FIXED PRICED MULTIPLE PRODUCTS WITH BACKORDERS. Lou Caccetta and Elham Mardaneh

JOINT PRICING AND PRODUCTION PLANNING FOR FIXED PRICED MULTIPLE PRODUCTS WITH BACKORDERS. Lou Caccetta and Elham Mardaneh JOURNAL OF INDUSTRIAL AND doi:10.3934/jimo.2010.6.123 MANAGEMENT OPTIMIZATION Volume 6, Number 1, February 2010 pp. 123 147 JOINT PRICING AND PRODUCTION PLANNING FOR FIXED PRICED MULTIPLE PRODUCTS WITH

More information

Markov Chains. Chapter 16. Markov Chains - 1

Markov Chains. Chapter 16. Markov Chains - 1 Markov Chains Chapter 16 Markov Chains - 1 Why Study Markov Chains? Decision Analysis focuses on decision making in the face of uncertainty about one future event. However, many decisions need to consider

More information

Influence of product return lead-time on inventory control

Influence of product return lead-time on inventory control Influence of product return lead-time on inventory control Mohamed Hichem Zerhouni, Jean-Philippe Gayon, Yannick Frein To cite this version: Mohamed Hichem Zerhouni, Jean-Philippe Gayon, Yannick Frein.

More information

Slides II - Dynamic Programming

Slides II - Dynamic Programming Slides II - Dynamic Programming Julio Garín University of Georgia Macroeconomic Theory II (Ph.D.) Spring 2017 Macroeconomic Theory II Slides II - Dynamic Programming Spring 2017 1 / 32 Outline 1. Lagrangian

More information

CP:

CP: Adeng Pustikaningsih, M.Si. Dosen Jurusan Pendidikan Akuntansi Fakultas Ekonomi Universitas Negeri Yogyakarta CP: 08 222 180 1695 Email : adengpustikaningsih@uny.ac.id Operations Management Forecasting

More information

Part A. Ch (a) Thus, order quantity is 39-12=27. (b) Now b=5. Thus, order quantity is 29-12=17

Part A. Ch (a) Thus, order quantity is 39-12=27. (b) Now b=5. Thus, order quantity is 29-12=17 Homework2Solution Part A. Ch 2 12 (a) b = 65 40 = 25 from normal distribution table Thus, order quantity is 39-12=27 (b) Now b=5 from normal distribution table Thus, order quantity is 29-12=17 It is interesting

More information

SYMBIOSIS CENTRE FOR DISTANCE LEARNING (SCDL) Subject: production and operations management

SYMBIOSIS CENTRE FOR DISTANCE LEARNING (SCDL) Subject: production and operations management Sample Questions: Section I: Subjective Questions 1. What are the inputs required to plan a master production schedule? 2. What are the different operations schedule types based on time and applications?

More information

Classification of Dantzig-Wolfe Reformulations for MIP s

Classification of Dantzig-Wolfe Reformulations for MIP s Classification of Dantzig-Wolfe Reformulations for MIP s Raf Jans Rotterdam School of Management HEC Montreal Workshop on Column Generation Aussois, June 2008 Outline and Motivation Dantzig-Wolfe reformulation

More information

Chapter 2. Some basic tools. 2.1 Time series: Theory Stochastic processes

Chapter 2. Some basic tools. 2.1 Time series: Theory Stochastic processes Chapter 2 Some basic tools 2.1 Time series: Theory 2.1.1 Stochastic processes A stochastic process is a sequence of random variables..., x 0, x 1, x 2,.... In this class, the subscript always means time.

More information

Control-Oriented Approaches to Inventory Management in Semiconductor Manufacturing Supply Chains

Control-Oriented Approaches to Inventory Management in Semiconductor Manufacturing Supply Chains Control-Oriented Approaches to Inventory Management in Semiconductor Manufacturing Supply Chains Daniel E. Rivera, Wenlin Wang, Martin W. Braun* Control Systems Engineering Laboratory Department of Chemical

More information

Coordinated Replenishments at a Single Stocking Point

Coordinated Replenishments at a Single Stocking Point Chapter 11 Coordinated Replenishments at a Single Stocking Point 11.1 Advantages and Disadvantages of Coordination Advantages of Coordination 1. Savings on unit purchase costs.. Savings on unit transportation

