Chapter 3: Transcendental Functions

Size: px
Start display at page:

Download "Chapter 3: Transcendental Functions"

Transcription

1 Chapter 3: Transcendental Functions Spring 2018 Department of Mathematics Hong Kong Baptist University 1 / 32

2 Except for the power functions, the other basic elementary functions are also called the transcendental functions. Transcendental functions cannot be constructed from real numbers and a single real variable x by using finitely many arithmetic operations (addition, subtraction, multiplication, division, and fractional powers). We have studied the trigonometric functions in Section 2.5. This chapter is devoted to the study of other transcendental functions, including (i) exponential functions, (ii) logarithmic functions, (iii) inverse trigonometric functions (not required). 2 / 32

3 Recall that the elementary functions are built from the basic elementary functions and constants through composition (f g) and combinations using operations (+,, and /). By the rules of differentiation, we conclude that the derivative of any elementary function can be expressed in terms of the basic elementary functions and their derivatives. In this chapter, we will study the differentiation rules for (i) exponential functions and (ii) logarithmic functions, respectively. 3 / 32

4 3.2 Exponential and Logarithmic Functions An exponential function is a function of the form f (x) = a x, where the base a is a positive constant and the exponent x is the variable. Lemma Let a > 0 and b > 0. Then for any pair of real numbers x and y, we have (i) a 0 = 1 (iii) a x = 1 a x (v) (a x ) y = a xy (ii) a x+y = a x a y (iv) a x y = ax a y (vi) (ab) x = a x b x 4 / 32

5 5 / 32

6 If a = 1, then a x = 1 x = 1 for every x, i.e., it is a constant function. If a > 1, then a x is an increasing function of x with lim x ax = 0 and lim x ax =. If 0 < a < 1, then a x is a decreasing function of x with lim x ax = and lim x ax = 0. If a > 0 and a 1, then the function f (x) = a x has domain (, ) and range (0, ). In particular, we have a x > 0 for all x. 6 / 32

7 Definition If a > 0 and a 1, then function log a (x), called the logarithm of x to the base a, is the inverse of the one-to-one function a x : y = log a (x) x = a y. log a (x) has domain (0, ) and range (, ). Remark: Since a x and log a (x) are inverse functions, the following cancellation identities hold: log a (a x ) = x for all real x, a log a (x) = x for all x > 0. In particular, log a (a) = 1 when x = 1 and log a (1) = 0 when x = 0. 7 / 32

8 Laws of Logarithms Lemma If x > 0, y > 0, a > 0, b > 0, a 1, and b 1, then (i) log a (1) = 0 (ii) log a (xy) = log a (x) + log a (y) ( ) ( ) 1 x (iii) log a = log x a (x) (iv) log a = log y a (x) log a (y) (v) log a (x y ) = y log a (x) (vi) log a (x) = log b(x) log b (a) 8 / 32

9 9 / 32

10 If a > 1, then log a (x) is an increasing function of x with lim log a(x) = and lim log x 0+ x a(x) =. If 0 < a < 1, then log a (x) is a decreasing function of x with lim log a(x) = and lim log x 0+ x a(x) =. 10 / 32

11 Example 1: (a) Simplify 3 log 9 (4) ; (b) Solve the equation 3 x 1 = 2 x. Solution: 11 / 32

12 Example 1: (a) Simplify 3 log 9 (4) ; (b) Solve the equation 3 x 1 = 2 x. Solution: (a) Note that log 9 (4) = log 3(4) log 3 (9) = 1 2 log 3(4). So 3 log 9 (4) = 3 log 3 (4) 1 2 = 4 1/2 = 2. (b) Let a = 2 and take logarithms of both sides, This leads to where log 2 (3) (x 1) log 2 (3) = x. x = log 2(3) log 2 (3) , 12 / 32

13 3.3 The Natural Logarithm and Exponential This section considers the base a = e, where the e constant is called the Euler s number. Specifically, we write log e (x) = ln(x) and e x = exp(x). The e constant was defined by Bernoulli, ( e = lim ) n = lim n n (1 + r 0 r)1/r. The number e is irrational (in fact, transcendental) with value e In 4.10 we will also learn that e = ! + 1 2! + 1 3! + 1 4! + 13 / 32

14 Theorem (1) For any x > 0, d dx ln(x) = 1 x. (2) For any x (, ), d dx ex = e x. 14 / 32

15 Thus, we have d dx ln(x) = 1 x, as required. 15 / 32 Proof: (1) By definition, we have d ln(x) = lim dx h 0 1 = lim h 0 h ln ln(x + h) ln(x) ( h 1 + h ) x = 1 x lim ln(1 + r), r 0 }{{ r } =:L where we let h = rx. But taking the natural logarithm of the definition of e gives ( ) 1 = ln(e) = ln (1 + r)1/r lim r 0 1 = lim ln(1 + r) = L. r 0 r

16 (2) The derivative of y = e x can be calculated by implicit differentiation. Note that y = e x = x = ln(y). By the Chain rule and take derivatives of both sides on x, 1 = 1 y dy dx. This leads to dy dx = y = ex. 16 / 32

17 Example 2: Find the derivatives of (a) ln(cos 2 (x)), and (b) ln(x + x 2 + 1). Solution: 17 / 32

18 Example 2: Find the derivatives of (a) ln(cos 2 (x)), and (b) ln(x + x 2 + 1). Solution: (a) By the Chain rule, d dx ln(cos2 (x)) = (b) By the Chain rule, 1 cos 2 (x) d dx cos2 (x) = 2 tan(x). d dx ln(x + x 2 + 1) = = = 1 x + x d dx (x + x 2 + 1) ( ) 1 x + 2x 1 + x x x / 32

