IE652 - Chapter 10. Assumptions. Single Machine Scheduling

Size: px
Start display at page:

Download "IE652 - Chapter 10. Assumptions. Single Machine Scheduling"

Transcription

1 IE652 - Chapter 10 Single Machine Scheduling 1 Assumptions All jobs are processed on a single machine Release time of each job is 0 Processing times are known with certainty Scheduling Sequencing in this case 2

2 Performance Measures for Single Machine Scheduling C max is not the measure of performance, because all sequences of jobs gives the same result for this criterion. Common measures for single machine problems: Minimizing the mean flow time ( F ), the maximum tardiness (T max ), the number of tardy jobs (n T ) 3 Minimizing The Mean Flowtime To minimize the mean flow time place the job with the shortest processing time in the first position, because it is counted n times in the calculation of total flow time (P ) + (P1 + P2 ) + (P1 + P2 + P3 ) (P1 + P2 + P F = n Therefore; SPT (shortest processing time) rule gives the best sequence for the minimum mean flow time 1 + P n 4 )

3 SPT (shortest processing time) 5 SPT - Example Consider the following 7 jobs and their processing times. J i P i a) Evaluate the sequence of J1, J2, J3, J4, J5, J6, J7. b) Use SPT rule. Discuss which measures will be affected by the change in the sequence. 6

4 Sequence : J1(6), J2(4), J3(8), J4(3), J5(2), J6(7), J7(1) J1 J2 J3 J4 J5 J6 J F = = = SPT Sequence : J7(1), J5(2), J4(3), J2(4), J1(6), J6(7), J3(8) J7 J5 J4 J2 J1 J6 J F = = =

5 Minimizing The Mean Weighted Flow Time In many situations, all jobs are not equally important. WIP inventory values may be different, when jobs have different importance (value). Then, we can assign importance weight or value to each job. 9 Minimizing The Mean Weighted Flow Time Sequence the jobs so as to minimize WSPT (Weighted Shortest Processing Time) rule can establish this objective n 1 Fv = vi F i(k) n k = 1 F v 10

6 WSPT (Weighted Shortest Processing Time) 11 WSPT Example A company has a production line that can produce six parts (coded as JAxx). The time required to produce each part, and their per unit material costs are given in the following table. How would you schedule these parts through the line to minimize the inventory cost of work-inprocess? Assume inventory holding cost is 40% per year, and each week contains 40 hours. Part, i JA01 JA02 JA03 JA04 JA05 JA06 P i (minutes) Q i (units) c i,unit cost ($)

7 WSPT Example Part, i JA01 JA02 JA03 JA04 JA05 JA06 P i (minutes) Q i (units) c i,unit cost ($) ratio P i / c i Sequence: JA05 JA04 JA02 JA01 JA06 JA03 F5[1] = 7 F4[2] = = 11 F2[3] = = 16 F v = F1[4] = = 18.5 F6[5] = = 21.5 F3[6] = = 24.7 (not real C max ) 13 Minimizing The Maximum Tardiness 14

8 EDD (Earliest Due Date) 15 EDD Example F F Job, i P i d i

9 SPT sequence (solution to a) Job, i P i d i C i L i T i E i EDD sequence (solution to b) Job, i P i d i C i L i T i E i

10 Minimizing The Number of Tardy Jobs 19 Moore Hodgson Algorithm 20

11 Moore Hodgson Algorithm 21 Moore Hodgson Algorithm Example Consider the following jobs, and find a sequence to minimize the number of tardy jobs. Job, i P i d i

12 EDD sequence: Ji Pi di Ci Li Ti Moore Hodgson Algorithm Step 1: Ji Pi di Ci Li Ti Tardiness occurs 24

13 Moore Hodgson Algorithm Step 2: Ji Pi di Ci Li Ti Moore Hodgson Algorithm Step 3: Ji Pi di Ci Li Ti Remove job 1 from the sequence 26

14 Moore Hodgson Algorithm Step 1: Ji Pi di Ci Li Ti Tardiness occurs 27 Moore Hodgson Algorithm Step 2: Ji Pi di Ci Li Ti

15 Moore Hodgson Algorithm Step 3: Ji Pi di Ci Li Ti Remove job 5 from the sequence 29 Moore Hodgson Algorithm Step 1: Ji Pi di Ci Li Ti NO Tardiness occurs 30

16 Moore Hodgson Algorithm Step 4: Ji Pi di Ci Li Ti Sequence Dependent Setup Times If the setup times are sequence independent, then they are included in P i (processing time). Example for dependent setup time: Color changes in glass industry: Normal colored changeover (setup time) is short, Colored normal changeover (setup time) is long, This is known as the problem of sequence dependent setup times. 32

17 Sequence Dependent Setup Times Performance measure: C max C max is a function of the order in which jobs are processed. C max = F max = F n [ n] = S[ k-1],[ k] + Pi [ k] i k = 1 n k = 1 Where; S [k-1],[k] = The time to changeover from the job in position [k-1] to the job in position [k]. 33 Regret based algorithm Step 1: Reduce the matrix by row: minimum element in each row is subtracted from every element of that row Step 2: Reduce the matrix by column: minimum element in each column is subtracted from every element of that column Step 3: Calculate the regret value for every zero element in the matrix: the smallest elements in the column and row corresponding to the zero element are summed Step 4: Choose the zero element with largest regret: Select i*, j* with R i*j* = max{r ij }, i=1..n ; j=1..n Assign job pair in sequence as i* j* Step 5: Prohibit a subtour by setting p j*k* =, (k* is the first job of the subtour) remove row i* and column j* from the matrix, go to step 1 34

