Control-Oriented Approaches to Inventory Management in Semiconductor Manufacturing Supply Chains

Size: px
Start display at page:

Download "Control-Oriented Approaches to Inventory Management in Semiconductor Manufacturing Supply Chains"

Transcription

1 Control-Oriented Approaches to Inventory Management in Semiconductor Manufacturing Supply Chains Daniel E. Rivera, Wenlin Wang, Martin W. Braun* Control Systems Engineering Laboratory Department of Chemical and Materials Engineering Arizona State University Karl G. Kempf Decision Technologies Intel Corporation * currently with Texas Instruments, Dallas, TX Motivation Billions of dollars in potential savings in the semiconductor industry alone by eliminating supply chain inefficiencies (PricewaterhouseCoopers, 2000) Increasing realization that inventory management is a control problem, and not just an optimization/or problem. Previous work (Braun et al., (2001, 2002)) presented a partially decentralized MPC-based approach for a three echelon, six-node problem involving assembly/test, distribution, and retailing. Need to reflect on issues of controller design and structure. The IMC design procedure is used to build insight, while MPC represents an appropriate implementation environment AIChE Annual Meeting, Indianapolis 1

2 Motivation Presentation Outline Internal Model Control (IMC)-based decision policies for a Single Node Inventory System Pull Control Structure Push Control Structure IMC-based Analysis of a Two Node Problem Decentralized (with Pull ) Decentralized (with Push ) Centralized (with Push ) Application of Model Predictive Control to the Two Node Problem Extensions, Summary and Conclusions Single Node Inventory Control Problem - Pull Structure θ (production time) LIC Forecast (known θ f days beforehand) θ d (delivery time) Meet demand (with forecast given θ f days beforehand) for a node with θ day production (or order fulfillment) time and θ d delivery time AIChE Annual Meeting, Indianapolis 2

3 Single Node Equations (Laplace Domain) y 1 (s) = e θs u(s) 1 s s d(s) y 2 (s) =e θds d(s) = e θ fs θ ˆd(s)e d s n(s) d(s) =e (θ f θ d )s ˆd(s)n(s) y 1 (s) Inventory (Net Stock) y 2 (s) Supply to downstream node (received by customer) u(s) Starts (or Orders) ˆd(s) Forecast d(s) Actual (ordered by customer) n(s) Forecast Error θ Production (or Order Fulfillment) Time θ d Delivery Time θ f Forecast Time Horizon Internal Model Control (IMC) The IMC (or Q-parametrization) structure is an alternate yet equivalent means of representing a classical feedback-feedforward structure. The IMC design procedure is a convenient two-step procedure for designing Q-parametrized control systems AIChE Annual Meeting, Indianapolis 3

4 Three-Degree-of -Freedom FB/FF IMC structure ^ d ( Forecast) r (Net Stock Setpoint) e q - - r d q F (Orders /Starts) u p p d p d1 d p d2 n (Forecast Error) p d3 y 2 (Supply Received by Customer) y 1 (Net Stock) p y - q d Internal Model Control Design Procedure Step 1 (Nominal Performance): Obtain H 2 optimal q s Must specify a form for the external input (e.g, step, ramp). Closed-form solutions can be obtained The controllers generated per step 1 are stable and causal. Step 2 (Robust Stability and Performance): Augment the IMC controller(s) from step 1 with a filter(s) (f(s)); the filter(s) are specified to insure that the q s are proper and that the control system demonstrates stability and performance in the face of uncertainty AIChE Annual Meeting, Indianapolis 4

5 1. Design for nominal optimal performance: q r (s), q d (s), and q F (s) are designed for H 2 -optimal setpoint tracking, unmeasured disturbance rejection, and measured disturbance rejection, respectively. min (1 p q r ) r 2 qr min q d (1 p q d ) p d2 n) 2 min ( p d p q F )p d1 p d2 ˆd 2 q F subject to the requirement that q r (s), q d (s) and q F (s) be stable and causal. 2. Design for robust stability and performance: In this step q r (s), q d (s) and q F (s) are augmented with low-pass filters which can be tuned to detune the nominal performance (e.g., reduce aggressive manipulated variable action associated with the optimal controller per Step 1) or to satisfy a robust performance objective. The final controllers obtained from this step are q r (s) = q r (s)f r (s) q d (s) = q d (s)f d (s) q F (s) = q F (s)f F (s) IMC Controllers, Single Node Inventory Problem p(s) = e θs p d1 = e (θ f θ d )s s 1. Setpoint Tracking. s q r (s) = (λ r s 1) n r 2. Unmeasured Disturbance Rejection. ( q d (s) = s(θs 1) (n ) dλ d s 1) (λ d s 1) n d 3. Measured Disturbance Rejection. p d2 = 1 s λ r 0 n r 1 ˆd, r, n = 1 s λ d 0 n d 3 { e q F (s) = (θ f θ d θ)s if θ f (θ θ d ) (θ θ d θ f )s 1 ifθ f < (θ θ d ) Filtering could be used with the measured disturbance IMC controller, but is not needed for physical realizability when θ f (θ θ d ) AIChE Annual Meeting, Indianapolis 5

6 Three Degree of Freedom IMC Pull Results Feedback-only Combined FB/FF θ f = 20, θ = 10, θ d = 2, λ f = 1, λ r = 1, λ d = 1 Single Node Inventory Control Problem Push θ (production time) LIC Forecast (known θ f days beforehand) θ d (delivery time) Track demand (with forecast given θ f days beforehand) for a node with θ day production (or order fulfillment) time and θ d delivery time. Controller now manipulates both the starts/orders and the stream out release to customer AIChE Annual Meeting, Indianapolis 6

7 IMC Design: Decoupled Deadtime Compensation Theorem. The diagonal P decoupled matrix such that the multivariable IMC controller Q(s) =P 1 (s)p decoupled (s) is realizable has the form P decoupled = diag(r ii, r jj, r nn ) where r jj = e s(max i max(0,(ˆq ij ˆp ij )) and ˆp ij is the minimum delay in the numerator of element ij of P 1,ˆq ij is the minimum delay in the denominator of element ij of P 1. Holt, B.R. and M. Morari, Design of resilient process plants: the effect of deadtime on dynamic resilience, Chem. Eng. Science, 40, 1229, (1985) Single Node Decoupled Deadtime Compensation [ ] [ y1 (s) e θs ][ ] = s 1 s u(s) y 2 (s) 0 e θ ds d(s) y(s) =P (s) u (s) P d (s) n(s) [ ] P decoupled e θs 0 (s) = Q(s) 0 e (θθ = d)s Q(s) = Q(s)F (s) = [ ] y1 (s) y 2 (s) = [ e θs λ 1 s1 0 0 e (θθ d )s λ 2 s1 [ s λ 1 s1 [ ] 1 s e θ n(s) ds 1 λ 2 s1 e 0 θs λ 2 s1 ] [ r1 (s) r 2 (s) [ ] s 1 0 e θs r 1 and r 2 are the net stock and demand setpoints, respectively. ] ] 2002 AIChE Annual Meeting, Indianapolis 7

