Logarithm and Exponential Derivatives and Integrals

Size: px
Start display at page:

Download "Logarithm and Exponential Derivatives and Integrals"

Transcription

1 Logarithm and Exponential Derivatives and Integrals James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University September 3, 2013

2 Outline 1 Exponential Functions: Integrals and Derivatives Derivative s Integral s 2 Logarithm Functions: Integrals and Derivatives Derivative s Integral s

3 Abstract This lecture is going to talk the derivatives and integrals of natural logarithm function ln(x) and the exponential function exp(x) = e x.

4 Exponential Functions: Integrals and Derivatives We know exp is a continuous function of x for all x, lim x exp(x) =, lim x exp(x) = 0, exp(0) = 1, ( exp(x) ) = exp(x),

5 Exponential Functions: Integrals and Derivatives If x and y are positive numbers then exp(x + y) = exp(x) exp(y), If x and y are positive numbers then exp(x y) = exp(x) exp( y) = exp(x) exp(y), If x and y are positive numbers then. (exp(x)) y = exp(xy),

6 Exponential Functions: Integrals and Derivatives We have two new rules: Let s do some examples. d ( e u(x) dx = e u(x) u (x) e u du = e u + C

7 Exponential Functions: Integrals and Derivatives Derivative s Find the derivative of exp(x 2 + x + 1). d ( exp(x 2 + x + 1) ) = exp(x 2 + x + 1) (2x + 1) dx Find the derivative of exp(tan(x)). d dx (exp(tan(x))) = exp(tan(x)) sec2 (x)

8 Exponential Functions: Integrals and Derivatives Derivative s Find the derivative of exp(exp(x 2 )). d ( exp(exp(x 2 )) ) = exp(exp(x 2 )) exp(x 2 ) 2x dx Find the derivative of exp( 5x 3 + 2x 8). d ( exp( 5x 3 + 2x 8) ) = exp( 5x 3 + 2x 8) ( 15x 2 + 2) dx

9 Exponential Functions: Integrals and Derivatives Derivative s Find the derivative of exp( 3x). d (exp( 3x)) = exp( 3x) ( 3) dx Find the derivative of exp(5x). d (exp(5x)) = exp(5x) 5 dx

10 Exponential Functions: Integrals and Derivatives Derivative s Before we go any further, you need to know that historically, many people got tired of writing exp all the time. They shortened the notation as follows: exp(u(x)) = e u(x). Sometimes it is easier to read a complicated exponential expression using the e u(x) notation and sometimes not. Judge for yourselves. 1 d ( ) e x2 +x+1 = e x2 +x+1 (2x + 1) dx 2 d ( e 3t ) = e 3t ( 3) dt 3 d ( e 5t ) = e 5t 5 dt

11 Exponential Functions: Integrals and Derivatives Derivative s Homework Find the derivative of exp( 3t) Find the derivative of exp(t 2 + 2t 4) Find the derivative of e 1/t Find the derivative of e t /(e t + e t ) Find the derivative of (t 2 + 2t 8) e 5t Find the derivative of e 4t Find the derivative of e 3t Find the derivative of e 18t.

12 Exponential Functions: Integrals and Derivatives Integral s Find the integral of exp(x 2 + x + 1) (2x + 1). exp(x 2 + x + 1) (2x + 1) = exp(u) du, use substitution u = x 2 + x + 1 = exp(u) + C = exp(x 2 + x + 1) + C

13 Exponential Functions: Integrals and Derivatives Integral s Find the integral of exp(tan(x)) sec 2 (x) dx. exp(tan(x)) sec 2 (x) dx = exp(u) du, use substitution u = tan(x); = exp(u) + C = exp(tan(x)) + C

14 Exponential Functions: Integrals and Derivatives Integral s Find the integral of exp(t 2 ) 3t dt. exp(t 2 ) 3t dt = exp(u)3(du/2), use substitution u = t 2 ; = (3/2) exp(u) du = (3/2) exp(u) + C = (3/2) exp(t 2 ) + C

15 Exponential Functions: Integrals and Derivatives Integral s Find the integral of exp( 3t) dt. exp( 3t) dt = exp(u) du/( 3), (u = 3t) use substitution u = 3t; = 1 exp(u) du 3 = 1 3 exp(u) + C = 1 3 exp( 3t) + C

16 Exponential Functions: Integrals and Derivatives Integral s Find the integral of exp(5t) dt. exp(5t) dt = = 1 5 exp(u) du/(5), (u = 5t) exp(u) du = 1 5 exp(u) + C = 1 5 exp(5t) + C

17 Exponential Functions: Integrals and Derivatives Integral s You should see the problems above using the other notion also. Here they are: 1 e t2 3t dt = e u 3(du/2), (u = t 2 ) = (3/2) e u du = (3/2) e u + C = (3/2) e t2 + C 2 e 3t dt = e u du/( 3), (u = 3t) = 1 e u du 3 = 1 3 eu + C = 1 3 e 3t + C

18 Exponential Functions: Integrals and Derivatives Integral s Homework Find the integral exp( 3t) dt Find the integral exp(t 2 + 2t 4) (2t + 2)dt Find the integral e t3 t 2 dt Find the integral t e 5t2 dt Find the integral e 14t dt Find the integral 5 1 e 33t dt Find the integral 2 0 e4t dt.