19 Example 3: Find the derivatives of (a) e x2 3x, and (b) 1 + e 2x. Solution: 19 / 32

20 Example 3: Find the derivatives of (a) e x2 3x, and (b) 1 + e 2x. Solution: (a) By the Chain rule, d 3x dx ex2 = e x2 3x d dx (x 2 3x) = (2x 3)e x2 3x. (b) By the Chain rule, d 1 + e dx 2x = e 2x d dx (1 + e2x ) = e 2x 1 + e 2x. 20 / 32

21 General Exponentials and Logarithms Theorem (1) For any x (, ), d dx ax = d dx ex ln(a) = e x ln(a) ln(a) = a x ln(a). (2) For any x > 0, d dx log a(x) = 1 x ln(a). Remark: The derivative of log a (x) can be derived (i) by implicit differentiation on x = a y, or (ii) by noting that log a (x) = ln(x) ln(a). 21 / 32

22 Functions y = e x y = a x y = ln(x) Derivatives y = e x y = a x ln(a) y = 1 x y = log a (x) y = 1 x ln(a) 22 / 32

23 Suppose we want to differentiate a function of the form y = (f (x)) g(x) (for f (x) > 0). For instance, when the function is y = x x. Since the variable appears in both the base and the exponent, neither the general power rule nor the exponential rule can be directly applied. One method for finding the derivative of such a function is to express it in the form g(x) ln(f (x)) y = e and then differentiate, using the Product rule to handle the exponent. 23 / 32

24 Logarithmic Differentiation Another method to obtain the derivative of such a function is to take the natural logarithms of both sides of the equation y = (f (x)) g(x) and then to differentiate it implicitly: ln(y) = g(x) ln f (x) 1 dy y dx = g (x) ln f (x) + g(x) f (x) f (x) ( dy dx = y g (x) ln f (x) + g(x) ) f (x) f (x) = (f (x)) g(x) ( g (x) ln f (x) + g(x) f (x) f (x) This technique is called logarithmic differentiation. ). 24 / 32

25 Example 4: Find the derivative of y = x x. Solution 1: Note that y = e x ln(x). By the Chain rule and the Product rule, dy dx = d dx ex ln(x) = e x ln(x) d dx (x ln(x)) = x x (ln(x) + 1). Solution 2: Let f (x) = x and g(x) = x. By logarithmic differentiation, ( = (f (x)) g(x) g (x) ln f (x) + g(x) dy dx = x x (ln(x) + 1). ) f (x) f (x) 25 / 32

26 3.5 Inverse Trigonometric Functions The inverse trigonometric functions are inverse functions of sin, cos, tan, etc. For example, the arcsine function satisfies y = arcsin(x) = x = sin(y). Other inverse trigonometric functions are define similarly: y = arccos(x) = x = cos(y), y = arctan(x) = x = tan(y). 26 / 32

27 y = arcsin(x) = x = sin(y). Since 1 sin(y) 1 for all y, the arcsine function is only defined for x [ 1, 1]. Since the equation x = sin(y) has many solutions for a given x, we restrict the range of arcsine to the interval [ π/2, π/2]. 27 / 32

28 Lemma (Cancellation Identity) For x [ π/2, π/2] and y [ 1, 1], we have arcsin(sin(x)) = x, sin(arcsin(y)) = y. Examples: (a) arcsin( 1 2 ) = π/6; (b) arcsin(2) is not defined; (c) sin(arcsin( 1 2 )) = 1 2 ; (d) arcsin(sin( 7π 6 )) = π / 32

29 Theorem (Derivative of arcsine) For 1 < x < 1, we have d dx arcsin(x) = 1. 1 x 2 Proof: Let y = arcsin(x) = sin(y) = x, π/2 < y < π/2. Then implicit differentiation gives cos(y) dy dx = 1 = dy dx = 1 cos(y). But cos(y) is positive for π/2 < y < π/2, so that cos 2 (y) = 1 sin 2 (y) = 1 x 2 = cos(y) = 1 x 2. Thus, dy dx = 1 1 x / 32

30 Example 5: Find the derivative of arcsin( x a ) and hence evaluate dx, where a > 0. a 2 x 2 Solution: By the chain rule, d ( x ) dx arcsin = a (x/a) 2 a = 1 a 2 x. 2 Hence, dx ( x ) a 2 x = arcsin + C. 2 a 30 / 32

31 The arccosine function is defined for x [ 1, 1], with the range [0, π]. Theorem (Derivatives of arccos) For 1 < x < 1, d dx arccos(x) = 1. 1 x 2 31 / 32

32 The arctangent function is defined for all x R, with range [ π/2, π/2]. Theorem (Derivatives of arctan) d dx arctan(x) = x / 32

Week 1: need to know. November 14, / 20

Week 1: need to know. November 14, / 20 Week 1: need to know How to find domains and ranges, operations on functions (addition, subtraction, multiplication, division, composition), behaviors of functions (even/odd/ increasing/decreasing), library

More information

MTH 112: Elementary Functions

MTH 112: Elementary Functions 1/19 MTH 11: Elementary Functions Section 6.6 6.6:Inverse Trigonometric functions /19 Inverse Trig functions 1 1 functions satisfy the horizontal line test: Any horizontal line crosses the graph of a 1

More information

Inverse Trigonometric Functions. September 5, 2018

Inverse Trigonometric Functions. September 5, 2018 Inverse Trigonometric Functions September 5, 08 / 7 Restricted Sine Function. The trigonometric function sin x is not a one-to-one functions..0 0.5 Π 6, 5Π 6, Π Π Π Π 0.5 We still want an inverse, so what

More information

Section 3.5: Implicit Differentiation

Section 3.5: Implicit Differentiation Section 3.5: Implicit Differentiation In the previous sections, we considered the problem of finding the slopes of the tangent line to a given function y = f(x). The idea of a tangent line however is not

More information

MTH 112: Elementary Functions

MTH 112: Elementary Functions MTH 11: Elementary Functions F. Patricia Medina Department of Mathematics. Oregon State University Section 6.6 Inverse Trig functions 1 1 functions satisfy the horizontal line test: Any horizontal line

More information

3 Algebraic Methods. we can differentiate both sides implicitly to obtain a differential equation involving x and y:

3 Algebraic Methods. we can differentiate both sides implicitly to obtain a differential equation involving x and y: 3 Algebraic Methods b The first appearance of the equation E Mc 2 in Einstein s handwritten notes. So far, the only general class of differential equations that we know how to solve are directly integrable

More information

Announcements. Topics: Homework: - sections 1.4, 2.2, and 2.3 * Read these sections and study solved examples in your textbook!