8 Decoupled IMC implementation (two degrees of freedom but 4 adjustable parameters) Net Stock and Setpoints 1 In1 2 In2 In1 In3 Out1 Out3 Q(s) Mux Mux3 Sum2 2 Out2 Orders/ Starts and Stream Out Flow In1 In2 Out1 Out2 Mux Mux2 Mux 1 Out1 Net Stock and 3 Out3 p(s) Mux Sum3 In1 In2 Out1 Out2 Mux p(s)1 Mux1 Sum1 Out1 Out3 In1 In3 Demux Q(s)1 Demux1 Decoupled IMC Push Results θ = 5, θ d = 2, λ 1 = 1, λ 2 = AIChE Annual Meeting, Indianapolis 8

9 Two Node Example F/S ADI A/T SFGI Center =Inventory Holding =Mfg Node =Transport Link F/S: Fabrication/Sort Facility A/T: Assembly/Test Facility ADI: Assembly-die Inventory SFGI: Semi-finished goods inventory Fluid Analogy to the Two Node Network F/S starts θ 1 (8 weeks) ADI A/T starts θ 2 (2 weeks) SFGI Shipments θ 3 (1 week) 2002 AIChE Annual Meeting, Indianapolis 9

10 Two Node Inventory Control Problem Decentralized Pull Structure LIC Order Forecast LIC Forecast Two Node Inventory Control Problem Decentralized Push Structure LIC LIC 2002 AIChE Annual Meeting, Indianapolis 10

11 Decentralized Push Results λ 1 = 1, λ 2 = 0 for each node Two Node Inventory Control Problem Centralized Push Structure LIC 2002 AIChE Annual Meeting, Indianapolis 11

12 Centralized Push Results MPC Appeal for Dynamic Inventory Management in Supply Chains As an optimizer, an MPC-based algorithm can minimize or maximize an objective function that represents a suitable measure for supply chain performance. As a controller, an MPC algorithm can be tuned to achieve stability, robustness, and performance in the presence of plant/model mismatch, failures and disturbances which affect the system AIChE Annual Meeting, Indianapolis 12

13 The MPC optimization problem can be written min J u(k k)... u(km 1 k) s.t. J = p Q e (l)(ŷ(k l k) r(k l)) 2 <- Satisfy demand l=1 m Q u (l)( u(k l 1 k)) 2 l=1 m Q u (l)(u(k l 1 k) u target (k l 1 k)) 2 l=1 u min u(k l 1 k) u max, u min u(k l 1 k) u min, y min y(k l 1 k) y max, Penalizes changes in <- order quantities (i.e. move suppression) 2002 AIChE Annual Meeting, Indianapolis 13

14 Centralized Pull Structure F/S Information flow A/T (MD) Forecast P S F/S MPC I F/S I A/T D Measured disturbance: D Controlled Variables: I F/S, I A/T Manipulated Variables: S F/S, P Centralized Pull Structure with Autoregressive Variability Output Weights=[1 1]; Move Suppression=[1 1] 2002 AIChE Annual Meeting, Indianapolis 14

15 Centralized Pull Structure with Autoregressive Variability Output Weights=[1 100]; Move Suppression =[1 1] Centralized Pull Structure with Autoregressive Variability Output Weights=[100 1]; Move Suppression =[1 1] 2002 AIChE Annual Meeting, Indianapolis 15

16 RMS Error Comparison Output Weights Centralized:[1 1] Centralized:[1 100] Centralized:[100 1] ADI SFGI Output weights can be used to shift variability between inventories, as desired by the enterprise! =Materials Supply =Inventory Holding =Manufacturing =Transport 1.1 F/S 2.1 A/T 2.2 Center 1 Wafers Packages 1.2 F/S F/S=Fab/Sort Facility A/T=Assembly/Test Facility A/T Center AIChE Annual Meeting, Indianapolis 16

17 Summary and Conclusions Supply chains (demand networks, value chains) are dynamical systems whose efficient operation merits a control-oriented approach The IMC design procedure provides important insights into controller structure and tuning. MPC offers a powerful implementation environment that has the potential for good performance in uncertain, noisy environments. Acknowledgements NSF Scalable Enterprise Systems Phase I Award: Designing and Managing Dynamic Supply Chains Using Model-on- Predictive Control Intel Research Council: A Modular, Scalable Approach to Modeling and Analysis of Semiconductor Supply Networks. Additional students: Melvin E. Flores, Mark Szwast 2002 AIChE Annual Meeting, Indianapolis 17

Course on Model Predictive Control Part II Linear MPC design

Course on Model Predictive Control Part II Linear MPC design Course on Model Predictive Control Part II Linear MPC design Gabriele Pannocchia Department of Chemical Engineering, University of Pisa, Italy Email: g.pannocchia@diccism.unipi.it Facoltà di Ingegneria,

More information

Chapter 2. Classical Control System Design. Dutch Institute of Systems and Control

Chapter 2. Classical Control System Design. Dutch Institute of Systems and Control Chapter 2 Classical Control System Design Overview Ch. 2. 2. Classical control system design Introduction Introduction Steady-state Steady-state errors errors Type Type k k systems systems Integral Integral

More information

Feedback Control of Linear SISO systems. Process Dynamics and Control

Feedback Control of Linear SISO systems. Process Dynamics and Control Feedback Control of Linear SISO systems Process Dynamics and Control 1 Open-Loop Process The study of dynamics was limited to open-loop systems Observe process behavior as a result of specific input signals

More information

Model Predictive Control

Model Predictive Control Model Predictive Control Davide Manca Lecture 6 of Dynamics and Control of Chemical Processes Master Degree in Chemical Engineering Davide Manca Dynamics and Control of Chemical Processes Master Degree