19 Logarithm Functions: Integrals and Derivatives We know ln is a continuous function of x for positive x, lim x ln(x) =, lim x 0 ln(x) =, ln(1) = 0, ln(e) = 1, ( ln(x) ) = 1 x,

20 Logarithm Functions: Integrals and Derivatives and we know If x and y are positive numbers then ln(xy) = ln(x) + ln(y), If x and y are positive numbers then ln( x ) = ln(x) ln(y), y If x and y are positive numbers then ln(x y ) = y ln(x).

21 Logarithm Functions: Integrals and Derivatives We can say more about the derivative of the logarithm function. Then ln( x ) is nicely defined at all x not zero. ln( x ) = { ln(x) if x > 0 ln( x) if x < 0 If x is negative, using the chain rule we have d dx (ln( x)) = 1 x d dx ( x) = 1 x ( 1) = 1 x

22 Logarithm Functions: Integrals and Derivatives Thus, d (ln x )) = dx = 1 x We conclude that { d dx { (ln(x)) if x > 0 1 d dx (ln( x)) if x < 0 = x if x > 0 1 x if x < 0 if x is not 0 d dx (ln( x )) = 1 x, if x 0 So the antiderivative of 1/x is ln( x ) + C.

23 Logarithm Functions: Integrals and Derivatives We have two new rules: Let s do some examples. d dx (ln( u(x) ) = 1 u(x) u (x) 1 du = ln( u ) + C u

24 Logarithm Functions: Integrals and Derivatives Derivative s Find the derivative of ln(x 2 + x + 1). d ( ln(x 2 + x + 1) ) = dx 1 x 2 (2x + 1) + x + 1

25 Logarithm Functions: Integrals and Derivatives Derivative s Find the derivative of ln(tan(x)). d dx (ln(tan(x))) = 1 tan(x) sec2 (x) Now the natural logarithm here is only defined when tan(x) is positive. We usually just assume that we are only interested in evaluating the expression ln(tan(x) for such x; i.e. by writing ln(tan(x), we are tacitly assuming that tan(x) is positive. Another way of looking at this, is that the domain of the function ln(tan(x) is the set of x where tan(x) is positive. However, it is best to train ourselves to think about the restrictions on the domain without being so explicit!

26 Logarithm Functions: Integrals and Derivatives Derivative s Find the derivative of ln(5x). d dx (ln(5x)) = 1 5x 5 = 1 x Here the implied domain of ln(5x) is all positive x. We can again use the properties of ln to get this result another way. d dx (ln(5x)) = d dx (ln(x)) + d dx (ln(5)) = 1 x

27 Logarithm Functions: Integrals and Derivatives Derivative s Find the derivative of ln(5x 2 + 6x + 9). d ( ln(5x 2 + 6x + 9) ) = dx 1 5x 2 (10x + 6). + 6x + 9 Find the derivative of ln(5x 3 + 6x 2 + 9x 25). d ( ln(5x 3 + 6x 2 + 9x 25) ) = dx 15x x + 9 5x 3 + 6x 2 + 9x 25.

28 Logarithm Functions: Integrals and Derivatives Derivative s Homework Find the derivative of ln(t 2 + 1) Find the derivative of ln(t 3 + t 2 + 5) Find the derivative of ln(y 2 + 3y 12) Find the derivative of ln(x x 3 23x + 100) Find the derivative of t ln(t) t.

29 Logarithm Functions: Integrals and Derivatives Integral s Find the integral 1 (2x + 1). x 2 +x+1 1 x 2 (2x + 1) = + x u du, use substitution u = x 2 + x + 1 = ln( u ) + C = ln( x 2 + x + 1 ) + C

30 Logarithm Functions: Integrals and Derivatives Integral s Find the integral 1 tan(x) sec2 (x) dx. 1 tan(x) sec2 (x) dx = 1 u du, use substitution u = tan(x); = ln( u ) + C = ln( tan(x) ) + C

31 Logarithm Functions: Integrals and Derivatives Integral s Find the integral e t 1 + e t dt. e t 1 + e t dt = 1 u du, use substitution u = 1 + e t ; du = e t dt = ln( u ) + C = ln( 1 + e t ) + C, but 1 + e t is always positive = ln(1 + e t ) + C

32 Logarithm Functions: Integrals and Derivatives Integral s Find the integral 5x 4 + x 2 dx. 5x 4 + x 2 dx = u du, use substitution u = 4 + x 2 ; = 5 2 ln( u ) + C = 5 2 ln( 4 + x 2 ) + C, but 4 + x 2 is always positive = 5 2 ln(4 + x 2 ) + C

33 Logarithm Functions: Integrals and Derivatives Integral s Find the integral tan(w)dw. tan(w)dw = = sin(w) cos(w) dw 1 u ( du), use substitution u = cos(w); du = sin(w)dw = ln( u ) + C = ln( cos(w) ) + C

34 Logarithm Functions: Integrals and Derivatives Integral s Homework Find the integral ln(t) t dt ( let u = ln(t)) Find the integral 2t/(t 2 + 4) dt Find the integral 2s 2 /(s 3 + 9) ds Find the integral 8z z 3 + 9z + 18 dz Find the integral 40z z z 8z 5 + 9z z dz Find the integral 2 0 t 4t dt.