Announcements. Topics: Homework: - sections 1.4, 2.2, and 2.3 * Read these sections and study solved examples in your textbook! Announcements Topics: - sections 1.4, 2.2, and 2.3 * Read these sections and study solved examples in your textbook! Homework: - review lecture notes thoroughly - work on practice problems from the textbook

More information

MATH1013 Calculus I. Derivatives II (Chap. 3) 1

MATH1013 Calculus I. Derivatives II (Chap. 3) 1 MATH1013 Calculus I Derivatives II (Chap. 3) 1 Edmund Y. M. Chiang Department of Mathematics Hong Kong University of Science & Technology October 16, 2013 2013 1 Based on Briggs, Cochran and Gillett: Calculus

More information

Inverse Trig Functions

Inverse Trig Functions 6.6i Inverse Trigonometric Functions Inverse Sine Function Does g(x) = sin(x) have an inverse? What restriction would we need to make so that at least a piece of this function has an inverse? Given f (x)

More information

Test one Review Cal 2

Test one Review Cal 2 Name: Class: Date: ID: A Test one Review Cal 2 Short Answer. Write the following expression as a logarithm of a single quantity. lnx 2ln x 2 ˆ 6 2. Write the following expression as a logarithm of a single

More information

Math 1 Lecture 23. Dartmouth College. Wednesday

Math 1 Lecture 23. Dartmouth College. Wednesday Math 1 Lecture 23 Dartmouth College Wednesday 11-02-16 Contents Reminders/Announcements Last Time Derivatives of Logarithmic and Exponential Functions Examish Exercises Reminders/Announcements WebWork

More information

2.1 The derivative. Rates of change. m sec = y f (a + h) f (a)

2.1 The derivative. Rates of change. m sec = y f (a + h) f (a) 2.1 The derivative Rates of change 1 The slope of a secant line is m sec = y f (b) f (a) = x b a and represents the average rate of change over [a, b]. Letting b = a + h, we can express the slope of the

More information

Math 1 Lecture 22. Dartmouth College. Monday

Math 1 Lecture 22. Dartmouth College. Monday Math 1 Lecture 22 Dartmouth College Monday 10-31-16 Contents Reminders/Announcements Last Time Implicit Differentiation Derivatives of Inverse Functions Derivatives of Inverse Trigonometric Functions Examish

More information

Chapter 2: Differentiation

Chapter 2: Differentiation Chapter 2: Differentiation Spring 2018 Department of Mathematics Hong Kong Baptist University 1 / 82 2.1 Tangent Lines and Their Slopes This section deals with the problem of finding a straight line L

More information

Interpreting Derivatives, Local Linearity, Newton s

Interpreting Derivatives, Local Linearity, Newton s Unit #4 : Method Interpreting Derivatives, Local Linearity, Newton s Goals: Review inverse trigonometric functions and their derivatives. Create and use linearization/tangent line formulas. Investigate

More information

6.6 Inverse Trigonometric Functions

6.6 Inverse Trigonometric Functions 6.6 6.6 Inverse Trigonometric Functions We recall the following definitions from trigonometry. If we restrict the sine function, say fx) sinx, π x π then we obtain a one-to-one function. π/, /) π/ π/ Since

More information

Chapter P: Preliminaries

Chapter P: Preliminaries Chapter P: Preliminaries Spring 2018 Department of Mathematics Hong Kong Baptist University 1 / 67 Preliminaries The preliminary chapter reviews the most important things that you should know before beginning

More information

f(g(x)) g (x) dx = f(u) du.

f(g(x)) g (x) dx = f(u) du. 1. Techniques of Integration Section 8-IT 1.1. Basic integration formulas. Integration is more difficult than derivation. The derivative of every rational function or trigonometric function is another

More information

3.4 The Chain Rule. F (x) = f (g(x))g (x) Alternate way of thinking about it: If y = f(u) and u = g(x) where both are differentiable functions, then

3.4 The Chain Rule. F (x) = f (g(x))g (x) Alternate way of thinking about it: If y = f(u) and u = g(x) where both are differentiable functions, then 3.4 The Chain Rule To find the derivative of a function that is the composition of two functions for which we already know the derivatives, we can use the Chain Rule. The Chain Rule: Suppose F (x) = f(g(x)).

More information

I.e., the range of f(x) = arctan(x) is all real numbers y such that π 2 < y < π 2

I.e., the range of f(x) = arctan(x) is all real numbers y such that π 2 < y < π 2 Inverse Trigonometric Functions: The inverse sine function, denoted by fx = arcsinx or fx = sin 1 x is defined by: y = sin 1 x if and only if siny = x and π y π I.e., the range of fx = arcsinx is all real

More information

Chapter 2: Differentiation

Chapter 2: Differentiation Chapter 2: Differentiation Winter 2016 Department of Mathematics Hong Kong Baptist University 1 / 75 2.1 Tangent Lines and Their Slopes This section deals with the problem of finding a straight line L

More information

7.4* General logarithmic and exponential functions

7.4* General logarithmic and exponential functions 7.4* General logarithmic and exponential functions Mark Woodard Furman U Fall 2010 Mark Woodard (Furman U) 7.4* General logarithmic and exponential functions Fall 2010 1 / 9 Outline 1 General exponential

More information

INVERSE FUNCTIONS DERIVATIVES. terms on one side and everything else on the other. (3) Factor out dy. for the following functions: 1.