More information

IMC based automatic tuning method for PID controllers in a Smith predictor configuration

IMC based automatic tuning method for PID controllers in a Smith predictor configuration Computers and Chemical Engineering 28 (2004) 281 290 IMC based automatic tuning method for PID controllers in a Smith predictor configuration Ibrahim Kaya Department of Electrical and Electronics Engineering,

More information

Design of Decentralised PI Controller using Model Reference Adaptive Control for Quadruple Tank Process

Design of Decentralised PI Controller using Model Reference Adaptive Control for Quadruple Tank Process Design of Decentralised PI Controller using Model Reference Adaptive Control for Quadruple Tank Process D.Angeline Vijula #, Dr.N.Devarajan * # Electronics and Instrumentation Engineering Sri Ramakrishna

More information

Ian G. Horn, Jeffery R. Arulandu, Christopher J. Gombas, Jeremy G. VanAntwerp, and Richard D. Braatz*

Ian G. Horn, Jeffery R. Arulandu, Christopher J. Gombas, Jeremy G. VanAntwerp, and Richard D. Braatz* Ind. Eng. Chem. Res. 996, 35, 3437-344 3437 PROCESS DESIGN AND CONTROL Improved Filter Design in Internal Model Control Ian G. Horn, Jeffery R. Arulandu, Christopher J. Gombas, Jeremy G. VanAntwerp, and

More information

Control System Design

Control System Design ELEC ENG 4CL4: Control System Design Notes for Lecture #36 Dr. Ian C. Bruce Room: CRL-229 Phone ext.: 26984 Email: ibruce@mail.ece.mcmaster.ca Friday, April 4, 2003 3. Cascade Control Next we turn to an

More information

MRAGPC Control of MIMO Processes with Input Constraints and Disturbance

MRAGPC Control of MIMO Processes with Input Constraints and Disturbance Proceedings of the World Congress on Engineering and Computer Science 9 Vol II WCECS 9, October -, 9, San Francisco, USA MRAGPC Control of MIMO Processes with Input Constraints and Disturbance A. S. Osunleke,

More information

A FAST, EASILY TUNED, SISO, MODEL PREDICTIVE CONTROLLER. Gabriele Pannocchia,1 Nabil Laachi James B. Rawlings

A FAST, EASILY TUNED, SISO, MODEL PREDICTIVE CONTROLLER. Gabriele Pannocchia,1 Nabil Laachi James B. Rawlings A FAST, EASILY TUNED, SISO, MODEL PREDICTIVE CONTROLLER Gabriele Pannocchia, Nabil Laachi James B. Rawlings Department of Chemical Engineering Univ. of Pisa Via Diotisalvi 2, 5626 Pisa (Italy) Department

More information

Model-based PID tuning for high-order processes: when to approximate

Model-based PID tuning for high-order processes: when to approximate Proceedings of the 44th IEEE Conference on Decision and Control, and the European Control Conference 25 Seville, Spain, December 2-5, 25 ThB5. Model-based PID tuning for high-order processes: when to approximate

More information

Model based control design

Model based control design Model based control design Alf Isaksson September, 999 Supplied as supplement to course book in Automatic Control Basic course (Reglerteknik AK) Objective: To introduce some general approaches to model

More information

A Hierarchy of Suboptimal Policies for the Multi-period, Multi-echelon, Robust Inventory Problem

A Hierarchy of Suboptimal Policies for the Multi-period, Multi-echelon, Robust Inventory Problem A Hierarchy of Suboptimal Policies for the Multi-period, Multi-echelon, Robust Inventory Problem Dimitris J. Bertsimas Dan A. Iancu Pablo A. Parrilo Sloan School of Management and Operations Research Center,

More information

Cooperation-based optimization of industrial supply chains

Cooperation-based optimization of industrial supply chains Cooperation-based optimization of industrial supply chains James B. Rawlings, Brett T. Stewart, Kaushik Subramanian and Christos T. Maravelias Department of Chemical and Biological Engineering May 9 2,

More information

Robustness of MPC and Disturbance Models for Multivariable Ill-conditioned Processes

Robustness of MPC and Disturbance Models for Multivariable Ill-conditioned Processes 2 TWMCC Texas-Wisconsin Modeling and Control Consortium 1 Technical report number 21-2 Robustness of MPC and Disturbance Models for Multivariable Ill-conditioned Processes Gabriele Pannocchia and James

More information

Robust Internal Model Control for Impulse Elimination of Singular Systems

Robust Internal Model Control for Impulse Elimination of Singular Systems International Journal of Control Science and Engineering ; (): -7 DOI:.59/j.control.. Robust Internal Model Control for Impulse Elimination of Singular Systems M. M. Share Pasandand *, H. D. Taghirad Department

More information

CBE495 LECTURE IV MODEL PREDICTIVE CONTROL

CBE495 LECTURE IV MODEL PREDICTIVE CONTROL What is Model Predictive Control (MPC)? CBE495 LECTURE IV MODEL PREDICTIVE CONTROL Professor Dae Ryook Yang Fall 2013 Dept. of Chemical and Biological Engineering Korea University * Some parts are from

More information

Wannabe-MPC for Large Systems Based on Multiple Iterative PI Controllers

Wannabe-MPC for Large Systems Based on Multiple Iterative PI Controllers Wannabe-MPC for Large Systems Based on Multiple Iterative PI Controllers Pasi Airikka, Mats Friman Metso Corp., Finland 17th Nordic Process Control Workshop Jan 26-27 2012 DTU Denmark Content Motivation

More information

Internal Model Control of A Class of Continuous Linear Underactuated Systems

Internal Model Control of A Class of Continuous Linear Underactuated Systems Internal Model Control of A Class of Continuous Linear Underactuated Systems Asma Mezzi Tunis El Manar University, Automatic Control Research Laboratory, LA.R.A, National Engineering School of Tunis (ENIT),

More information

9. Two-Degrees-of-Freedom Design

9. Two-Degrees-of-Freedom Design 9. Two-Degrees-of-Freedom Design In some feedback schemes we have additional degrees-offreedom outside the feedback path. For example, feed forwarding known disturbance signals or reference signals. In

More information

PROPORTIONAL-Integral-Derivative (PID) controllers

PROPORTIONAL-Integral-Derivative (PID) controllers Multiple Model and Neural based Adaptive Multi-loop PID Controller for a CSTR Process R.Vinodha S. Abraham Lincoln and J. Prakash Abstract Multi-loop (De-centralized) Proportional-Integral- Derivative