18 Regret based algorithm- Example 35 Steps 1 and 2: Matrix reduction C max = 19 36

19 Steps 3 and 4: Calculate regret values and assign job pair in sequence as i*,j* with largest regret value Subtours after iteration 1 = (5,2) 37 Step 5: set p 2,5 =, remove the row 5 and column 2 from the matrix Go to step 1 38

20 Steps 1 and 2: Matrix reduction C max = 19+5 = Steps 3 and 4: Calculate regret values and assign job pair in sequence as i*,j* with largest regret value Subtours after iteration 2 = (5,2), (3,1) 40

21 Step 5: set p 1,3 =, remove the row 3 and column 1 from the matrix, go to step 1 for the third iteration as follows: C max = 24 Subtours after iteration 3 = (5,2), (3,1,4) 41 set p 4,3 =, remove the row 1 and column 4 from the matrix, go to step 1 for the next iteration as follows: C max = 24 Complete tour after iteration 4 = (5,2,3,1,4,5) 42

SINGLE MACHINE SEQUENCING Part 2. ISE480 Sequencing and Scheduling Fall semestre

SINGLE MACHINE SEQUENCING Part 2. ISE480 Sequencing and Scheduling Fall semestre SINGLE MACHINE SEQUENCING Part 2 2011 2012 Fall semestre Minimizing Total Weighted Flowtime In a common variation of the F-problem, obs do not have equal importance. One way of distinguishing the obs is

More information

Single Machine Problems Polynomial Cases

Single Machine Problems Polynomial Cases DM204, 2011 SCHEDULING, TIMETABLING AND ROUTING Lecture 2 Single Machine Problems Polynomial Cases Marco Chiarandini Department of Mathematics & Computer Science University of Southern Denmark Outline

More information

RCPSP Single Machine Problems

RCPSP Single Machine Problems DM204 Spring 2011 Scheduling, Timetabling and Routing Lecture 3 Single Machine Problems Marco Chiarandini Department of Mathematics & Computer Science University of Southern Denmark Outline 1. Resource

More information

CHAPTER 16: SCHEDULING

CHAPTER 16: SCHEDULING CHAPTER 16: SCHEDULING Solutions: 1. Job A B C A B C 1 5 8 6 row 1 0 3 1 Worker 2 6 7 9 reduction 2 0 1 3 3 4 5 3 3 1 2 0 column reduction A B C 1 0 2 1 Optimum: 2 0 0 3 Worker 1, Job A 3 1 1 0 2 B 3 C

More information

Lecture 4 Scheduling 1

Lecture 4 Scheduling 1 Lecture 4 Scheduling 1 Single machine models: Number of Tardy Jobs -1- Problem 1 U j : Structure of an optimal schedule: set S 1 of jobs meeting their due dates set S 2 of jobs being late jobs of S 1 are

More information

Simple Dispatch Rules

Simple Dispatch Rules Simple Dispatch Rules We will first look at some simple dispatch rules: algorithms for which the decision about which job to run next is made based on the jobs and the time (but not on the history of jobs

More information

Single Machine Models

Single Machine Models Outline DM87 SCHEDULING, TIMETABLING AND ROUTING Lecture 8 Single Machine Models 1. Dispatching Rules 2. Single Machine Models Marco Chiarandini DM87 Scheduling, Timetabling and Routing 2 Outline Dispatching

More information

Bi-criteria Scheduling Problems on Parallel Machines

Bi-criteria Scheduling Problems on Parallel Machines Bi-criteria Scheduling Problems on Parallel Machines by Divya Prakash Thesis submitted to the Faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements

More information

MINIMIZING TOTAL TARDINESS FOR SINGLE MACHINE SEQUENCING

MINIMIZING TOTAL TARDINESS FOR SINGLE MACHINE SEQUENCING Journal of the Operations Research Society of Japan Vol. 39, No. 3, September 1996 1996 The Operations Research Society of Japan MINIMIZING TOTAL TARDINESS FOR SINGLE MACHINE SEQUENCING Tsung-Chyan Lai

More information

Recoverable Robustness in Scheduling Problems

Recoverable Robustness in Scheduling Problems Master Thesis Computing Science Recoverable Robustness in Scheduling Problems Author: J.M.J. Stoef (3470997) J.M.J.Stoef@uu.nl Supervisors: dr. J.A. Hoogeveen J.A.Hoogeveen@uu.nl dr. ir. J.M. van den Akker

More information

Dynamic Scheduling with Genetic Programming

Dynamic Scheduling with Genetic Programming Dynamic Scheduling with Genetic Programming Domago Jakobović, Leo Budin domago.akobovic@fer.hr Faculty of electrical engineering and computing University of Zagreb Introduction most scheduling problems

More information

Simulation. Stochastic scheduling example: Can we get the work done in time?