INVERSE FUNCTIONS DERIVATIVES. terms on one side and everything else on the other. (3) Factor out dy. for the following functions: 1. INVERSE FUNCTIONS DERIVATIVES Recall the steps for computing y implicitly: (1) Take of both sies, treating y like a function. (2) Expan, a, subtract to get the y terms on one sie an everything else on

More information

Chapter 3 Differentiation Rules (continued)

Chapter 3 Differentiation Rules (continued) Chapter 3 Differentiation Rules (continued) Sec 3.5: Implicit Differentiation (continued) Implicit Differentiation What if you want to find the slope of the tangent line to a curve that is not the graph

More information

MAT137 - Week 8, lecture 1

MAT137 - Week 8, lecture 1 MAT137 - Week 8, lecture 1 Reminder: Problem Set 3 is due this Thursday, November 1, at 11:59pm. Don t leave the submission process until the last minute! In today s lecture we ll talk about implicit differentiation,

More information

x x 1 x 2 + x 2 1 > 0. HW5. Text defines:

x x 1 x 2 + x 2 1 > 0. HW5. Text defines: Lecture 15: Last time: MVT. Special case: Rolle s Theorem (when f(a) = f(b)). Recall: Defn: Let f be defined on an interval I. f is increasing (or strictly increasing) if whenever x 1, x 2 I and x 2 >

More information

7.3 CALCULUS WITH THE INVERSE TRIGONOMETRIC FUNCTIONS

7.3 CALCULUS WITH THE INVERSE TRIGONOMETRIC FUNCTIONS . Calculus With The Inverse Trigonometric Functions Contemporary Calculus. CALCULUS WITH THE INVERSE TRIGONOMETRIC FUNCTIONS The three previous sections introduced the ideas of one to one functions and

More information

Formulas to remember

Formulas to remember Complex numbers Let z = x + iy be a complex number The conjugate z = x iy Formulas to remember The real part Re(z) = x = z+z The imaginary part Im(z) = y = z z i The norm z = zz = x + y The reciprocal

More information

a x a y = a x+y a x a = y ax y (a x ) r = a rx and log a (xy) = log a (x) + log a (y) log a ( x y ) = log a(x) log a (y) log a (x r ) = r log a (x).

a x a y = a x+y a x a = y ax y (a x ) r = a rx and log a (xy) = log a (x) + log a (y) log a ( x y ) = log a(x) log a (y) log a (x r ) = r log a (x). You should prepare the following topics for our final exam. () Pre-calculus. (2) Inverses. (3) Algebra of Limits. (4) Derivative Formulas and Rules. (5) Graphing Techniques. (6) Optimization (Maxima and

More information

f(x) f(a) Limit definition of the at a point in slope notation.

f(x) f(a) Limit definition of the at a point in slope notation. Lesson 9: Orinary Derivatives Review Hanout Reference: Brigg s Calculus: Early Transcenentals, Secon Eition Topics: Chapter 3: Derivatives, p. 126-235 Definition. Limit Definition of Derivatives at a point

More information

3.9 Derivatives of Exponential and Logarithmic Functions

3.9 Derivatives of Exponential and Logarithmic Functions 322 Chapter 3 Derivatives 3.9 Derivatives of Exponential and Logarithmic Functions Learning Objectives 3.9.1 Find the derivative of exponential functions. 3.9.2 Find the derivative of logarithmic functions.

More information

Chapter P: Preliminaries

Chapter P: Preliminaries Chapter P: Preliminaries Winter 2016 Department of Mathematics Hong Kong Baptist University 1 / 59 Preliminaries The preliminary chapter reviews the most important things that you should know before beginning

More information

Announcements. Topics: Homework: - sections 4.5 and * Read these sections and study solved examples in your textbook!

Announcements. Topics: Homework: - sections 4.5 and * Read these sections and study solved examples in your textbook! Announcements Topics: - sections 4.5 and 5.1-5.5 * Read these sections and study solved examples in your textbook! Homework: - review lecture notes thoroughly - work on practice problems from the textbook

More information

Math RE - Calculus I Trigonometry Limits & Derivatives Page 1 of 8. x = 1 cos x. cos x 1 = lim

Math RE - Calculus I Trigonometry Limits & Derivatives Page 1 of 8. x = 1 cos x. cos x 1 = lim Math 0-0-RE - Calculus I Trigonometry Limits & Derivatives Page of 8 Trigonometric Limits It has been shown in class that: lim 0 sin lim 0 sin lim 0 cos cos 0 lim 0 cos lim 0 + cos + To evaluate trigonometric

More information

Homework Problem Answers

Homework Problem Answers Homework Problem Answers Integration by Parts. (x + ln(x + x. 5x tan 9x 5 ln sec 9x 9 8 (. 55 π π + 6 ln 4. 9 ln 9 (ln 6 8 8 5. (6 + 56 0/ 6. 6 x sin x +6cos x. ( + x e x 8. 4/e 9. 5 x [sin(ln x cos(ln

More information

Transcendental Functions

Transcendental Functions 9 Transcendental Functions º½ ÁÒÚ Ö ÙÒØ ÓÒ Informally, two functions f and g are inverses if each reverses, or undoes, the other More precisely: DEFINITION 9 Two functions f and g are inverses if for all