More information

3.1 Overview 3.2 Process and control-loop interactions

3.1 Overview 3.2 Process and control-loop interactions 3. Multivariable 3.1 Overview 3.2 and control-loop interactions 3.2.1 Interaction analysis 3.2.2 Closed-loop stability 3.3 Decoupling control 3.3.1 Basic design principle 3.3.2 Complete decoupling 3.3.3

More information

Comparative study of three practical IMC algorithms with inner controller of first and second order

Comparative study of three practical IMC algorithms with inner controller of first and second order Journal of Electrical Engineering, Electronics, Control and Computer Science JEEECCS, Volume 2, Issue 4, pages 2-28, 206 Comparative study of three practical IMC algorithms with inner controller of first

More information

Unit 11 - Week 7: Quantitative feedback theory (Part 1/2)

Unit 11 - Week 7: Quantitative feedback theory (Part 1/2) X reviewer3@nptel.iitm.ac.in Courses» Control System Design Announcements Course Ask a Question Progress Mentor FAQ Unit 11 - Week 7: Quantitative feedback theory (Part 1/2) Course outline How to access

More information

Lecture 12. Upcoming labs: Final Exam on 12/21/2015 (Monday)10:30-12:30

Lecture 12. Upcoming labs: Final Exam on 12/21/2015 (Monday)10:30-12:30 289 Upcoming labs: Lecture 12 Lab 20: Internal model control (finish up) Lab 22: Force or Torque control experiments [Integrative] (2-3 sessions) Final Exam on 12/21/2015 (Monday)10:30-12:30 Today: Recap

More information

Decoupling Multivariable Control with Two Degrees of Freedom

Decoupling Multivariable Control with Two Degrees of Freedom Article Subscriber access provided by NATIONAL TAIWAN UNIV Decoupling Multivariable Control with Two Degrees of Freedom Hsiao-Ping Huang, and Feng-Yi Lin Ind. Eng. Chem. Res., 2006, 45 (9), 36-373 DOI:

More information

Online monitoring of MPC disturbance models using closed-loop data

Online monitoring of MPC disturbance models using closed-loop data Online monitoring of MPC disturbance models using closed-loop data Brian J. Odelson and James B. Rawlings Department of Chemical Engineering University of Wisconsin-Madison Online Optimization Based Identification

More information

A Design Method for Smith Predictors for Minimum-Phase Time-Delay Plants

A Design Method for Smith Predictors for Minimum-Phase Time-Delay Plants 00 ECTI TRANSACTIONS ON COMPUTER AND INFORMATION TECHNOLOGY VOL., NO.2 NOVEMBER 2005 A Design Method for Smith Predictors for Minimum-Phase Time-Delay Plants Kou Yamada Nobuaki Matsushima, Non-members

More information

10/8/2015. Control Design. Pole-placement by state-space methods. Process to be controlled. State controller

10/8/2015. Control Design. Pole-placement by state-space methods. Process to be controlled. State controller Pole-placement by state-space methods Control Design To be considered in controller design * Compensate the effect of load disturbances * Reduce the effect of measurement noise * Setpoint following (target

More information

Control Systems Design

Control Systems Design ELEC4410 Control Systems Design Lecture 3, Part 2: Introduction to Affine Parametrisation School of Electrical Engineering and Computer Science Lecture 3, Part 2: Affine Parametrisation p. 1/29 Outline

More information

Real-Time Feasibility of Nonlinear Predictive Control for Semi-batch Reactors

Real-Time Feasibility of Nonlinear Predictive Control for Semi-batch Reactors European Symposium on Computer Arded Aided Process Engineering 15 L. Puigjaner and A. Espuña (Editors) 2005 Elsevier Science B.V. All rights reserved. Real-Time Feasibility of Nonlinear Predictive Control

More information

DAMPENING BULLWHIP EFFECT OF ORDER-UP-TO INVENTORY STRATEGIES VIA AN OPTIMAL CONTROL METHOD. Honglei Xu. Peng Sui. Guanglu Zhou, Louis Caccetta

DAMPENING BULLWHIP EFFECT OF ORDER-UP-TO INVENTORY STRATEGIES VIA AN OPTIMAL CONTROL METHOD. Honglei Xu. Peng Sui. Guanglu Zhou, Louis Caccetta Manuscript submitted to AIMS Journals Volume X, Number 0X, XX 200X doi:10.3934/xx.xx.xx.xx pp. X XX DAMPENING BULLWHIP EFFECT OF ORDER-UP-TO INVENTORY STRATEGIES VIA AN OPTIMAL CONTROL METHOD Honglei Xu

More information

1 An Overview and Brief History of Feedback Control 1. 2 Dynamic Models 23. Contents. Preface. xiii

1 An Overview and Brief History of Feedback Control 1. 2 Dynamic Models 23. Contents. Preface. xiii Contents 1 An Overview and Brief History of Feedback Control 1 A Perspective on Feedback Control 1 Chapter Overview 2 1.1 A Simple Feedback System 3 1.2 A First Analysis of Feedback 6 1.3 Feedback System

More information

CHAPTER 3 TUNING METHODS OF CONTROLLER

CHAPTER 3 TUNING METHODS OF CONTROLLER 57 CHAPTER 3 TUNING METHODS OF CONTROLLER 3.1 INTRODUCTION This chapter deals with a simple method of designing PI and PID controllers for first order plus time delay with integrator systems (FOPTDI).

More information

Fall 線性系統 Linear Systems. Chapter 08 State Feedback & State Estimators (SISO) Feng-Li Lian. NTU-EE Sep07 Jan08

Fall 線性系統 Linear Systems. Chapter 08 State Feedback & State Estimators (SISO) Feng-Li Lian. NTU-EE Sep07 Jan08 Fall 2007 線性系統 Linear Systems Chapter 08 State Feedback & State Estimators (SISO) Feng-Li Lian NTU-EE Sep07 Jan08 Materials used in these lecture notes are adopted from Linear System Theory & Design, 3rd.