Simulation. Stochastic scheduling example: Can we get the work done in time? Simulation Stochastic scheduling example: Can we get the work done in time? Example of decision making under uncertainty, combination of algorithms and probability distributions 1 Example study planning

More information

Scheduling Lecture 1: Scheduling on One Machine

Scheduling Lecture 1: Scheduling on One Machine Scheduling Lecture 1: Scheduling on One Machine Loris Marchal October 16, 2012 1 Generalities 1.1 Definition of scheduling allocation of limited resources to activities over time activities: tasks in computer

More information

Batch delivery scheduling with simple linear deterioration on a single machine 1

Batch delivery scheduling with simple linear deterioration on a single machine 1 Acta Technica 61, No. 4A/2016, 281 290 c 2017 Institute of Thermomechanics CAS, v.v.i. Batch delivery scheduling with simple linear deterioration on a single machine 1 Juan Zou 2,3 Abstract. Several single

More information

Econ 172A, Fall 2012: Final Examination Solutions (I) 1. The entries in the table below describe the costs associated with an assignment

Econ 172A, Fall 2012: Final Examination Solutions (I) 1. The entries in the table below describe the costs associated with an assignment Econ 172A, Fall 2012: Final Examination Solutions (I) 1. The entries in the table below describe the costs associated with an assignment problem. There are four people (1, 2, 3, 4) and four jobs (A, B,

More information

Parallel machine scheduling with batch delivery costs

Parallel machine scheduling with batch delivery costs Int. J. Production Economics 68 (2000) 177}183 Parallel machine scheduling with batch delivery costs Guoqing Wang*, T.C. Edwin Cheng Department of Business Administration, Jinan University, Guangzhou,

More information

Combinatorial Structure of Single machine rescheduling problem

Combinatorial Structure of Single machine rescheduling problem Workshop on Combinatorics and Optimization Combinatorial Structure of Single machine rescheduling problem Yuan Jinjiang Department of mathematics, Zhengzhou University Zhengzhou, Henan 450052 Page 1 of

More information

arxiv: v2 [cs.ds] 27 Nov 2014

arxiv: v2 [cs.ds] 27 Nov 2014 Single machine scheduling problems with uncertain parameters and the OWA criterion arxiv:1405.5371v2 [cs.ds] 27 Nov 2014 Adam Kasperski Institute of Industrial Engineering and Management, Wroc law University

More information

Econ 172A, Fall 2012: Final Examination Solutions (II) 1. The entries in the table below describe the costs associated with an assignment

Econ 172A, Fall 2012: Final Examination Solutions (II) 1. The entries in the table below describe the costs associated with an assignment Econ 172A, Fall 2012: Final Examination Solutions (II) 1. The entries in the table below describe the costs associated with an assignment problem. There are four people (1, 2, 3, 4) and four jobs (A, B,

More information

Single Machine Scheduling: Comparison of MIP Formulations and Heuristics for. Interfering Job Sets. Ketan Khowala

Single Machine Scheduling: Comparison of MIP Formulations and Heuristics for. Interfering Job Sets. Ketan Khowala Single Machine Scheduling: Comparison of MIP Formulations and Heuristics for Interfering Job Sets by Ketan Khowala A Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor

More information

Part III: Traveling salesman problems

Part III: Traveling salesman problems Transportation Logistics Part III: Traveling salesman problems c R.F. Hartl, S.N. Parragh 1/282 Motivation Motivation Why do we study the TSP? c R.F. Hartl, S.N. Parragh 2/282 Motivation Motivation Why

More information

Techniques for Proving Approximation Ratios in Scheduling

Techniques for Proving Approximation Ratios in Scheduling Techniques for Proving Approximation Ratios in Scheduling by Peruvemba Sundaram Ravi A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of Master of

More information

Multi-Objective Scheduling Using Rule Based Approach

Multi-Objective Scheduling Using Rule Based Approach Multi-Objective Scheduling Using Rule Based Approach Mohammad Komaki, Shaya Sheikh, Behnam Malakooti Case Western Reserve University Systems Engineering Email: komakighorban@gmail.com Abstract Scheduling

More information

MVE165/MMG630, Applied Optimization Lecture 6 Integer linear programming: models and applications; complexity. Ann-Brith Strömberg

MVE165/MMG630, Applied Optimization Lecture 6 Integer linear programming: models and applications; complexity. Ann-Brith Strömberg MVE165/MMG630, Integer linear programming: models and applications; complexity Ann-Brith Strömberg 2011 04 01 Modelling with integer variables (Ch. 13.1) Variables Linear programming (LP) uses continuous

More information

Introduction into Vehicle Routing Problems and other basic mixed-integer problems

Introduction into Vehicle Routing Problems and other basic mixed-integer problems Introduction into Vehicle Routing Problems and other basic mixed-integer problems Martin Branda Charles University in Prague Faculty of Mathematics and Physics Department of Probability and Mathematical

More information

Online Appendix for Coordination of Outsourced Operations at a Third-Party Facility Subject to Booking, Overtime, and Tardiness Costs

Online Appendix for Coordination of Outsourced Operations at a Third-Party Facility Subject to Booking, Overtime, and Tardiness Costs Submitted to Operations Research manuscript OPRE-2009-04-180 Online Appendix for Coordination of Outsourced Operations at a Third-Party Facility Subject to Booking, Overtime, and Tardiness Costs Xiaoqiang

More information

Part III: Traveling salesman problems

Part III: Traveling salesman problems Transportation Logistics Part III: Traveling salesman problems c R.F. Hartl, S.N. Parragh 1/74 Motivation Motivation Why do we study the TSP? it easy to formulate it is a difficult problem many significant

More information

Coin Changing: Give change using the least number of coins. Greedy Method (Chapter 10.1) Attempt to construct an optimal solution in stages.