More information

June 9 Math 1113 sec 002 Summer 2014

June 9 Math 1113 sec 002 Summer 2014 June 9 Math 1113 sec 002 Summer 2014 Section 6.5: Inverse Trigonometric Functions Definition: (Inverse Sine) For x in the interval [ 1, 1] the inverse sine of x is denoted by either and is defined by the

More information

Lecture 5: Inverse Trigonometric Functions

Lecture 5: Inverse Trigonometric Functions Lecture 5: Inverse Trigonometric Functions 5 The inverse sine function The function f(x = sin(x is not one-to-one on (,, but is on [ π, π Moreover, f still has range [, when restricte to this interval

More information

The Big 50 Revision Guidelines for C3

The Big 50 Revision Guidelines for C3 The Big 50 Revision Guidelines for C3 If you can understand all of these you ll do very well 1. Know how to recognise linear algebraic factors, especially within The difference of two squares, in order

More information

Calculus I: Practice Midterm II

Calculus I: Practice Midterm II Calculus I: Practice Mierm II April 3, 2015 Name: Write your solutions in the space provided. Continue on the back for more space. Show your work unless asked otherwise. Partial credit will be given for

More information

Math 106: Review for Exam II - SOLUTIONS

Math 106: Review for Exam II - SOLUTIONS Math 6: Review for Exam II - SOLUTIONS INTEGRATION TIPS Substitution: usually let u a function that s inside another function, especially if du (possibly off by a multiplying constant) is also present

More information

Curriculum Map for Mathematics HL (DP1)

Curriculum Map for Mathematics HL (DP1) Curriculum Map for Mathematics HL (DP1) Unit Title (Time frame) Sequences and Series (8 teaching hours or 2 weeks) Permutations & Combinations (4 teaching hours or 1 week) Standards IB Objectives Knowledge/Content

More information

page 1 of 14 1 for all x because f 1 = f and1 f = f. The identity for = x for all x because f

page 1 of 14 1 for all x because f 1 = f and1 f = f. The identity for = x for all x because f page of 4 Entry # Inverses in General The term inverse is used in very different contexts in mathematics. For example, the multiplicative inverse of a number, the inverse of a function, and the inverse

More information

Practice Differentiation Math 120 Calculus I Fall 2015

Practice Differentiation Math 120 Calculus I Fall 2015 . x. Hint.. (4x 9) 4x + 9. Hint. Practice Differentiation Math 0 Calculus I Fall 0 The rules of differentiation are straightforward, but knowing when to use them and in what order takes practice. Although

More information

Announcements. Topics: Homework: - sections 2.2, 2.3, 4.1, and 4.2 * Read these sections and study solved examples in your textbook!

Announcements. Topics: Homework: - sections 2.2, 2.3, 4.1, and 4.2 * Read these sections and study solved examples in your textbook! Announcements Topics: - sections 2.2, 2.3, 4.1, and 4.2 * Read these sections and study solved examples in your textbook! Homework: - review lecture notes thoroughly - work on practice problems from the

More information

2. Theory of the Derivative

2. Theory of the Derivative 2. Theory of the Derivative 2.1 Tangent Lines 2.2 Definition of Derivative 2.3 Rates of Change 2.4 Derivative Rules 2.5 Higher Order Derivatives 2.6 Implicit Differentiation 2.7 L Hôpital s Rule 2.8 Some

More information

Sec 4.1 Limits, Informally. When we calculated f (x), we first started with the difference quotient. f(x + h) f(x) h

Sec 4.1 Limits, Informally. When we calculated f (x), we first started with the difference quotient. f(x + h) f(x) h 1 Sec 4.1 Limits, Informally When we calculated f (x), we first started with the difference quotient f(x + h) f(x) h and made h small. In other words, f (x) is the number f(x+h) f(x) approaches as h gets

More information

FUNCTIONS AND MODELS

FUNCTIONS AND MODELS 1 FUNCTIONS AND MODELS FUNCTIONS AND MODELS 1.6 Inverse Functions and Logarithms In this section, we will learn about: Inverse functions and logarithms. INVERSE FUNCTIONS The table gives data from an experiment

More information

February 21 Math 1190 sec. 63 Spring 2017

February 21 Math 1190 sec. 63 Spring 2017 February 21 Math 1190 sec. 63 Spring 2017 Chapter 2: Derivatives Let s recall the efinitions an erivative rules we have so far: Let s assume that y = f (x) is a function with c in it s omain. The erivative

More information

Summary: Primer on Integral Calculus:

Summary: Primer on Integral Calculus: Physics 2460 Electricity and Magnetism I, Fall 2006, Primer on Integration: Part I 1 Summary: Primer on Integral Calculus: Part I 1. Integrating over a single variable: Area under a curve Properties of

More information

Lecture 5 - Logarithms, Slope of a Function, Derivatives

Lecture 5 - Logarithms, Slope of a Function, Derivatives Lecture 5 - Logarithms, Slope of a Function, Derivatives 5. Logarithms Note the graph of e x This graph passes the horizontal line test, so f(x) = e x is one-to-one and therefore has an inverse function.