Defining Exponential Functions and Exponential Derivatives and Integrals

Defining Exponential Functions and Exponential Derivatives and Integrals Defining Exponential Functions and Exponential Derivatives and Integrals James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University February 19, 2014

More information

Predator - Prey Model Trajectories and the nonlinear conservation law

Predator - Prey Model Trajectories and the nonlinear conservation law Predator - Prey Model Trajectories and the nonlinear conservation law James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University October 28, 2013 Outline

More information

Complex Numbers. Outline. James K. Peterson. September 19, Complex Numbers. Complex Number Calculations. Complex Functions

Complex Numbers. Outline. James K. Peterson. September 19, Complex Numbers. Complex Number Calculations. Complex Functions Complex Numbers James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University September 19, 2013 Outline Complex Numbers Complex Number Calculations Complex

More information

Complex Numbers. James K. Peterson. September 19, Department of Biological Sciences and Department of Mathematical Sciences Clemson University

Complex Numbers. James K. Peterson. September 19, Department of Biological Sciences and Department of Mathematical Sciences Clemson University Complex Numbers James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University September 19, 2013 Outline 1 Complex Numbers 2 Complex Number Calculations

More information

Antiderivatives! Outline. James K. Peterson. January 28, Antiderivatives. Simple Fractional Power Antiderivatives

Antiderivatives! Outline. James K. Peterson. January 28, Antiderivatives. Simple Fractional Power Antiderivatives Antiderivatives! James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University January 28, 2014 Outline Antiderivatives Simple Fractional Power Antiderivatives

More information

Antiderivatives! James K. Peterson. January 28, Department of Biological Sciences and Department of Mathematical Sciences Clemson University

Antiderivatives! James K. Peterson. January 28, Department of Biological Sciences and Department of Mathematical Sciences Clemson University ! James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University January 28, 2014 Outline 1 2 Simple Fractional Power Abstract This lecture is going to talk

More information

Integration by Parts Logarithms and More Riemann Sums!

Integration by Parts Logarithms and More Riemann Sums! Integration by Parts Logarithms and More Riemann Sums! James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University September 16, 2013 Outline 1 IbyP with

More information

7.4* General logarithmic and exponential functions

7.4* General logarithmic and exponential functions 7.4* General logarithmic and exponential functions Mark Woodard Furman U Fall 2010 Mark Woodard (Furman U) 7.4* General logarithmic and exponential functions Fall 2010 1 / 9 Outline 1 General exponential

More information

Lecture 5 - Logarithms, Slope of a Function, Derivatives

Lecture 5 - Logarithms, Slope of a Function, Derivatives Lecture 5 - Logarithms, Slope of a Function, Derivatives 5. Logarithms Note the graph of e x This graph passes the horizontal line test, so f(x) = e x is one-to-one and therefore has an inverse function.

More information

x x 1 x 2 + x 2 1 > 0. HW5. Text defines:

x x 1 x 2 + x 2 1 > 0. HW5. Text defines: Lecture 15: Last time: MVT. Special case: Rolle s Theorem (when f(a) = f(b)). Recall: Defn: Let f be defined on an interval I. f is increasing (or strictly increasing) if whenever x 1, x 2 I and x 2 >

More information

1 Lesson 13: Methods of Integration

1 Lesson 13: Methods of Integration Lesson 3: Methods of Integration Chapter 6 Material: pages 273-294 in the textbook: Lesson 3 reviews integration by parts and presents integration via partial fraction decomposition as the third of the

More information

(e) 2 (f) 2. (c) + (d). Limits at Infinity. 2.5) 9-14,25-34,41-43,46-47,56-57, (c) (d) 2

(e) 2 (f) 2. (c) + (d). Limits at Infinity. 2.5) 9-14,25-34,41-43,46-47,56-57, (c) (d) 2 Math 150A. Final Review Answers, Spring 2018. Limits. 2.2) 7-10, 21-24, 28-1, 6-8, 4-44. 1. Find the values, or state they do not exist. (a) (b) 1 (c) DNE (d) 1 (e) 2 (f) 2 (g) 2 (h) 4 2. lim f(x) = 2,

More information

Integration by Substitution

Integration by Substitution Integration by Substitution Dr. Philippe B. Laval Kennesaw State University Abstract This handout contains material on a very important integration method called integration by substitution. Substitution

More information

The First Derivative and Second Derivative Test

The First Derivative and Second Derivative Test The First Derivative and Second Derivative Test James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University April 9, 2018 Outline 1 Extremal Values 2

More information

The First Derivative and Second Derivative Test

The First Derivative and Second Derivative Test The First Derivative and Second Derivative Test James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University November 8, 2017 Outline Extremal Values The

More information

Riemann Sums. Outline. James K. Peterson. September 15, Riemann Sums. Riemann Sums In MatLab

Riemann Sums. Outline. James K. Peterson. September 15, Riemann Sums. Riemann Sums In MatLab Riemann Sums James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University September 15, 2013 Outline Riemann Sums Riemann Sums In MatLab Abstract This

More information

MA 242 Review Exponential and Log Functions Notes for today s class can be found at

MA 242 Review Exponential and Log Functions Notes for today s class can be found at MA 242 Review Exponential and Log Functions Notes for today s class can be found at www.xecu.net/jacobs/index242.htm Example: If y = x n If y = x 2 then then dy dx = nxn 1 dy dx = 2x1 = 2x Power Function