More information

Closed-loop system 2/1/2016. Generally MIMO case. Two-degrees-of-freedom (2 DOF) control structure. (2 DOF structure) The closed loop equations become

Closed-loop system 2/1/2016. Generally MIMO case. Two-degrees-of-freedom (2 DOF) control structure. (2 DOF structure) The closed loop equations become Closed-loop system enerally MIMO case Two-degrees-of-freedom (2 DOF) control structure (2 DOF structure) 2 The closed loop equations become solving for z gives where is the closed loop transfer function

More information

Robust Control with Classical Methods QFT

Robust Control with Classical Methods QFT Robust Control with Classical Methods QT Per-Olof utman Review of the classical Bode-Nichols control problem QT in the basic Single nput Single Output (SSO) case undamental Design Limitations dentification

More information

Dynamic Real-Time Optimization: Linking Off-line Planning with On-line Optimization

Dynamic Real-Time Optimization: Linking Off-line Planning with On-line Optimization Dynamic Real-Time Optimization: Linking Off-line Planning with On-line Optimization L. T. Biegler and V. Zavala Chemical Engineering Department Carnegie Mellon University Pittsburgh, PA 15213 April 12,

More information

Design of Multivariable Neural Controllers Using a Classical Approach

Design of Multivariable Neural Controllers Using a Classical Approach Design of Multivariable Neural Controllers Using a Classical Approach Seshu K. Damarla & Madhusree Kundu Abstract In the present study, the neural network (NN) based multivariable controllers were designed

More information

FEEDFORWARD CONTROLLER DESIGN BASED ON H ANALYSIS

FEEDFORWARD CONTROLLER DESIGN BASED ON H ANALYSIS 271 FEEDFORWARD CONTROLLER DESIGN BASED ON H ANALYSIS Eduardo J. Adam * and Jacinto L. Marchetti Instituto de Desarrollo Tecnológico para la Industria Química (Universidad Nacional del Litoral - CONICET)

More information

Introduction to. Process Control. Ahmet Palazoglu. Second Edition. Jose A. Romagnoli. CRC Press. Taylor & Francis Group. Taylor & Francis Group,

Introduction to. Process Control. Ahmet Palazoglu. Second Edition. Jose A. Romagnoli. CRC Press. Taylor & Francis Group. Taylor & Francis Group, Introduction to Process Control Second Edition Jose A. Romagnoli Ahmet Palazoglu CRC Press Taylor & Francis Group Boca Raton London NewYork CRC Press is an imprint of the Taylor & Francis Group, an informa

More information

IMPLEMENTATIONS OF TRACKING MULTIPARAMETRIC PREDICTIVE CONTROLLER. Pregelj Boštjan, Gerkšič Samo. Jozef Stefan Institute, Ljubljana, Slovenia

IMPLEMENTATIONS OF TRACKING MULTIPARAMETRIC PREDICTIVE CONTROLLER. Pregelj Boštjan, Gerkšič Samo. Jozef Stefan Institute, Ljubljana, Slovenia IMPLEMENTATIONS OF TRACKING MULTIPARAMETRIC PREDICTIVE CONTROLLER Pregelj Boštjan, Gerkšič Samo Jozef Stefan Institute, Ljubljana, Slovenia Abstract: With the recently developed multi-parametric predictive

More information

Quis custodiet ipsos custodes?

Quis custodiet ipsos custodes? Quis custodiet ipsos custodes? James B. Rawlings, Megan Zagrobelny, Luo Ji Dept. of Chemical and Biological Engineering, Univ. of Wisconsin-Madison, WI, USA IFAC Conference on Nonlinear Model Predictive

More information

Index Accumulation, 53 Accuracy: numerical integration, sensor, 383, Adaptive tuning: expert system, 528 gain scheduling, 518, 529, 709,

Index Accumulation, 53 Accuracy: numerical integration, sensor, 383, Adaptive tuning: expert system, 528 gain scheduling, 518, 529, 709, Accumulation, 53 Accuracy: numerical integration, 83-84 sensor, 383, 772-773 Adaptive tuning: expert system, 528 gain scheduling, 518, 529, 709, 715 input conversion, 519 reasons for, 512-517 relay auto-tuning,

More information

Simulation based Modeling and Implementation of Adaptive Control Technique for Non Linear Process Tank

Simulation based Modeling and Implementation of Adaptive Control Technique for Non Linear Process Tank Simulation based Modeling and Implementation of Adaptive Control Technique for Non Linear Process Tank P.Aravind PG Scholar, Department of Control and Instrumentation Engineering, JJ College of Engineering

More information

A Tuning of the Nonlinear PI Controller and Its Experimental Application

A Tuning of the Nonlinear PI Controller and Its Experimental Application Korean J. Chem. Eng., 18(4), 451-455 (2001) A Tuning of the Nonlinear PI Controller and Its Experimental Application Doe Gyoon Koo*, Jietae Lee*, Dong Kwon Lee**, Chonghun Han**, Lyu Sung Gyu, Jae Hak

More information

A unified approach for proportional-integral-derivative controller design for time delay processes

A unified approach for proportional-integral-derivative controller design for time delay processes Korean J. Chem. Eng., 32(4), 583-596 (2015) DOI: 10.1007/s11814-014-0237-6 INVITED REVIEW PAPER INVITED REVIEW PAPER pissn: 0256-1115 eissn: 1975-7220 A unified approach for proportional-integral-derivative

More information

Internal Model Principle

Internal Model Principle Internal Model Principle If the reference signal, or disturbance d(t) satisfy some differential equation: e.g. d n d dt n d(t)+γ n d d 1 dt n d 1 d(t)+...γ d 1 dt d(t)+γ 0d(t) =0 d n d 1 then, taking Laplace

More information

CHAPTER 6 CLOSED LOOP STUDIES

CHAPTER 6 CLOSED LOOP STUDIES 180 CHAPTER 6 CLOSED LOOP STUDIES Improvement of closed-loop performance needs proper tuning of controller parameters that requires process model structure and the estimation of respective parameters which

More information

FEL3210 Multivariable Feedback Control

FEL3210 Multivariable Feedback Control FEL3210 Multivariable Feedback Control Lecture 5: Uncertainty and Robustness in SISO Systems [Ch.7-(8)] Elling W. Jacobsen, Automatic Control Lab, KTH Lecture 5:Uncertainty and Robustness () FEL3210 MIMO

More information

CHBE320 LECTURE XI CONTROLLER DESIGN AND PID CONTOLLER TUNING. Professor Dae Ryook Yang

CHBE320 LECTURE XI CONTROLLER DESIGN AND PID CONTOLLER TUNING. Professor Dae Ryook Yang CHBE320 LECTURE XI CONTROLLER DESIGN AND PID CONTOLLER TUNING Professor Dae Ryook Yang Spring 2018 Dept. of Chemical and Biological Engineering 11-1 Road Map of the Lecture XI Controller Design and PID