Coin Changing: Give change using the least number of coins. Greedy Method (Chapter 10.1) Attempt to construct an optimal solution in stages. IV-0 Definitions Optimization Problem: Given an Optimization Function and a set of constraints, find an optimal solution. Optimal Solution: A feasible solution for which the optimization function has the

More information

Scheduling Lecture 1: Scheduling on One Machine

Scheduling Lecture 1: Scheduling on One Machine Scheduling Lecture 1: Scheduling on One Machine Loris Marchal 1 Generalities 1.1 Definition of scheduling allocation of limited resources to activities over time activities: tasks in computer environment,

More information

Chapter 3: Discrete Optimization Integer Programming

Chapter 3: Discrete Optimization Integer Programming Chapter 3: Discrete Optimization Integer Programming Edoardo Amaldi DEIB Politecnico di Milano edoardo.amaldi@polimi.it Sito web: http://home.deib.polimi.it/amaldi/ott-13-14.shtml A.A. 2013-14 Edoardo

More information

Minimizing Mean Flowtime and Makespan on Master-Slave Systems

Minimizing Mean Flowtime and Makespan on Master-Slave Systems Minimizing Mean Flowtime and Makespan on Master-Slave Systems Joseph Y-T. Leung,1 and Hairong Zhao 2 Department of Computer Science New Jersey Institute of Technology Newark, NJ 07102, USA Abstract The

More information

Scheduling with Advanced Process Control Constraints

Scheduling with Advanced Process Control Constraints Scheduling with Advanced Process Control Constraints Yiwei Cai, Erhan Kutanoglu, John Hasenbein, Joe Qin July 2, 2009 Abstract With increasing worldwide competition, high technology manufacturing companies

More information

Example: 1. In this chapter we will discuss the transportation and assignment problems which are two special kinds of linear programming.

Example: 1. In this chapter we will discuss the transportation and assignment problems which are two special kinds of linear programming. Ch. 4 THE TRANSPORTATION AND ASSIGNMENT PROBLEMS In this chapter we will discuss the transportation and assignment problems which are two special kinds of linear programming. deals with transporting goods

More information

Algorithm Design Strategies V

Algorithm Design Strategies V Algorithm Design Strategies V Joaquim Madeira Version 0.0 October 2016 U. Aveiro, October 2016 1 Overview The 0-1 Knapsack Problem Revisited The Fractional Knapsack Problem Greedy Algorithms Example Coin

More information

MODELING (Integer Programming Examples)

MODELING (Integer Programming Examples) MODELING (Integer Programming Eamples) IE 400 Principles of Engineering Management Integer Programming: Set 5 Integer Programming: So far, we have considered problems under the following assumptions:

More information

Bounds for the Permutation Flowshop Scheduling Problem with Exact Time Lags while Minimizing the Total Earliness and Tardiness

Bounds for the Permutation Flowshop Scheduling Problem with Exact Time Lags while Minimizing the Total Earliness and Tardiness Bounds for the Permutation Flowshop Scheduling Problem with Exact Time Lags while Minimizing the Total Earliness and Tardiness Imen Hamdi, Taïcir Loukil Abstract- We consider the problem of n-jobs scheduling

More information

Proofs for all the results presented in the body of the article are presented below: ProofofLemma1:Consider a Nash schedule S where x O i > P i

Proofs for all the results presented in the body of the article are presented below: ProofofLemma1:Consider a Nash schedule S where x O i > P i ONLINE SUPPLEMENT FOR Non-Cooperative Games for Subcontracting Operations by George L. Vairaktarakis Weatherhead School of Management Department of Operations Case Western Reserve University 10900 Euclid

More information

Integrated Production Scheduling and Preventive Maintenance Planning for a Single Machine Under a Cumulative Damage Failure Process

Integrated Production Scheduling and Preventive Maintenance Planning for a Single Machine Under a Cumulative Damage Failure Process Integrated Production Scheduling and Preventive Maintenance Planning for a Single Machine Under a Cumulative Damage Failure Process Yarlin Kuo, Zi-Ann Chang Department of Industrial Engineering and Management,

More information

FH2(P 2,P2) hybrid flow shop scheduling with recirculation of jobs

FH2(P 2,P2) hybrid flow shop scheduling with recirculation of jobs FH2(P 2,P2) hybrid flow shop scheduling with recirculation of jobs Nadjat Meziani 1 and Mourad Boudhar 2 1 University of Abderrahmane Mira Bejaia, Algeria 2 USTHB University Algiers, Algeria ro nadjet07@yahoo.fr

More information

Flow Shop and Job Shop Models

Flow Shop and Job Shop Models Outline DM87 SCHEDULING, TIMETABLING AND ROUTING Lecture 11 Flow Shop and Job Shop Models 1. Flow Shop 2. Job Shop Marco Chiarandini DM87 Scheduling, Timetabling and Routing 2 Outline Resume Permutation

More information

The Traveling Salesman Problem: An Overview. David P. Williamson, Cornell University Ebay Research January 21, 2014

The Traveling Salesman Problem: An Overview. David P. Williamson, Cornell University Ebay Research January 21, 2014 The Traveling Salesman Problem: An Overview David P. Williamson, Cornell University Ebay Research January 21, 2014 (Cook 2012) A highly readable introduction Some terminology (imprecise) Problem Traditional

More information

Minimizing the Number of Tardy Jobs

Minimizing the Number of Tardy Jobs Minimizing the Number of Tardy Jobs 1 U j Example j p j d j 1 10 10 2 2 11 3 7 13 4 4 15 5 8 20 Ideas: Need to choose a subset of jobs S that meet their deadlines. Schedule the jobs that meet their deadlines