More information

Chapter 3: Transcendental Functions

Chapter 3: Transcendental Functions Chapter 3: Transcendental Functions Spring 2018 Department of Mathematics Hong Kong Baptist University 1 / 32 Except for the power functions, the other basic elementary functions are also called the transcendental

More information

Chapter 5: Integrals

Chapter 5: Integrals Chapter 5: Integrals Section 5.3 The Fundamental Theorem of Calculus Sec. 5.3: The Fundamental Theorem of Calculus Fundamental Theorem of Calculus: Sec. 5.3: The Fundamental Theorem of Calculus Fundamental

More information

CALCULUS II MATH Dr. Hyunju Ban

CALCULUS II MATH Dr. Hyunju Ban CALCULUS II MATH 2414 Dr. Hyunju Ban Introduction Syllabus Chapter 5.1 5.4 Chapters To Be Covered: Chap 5: Logarithmic, Exponential, and Other Transcendental Functions (2 week) Chap 7: Applications of

More information

3.9 Derivatives of Exponential and Logarithmic Functions

3.9 Derivatives of Exponential and Logarithmic Functions 322 Chapter 3 Derivatives 3.9 Derivatives of Exponential and Logarithmic Functions Learning Objectives 3.9.1 Find the derivative of exponential functions. 3.9.2 Find the derivative of logarithmic functions.

More information

MATH 408N PRACTICE FINAL

MATH 408N PRACTICE FINAL 05/05/2012 Bormashenko MATH 408N PRACTICE FINAL Name: TA session: Show your work for all the problems. Good luck! (1) Calculate the following limits, using whatever tools are appropriate. State which results

More information

MATH 230 CALCULUS II OVERVIEW

MATH 230 CALCULUS II OVERVIEW MATH 230 CALCULUS II OVERVIEW This overview is designed to give you a brief look into some of the major topics covered in Calculus II. This short introduction is just a glimpse, and by no means the whole

More information

Math 106: Review for Exam II - SOLUTIONS

Math 106: Review for Exam II - SOLUTIONS Math 6: Review for Exam II - SOLUTIONS INTEGRATION TIPS Substitution: usually let u a function that s inside another function, especially if du (possibly off by a multiplying constant) is also present

More information

and verify that it satisfies the differential equation:

and verify that it satisfies the differential equation: MOTIVATION: Chapter One: Basic and Review Why study differential equations? Suppose we know how a certain quantity changes with time (for example, the temperature of coffee in a cup, the number of people

More information

A Simple Protein Synthesis Model

A Simple Protein Synthesis Model A Simple Protein Synthesis Model James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University September 3, 213 Outline A Simple Protein Synthesis Model

More information

M152: Calculus II Midterm Exam Review

M152: Calculus II Midterm Exam Review M52: Calculus II Midterm Exam Review Chapter 4. 4.2 : Mean Value Theorem. - Know the statement and idea of Mean Value Theorem. - Know how to find values of c making the theorem true. - Realize the importance

More information

SOME SOLUTION OF CALCULUS OF STEWART OF 7.4

SOME SOLUTION OF CALCULUS OF STEWART OF 7.4 SOME SOLUTION OF CALCULUS OF STEWART OF 7.4 PHILO WU / WU ZHONG TANG September 6, 203 Abstract The goal (maybe just a hope) of this note is helping you to understand what the calculus(as verb) is in calculus

More information

Business and Life Calculus

Business and Life Calculus Business and Life Calculus George Voutsadakis Mathematics and Computer Science Lake Superior State University LSSU Math 2 George Voutsadakis (LSSU) Calculus For Business and Life Sciences Fall 203 / 55

More information

Practice Problems: Integration by Parts

Practice Problems: Integration by Parts Practice Problems: Integration by Parts Answers. (a) Neither term will get simpler through differentiation, so let s try some choice for u and dv, and see how it works out (we can always go back and try

More information

Intermediate Algebra Chapter 12 Review

Intermediate Algebra Chapter 12 Review Intermediate Algebra Chapter 1 Review Set up a Table of Coordinates and graph the given functions. Find the y-intercept. Label at least three points on the graph. Your graph must have the correct shape.

More information

3 Algebraic Methods. we can differentiate both sides implicitly to obtain a differential equation involving x and y:

3 Algebraic Methods. we can differentiate both sides implicitly to obtain a differential equation involving x and y: 3 Algebraic Methods b The first appearance of the equation E Mc 2 in Einstein s handwritten notes. So far, the only general class of differential equations that we know how to solve are directly integrable

More information

Regression and Nonlinear Axes

Regression and Nonlinear Axes Introduction to Chemical Engineering Calculations Lecture 2. What is regression analysis? A technique for modeling and analyzing the relationship between 2 or more variables. Usually, 1 variable is designated

More information

If y = f (u) is a differentiable function of u and u = g(x) is a differentiable function of x then dy dx = dy. du du. If y = f (u) then y = f (u) u

If y = f (u) is a differentiable function of u and u = g(x) is a differentiable function of x then dy dx = dy. du du. If y = f (u) then y = f (u) u Section 3 4B Lecture The Chain Rule If y = f (u) is a differentiable function of u and u = g(x) is a differentiable function of x then dy dx = dy du du dx or If y = f (u) then y = f (u) u The Chain Rule