More information

The parameterization of all. of all two-degree-of-freedom strongly stabilizing controllers

The parameterization of all. of all two-degree-of-freedom strongly stabilizing controllers The parameterization stabilizing controllers 89 The parameterization of all two-degree-of-freedom strongly stabilizing controllers Tatsuya Hoshikawa, Kou Yamada 2, Yuko Tatsumi 3, Non-members ABSTRACT

More information

A New Robust Decentralized Control Method for Interconnected Nonlinear Systems Based on State Extension and Adaptive Tracking

A New Robust Decentralized Control Method for Interconnected Nonlinear Systems Based on State Extension and Adaptive Tracking 7 3rd International Conference on Computational Systems and Communications (ICCSC 7) A New Robust Decentralized Control Method for Interconnected Nonlinear Systems Based on State Etension and Adaptive

More information

Dynamic Model Predictive Control

Dynamic Model Predictive Control Dynamic Model Predictive Control Karl Mårtensson, Andreas Wernrud, Department of Automatic Control, Faculty of Engineering, Lund University, Box 118, SE 221 Lund, Sweden. E-mail: {karl, andreas}@control.lth.se

More information

Tuning of Internal Model Control Proportional Integral Derivative Controller for Optimized Control

Tuning of Internal Model Control Proportional Integral Derivative Controller for Optimized Control Tuning of Internal Model Control Proportional Integral Derivative Controller for Optimized Control Thesis submitted in partial fulfilment of the requirement for the award of Degree of MASTER OF ENGINEERING

More information

ISA-PID Controller Tuning: A combined min-max / ISE approach

ISA-PID Controller Tuning: A combined min-max / ISE approach Proceedings of the 26 IEEE International Conference on Control Applications Munich, Germany, October 4-6, 26 FrB11.2 ISA-PID Controller Tuning: A combined min-max / ISE approach Ramon Vilanova, Pedro Balaguer

More information

Acceleration Feedback

Acceleration Feedback Acceleration Feedback Mechanical Engineer Modeling & Simulation Electro- Mechanics Electrical- Electronics Engineer Sensors Actuators Computer Systems Engineer Embedded Control Controls Engineer Mechatronic

More information

Distributed model predictive control of large-scale systems

Distributed model predictive control of large-scale systems Distributed model predictive control of large-scale systems James B Rawlings 1, Aswin N Venkat 1 and Stephen J Wright 2 1 Department of Chemical and Biological Engineering 2 Department of Computer Sciences

More information

FINITE HORIZON ROBUST MODEL PREDICTIVE CONTROL USING LINEAR MATRIX INEQUALITIES. Danlei Chu, Tongwen Chen, Horacio J. Marquez

FINITE HORIZON ROBUST MODEL PREDICTIVE CONTROL USING LINEAR MATRIX INEQUALITIES. Danlei Chu, Tongwen Chen, Horacio J. Marquez FINITE HORIZON ROBUST MODEL PREDICTIVE CONTROL USING LINEAR MATRIX INEQUALITIES Danlei Chu Tongwen Chen Horacio J Marquez Department of Electrical and Computer Engineering University of Alberta Edmonton

More information

Adaptive Robust Control

Adaptive Robust Control Adaptive Robust Control Adaptive control: modifies the control law to cope with the fact that the system and environment are uncertain. Robust control: sacrifices performance by guaranteeing stability

More information

Supply chain monitoring: a statistical approach

Supply chain monitoring: a statistical approach European Symposium on Computer Arded Aided Process Engineering 15 L. Puigjaner and A. Espuña (Editors) 2005 Elsevier Science B.V. All rights reserved. Supply chain monitoring: a statistical approach Fernando

More information

Filtered-X LMS vs repetitive control for active structural acoustic control of periodic disturbances

Filtered-X LMS vs repetitive control for active structural acoustic control of periodic disturbances Filtered-X LMS vs repetitive control for active structural acoustic control of periodic disturbances B. Stallaert 1, G. Pinte 2, S. Devos 2, W. Symens 2, J. Swevers 1, P. Sas 1 1 K.U.Leuven, Department

More information

Bayesian Networks BY: MOHAMAD ALSABBAGH

Bayesian Networks BY: MOHAMAD ALSABBAGH Bayesian Networks BY: MOHAMAD ALSABBAGH Outlines Introduction Bayes Rule Bayesian Networks (BN) Representation Size of a Bayesian Network Inference via BN BN Learning Dynamic BN Introduction Conditional

More information

EXPERIMENTAL IMPLEMENTATION OF CDM BASED TWO MODE CONTROLLER FOR AN INTERACTING 2*2 DISTILLATION PROCESS

EXPERIMENTAL IMPLEMENTATION OF CDM BASED TWO MODE CONTROLLER FOR AN INTERACTING 2*2 DISTILLATION PROCESS Volume 118 No. 18 2018, 2241-2251 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu ijpam.eu EXPERIMENTAL IMPLEMENTATION OF CDM BASED TWO MODE CONTROLLER FOR

More information

Practical Control of Surge Tanks Suffering from Frequent Inlet Flow Upsets

Practical Control of Surge Tanks Suffering from Frequent Inlet Flow Upsets Brescia (Italy) March 28-3 212 Practical Control of Surge Tanks Suffering from Frequent Inlet Flow Upsets Peter Rosander Alf J Isaksson Johan Löfberg Krister Forsman Department of Electrical Engineering

More information

Chapter 5 The SIMC Method for Smooth PID Controller Tuning

Chapter 5 The SIMC Method for Smooth PID Controller Tuning Chapter 5 The SIMC Method for Smooth PID Controller Tuning Sigurd Skogestad and Chriss Grimholt 5.1 Introduction Although the proportional-integral-derivative (PID) controller has only three parameters,

More information

Robust Model Predictive Control for Autonomous Vehicle/Self-Driving Cars

Robust Model Predictive Control for Autonomous Vehicle/Self-Driving Cars Robust Model Predictive Control for Autonomous Vehicle/Self-Driving Cars Che Kun Law, Darshit Dalal, Stephen Shearrow A robust Model Predictive Control (MPC) approach for controlling front steering of

More information

Robust QFT-based PI controller for a feedforward control scheme

Robust QFT-based PI controller for a feedforward control scheme Integral-Derivative Control, Ghent, Belgium, May 9-11, 218 ThAT4.4 Robust QFT-based PI controller for a feedforward control scheme Ángeles Hoyo José Carlos Moreno José Luis Guzmán Tore Hägglund Dep. of