More information

Department of Agricultural Economics. PhD Qualifier Examination. May 2009

Department of Agricultural Economics. PhD Qualifier Examination. May 2009 Department of Agricultural Economics PhD Qualifier Examination May 009 Instructions: The exam consists of six questions. You must answer all questions. If you need an assumption to complete a question,

More information

POLICIES FOR THE STOCHASTIC INVENTORY PROBLEM WITH FORECASTING

POLICIES FOR THE STOCHASTIC INVENTORY PROBLEM WITH FORECASTING POLICIES FOR THE STOCHASTIC INVENTORY PROBLEM WITH FORECASTING A Dissertation Presented to the Faculty of the Graduate School of Cornell University in Partial Fulfillment of the Requirements for the Degree

More information

Tutorial: System-Oriented Inventory Models for Spare Parts Geert-Jan van Houtum

Tutorial: System-Oriented Inventory Models for Spare Parts Geert-Jan van Houtum YEQT VIII, 3-5 November, 2014 Eindhoven Tutorial: System-Oriented Inventory Models for Spare Parts Geert-Jan van Houtum Literature Seminal paper: Sherbrooke, C.C., METRIC: A multi-echelon technique for

More information

Stochastic process for macro

Stochastic process for macro Stochastic process for macro Tianxiao Zheng SAIF 1. Stochastic process The state of a system {X t } evolves probabilistically in time. The joint probability distribution is given by Pr(X t1, t 1 ; X t2,

More information

Simulation optimization via bootstrapped Kriging: Survey

Simulation optimization via bootstrapped Kriging: Survey Simulation optimization via bootstrapped Kriging: Survey Jack P.C. Kleijnen Department of Information Management / Center for Economic Research (CentER) Tilburg School of Economics & Management (TiSEM)

More information

Uncertainty in energy system models

Uncertainty in energy system models Uncertainty in energy system models Amy Wilson Durham University May 2015 Table of Contents 1 Model uncertainty 2 3 Example - generation investment 4 Conclusion Model uncertainty Contents 1 Model uncertainty

More information

Multiuser Capacity in Block Fading Channel

Multiuser Capacity in Block Fading Channel Multiuser Capacity in Block Fading Channel April 2003 1 Introduction and Model We use a block-fading model, with coherence interval T where M independent users simultaneously transmit to a single receiver

More information

Forecasting Workbench in PRMS TM. Master Production Schedule. Material Requirements Plan. Work Order/ FPO Maintenance. Soft Bill Maintenance

Forecasting Workbench in PRMS TM. Master Production Schedule. Material Requirements Plan. Work Order/ FPO Maintenance. Soft Bill Maintenance Forecasting Workbench in PRMS TM SHOP FLOOR CONTROL Work Order/ FPO Maintenance Auto Allocation to Lots Pick Slip Print Master Production Schedule Material Requirements Plan Soft Bill Maintenance Stage

More information

A polynomial time algorithm to solve the single-item capacitated lot sizing problem with minimum order quantities and concave costs

A polynomial time algorithm to solve the single-item capacitated lot sizing problem with minimum order quantities and concave costs A polynomial time algorithm to solve the single-item capacitated lot sizing problem with minimum order quantities and concave costs Bertrand Hellion, Bernard Penz, Fabien Mangione aboratoire G-SCOP n o

More information

Variable metric approach for multi-skill staffing problem in call center

Variable metric approach for multi-skill staffing problem in call center Variable metric approach for multi-skill staffing problem in call center A. El Mouatasim Faculty of Science - Jazan University P.B. 2097 Jazan Saudi Arabia. email: aelmouatasim@jazanu.edu.sa CIRO 10: Marrakech

More information

A New Algorithm and a New Heuristic for Serial Supply Systems.

A New Algorithm and a New Heuristic for Serial Supply Systems. A New Algorithm and a New Heuristic for Serial Supply Systems. Guillermo Gallego Department of Industrial Engineering and Operations Research Columbia University Özalp Özer Department of Management Science

More information

UNIVERSITY OF CALGARY. A Method for Stationary Analysis and Control during Transience in Multi-State Stochastic. Manufacturing Systems

UNIVERSITY OF CALGARY. A Method for Stationary Analysis and Control during Transience in Multi-State Stochastic. Manufacturing Systems UNIVERSITY OF CALGARY A Method for Stationary Analysis and Control during Transience in Multi-State Stochastic Manufacturing Systems by Alireza Fazlirad A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