More information

0. Mathematical Functions

0. Mathematical Functions 0. Mathematical Functions This is a course on complex methods in the physical sciences. Before dealing with complex numbers, however, let us undertake a brief review of real mathematical functions and

More information

Differential Equations: Homework 2

Differential Equations: Homework 2 Differential Equations: Homework Alvin Lin January 08 - May 08 Section.3 Exercise The direction field for provided x 0. dx = 4x y is shown. Verify that the straight lines y = ±x are solution curves, y

More information

Announcements. Topics: Homework:

Announcements. Topics: Homework: Announcements Topics: - sections 7.3 (the definite integral +area), 7.4 (FTC), 7.5 (additional techniques of integration) * Read these sections and study solved examples in your textbook! Homework: - review

More information

Chapter 7. Integrals and Transcendental Functions

Chapter 7. Integrals and Transcendental Functions 7. The Logarithm Define as an Integral Chapter 7. Integrals an Transcenental Functions 7.. The Logarithm Define as an Integral Note. In this section, we introuce the natural logarithm function using efinite

More information

Math Calculus II Material for Exam II

Math Calculus II Material for Exam II Lecture /9. Definition of a function A function f : R(the omain) R(the coomain), where R is the collection(set) of real numbers, assigns to every number in the omain, a unique number in the coomain...

More information

MATH 1A - FINAL EXAM DELUXE - SOLUTIONS. x x x x x 2. = lim = 1 =0. 2) Then ln(y) = x 2 ln(x) 3) ln(x)

MATH 1A - FINAL EXAM DELUXE - SOLUTIONS. x x x x x 2. = lim = 1 =0. 2) Then ln(y) = x 2 ln(x) 3) ln(x) MATH A - FINAL EXAM DELUXE - SOLUTIONS PEYAM RYAN TABRIZIAN. ( points, 5 points each) Find the following limits (a) lim x x2 + x ( ) x lim x2 + x x2 + x 2 + + x x x x2 + + x x 2 + x 2 x x2 + + x x x2 +

More information

Chapter II.B. The Chain Rule

Chapter II.B. The Chain Rule Chapter IIB The Chain Rule x x Preface: To find the derivative of f (x) = [sin(x)] and g (x) = exp(x) = e = [e ] you could x x view these functions as the products, sin(x) sin(x) or e e With this view

More information

INTEGRATION: THE FUNDAMENTAL THEOREM OF CALCULUS MR. VELAZQUEZ AP CALCULUS

INTEGRATION: THE FUNDAMENTAL THEOREM OF CALCULUS MR. VELAZQUEZ AP CALCULUS INTEGRATION: THE FUNDAMENTAL THEOREM OF CALCULUS MR. VELAZQUEZ AP CALCULUS RECALL: ANTIDERIVATIVES When we last spoke of integration, we examined a physics problem where we saw that the area under the

More information

EC5555 Economics Masters Refresher Course in Mathematics September 2013

EC5555 Economics Masters Refresher Course in Mathematics September 2013 EC5555 Economics Masters Refresher Course in Mathematics September 013 Lecture 3 Differentiation Francesco Feri Rationale for Differentiation Much of economics is concerned with optimisation (maximise

More information

Campus Academic Resource Program Chain Rule

Campus Academic Resource Program Chain Rule This handout will: Provide a strategy to identify composite functions Provide a strategy to find chain rule by using a substitution method. Identifying Composite Functions This section will provide a strategy

More information

Practice Differentiation Math 120 Calculus I Fall 2015

Practice Differentiation Math 120 Calculus I Fall 2015 . x. Hint.. (4x 9) 4x + 9. Hint. Practice Differentiation Math 0 Calculus I Fall 0 The rules of differentiation are straightforward, but knowing when to use them and in what order takes practice. Although

More information

Section 4.8 Anti Derivative and Indefinite Integrals 2 Lectures. Dr. Abdulla Eid. College of Science. MATHS 101: Calculus I

Section 4.8 Anti Derivative and Indefinite Integrals 2 Lectures. Dr. Abdulla Eid. College of Science. MATHS 101: Calculus I Section 4.8 Anti Derivative and Indefinite Integrals 2 Lectures College of Science MATHS 101: Calculus I (University of Bahrain) 1 / 28 Indefinite Integral Given a function f, if F is a function such that

More information

Applied Calculus I. Lecture 29

Applied Calculus I. Lecture 29 Applied Calculus I Lecture 29 Integrals of trigonometric functions We shall continue learning substitutions by considering integrals involving trigonometric functions. Integrals of trigonometric functions

More information

Week 1: need to know. November 14, / 20

Week 1: need to know. November 14, / 20 Week 1: need to know How to find domains and ranges, operations on functions (addition, subtraction, multiplication, division, composition), behaviors of functions (even/odd/ increasing/decreasing), library

More information

Separable Differential Equations

Separable Differential Equations Separable Differential Equations MATH 6 Calculus I J. Robert Buchanan Department of Mathematics Fall 207 Background We have previously solved differential equations of the forms: y (t) = k y(t) (exponential

More information

Math 147 Exam II Practice Problems

Math 147 Exam II Practice Problems Math 147 Exam II Practice Problems This review should not be used as your sole source for preparation for the exam. You should also re-work all examples given in lecture, all homework problems, all lab

More information

a x a y = a x+y a x a = y ax y (a x ) r = a rx and log a (xy) = log a (x) + log a (y) log a ( x y ) = log a(x) log a (y) log a (x r ) = r log a (x).