More information

Advanced Modified Time Deviation Method for Job Sequencing

Advanced Modified Time Deviation Method for Job Sequencing ABSTRACT 2018 IJSRST Volume 4 Issue 10 Print ISSN : 2395-6011 Online ISSN : 2395-602X Themed Section: Science and Technology Advanced Modified Time Deviation Method for Sequencing R Rajalakshmi 1, S Rekha

More information

STABILITY OF JOHNSON S SCHEDULE WITH LIMITED MACHINE AVAILABILITY

STABILITY OF JOHNSON S SCHEDULE WITH LIMITED MACHINE AVAILABILITY MOSIM 01 du 25 au 27 avril 2001 Troyes (France) STABILITY OF JOHNSON S SCHEDULE WITH LIMITED MACHINE AVAILABILITY Oliver BRAUN, Günter SCHMIDT Department of Information and Technology Management Saarland

More information

Lower Bounds for Parallel Machine Scheduling Problems

Lower Bounds for Parallel Machine Scheduling Problems Lower Bounds for Parallel Machine Scheduling Problems Philippe Baptiste 1, Antoine Jouglet 2, David Savourey 2 1 Ecole Polytechnique, UMR 7161 CNRS LIX, 91128 Palaiseau, France philippe.baptiste@polytechnique.fr

More information

Algorithm Design. Scheduling Algorithms. Part 2. Parallel machines. Open-shop Scheduling. Job-shop Scheduling.

Algorithm Design. Scheduling Algorithms. Part 2. Parallel machines. Open-shop Scheduling. Job-shop Scheduling. Algorithm Design Scheduling Algorithms Part 2 Parallel machines. Open-shop Scheduling. Job-shop Scheduling. 1 Parallel Machines n jobs need to be scheduled on m machines, M 1,M 2,,M m. Each machine can

More information

Outline. Relaxation. Outline DMP204 SCHEDULING, TIMETABLING AND ROUTING. 1. Lagrangian Relaxation. Lecture 12 Single Machine Models, Column Generation

Outline. Relaxation. Outline DMP204 SCHEDULING, TIMETABLING AND ROUTING. 1. Lagrangian Relaxation. Lecture 12 Single Machine Models, Column Generation Outline DMP204 SCHEDULING, TIMETABLING AND ROUTING 1. Lagrangian Relaxation Lecture 12 Single Machine Models, Column Generation 2. Dantzig-Wolfe Decomposition Dantzig-Wolfe Decomposition Delayed Column

More information

Scheduling Online Algorithms. Tim Nieberg

Scheduling Online Algorithms. Tim Nieberg Scheduling Online Algorithms Tim Nieberg General Introduction on-line scheduling can be seen as scheduling with incomplete information at certain points, decisions have to be made without knowing the complete

More information

Using column generation to solve parallel machine scheduling problems with minmax objective functions

Using column generation to solve parallel machine scheduling problems with minmax objective functions Using column generation to solve parallel machine scheduling problems with minmax objective functions J.M. van den Akker J.A. Hoogeveen Department of Information and Computing Sciences Utrecht University

More information

LPT rule: Whenever a machine becomes free for assignment, assign that job whose. processing time is the largest among those jobs not yet assigned.

LPT rule: Whenever a machine becomes free for assignment, assign that job whose. processing time is the largest among those jobs not yet assigned. LPT rule Whenever a machine becomes free for assignment, assign that job whose processing time is the largest among those jobs not yet assigned. Example m1 m2 m3 J3 Ji J1 J2 J3 J4 J5 J6 6 5 3 3 2 1 3 5

More information

Chapter 3: Discrete Optimization Integer Programming

Chapter 3: Discrete Optimization Integer Programming Chapter 3: Discrete Optimization Integer Programming Edoardo Amaldi DEIB Politecnico di Milano edoardo.amaldi@polimi.it Website: http://home.deib.polimi.it/amaldi/opt-16-17.shtml Academic year 2016-17

More information

Marjan van den Akker. Han Hoogeveen Jules van Kempen

Marjan van den Akker. Han Hoogeveen Jules van Kempen Parallel machine scheduling through column generation: minimax objective functions, release dates, deadlines, and/or generalized precedence constraints Marjan van den Akker Han Hoogeveen Jules van Kempen

More information

Task Models and Scheduling

Task Models and Scheduling Task Models and Scheduling Jan Reineke Saarland University June 27 th, 2013 With thanks to Jian-Jia Chen at KIT! Jan Reineke Task Models and Scheduling June 27 th, 2013 1 / 36 Task Models and Scheduling

More information

Scheduling jobs with agreeable processing times and due dates on a single batch processing machine

Scheduling jobs with agreeable processing times and due dates on a single batch processing machine Theoretical Computer Science 374 007 159 169 www.elsevier.com/locate/tcs Scheduling jobs with agreeable processing times and due dates on a single batch processing machine L.L. Liu, C.T. Ng, T.C.E. Cheng

More information

Research Article Minimizing the Number of Tardy Jobs on a Single Machine with an Availability Constraint

Research Article Minimizing the Number of Tardy Jobs on a Single Machine with an Availability Constraint Journal of Industrial Engineering, Article ID 568317, 13 pages http://dx.doi.org/10.1155/2014/568317 Research Article Minimizing the Number of Tardy Jobs on a Single Machine with an Availability Constraint