More information

A Conic Integer Programming Approach to Stochastic Joint Location-Inventory Problems

A Conic Integer Programming Approach to Stochastic Joint Location-Inventory Problems OPERATIONS RESEARCH Vol. 60, No. 2, March April 2012, pp. 366 381 ISSN 0030-364X print ISSN 1526-5463 online http://dx.doi.org/10.1287/opre.1110.1037 2012 INFORMS A Conic Integer Programming Approach to

More information

Module 9: Stationary Processes

Module 9: Stationary Processes Module 9: Stationary Processes Lecture 1 Stationary Processes 1 Introduction A stationary process is a stochastic process whose joint probability distribution does not change when shifted in time or space.

More information

STOCHASTIC MODELS FOR RELIABILITY, AVAILABILITY, AND MAINTAINABILITY

STOCHASTIC MODELS FOR RELIABILITY, AVAILABILITY, AND MAINTAINABILITY STOCHASTIC MODELS FOR RELIABILITY, AVAILABILITY, AND MAINTAINABILITY Ph.D. Assistant Professor Industrial and Systems Engineering Auburn University RAM IX Summit November 2 nd 2016 Outline Introduction

More information

STOCHASTIC PROGRAMMING SOLUTIONS TO SUPPLY CHAIN MANAGEMENT

STOCHASTIC PROGRAMMING SOLUTIONS TO SUPPLY CHAIN MANAGEMENT STOCHASTIC PROGRAMMING SOLUTIONS TO SUPPLY CHAIN MANAGEMENT a dissertation submitted to the department of management science and engineering and the committee on graduate studies of stanford university

More information

MEDIUM-TERM HYDROPOWER SCHEDULING BY STOCHASTIC DUAL DYNAMIC INTEGER PROGRAMMING: A CASE STUDY

MEDIUM-TERM HYDROPOWER SCHEDULING BY STOCHASTIC DUAL DYNAMIC INTEGER PROGRAMMING: A CASE STUDY MEDIUM-TERM HYDROPOWER SCHEDULING BY STOCHASTIC DUAL DYNAMIC INTEGER PROGRAMMING: A CASE STUDY Martin Hjelmeland NTNU Norwegian University of Science and Technology, Trondheim, Norway. martin.hjelmeland@ntnu.no

More information

Stochastic Dual Dynamic Programming with CVaR Risk Constraints Applied to Hydrothermal Scheduling. ICSP 2013 Bergamo, July 8-12, 2012

Stochastic Dual Dynamic Programming with CVaR Risk Constraints Applied to Hydrothermal Scheduling. ICSP 2013 Bergamo, July 8-12, 2012 Stochastic Dual Dynamic Programming with CVaR Risk Constraints Applied to Hydrothermal Scheduling Luiz Carlos da Costa Junior Mario V. F. Pereira Sérgio Granville Nora Campodónico Marcia Helena Costa Fampa

More information

ECS289: Scalable Machine Learning

ECS289: Scalable Machine Learning ECS289: Scalable Machine Learning Cho-Jui Hsieh UC Davis Sept 29, 2016 Outline Convex vs Nonconvex Functions Coordinate Descent Gradient Descent Newton s method Stochastic Gradient Descent Numerical Optimization

More information

Optimization. Charles J. Geyer School of Statistics University of Minnesota. Stat 8054 Lecture Notes

Optimization. Charles J. Geyer School of Statistics University of Minnesota. Stat 8054 Lecture Notes Optimization Charles J. Geyer School of Statistics University of Minnesota Stat 8054 Lecture Notes 1 One-Dimensional Optimization Look at a graph. Grid search. 2 One-Dimensional Zero Finding Zero finding

More information

Bike Plast DD some remarks

Bike Plast DD some remarks Roberto Cigolini roberto.cigolini@polimi.it Department of Management, Economics and Industrial Engineering Politecnico di Milano 1 Evaluate the analysis carried out by the Plant Director and comment on

More information

Chapter 7 Forecasting Demand

Chapter 7 Forecasting Demand Chapter 7 Forecasting Demand Aims of the Chapter After reading this chapter you should be able to do the following: discuss the role of forecasting in inventory management; review different approaches

More information

Time Series and Forecasting

Time Series and Forecasting Time Series and Forecasting Introduction to Forecasting n What is forecasting? n Primary Function is to Predict the Future using (time series related or other) data we have in hand n Why are we interested?