a x a y = a x+y a x a = y ax y (a x ) r = a rx and log a (xy) = log a (x) + log a (y) log a ( x y ) = log a(x) log a (y) log a (x r ) = r log a (x). You should prepare the following topics for our final exam. () Pre-calculus. (2) Inverses. (3) Algebra of Limits. (4) Derivative Formulas and Rules. (5) Graphing Techniques. (6) Optimization (Maxima and

More information

The SIR Disease Model Trajectories and MatLab

The SIR Disease Model Trajectories and MatLab The SIR Disease Model Trajectories and MatLab James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University November 17, 2013 Outline Reviewing the SIR

More information

Project One: C Bump functions

Project One: C Bump functions Project One: C Bump functions James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University November 2, 2018 Outline 1 2 The Project Let s recall what the

More information

Calculus II Practice Test Problems for Chapter 7 Page 1 of 6

Calculus II Practice Test Problems for Chapter 7 Page 1 of 6 Calculus II Practice Test Problems for Chapter 7 Page of 6 This is a set of practice test problems for Chapter 7. This is in no way an inclusive set of problems there can be other types of problems on

More information

JUST THE MATHS UNIT NUMBER DIFFERENTIATION 4 (Products and quotients) & (Logarithmic differentiation) A.J.Hobson

JUST THE MATHS UNIT NUMBER DIFFERENTIATION 4 (Products and quotients) & (Logarithmic differentiation) A.J.Hobson JUST THE MATHS UNIT NUMBER 104 DIFFERENTIATION 4 (Products and quotients) & (Logarithmic differentiation) by AJHobson 1041 Products 1042 Quotients 1043 Logarithmic differentiation 1044 Exercises 1045 Answers

More information

More On Exponential Functions, Inverse Functions and Derivative Consequences

More On Exponential Functions, Inverse Functions and Derivative Consequences More On Exponential Functions, Inverse Functions and Derivative Consequences James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University January 10, 2019

More information

11.5. The Chain Rule. Introduction. Prerequisites. Learning Outcomes

11.5. The Chain Rule. Introduction. Prerequisites. Learning Outcomes The Chain Rule 11.5 Introduction In this Section we will see how to obtain the derivative of a composite function (often referred to as a function of a function ). To do this we use the chain rule. This

More information

7.3 Hyperbolic Functions Hyperbolic functions are similar to trigonometric functions, and have the following

7.3 Hyperbolic Functions Hyperbolic functions are similar to trigonometric functions, and have the following Math 2-08 Rahman Week3 7.3 Hyperbolic Functions Hyperbolic functions are similar to trigonometric functions, and have the following definitions: sinh x = 2 (ex e x ) cosh x = 2 (ex + e x ) tanh x = sinh

More information

Geometric Series and the Ratio and Root Test

Geometric Series and the Ratio and Root Test Geometric Series and the Ratio and Root Test James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University September 5, 2018 Outline 1 Geometric Series

More information

2.12: Derivatives of Exp/Log (cont d) and 2.15: Antiderivatives and Initial Value Problems

2.12: Derivatives of Exp/Log (cont d) and 2.15: Antiderivatives and Initial Value Problems 2.12: Derivatives of Exp/Log (cont d) and 2.15: Antiderivatives and Initial Value Problems Mathematics 3 Lecture 14 Dartmouth College February 03, 2010 Derivatives of the Exponential and Logarithmic Functions

More information

Sin, Cos and All That

Sin, Cos and All That Sin, Cos and All That James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University March 9, 2017 Outline 1 Sin, Cos and all that! 2 A New Power Rule 3

More information

Announcements. Topics: Homework:

Announcements. Topics: Homework: Announcements Topics: - sections 7.4 (FTC), 7.5 (additional techniques of integration), 7.6 (applications of integration) * Read these sections and study solved examples in your textbook! Homework: - review

More information

Sin, Cos and All That

Sin, Cos and All That Sin, Cos and All That James K Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University September 9, 2014 Outline Sin, Cos and all that! A New Power Rule Derivatives

More information

Homework Solutions: , plus Substitutions

Homework Solutions: , plus Substitutions Homework Solutions: 2.-2.2, plus Substitutions Section 2. I have not included any drawings/direction fields. We can see them using Maple or by hand, so we ll be focusing on getting the analytic solutions

More information

Math 21B - Homework Set 8

Math 21B - Homework Set 8 Math B - Homework Set 8 Section 8.:. t cos t dt Let u t, du t dt and v sin t, dv cos t dt Let u t, du dt and v cos t, dv sin t dt t cos t dt u v v du t sin t t sin t dt [ t sin t u v ] v du [ ] t sin t

More information

2. Theory of the Derivative

2. Theory of the Derivative 2. Theory of the Derivative 2.1 Tangent Lines 2.2 Definition of Derivative 2.3 Rates of Change 2.4 Derivative Rules 2.5 Higher Order Derivatives 2.6 Implicit Differentiation 2.7 L Hôpital s Rule 2.8 Some

More information

Question Details sp15 u sub intro 1(MEV) [ ]

Question Details sp15 u sub intro 1(MEV) [ ] 12 Basic: Integration by Substitution (9971904) Question 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Instructions Read today's Notes and Learning Goals 1. Question Details sp15 u sub intro 1(MEV) [3443269]

More information

MATH 101: PRACTICE MIDTERM 2

MATH 101: PRACTICE MIDTERM 2 MATH : PRACTICE MIDTERM INSTRUCTOR: PROF. DRAGOS GHIOCA March 7, Duration of examination: 7 minutes This examination includes pages and 6 questions. You are responsible for ensuring that your copy of the

More information

Hölder s and Minkowski s Inequality

Hölder s and Minkowski s Inequality Hölder s and Minkowski s Inequality James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University September 1, 218 Outline Conjugate Exponents Hölder s

More information

1. There are 8 questions spanning 9 pages total (including this cover page). Please make sure that you have all 9 pages before starting.