More information

2WB05 Simulation Lecture 7: Output analysis

2WB05 Simulation Lecture 7: Output analysis 2WB05 Simulation Lecture 7: Output analysis Marko Boon http://www.win.tue.nl/courses/2wb05 December 17, 2012 Outline 2/33 Output analysis of a simulation Confidence intervals Warm-up interval Common random

More information

Deterministic Scheduling. Dr inż. Krzysztof Giaro Gdańsk University of Technology

Deterministic Scheduling. Dr inż. Krzysztof Giaro Gdańsk University of Technology Deterministic Scheduling Dr inż. Krzysztof Giaro Gdańsk University of Technology Lecture Plan Introduction to deterministic scheduling Critical path metod Some discrete optimization problems Scheduling

More information

Course 495: Advanced Statistical Machine Learning/Pattern Recognition

Course 495: Advanced Statistical Machine Learning/Pattern Recognition Course 495: Advanced Statistical Machine Learning/Pattern Recognition Lecturer: Stefanos Zafeiriou Goal (Lectures): To present discrete and continuous valued probabilistic linear dynamical systems (HMMs

More information

International Journal of Industrial Engineering Computations

International Journal of Industrial Engineering Computations International Journal of Industrial Engineering Computations 3 (202) 32 336 Contents lists available at GrowingScience International Journal of Industrial Engineering Computations homepage: www.growingscience.com/iec

More information

Robust optimization for resource-constrained project scheduling with uncertain activity durations

Robust optimization for resource-constrained project scheduling with uncertain activity durations Robust optimization for resource-constrained project scheduling with uncertain activity durations Christian Artigues 1, Roel Leus 2 and Fabrice Talla Nobibon 2 1 LAAS-CNRS, Université de Toulouse, France

More information

Extended Job Shop Scheduling by Object-Oriented. Optimization Technology

Extended Job Shop Scheduling by Object-Oriented. Optimization Technology Extended Job Shop Scheduling by Object-Oriented Optimization Technology Minoru Kobayashi, Kenji Muramatsu Tokai University Address: 1117 Kitakaname, Hiratsuka, Kanagawa, 259-1292, Japan Telephone: +81-463-58-1211

More information

MTHSC 4420 Advanced Mathematical Programming Homework 2

MTHSC 4420 Advanced Mathematical Programming Homework 2 MTHSC 4420 Advanced Mathematical Programming Homework 2 Megan Bryant October 30, 2013 1. Use Dijkstra s algorithm to solve the shortest path problem depicted below. For each iteration, list the node you

More information

Slides 12: Output Analysis for a Single Model

Slides 12: Output Analysis for a Single Model Slides 12: Output Analysis for a Single Model Objective: Estimate system performance via simulation. If θ is the system performance, the precision of the estimator ˆθ can be measured by: The standard error

More information

On bilevel machine scheduling problems

On bilevel machine scheduling problems Noname manuscript No. (will be inserted by the editor) On bilevel machine scheduling problems Tamás Kis András Kovács Abstract Bilevel scheduling problems constitute a hardly studied area of scheduling

More information

Using column generation to solve parallel machine scheduling problems with minmax objective functions

Using column generation to solve parallel machine scheduling problems with minmax objective functions J Sched (2012) 15:801 810 DOI 10.1007/s10951-010-0191-z Using column generation to solve parallel machine scheduling problems with minmax objective functions J.M. van den Akker J.A. Hoogeveen J.W. van

More information

Polynomial time solutions for scheduling problems on a proportionate flowshop with two competing agents

Polynomial time solutions for scheduling problems on a proportionate flowshop with two competing agents Journal of the Operational Research Society (2014) 65, 151 157 2014 Operational Research Society Ltd All rights reserved 0160-5682/14 wwwpalgrave-journalscom/jors/ Polynomial time solutions for scheduling

More information

Linear Equations and Matrix

Linear Equations and Matrix 1/60 Chia-Ping Chen Professor Department of Computer Science and Engineering National Sun Yat-sen University Linear Algebra Gaussian Elimination 2/60 Alpha Go Linear algebra begins with a system of linear

More information

Matrix Arithmetic. j=1

Matrix Arithmetic. j=1 An m n matrix is an array A = Matrix Arithmetic a 11 a 12 a 1n a 21 a 22 a 2n a m1 a m2 a mn of real numbers a ij An m n matrix has m rows and n columns a ij is the entry in the i-th row and j-th column

More information

On the exact solution of a large class of parallel machine scheduling problems

On the exact solution of a large class of parallel machine scheduling problems 1 / 23 On the exact solution of a large class of parallel machine scheduling problems Teobaldo Bulhões 2 Ruslan Sadykov 1 Eduardo Uchoa 2 Anand Subramanian 3 1 Inria Bordeaux and Univ. Bordeaux, France

More information

Computers and Mathematics with Applications

Computers and Mathematics with Applications Computers and Mathematics with Applications 60 (2010) 1374 1384 Contents lists available at ScienceDirect Computers and Mathematics with Applications journal homepage: www.elsevier.com/locate/camwa Heuristics

More information

Deterministic Operations Research, ME 366Q and ORI 391 Chapter 2: Homework #2 Solutions

Deterministic Operations Research, ME 366Q and ORI 391 Chapter 2: Homework #2 Solutions Deterministic Operations Research, ME 366Q and ORI 391 Chapter 2: Homework #2 Solutions 11. Consider the following linear program. Maximize z = 6x 1 + 3x 2 subject to x 1 + 2x 2 2x 1 + x 2 20 x 1 x 2 x