More information

Expected Time Delay in Multi-Item Inventory Systems with Correlated Demands

Expected Time Delay in Multi-Item Inventory Systems with Correlated Demands Expected Time Delay in Multi-Item Inventory Systems with Correlated Demands Rachel Q. Zhang Department of Industrial and Operations Engineering, University of Michigan, Ann Arbor, Michigan 48109 Received

More information

A Hierarchy of Suboptimal Policies for the Multi-period, Multi-echelon, Robust Inventory Problem

A Hierarchy of Suboptimal Policies for the Multi-period, Multi-echelon, Robust Inventory Problem A Hierarchy of Suboptimal Policies for the Multi-period, Multi-echelon, Robust Inventory Problem Dimitris J. Bertsimas Dan A. Iancu Pablo A. Parrilo Sloan School of Management and Operations Research Center,

More information

An Introduction to Markov Decision Processes. MDP Tutorial - 1

An Introduction to Markov Decision Processes. MDP Tutorial - 1 An Introduction to Markov Decision Processes Bob Givan Purdue University Ron Parr Duke University MDP Tutorial - 1 Outline Markov Decision Processes defined (Bob) Objective functions Policies Finding Optimal

More information

Support Vector Machines

Support Vector Machines Support Vector Machines Le Song Machine Learning I CSE 6740, Fall 2013 Naïve Bayes classifier Still use Bayes decision rule for classification P y x = P x y P y P x But assume p x y = 1 is fully factorized

More information

Chapter 13: Forecasting

Chapter 13: Forecasting Chapter 13: Forecasting Assistant Prof. Abed Schokry Operations and Productions Management First Semester 2013-2014 Chapter 13: Learning Outcomes You should be able to: List the elements of a good forecast

More information

Stochastic Programming in Enterprise-Wide Optimization

Stochastic Programming in Enterprise-Wide Optimization Stochastic Programming in Enterprise-Wide Optimization Andrew Schaefer University of Pittsburgh Department of Industrial Engineering October 20, 2005 Outline What is stochastic programming? How do I formulate

More information

Cascades and Fluctuations in an Economy with an Endogenous Production Network

Cascades and Fluctuations in an Economy with an Endogenous Production Network Cascades and Fluctuations in an Economy with an Endogenous Production Network Mathieu Taschereau-Dumouchel Cornell University September 2017 1/25 Introduction Production in modern economies involves a

More information

I forgot to mention last time: in the Ito formula for two standard processes, putting

I forgot to mention last time: in the Ito formula for two standard processes, putting I forgot to mention last time: in the Ito formula for two standard processes, putting dx t = a t dt + b t db t dy t = α t dt + β t db t, and taking f(x, y = xy, one has f x = y, f y = x, and f xx = f yy

More information

Online Supplement to

Online Supplement to Online Supplement to Pricing Decisions in a Strategic Single Retailer/Dual Suppliers Setting under Order Size Constraints Ali Ekici Department of Industrial Engineering, Ozyegin University, Istanbul, Turkey,

More information

We consider the classic N -stage serial supply systems with linear costs and stationary

We consider the classic N -stage serial supply systems with linear costs and stationary Newsvendor Bounds and Heuristic for Optimal Policies in Serial Supply Chains Kevin H. Shang Jing-Sheng Song Fuqua School of Business, Duke University, Durham, North Carolina 2778 Graduate School of Management,

More information

The Mabinogion Sheep Problem

The Mabinogion Sheep Problem The Mabinogion Sheep Problem Kun Dong Cornell University April 22, 2015 K. Dong (Cornell University) The Mabinogion Sheep Problem April 22, 2015 1 / 18 Introduction (Williams 1991) we are given a herd

More information

The influence of the unit commitment plan on the variance of electric power. production cost. Jinchi Li

The influence of the unit commitment plan on the variance of electric power. production cost. Jinchi Li The influence of the unit commitment plan on the variance of electric power production cost by Jinchi Li A Creative Component paper submitted to the graduate faculty in partial fulfillment of the requirements

More information

GDP forecast errors Satish Ranchhod

GDP forecast errors Satish Ranchhod GDP forecast errors Satish Ranchhod Editor s note This paper looks more closely at our forecasts of growth in Gross Domestic Product (GDP). It considers two different measures of GDP, production and expenditure,

More information