1. There are 8 questions spanning 9 pages total (including this cover page). Please make sure that you have all 9 pages before starting. Instructor: K. Rotz Name: Solution PUID: 00000-00000 Instructions and tips: 1. There are 8 questions spanning 9 pages total (including this cover page). Please make sure that you have all 9 pages before

More information

Linear Systems of ODE: Nullclines, Eigenvector lines and trajectories

Linear Systems of ODE: Nullclines, Eigenvector lines and trajectories Linear Systems of ODE: Nullclines, Eigenvector lines and trajectories James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University October 6, 203 Outline

More information

Page 1. These are all fairly simple functions in that wherever the variable appears it is by itself. What about functions like the following, ( ) ( )

Page 1. These are all fairly simple functions in that wherever the variable appears it is by itself. What about functions like the following, ( ) ( ) Chain Rule Page We ve taken a lot of derivatives over the course of the last few sections. However, if you look back they have all been functions similar to the following kinds of functions. 0 w ( ( tan

More information

Summary: Primer on Integral Calculus:

Summary: Primer on Integral Calculus: Physics 2460 Electricity and Magnetism I, Fall 2006, Primer on Integration: Part I 1 Summary: Primer on Integral Calculus: Part I 1. Integrating over a single variable: Area under a curve Properties of

More information

= π + sin π = π + 0 = π, so the object is moving at a speed of π feet per second after π seconds. (c) How far does it go in π seconds?

= π + sin π = π + 0 = π, so the object is moving at a speed of π feet per second after π seconds. (c) How far does it go in π seconds? Mathematics 115 Professor Alan H. Stein April 18, 005 SOLUTIONS 1. Define what is meant by an antiderivative or indefinite integral of a function f(x). Solution: An antiderivative or indefinite integral

More information

Integration by Substitution

Integration by Substitution November 22, 2013 Introduction 7x 2 cos(3x 3 )dx =? 2xe x2 +5 dx =? Chain rule The chain rule: d dx (f (g(x))) = f (g(x)) g (x). Use the chain rule to find f (x) and then write the corresponding anti-differentiation

More information

Differentiating Series of Functions

Differentiating Series of Functions Differentiating Series of Functions James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University October 30, 017 Outline 1 Differentiating Series Differentiating

More information

If y = f (u) is a differentiable function of u and u = g(x) is a differentiable function of x then dy dx = dy. du du. If y = f (u) then y = f (u) u

If y = f (u) is a differentiable function of u and u = g(x) is a differentiable function of x then dy dx = dy. du du. If y = f (u) then y = f (u) u Section 3 4B The Chain Rule If y = f (u) is a differentiable function of u and u = g(x) is a differentiable function of x then dy dx = dy du du dx or If y = f (u) then f (u) u The Chain Rule with the Power

More information

Integration by Parts

Integration by Parts Calculus 2 Lia Vas Integration by Parts Using integration by parts one transforms an integral of a product of two functions into a simpler integral. Divide the initial function into two parts called u

More information

7.3 CALCULUS WITH THE INVERSE TRIGONOMETRIC FUNCTIONS

7.3 CALCULUS WITH THE INVERSE TRIGONOMETRIC FUNCTIONS . Calculus With The Inverse Trigonometric Functions Contemporary Calculus. CALCULUS WITH THE INVERSE TRIGONOMETRIC FUNCTIONS The three previous sections introduced the ideas of one to one functions and

More information

Solutions to Problems and

Solutions to Problems and Solutions to Problems 1.2.24 and 1.2.27 Will Johnson September 6, 2014 Since people asked me about these problems, I said I d write up some solutions. (27) A general power function looks like f(x) = cx

More information

MAT 275 Test 1 SOLUTIONS, FORM A

MAT 275 Test 1 SOLUTIONS, FORM A MAT 75 Test SOLUTIONS, FORM A The differential equation xy e x y + y 3 = x 7 is D neither linear nor homogeneous Solution: Linearity is ruinied by the y 3 term; homogeneity is ruined by the x 7 on the

More information

PRELIM 2 REVIEW QUESTIONS Math 1910 Section 205/209

PRELIM 2 REVIEW QUESTIONS Math 1910 Section 205/209 PRELIM 2 REVIEW QUESTIONS Math 9 Section 25/29 () Calculate the following integrals. (a) (b) x 2 dx SOLUTION: This is just the area under a semicircle of radius, so π/2. sin 2 (x) cos (x) dx SOLUTION:

More information

Test one Review Cal 2

Test one Review Cal 2 Name: Class: Date: ID: A Test one Review Cal 2 Short Answer. Write the following expression as a logarithm of a single quantity. lnx 2ln x 2 ˆ 6 2. Write the following expression as a logarithm of a single