More information

Column Generation. ORLAB - Operations Research Laboratory. Stefano Gualandi. June 14, Politecnico di Milano, Italy

Column Generation. ORLAB - Operations Research Laboratory. Stefano Gualandi. June 14, Politecnico di Milano, Italy ORLAB - Operations Research Laboratory Politecnico di Milano, Italy June 14, 2011 Cutting Stock Problem (from wikipedia) Imagine that you work in a paper mill and you have a number of rolls of paper of

More information

Introduction to integer programming III:

Introduction to integer programming III: Introduction to integer programming III: Network Flow, Interval Scheduling, and Vehicle Routing Problems Martin Branda Charles University in Prague Faculty of Mathematics and Physics Department of Probability

More information

Neville s Method. MATH 375 Numerical Analysis. J. Robert Buchanan. Fall Department of Mathematics. J. Robert Buchanan Neville s Method

Neville s Method. MATH 375 Numerical Analysis. J. Robert Buchanan. Fall Department of Mathematics. J. Robert Buchanan Neville s Method Neville s Method MATH 375 Numerical Analysis J. Robert Buchanan Department of Mathematics Fall 2013 Motivation We have learned how to approximate a function using Lagrange polynomials and how to estimate

More information

Asymmetric Traveling Salesman Problem (ATSP): Models

Asymmetric Traveling Salesman Problem (ATSP): Models Asymmetric Traveling Salesman Problem (ATSP): Models Given a DIRECTED GRAPH G = (V,A) with V = {,, n} verte set A = {(i, j) : i V, j V} arc set (complete digraph) c ij = cost associated with arc (i, j)

More information

Solving Linear Systems Using Gaussian Elimination. How can we solve

Solving Linear Systems Using Gaussian Elimination. How can we solve Solving Linear Systems Using Gaussian Elimination How can we solve? 1 Gaussian elimination Consider the general augmented system: Gaussian elimination Step 1: Eliminate first column below the main diagonal.

More information

MATH 445/545 Test 1 Spring 2016

MATH 445/545 Test 1 Spring 2016 MATH 445/545 Test Spring 06 Note the problems are separated into two sections a set for all students and an additional set for those taking the course at the 545 level. Please read and follow all of these

More information

MATH 56A: STOCHASTIC PROCESSES CHAPTER 1

MATH 56A: STOCHASTIC PROCESSES CHAPTER 1 MATH 56A: STOCHASTIC PROCESSES CHAPTER. Finite Markov chains For the sake of completeness of these notes I decided to write a summary of the basic concepts of finite Markov chains. The topics in this chapter

More information

arxiv: v1 [cs.ds] 11 Dec 2013

arxiv: v1 [cs.ds] 11 Dec 2013 WORST-CASE PERFORMANCE ANALYSIS OF SOME APPROXIMATION ALGORITHMS FOR MINIMIZING MAKESPAN AND FLOW-TIME PERUVEMBA SUNDARAM RAVI, LEVENT TUNÇEL, MICHAEL HUANG arxiv:1312.3345v1 [cs.ds] 11 Dec 2013 Abstract.

More information

An exact approach to early/tardy scheduling with release dates

An exact approach to early/tardy scheduling with release dates Computers & Operations Research 32 (2005) 2905 2917 www.elsevier.com/locate/dsw An exact approach to early/tardy scheduling with release dates Jorge M.S. Valente, Rui A.F.S. Alves Faculdade de Economia,

More information

Solving a Production Scheduling Problem as a Time-Dependent Traveling Salesman Problem

Solving a Production Scheduling Problem as a Time-Dependent Traveling Salesman Problem Solving a Production Scheduling Problem as a Time-Dependent Traveling Salesman Problem GABRIELLA STECCO Department of Applied Mathematics, University Ca Foscari of Venice, Dorsoduro n. 3825/E, 30123 Venice,

More information

Totally unimodular matrices. Introduction to integer programming III: Network Flow, Interval Scheduling, and Vehicle Routing Problems

Totally unimodular matrices. Introduction to integer programming III: Network Flow, Interval Scheduling, and Vehicle Routing Problems Totally unimodular matrices Introduction to integer programming III: Network Flow, Interval Scheduling, and Vehicle Routing Problems Martin Branda Charles University in Prague Faculty of Mathematics and

More information

Welcome to CPSC 4850/ OR Algorithms

Welcome to CPSC 4850/ OR Algorithms Welcome to CPSC 4850/5850 - OR Algorithms 1 Course Outline 2 Operations Research definition 3 Modeling Problems Product mix Transportation 4 Using mathematical programming Course Outline Instructor: Robert

More information

The polynomial solvability of selected bicriteria scheduling problems on parallel machines with equal length jobs and release dates

The polynomial solvability of selected bicriteria scheduling problems on parallel machines with equal length jobs and release dates The polynomial solvability of selected bicriteria scheduling problems on parallel machines with equal length jobs and release dates Hari Balasubramanian 1, John Fowler 2, and Ahmet Keha 2 1: Department

More information

Minimizing the weighted completion time on a single machine with periodic maintenance

Minimizing the weighted completion time on a single machine with periodic maintenance Minimizing the weighted completion time on a single machine with periodic maintenance KRIM Hanane University of Valenciennes and Hainaut-Cambrésis LAMIH UMR CNRS 8201 1st year Phd Student February 12,