More information

Optimizing Control of Hot Blast Stoves in Staggered Parallel Operation

Optimizing Control of Hot Blast Stoves in Staggered Parallel Operation Proceedings of the 17th World Congress The International Federation of Automatic Control Optimizing Control of Hot Blast Stoves in Staggered Parallel Operation Akın Şahin and Manfred Morari Automatic Control

More information

Laplace Transforms Chapter 3

Laplace Transforms Chapter 3 Laplace Transforms Important analytical method for solving linear ordinary differential equations. - Application to nonlinear ODEs? Must linearize first. Laplace transforms play a key role in important

More information

Index. INDEX_p /15/02 3:08 PM Page 765

Index. INDEX_p /15/02 3:08 PM Page 765 INDEX_p.765-770 11/15/02 3:08 PM Page 765 Index N A Adaptive control, 144 Adiabatic reactors, 465 Algorithm, control, 5 All-pass factorization, 257 All-pass, frequency response, 225 Amplitude, 216 Amplitude

More information

SEVENTH FRAMEWORK PROGRAMME THEME ICT [Information and Communication Technologies]

SEVENTH FRAMEWORK PROGRAMME THEME ICT [Information and Communication Technologies] SEVENTH FRAMEWORK PROGRAMME THEME ICT [Information and Communication Technologies] Contract Number: 223854 Project Title: Hierarchical and Distributed Model Predictive Control of Large- Scale Systems Project

More information

Gain Delay Retune in Multivariable Controls for the Paper Making Process

Gain Delay Retune in Multivariable Controls for the Paper Making Process Gain Delay Retune in Multivariable Controls for the Paper Making Process Stephen Chu Software Application Manager, Honeywell Joyce Choi Software Application Manager, Honeywell 500 Brooksbank Ave., N. Vancouver,

More information

Dr Ian R. Manchester

Dr Ian R. Manchester Week Content Notes 1 Introduction 2 Frequency Domain Modelling 3 Transient Performance and the s-plane 4 Block Diagrams 5 Feedback System Characteristics Assign 1 Due 6 Root Locus 7 Root Locus 2 Assign

More information

CBE507 LECTURE III Controller Design Using State-space Methods. Professor Dae Ryook Yang

CBE507 LECTURE III Controller Design Using State-space Methods. Professor Dae Ryook Yang CBE507 LECTURE III Controller Design Using State-space Methods Professor Dae Ryook Yang Fall 2013 Dept. of Chemical and Biological Engineering Korea University Korea University III -1 Overview States What

More information

MULTILOOP PI CONTROLLER FOR ACHIEVING SIMULTANEOUS TIME AND FREQUENCY DOMAIN SPECIFICATIONS

MULTILOOP PI CONTROLLER FOR ACHIEVING SIMULTANEOUS TIME AND FREQUENCY DOMAIN SPECIFICATIONS Journal of Engineering Science and Technology Vol. 1, No. 8 (215) 113-1115 School of Engineering, Taylor s University MULTILOOP PI CONTROLLER FOR ACHIEVING SIMULTANEOUS TIME AND FREQUENCY DOMAIN SPECIFICATIONS

More information

MCE/EEC 647/747: Robot Dynamics and Control. Lecture 12: Multivariable Control of Robotic Manipulators Part II

MCE/EEC 647/747: Robot Dynamics and Control. Lecture 12: Multivariable Control of Robotic Manipulators Part II MCE/EEC 647/747: Robot Dynamics and Control Lecture 12: Multivariable Control of Robotic Manipulators Part II Reading: SHV Ch.8 Mechanical Engineering Hanz Richter, PhD MCE647 p.1/14 Robust vs. Adaptive

More information

Nonlinear Stochastic Modeling and State Estimation of Weakly Observable Systems: Application to Industrial Polymerization Processes

Nonlinear Stochastic Modeling and State Estimation of Weakly Observable Systems: Application to Industrial Polymerization Processes Nonlinear Stochastic Modeling and State Estimation of Weakly Observable Systems: Application to Industrial Polymerization Processes Fernando V. Lima, James B. Rawlings and Tyler A. Soderstrom Department

More information

A combined model predictive control and time series forecasting framework for production-inventory systems

A combined model predictive control and time series forecasting framework for production-inventory systems A combined model predictive control and time series forecasting framework for production-inventory systems Philip Doganis, Eleni Aggelogiannaki, Haralambos Sarimveis To cite this version: Philip Doganis,

More information

Control of MIMO processes. 1. Introduction. Control of MIMO processes. Control of Multiple-Input, Multiple Output (MIMO) Processes

Control of MIMO processes. 1. Introduction. Control of MIMO processes. Control of Multiple-Input, Multiple Output (MIMO) Processes Control of MIMO processes Control of Multiple-Input, Multiple Output (MIMO) Processes Statistical Process Control Feedforward and ratio control Cascade control Split range and selective control Control

More information

Feedback: Still the simplest and best solution

Feedback: Still the simplest and best solution Feedback: Still the simplest and best solution Sigurd Skogestad Department of Chemical Engineering Norwegian Univ. of Science and Tech. (NTNU) Trondheim, Norway skoge@ntnu.no Abstract Most engineers are

More information

On service level measures in stochastic inventory control

On service level measures in stochastic inventory control On service level measures in stochastic inventory control Dr. Roberto Rossi The University of Edinburgh Business School, The University of Edinburgh, UK roberto.rossi@ed.ac.uk Friday, June the 21th, 2013

More information

Applications of Petri Nets

Applications of Petri Nets Applications of Petri Nets Presenter: Chung-Wei Lin 2010.10.28 Outline Revisiting Petri Nets Application 1: Software Syntheses Theory and Algorithm Application 2: Biological Networks Comprehensive Introduction

More information

DESIGN OF AN ON-LINE TITRATOR FOR NONLINEAR ph CONTROL

DESIGN OF AN ON-LINE TITRATOR FOR NONLINEAR ph CONTROL DESIGN OF AN ON-LINE TITRATOR FOR NONLINEAR CONTROL Alex D. Kalafatis Liuping Wang William R. Cluett AspenTech, Toronto, Canada School of Electrical & Computer Engineering, RMIT University, Melbourne,