More information

CALCULUS II MATH Dr. Hyunju Ban

CALCULUS II MATH Dr. Hyunju Ban CALCULUS II MATH 2414 Dr. Hyunju Ban Introduction Syllabus Chapter 5.1 5.4 Chapters To Be Covered: Chap 5: Logarithmic, Exponential, and Other Transcendental Functions (2 week) Chap 7: Applications of

More information

MATH 124. Midterm 2 Topics

MATH 124. Midterm 2 Topics MATH 124 Midterm 2 Topics Anything you ve learned in class (from lecture and homework) so far is fair game, but here s a list of some main topics since the first midterm that you should be familiar with:

More information

Chapter 7: Techniques of Integration

Chapter 7: Techniques of Integration Chapter 7: Techniques of Integration MATH 206-01: Calculus II Department of Mathematics University of Louisville last corrected September 14, 2013 1 / 43 Chapter 7: Techniques of Integration 7.1. Integration

More information

DIFFERENTIATION RULES

DIFFERENTIATION RULES 3 DIFFERENTIATION RULES DIFFERENTIATION RULES The functions that we have met so far can be described by expressing one variable explicitly in terms of another variable. y For example,, or y = x sin x,

More information

Logarithmic and Exponential Equations and Change-of-Base

Logarithmic and Exponential Equations and Change-of-Base Logarithmic and Exponential Equations and Change-of-Base MATH 101 College Algebra J. Robert Buchanan Department of Mathematics Summer 2012 Objectives In this lesson we will learn to solve exponential equations

More information

UNIT 3: DERIVATIVES STUDY GUIDE

UNIT 3: DERIVATIVES STUDY GUIDE Calculus I UNIT 3: Derivatives REVIEW Name: Date: UNIT 3: DERIVATIVES STUDY GUIDE Section 1: Section 2: Limit Definition (Derivative as the Slope of the Tangent Line) Calculating Rates of Change (Average

More information

2 Recollection of elementary functions. II

2 Recollection of elementary functions. II Recollection of elementary functions. II Last updated: October 5, 08. In this section we continue recollection of elementary functions. In particular, we consider exponential, trigonometric and hyperbolic

More information

Math 106 Exam 2 Topics. du dx

Math 106 Exam 2 Topics. du dx The Chain Rule Math 106 Exam 2 Topics Composition (g f)(x 0 ) = g(f(x 0 )) ; (note: we on t know what g(x 0 ) is.) (g f) ought to have something to o with g (x) an f (x) in particular, (g f) (x 0 ) shoul

More information

Homework Solutions: , plus Substitutions

Homework Solutions: , plus Substitutions Homework Solutions: 2.-2.2, plus Substitutions Section 2. I have not included any drawings/direction fields. We can see them using Maple or by hand, so we ll be focusing on getting the analytic solutions

More information

Inverse Trig Functions

Inverse Trig Functions Inverse Trig Functions -8-006 If you restrict fx) = sinx to the interval π x π, the function increases: y = sin x - / / This implies that the function is one-to-one, an hence it has an inverse. The inverse

More information

Calculus I Announcements

Calculus I Announcements Slide 1 Calculus I Announcements Read sections 3.9-3.10 Do all the homework for section 3.9 and problems 1,3,5,7 from section 3.10. The exam is in Thursday, October 22nd. The exam will cover sections 3.2-3.10,

More information

Math 180, Exam 2, Spring 2013 Problem 1 Solution

Math 180, Exam 2, Spring 2013 Problem 1 Solution Math 80, Eam, Spring 0 Problem Solution. Find the derivative of each function below. You do not need to simplify your answers. (a) tan ( + cos ) (b) / (logarithmic differentiation may be useful) (c) +

More information

9. The x axis is a horizontal line so a 1 1 function can touch the x axis in at most one place.

9. The x axis is a horizontal line so a 1 1 function can touch the x axis in at most one place. O Answers: Chapter 7 Contemporary Calculus PROBLEM ANSWERS Chapter Seven Section 7.0. f is one to one ( ), y is, g is not, h is not.. f is not, y is, g is, h is not. 5. I think SS numbers are supposeo

More information

Lecture 4 : General Logarithms and Exponentials. a x = e x ln a, a > 0.

Lecture 4 : General Logarithms and Exponentials. a x = e x ln a, a > 0. For a > 0 an x any real number, we efine Lecture 4 : General Logarithms an Exponentials. a x = e x ln a, a > 0. The function a x is calle the exponential function with base a. Note that ln(a x ) = x ln

More information

Infinite series, improper integrals, and Taylor series

Infinite series, improper integrals, and Taylor series Chapter 2 Infinite series, improper integrals, and Taylor series 2. Introduction to series In studying calculus, we have explored a variety of functions. Among the most basic are polynomials, i.e. functions

More information

Institute of Computer Science

Institute of Computer Science Institute of Computer Science Academy of Sciences of the Czech Republic Calculus Digest Jiří Rohn http://uivtx.cs.cas.cz/~rohn Technical report No. V-54 02.02.202 Pod Vodárenskou věží 2, 82 07 Prague 8,

More information

Core A-level mathematics reproduced from the QCA s Subject criteria for Mathematics document

Core A-level mathematics reproduced from the QCA s Subject criteria for Mathematics document Core A-level mathematics reproduced from the QCA s Subject criteria for Mathematics document Background knowledge: (a) The arithmetic of integers (including HCFs and LCMs), of fractions, and of real numbers.

More information

MATH 151, FALL SEMESTER 2011 COMMON EXAMINATION 3 - VERSION B - SOLUTIONS

MATH 151, FALL SEMESTER 2011 COMMON EXAMINATION 3 - VERSION B - SOLUTIONS Name (print): Signature: MATH 5, FALL SEMESTER 0 COMMON EXAMINATION - VERSION B - SOLUTIONS Instructor s name: Section No: Part Multiple Choice ( questions, points each, No Calculators) Write your name,

More information

Calculus & Analytic Geometry I

Calculus & Analytic Geometry I TQS 124 Autumn 2008 Quinn Calculus & Analytic Geometry I The Derivative: Analytic Viewpoint Derivative of a Constant Function. For c a constant, the derivative of f(x) = c equals f (x) = Derivative of

More information

7.1. Calculus of inverse functions. Text Section 7.1 Exercise:

7.1. Calculus of inverse functions. Text Section 7.1 Exercise: Contents 7. Inverse functions 1 7.1. Calculus of inverse functions 2 7.2. Derivatives of exponential function 4 7.3. Logarithmic function 6 7.4. Derivatives of logarithmic functions 7 7.5. Exponential

More information

Core 3 (A2) Practice Examination Questions

Core 3 (A2) Practice Examination Questions Core 3 (A) Practice Examination Questions Trigonometry Mr A Slack Trigonometric Identities and Equations I know what secant; cosecant and cotangent graphs look like and can identify appropriate restricted

More information

Summer Review for Students Taking Calculus in No calculators allowed. To earn credit: Be sure to show all work in the area provided.