More information

Omega 38 (2010) Contents lists available at ScienceDirect. Omega. journal homepage:

Omega 38 (2010) Contents lists available at ScienceDirect. Omega. journal homepage: Omega 38 (2010) 3 -- 11 Contents lists available at ScienceDirect Omega journal homepage: www.elsevier.com/locate/omega A single-machine learning effect scheduling problem with release times Wen-Chiung

More information

Single machine scheduling with forbidden start times

Single machine scheduling with forbidden start times 4OR manuscript No. (will be inserted by the editor) Single machine scheduling with forbidden start times Jean-Charles Billaut 1 and Francis Sourd 2 1 Laboratoire d Informatique Université François-Rabelais

More information

International Journal of Industrial Engineering Computations

International Journal of Industrial Engineering Computations International Journal of Industrial Engineering Computations 2 (20) 49 498 Contents lists available at GrowingScience International Journal of Industrial Engineering Computations homepage: www.growingscience.com/iec

More information

Lecture #8: We now take up the concept of dynamic programming again using examples.

Lecture #8: We now take up the concept of dynamic programming again using examples. Lecture #8: 0.0.1 Dynamic Programming:(Chapter 15) We now take up the concept of dynamic programming again using examples. Example 1 (Chapter 15.2) Matrix Chain Multiplication INPUT: An Ordered set of

More information

Computer Science, Informatik 4 Communication and Distributed Systems. Simulation. Discrete-Event System Simulation. Dr.

Computer Science, Informatik 4 Communication and Distributed Systems. Simulation. Discrete-Event System Simulation. Dr. Simulation Discrete-Event System Simulation Chapter 0 Output Analysis for a Single Model Purpose Objective: Estimate system performance via simulation If θ is the system performance, the precision of the

More information

The Assignment Problem

The Assignment Problem CHAPTER 12 The Assignment Problem Basic Concepts Assignment Algorithm The Assignment Problem is another special case of LPP. It occurs when m jobs are to be assigned to n facilities on a one-to-one basis

More information

Scheduling with Constraint Programming. Job Shop Cumulative Job Shop

Scheduling with Constraint Programming. Job Shop Cumulative Job Shop Scheduling with Constraint Programming Job Shop Cumulative Job Shop CP vs MIP: Task Sequencing We need to sequence a set of tasks on a machine Each task i has a specific fixed processing time p i Each

More information

On-Line Algorithms for Due Date Quotation with Lateness Penalties

On-Line Algorithms for Due Date Quotation with Lateness Penalties Principal Investigator/Project Director: Philip Kaminsky Institution: University of California, Berkeley. Award Number: DMI-0092854 Program: DMII OR/SEE Project Title: CAREER: Scheduling of Large Scale

More information

1 Multiply Eq. E i by λ 0: (λe i ) (E i ) 2 Multiply Eq. E j by λ and add to Eq. E i : (E i + λe j ) (E i )

1 Multiply Eq. E i by λ 0: (λe i ) (E i ) 2 Multiply Eq. E j by λ and add to Eq. E i : (E i + λe j ) (E i ) Direct Methods for Linear Systems Chapter Direct Methods for Solving Linear Systems Per-Olof Persson persson@berkeleyedu Department of Mathematics University of California, Berkeley Math 18A Numerical

More information

Design of Manufacturing Systems Manufacturing Cells

Design of Manufacturing Systems Manufacturing Cells Design of Manufacturing Systems Manufacturing Cells Outline General features Examples Strengths and weaknesses Group technology steps System design Virtual cellular manufacturing 2 Manufacturing cells

More information

Lower Bounds for Parallel Machine Scheduling Problems

Lower Bounds for Parallel Machine Scheduling Problems Lower Bounds for Parallel Machine Scheduling Problems Philippe Baptiste 1, Antoine Jouglet 2,, David Savourey 2 1 Ecole Polytechnique, UMR 7161 CNRS LIX, 91128 Palaiseau, France philippe.baptiste@polytechnique.fr

More information

A comparison of sequencing formulations in a constraint generation procedure for avionics scheduling

A comparison of sequencing formulations in a constraint generation procedure for avionics scheduling A comparison of sequencing formulations in a constraint generation procedure for avionics scheduling Department of Mathematics, Linköping University Jessika Boberg LiTH-MAT-EX 2017/18 SE Credits: Level:

More information

Definition. A matrix is a rectangular array of numbers enclosed by brackets (plural: matrices).

Definition. A matrix is a rectangular array of numbers enclosed by brackets (plural: matrices). Matrices (general theory). Definition. A matrix is a rectangular array of numbers enclosed by brackets (plural: matrices). Examples. 1 2 1 1 0 2 A= 0 0 7 B= 0 1 3 4 5 0 Terminology and Notations. Each

More information

A new ILS algorithm for parallel machine scheduling problems

A new ILS algorithm for parallel machine scheduling problems J Intell Manuf (2006) 17:609 619 DOI 10.1007/s10845-006-0032-2 A new ILS algorithm for parallel machine scheduling problems Lixin Tang Jiaxiang Luo Received: April 2005 / Accepted: January 2006 Springer

More information

The CON Job Scheduling Problem on a Single and Parallel Machines

The CON Job Scheduling Problem on a Single and Parallel Machines The CON Job Scheduling Problem on a Single and Parallel Machines Huajun Zhou A Thesis Submitted to the University of North Carolina at Wilmington in Partial Fulfillment Of the Requirements for the Degree

More information