More information

Project Two. Outline. James K. Peterson. March 27, Cooling Models. Estimating the Cooling Rate k. Typical Cooling Project Matlab Session

Project Two. Outline. James K. Peterson. March 27, Cooling Models. Estimating the Cooling Rate k. Typical Cooling Project Matlab Session Project Two James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University March 27, 2018 Outline Cooling Models Estimating the Cooling Rate k Typical Cooling

More information

Mathematics 1161: Final Exam Study Guide

Mathematics 1161: Final Exam Study Guide Mathematics 1161: Final Exam Study Guide 1. The Final Exam is on December 10 at 8:00-9:45pm in Hitchcock Hall (HI) 031 2. Take your BuckID to the exam. The use of notes, calculators, or other electronic

More information

Linear Systems of ODE: Nullclines, Eigenvector lines and trajectories

Linear Systems of ODE: Nullclines, Eigenvector lines and trajectories Linear Systems of ODE: Nullclines, Eigenvector lines and trajectories James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University October 6, 2013 Outline

More information

Project Two. James K. Peterson. March 26, Department of Biological Sciences and Department of Mathematical Sciences Clemson University

Project Two. James K. Peterson. March 26, Department of Biological Sciences and Department of Mathematical Sciences Clemson University Project Two James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University March 26, 2019 Outline 1 Cooling Models 2 Estimating the Cooling Rate k 3 Typical

More information

MAT137 - Week 8, lecture 1

MAT137 - Week 8, lecture 1 MAT137 - Week 8, lecture 1 Reminder: Problem Set 3 is due this Thursday, November 1, at 11:59pm. Don t leave the submission process until the last minute! In today s lecture we ll talk about implicit differentiation,

More information

What I Learned Teaching AP Calculus

What I Learned Teaching AP Calculus Chuck Garner, Ph.D. Department of Mathematics Rockdale Magnet School for Science and Technology 55th Georgia Math Conference, October 17, 2014 Outline How I Started What I Learned Questions Outline How

More information

Announcements. Topics: Homework:

Announcements. Topics: Homework: Announcements Topics: - sections 7.5 (additional techniques of integration), 7.6 (applications of integration), * Read these sections and study solved examples in your textbook! Homework: - review lecture

More information

WeBWorK, Problems 2 and 3

WeBWorK, Problems 2 and 3 WeBWorK, Problems 2 and 3 7 dx 2. Evaluate x ln(6x) This can be done using integration by parts or substitution. (Most can not). However, it is much more easily done using substitution. This can be written

More information

Calculus & Analytic Geometry I

Calculus & Analytic Geometry I TQS 124 Autumn 2008 Quinn Calculus & Analytic Geometry I The Derivative: Analytic Viewpoint Derivative of a Constant Function. For c a constant, the derivative of f(x) = c equals f (x) = Derivative of

More information

Matrices and Vectors

Matrices and Vectors Matrices and Vectors James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University November 11, 2013 Outline 1 Matrices and Vectors 2 Vector Details 3 Matrix

More information

Section 4.2 Logarithmic Functions & Applications

Section 4.2 Logarithmic Functions & Applications 34 Section 4.2 Logarithmic Functions & Applications Recall that exponential functions are one-to-one since every horizontal line passes through at most one point on the graph of y = b x. So, an exponential

More information

Integration by Parts. MAT 126, Week 2, Thursday class. Xuntao Hu

Integration by Parts. MAT 126, Week 2, Thursday class. Xuntao Hu MAT 126, Week 2, Thursday class Xuntao Hu Recall that the substitution rule is a combination of the FTC and the chain rule. We can also combine the FTC and the product rule: d dx [f (x)g(x)] = f (x)g (x)

More information

Calculus I Review Solutions

Calculus I Review Solutions Calculus I Review Solutions. Compare and contrast the three Value Theorems of the course. When you would typically use each. The three value theorems are the Intermediate, Mean and Extreme value theorems.

More information

1. The graph of a function f is given above. Answer the question: a. Find the value(s) of x where f is not differentiable. Ans: x = 4, x = 3, x = 2,

1. The graph of a function f is given above. Answer the question: a. Find the value(s) of x where f is not differentiable. Ans: x = 4, x = 3, x = 2, 1. The graph of a function f is given above. Answer the question: a. Find the value(s) of x where f is not differentiable. x = 4, x = 3, x = 2, x = 1, x = 1, x = 2, x = 3, x = 4, x = 5 b. Find the value(s)

More information

Mth Review Problems for Test 2 Stewart 8e Chapter 3. For Test #2 study these problems, the examples in your notes, and the homework.

Mth Review Problems for Test 2 Stewart 8e Chapter 3. For Test #2 study these problems, the examples in your notes, and the homework. For Test # study these problems, the examples in your notes, and the homework. Derivative Rules D [u n ] = nu n 1 du D [ln u] = du u D [log b u] = du u ln b D [e u ] = e u du D [a u ] = a u ln a du D [sin

More information

Math 1 Lecture 23. Dartmouth College. Wednesday

Math 1 Lecture 23. Dartmouth College. Wednesday Math 1 Lecture 23 Dartmouth College Wednesday 11-02-16 Contents Reminders/Announcements Last Time Derivatives of Logarithmic and Exponential Functions Examish Exercises Reminders/Announcements WebWork

More information