Summer Review for Students Taking Calculus in No calculators allowed. To earn credit: Be sure to show all work in the area provided. Summer Review for Students Taking Calculus in 2016-2017 No calculators allowed. To earn credit: Be sure to show all work in the area provided. 1 Graph each equation on the axes provided. Include any relevant

More information

(e) 2 (f) 2. (c) + (d). Limits at Infinity. 2.5) 9-14,25-34,41-43,46-47,56-57, (c) (d) 2

(e) 2 (f) 2. (c) + (d). Limits at Infinity. 2.5) 9-14,25-34,41-43,46-47,56-57, (c) (d) 2 Math 150A. Final Review Answers, Spring 2018. Limits. 2.2) 7-10, 21-24, 28-1, 6-8, 4-44. 1. Find the values, or state they do not exist. (a) (b) 1 (c) DNE (d) 1 (e) 2 (f) 2 (g) 2 (h) 4 2. lim f(x) = 2,

More information

Section 4.8 Anti Derivative and Indefinite Integrals 2 Lectures. Dr. Abdulla Eid. College of Science. MATHS 101: Calculus I

Section 4.8 Anti Derivative and Indefinite Integrals 2 Lectures. Dr. Abdulla Eid. College of Science. MATHS 101: Calculus I Section 4.8 Anti Derivative and Indefinite Integrals 2 Lectures College of Science MATHS 101: Calculus I (University of Bahrain) 1 / 28 Indefinite Integral Given a function f, if F is a function such that

More information

Math 131 Exam 2 Spring 2016

Math 131 Exam 2 Spring 2016 Math 3 Exam Spring 06 Name: ID: 7 multiple choice questions worth 4.7 points each. hand graded questions worth 0 points each. 0. free points (so the total will be 00). Exam covers sections.7 through 3.0

More information

Final Exam 2011 Winter Term 2 Solutions

Final Exam 2011 Winter Term 2 Solutions . (a Find the radius of convergence of the series: ( k k+ x k. Solution: Using the Ratio Test, we get: L = lim a k+ a k = lim ( k+ k+ x k+ ( k k+ x k = lim x = x. Note that the series converges for L

More information

7.2 Parts (Undoing the Product Rule)

7.2 Parts (Undoing the Product Rule) 7.2 Parts (Undoing the Product Rule) 7.1 Substitution (Undoing the Chain Rule) Often w inside of some other function, dw up to constant What I want you to show me... w, dw, with respect to w 7.2 Parts

More information

Final Exam. Math 3 December 7, 2010

Final Exam. Math 3 December 7, 2010 Final Exam Math 3 December 7, 200 Name: On this final examination for Math 3 in Fall 200, I will work individually, neither giving nor receiving help, guided by the Dartmouth Academic Honor Principle.

More information

St. Augustine, De Genesi ad Litteram, Book II, xviii, 37. (1) Note, however, that mathematici was most likely used to refer to astrologers.

St. Augustine, De Genesi ad Litteram, Book II, xviii, 37. (1) Note, however, that mathematici was most likely used to refer to astrologers. Quote: [...] Beware of mathematicians, and all those who make empty prophecies. The danger already exists that the mathematicians (1) have made a covenant with the devil to darken the spirit and to confine

More information

Chapter 2. First-Order Differential Equations

Chapter 2. First-Order Differential Equations Chapter 2 First-Order Differential Equations i Let M(x, y) + N(x, y) = 0 Some equations can be written in the form A(x) + B(y) = 0 DEFINITION 2.2. (Separable Equation) A first-order differential equation

More information

Differential Equations: Homework 2

Differential Equations: Homework 2 Differential Equations: Homework Alvin Lin January 08 - May 08 Section.3 Exercise The direction field for provided x 0. dx = 4x y is shown. Verify that the straight lines y = ±x are solution curves, y

More information

Review for Ma 221 Final Exam

Review for Ma 221 Final Exam Review for Ma 22 Final Exam The Ma 22 Final Exam from December 995.a) Solve the initial value problem 2xcosy 3x2 y dx x 3 x 2 sin y y dy 0 y 0 2 The equation is first order, for which we have techniques

More information

SOLUTIONS TO EXAM II, MATH f(x)dx where a table of values for the function f(x) is given below.

SOLUTIONS TO EXAM II, MATH f(x)dx where a table of values for the function f(x) is given below. SOLUTIONS TO EXAM II, MATH 56 Use Simpson s rule with n = 6 to approximate the integral f(x)dx where a table of values for the function f(x) is given below x 5 5 75 5 5 75 5 5 f(x) - - x 75 5 5 75 5 5

More information

Multiple Choice Answers. MA 113 Calculus I Spring 2018 Exam 2 Tuesday, 6 March Question

Multiple Choice Answers. MA 113 Calculus I Spring 2018 Exam 2 Tuesday, 6 March Question MA 113 Calculus I Spring 2018 Exam 2 Tuesday, 6 March 2018 Name: Section: Last 4 digits of student ID #: This exam has 12 multiple choice questions (five points each) and 4 free response questions (ten