More information

CHAPTER-3 MULTI-OBJECTIVE SUPPLY CHAIN NETWORK PROBLEM

CHAPTER-3 MULTI-OBJECTIVE SUPPLY CHAIN NETWORK PROBLEM CHAPTER-3 MULTI-OBJECTIVE SUPPLY CHAIN NETWORK PROBLEM 3.1 Introduction A supply chain consists of parties involved, directly or indirectly, in fulfilling customer s request. The supply chain includes

More information

Passivity-based Adaptive Inventory Control

Passivity-based Adaptive Inventory Control Joint 48th IEEE Conference on Decision and Control and 28th Chinese Control Conference Shanghai, P.R. China, December 6-8, 29 ThB.2 Passivity-based Adaptive Inventory Control Keyu Li, Kwong Ho Chan and

More information

MULTILOOP CONTROL APPLIED TO INTEGRATOR MIMO. PROCESSES. A Preliminary Study

MULTILOOP CONTROL APPLIED TO INTEGRATOR MIMO. PROCESSES. A Preliminary Study MULTILOOP CONTROL APPLIED TO INTEGRATOR MIMO PROCESSES. A Preliminary Study Eduardo J. Adam 1,2*, Carlos J. Valsecchi 2 1 Instituto de Desarrollo Tecnológico para la Industria Química (INTEC) (Universidad

More information

Model-Based Control of Fast-Ramp RTP Systems æ

Model-Based Control of Fast-Ramp RTP Systems æ Model-Based Control of Fast-Ramp RTP Systems æ D. DE ROOVER, A.EMAMI-NAEINI, J.L.EBERT, S.GHOSAL, G.W.VAN DER LINDEN SC Solutions Inc. 3211 Scott Boulevard Santa Clara, CA 95054 USA roover@scsolutions.com

More information

THE DOS AND DON TS OF DISTILLATION COLUMN CONTROL

THE DOS AND DON TS OF DISTILLATION COLUMN CONTROL THE DOS AND DON TS OF DISTILLATION COLUMN CONTROL Sigurd Skogestad Department of Chemical Engineering, Norwegian University of Science and Technology, N-7491 Trondheim, Norway The paper discusses distillation

More information

A Dynamic model for requirements planning with application to supply chain optimization

A Dynamic model for requirements planning with application to supply chain optimization This summary presentation is based on: Graves, Stephen, D.B. Kletter and W.B. Hetzel. "A Dynamic Model for Requirements Planning with Application to Supply Chain Optimization." Operations Research 46,

More information

Control of Electromechanical Systems

Control of Electromechanical Systems Control of Electromechanical Systems November 3, 27 Exercise Consider the feedback control scheme of the motor speed ω in Fig., where the torque actuation includes a time constant τ A =. s and a disturbance

More information

Constrained Output Feedback Control of a Multivariable Polymerization Reactor

Constrained Output Feedback Control of a Multivariable Polymerization Reactor IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 8, NO. 1, JANUARY 2000 87 Constrained Output Feedback Control of a Multivariable Polymerization Reactor Michael J. Kurtz, Guang.-Yan Zhu, and Michael

More information

CHAPTER 5 ROBUSTNESS ANALYSIS OF THE CONTROLLER

CHAPTER 5 ROBUSTNESS ANALYSIS OF THE CONTROLLER 114 CHAPTER 5 ROBUSTNESS ANALYSIS OF THE CONTROLLER 5.1 INTRODUCTION Robust control is a branch of control theory that explicitly deals with uncertainty in its approach to controller design. It also refers

More information

Decentralized Robust Control Invariance for a Network of Integrators

Decentralized Robust Control Invariance for a Network of Integrators 2010 American Control Conference Marriott Waterfront, Baltimore, MD, USA June 30-July 02, 2010 ThC01.2 Decentralized Robust Control Invariance for a Network of Integrators Miroslav Barić and Francesco

More information

Decoupled Feedforward Control for an Air-Conditioning and Refrigeration System

Decoupled Feedforward Control for an Air-Conditioning and Refrigeration System American Control Conference Marriott Waterfront, Baltimore, MD, USA June 3-July, FrB1.4 Decoupled Feedforward Control for an Air-Conditioning and Refrigeration System Neera Jain, Member, IEEE, Richard

More information

ROBUST STABLE NONLINEAR CONTROL AND DESIGN OF A CSTR IN A LARGE OPERATING RANGE. Johannes Gerhard, Martin Mönnigmann, Wolfgang Marquardt

ROBUST STABLE NONLINEAR CONTROL AND DESIGN OF A CSTR IN A LARGE OPERATING RANGE. Johannes Gerhard, Martin Mönnigmann, Wolfgang Marquardt ROBUST STABLE NONLINEAR CONTROL AND DESIGN OF A CSTR IN A LARGE OPERATING RANGE Johannes Gerhard, Martin Mönnigmann, Wolfgang Marquardt Lehrstuhl für Prozesstechnik, RWTH Aachen Turmstr. 46, D-5264 Aachen,

More information

Robust Model Predictive Control

Robust Model Predictive Control Robust Model Predictive Control Motivation: An industrial C3/C4 splitter: MPC assuming ideal model: MPC considering model uncertainty Robust Model Predictive Control Nominal model of the plant: 1 = G ()

More information

On an internal multimodel control for nonlinear multivariable systems - A comparative study

On an internal multimodel control for nonlinear multivariable systems - A comparative study On an internal multimodel control for nonlinear multivariable systems A comparative study Nahla Touati Karmani Dhaou Soudani Mongi Naceur Mohamed Benrejeb Abstract An internal multimodel control designed

More information

DISTURBANCE OBSERVER BASED CONTROL: CONCEPTS, METHODS AND CHALLENGES

DISTURBANCE OBSERVER BASED CONTROL: CONCEPTS, METHODS AND CHALLENGES DISTURBANCE OBSERVER BASED CONTROL: CONCEPTS, METHODS AND CHALLENGES Wen-Hua Chen Professor in Autonomous Vehicles Department of Aeronautical and Automotive Engineering Loughborough University 1 Outline

More information

PRACTICAL CONTROL OF DIVIDING-WALL COLUMNS

PRACTICAL CONTROL OF DIVIDING-WALL COLUMNS Distillation Absorption 2010. Strandberg, S. Skogestad and I.. Halvorsen All rights reserved by authors as per DA2010 copyright notice PRACTICAL CONTROL OF DIVIDING-WALL COLUMNS ens Strandberg 1, Sigurd

More information