More information

SOLVED PROBLEMS ON TAYLOR AND MACLAURIN SERIES

SOLVED PROBLEMS ON TAYLOR AND MACLAURIN SERIES SOLVED PROBLEMS ON TAYLOR AND MACLAURIN SERIES TAYLOR AND MACLAURIN SERIES Taylor Series of a function f at x = a is ( f k )( a) ( x a) k k! It is a Power Series centered at a. Maclaurin Series of a function

More information

1. The graph of a function f is given above. Answer the question: a. Find the value(s) of x where f is not differentiable. Ans: x = 4, x = 3, x = 2,

1. The graph of a function f is given above. Answer the question: a. Find the value(s) of x where f is not differentiable. Ans: x = 4, x = 3, x = 2, 1. The graph of a function f is given above. Answer the question: a. Find the value(s) of x where f is not differentiable. x = 4, x = 3, x = 2, x = 1, x = 1, x = 2, x = 3, x = 4, x = 5 b. Find the value(s)

More information

UNIT 5: DERIVATIVES OF EXPONENTIAL AND TRIGONOMETRIC FUNCTIONS. Qu: What do you remember about exponential and logarithmic functions?

UNIT 5: DERIVATIVES OF EXPONENTIAL AND TRIGONOMETRIC FUNCTIONS. Qu: What do you remember about exponential and logarithmic functions? UNIT 5: DERIVATIVES OF EXPONENTIAL AND TRIGONOMETRIC FUNCTIONS 5.1 DERIVATIVES OF EXPONENTIAL FUNCTIONS, y = e X Qu: What do you remember about exponential and logarithmic functions? e, called Euler s

More information

Mathematics 136 Calculus 2 Everything You Need Or Want To Know About Partial Fractions (and maybe more!) October 19 and 21, 2016

Mathematics 136 Calculus 2 Everything You Need Or Want To Know About Partial Fractions (and maybe more!) October 19 and 21, 2016 Mathematics 36 Calculus 2 Everything You Need Or Want To Know About Partial Fractions (and maybe more!) October 9 and 2, 206 Every rational function (quotient of polynomials) can be written as a polynomial

More information

function independent dependent domain range graph of the function The Vertical Line Test

function independent dependent domain range graph of the function The Vertical Line Test Functions A quantity y is a function of another quantity x if there is some rule (an algebraic equation, a graph, a table, or as an English description) by which a unique value is assigned to y by a corresponding

More information

Hello Future Calculus Level One Student,

Hello Future Calculus Level One Student, Hello Future Calculus Level One Student, This assignment must be completed and handed in on the first day of class. This assignment will serve as the main review for a test on this material. The test will

More information

Math 106: Review for Exam II - SOLUTIONS

Math 106: Review for Exam II - SOLUTIONS Math 6: Review for Exam II - SOLUTIONS INTEGRATION TIPS Substitution: usually let u a function that s inside another function, especially if du (possibly off by a multiplying constant) is also present

More information

Exercise Sheet 2: Foundations of Differential Calculus

Exercise Sheet 2: Foundations of Differential Calculus D-ERDW, D-HEST, D-USYS Mathematics I Fall 2015 Dr. Ana Cannas Exercise Sheet 2: Foundations of Differential Calculus 1. Let the function f(x) be x 2 1, 1 x < 0, 2x, 0 < x < 1, f(x) = 1, x = 1, 2x + 4,

More information

90 Chapter 5 Logarithmic, Exponential, and Other Transcendental Functions. Name Class. (a) (b) ln x (c) (a) (b) (c) 1 x. y e (a) 0 (b) y.

90 Chapter 5 Logarithmic, Exponential, and Other Transcendental Functions. Name Class. (a) (b) ln x (c) (a) (b) (c) 1 x. y e (a) 0 (b) y. 90 Chapter 5 Logarithmic, Eponential, and Other Transcendental Functions Test Form A Chapter 5 Name Class Date Section. Find the derivative: f ln. 6. Differentiate: y. ln y y y y. Find dy d if ey y. y

More information

Unit #3 : Differentiability, Computing Derivatives, Trig Review

Unit #3 : Differentiability, Computing Derivatives, Trig Review Unit #3 : Differentiability, Computing Derivatives, Trig Review Goals: Determine when a function is differentiable at a point Relate the derivative graph to the the graph of an original function Compute

More information

Summer Review for Students Entering AP Calculus AB

Summer Review for Students Entering AP Calculus AB Summer Review for Students Entering AP Calculus AB Class: Date: AP Calculus AB Summer Packet Please show all work in the spaces provided The answers are provided at the end of the packet Algebraic Manipulation

More information

CALCULUS. Berkant Ustaoğlu CRYPTOLOUNGE.NET

CALCULUS. Berkant Ustaoğlu CRYPTOLOUNGE.NET CALCULUS Berkant Ustaoğlu CRYPTOLOUNGE.NET Secant 1 Definition Let f be defined over an interval I containing u. If x u and x I then f (x) f (u) Q = x u is the difference quotient. Also if h 0, such that

More information

1.5 Inverse Trigonometric Functions

1.5 Inverse Trigonometric Functions 1.5 Inverse Trigonometric Functions Remember that only one-to-one functions have inverses. So, in order to find the inverse functions for sine, cosine, and tangent, we must restrict their domains to intervals

More information

August 20, Review of Integration & the. Fundamental Theorem of Calculus. Introduction to the Natural Logarithm.

August 20, Review of Integration & the. Fundamental Theorem of Calculus. Introduction to the Natural Logarithm. to Natural Natural to Natural August 20, 2017 to Natural Natural 1 2 3 Natural 4 Incremental Accumulation of Quantities to Natural Natural Integration is a means of understanding and computing incremental

More information

Convergence of sequences and series

Convergence of sequences and series Convergence of sequences and series A sequence f is a map from N the positive integers to a set. We often write the map outputs as f n rather than f(n). Often we just list the outputs in order and leave

More information