ELEMENTARY PROBLEMS AND SOLUTIONS. Edited by A. P. HILLMAN University of New Mexico, Albuquerque, NM 87131

Size: px
Start display at page:

Download "ELEMENTARY PROBLEMS AND SOLUTIONS. Edited by A. P. HILLMAN University of New Mexico, Albuquerque, NM 87131"

Transcription

1 ELEMENTARY PROBLEMS AND SOLUTIONS Edited by A. P. HILLMAN University of New Mexico, Albuquerque, NM 873 Send all communications regarding ELEMENTARY PROBLEMS AND SOLUTIONS to PROFESSOR A. P. HILLMAN, 79 Solano Dr., S.E., Albuquerque, New Mexico 878* Each solution or problem should be on a separate sheet (or sheets). Preference will be given to those typed with double spacing in the format used below. Solutions should be received within 4 months of the publication date. DEFINITIONS The Fibonacci numbers F n and Lucas numbers L n satisfy F n + 2 =F n + i + F n 9 F =, F = and L = n + 2 L n + i + ^ J ^ O = 2 5 L = I. Also a and b designate the roots ( + /5)/2 and ( - /5)/2, respectively, of x 2 - x - =. PROBLEMS PROPOSED IN THIS ISSUE B-43 Proposed by M. Wachtel, H. Klauser, and E. Schmutz, Zurich^ Switz. For every positive integer a s prove that (a 2 + a - I) (a 2 4-3a + ) + is a product m(m + ) of two consecutive integers,, B-43 Proposed by V. E. Hoggatt, Jr., San Jose State University, San Jose, CA. For which fixed ordered pairs (h s for all integers n? k) of integers does F n( L n+h " F n + h) ~ F n+i,^ln + k " F n + k) B-^32 Proposed by V. E. Hoggatt, Jr., San Jose State University, San Jose, CA. Let G = F F 2 Q - F 3. Prove that the terms of the sequence alternate in sign, G Q9 G I9 G 2,... B-433 Proposed by J. F. Peters and R. P etcher, St. John s University, Collegeville, MN. Let {T(n)} For each positive integer n 9 let q n and r n be the integers with be defined by n = 3q n + v n and <_ v n < 3. T() =, T(l) = 3 9 T(2) = 4 9 and T(n) = hq n + T(r n ) for n > 3. Show that there exist integers a 9 b 9 c such that m/ N fan + 5P< " > - L 5 J * where [x] denotes the greatest integer in x. 273

2 27k ELEMENTARY PROBLEMS AND SOLUTIONS [Oct. B-**3*t Proposed by Herta T. Freitag, Roanoke, VA. For which positive integers n 9 if any, is a perfect square? L 3n -(-l) n L n B-^35 Proposed by M. Wachtel, H. Klauser, and E. Schmutz, Zurich, Switz. For every positive integer a, prove that no integral divisor of is congruent to 3 or 7, modulo. a 2 + a - SOLUTIONS F!rst Term as GCD B-46 Proposed by Wray G. Brady, Slippery Rock State College, PA. Let x n = 4L 3n - L\ and find the greatest common divisor of the terms of the sequence x x, x 2, # 3,.... Solution by Paul S. Bruckman, Concord, CA. or *n = L n^l 3n /L n - L 2 ) = L n \ka 2n - 4<a6) n + kb 2n - a 2n - 2(ab) n - b 2n ] = 3L n [a 2n - 2(ab) n + & 2n ]= 3L n (a n - b n ) 2 = 5L n F 2, x n = 5F n F 2n, n =, 2, 3,.... It fol- Note that a?! = 5F F 2 = 5. Hence, a^l^n, n =, 2, 3 lows that the greatest common divisor of {x n } is x-^ = 5. Also solved by Herta T. Freitag, John W. Milsom, Bob Prielipp, E. Schmutz, A.G. Shannon, Sahib Singh, Lawrence Somer, M.Wachtel, Gregory Wulczyn, and the proposer. Generator of Pascal Triangle B-47 Proposed by Robert M. Giuli, University of California, Santa Cruz, CA. Given that - x - xy E JL a nk xn y l n = k = is a double ordinary generating function for a nk ; determine a nk. Solution by Paul S. Bruckman, Concord, CA. ( - x -xy)-± = ( - x(l + z/))-i = ]T* n (l + 2/> n = L xn ib(k) n= n= k=^ ' oo n i \ -EE(J)*" The binomial coefficient ( r, ) is defined to be zero for k > n. we may extend the second sum above over all nonnegative k, i.e., 2/* Hence, [ -x-xy)-i = I ) E(fe)x"y n= & = o X '

3 98] ELEMENTARY PROBLEMS AND SOLUTIONS 275 T l m S ' (n\ a<nk = I l» (n* k = *» 2, ' ). Also solved 2?y W. O. J. Moser, A. G. Shannon, Sahib Singh, and the proposer. B-48 No solutions received. Proposal Tabled Exact Divisor B-49 Proposed by Gregory Wulczyn, Bucknell University, Lewisburg, PA. Let P n = F n F n + a. Must P n + Br - P n be an integral multiple of V - ~P J- n + hr J ~n + 2r for all nonnegative integers a and p? Solution by Sahib Singh, Clarion State College, Clarion, PA. Yes. Using we see that divisibility of P - P bv P - P n + 6r n -^ n+hr n + 2r is equivalent to divisibility of L 2n+2r + a ^2n+a ^ y ^ 2 n + 8 r + a 2n + t +r + a'' The result follows immediatly by seeing that ^2n+2r+a ~ ^2n + a = ^2h + 8r + a " ^2n+>r + a^^m-r + *) Also solved by Paul S. Bruckman, Bob Prielipp, and the proposer. Golden Limit B-4 Proposed by M. Wachtel, Zurich, Switz. Some of the solutions of in positive integers x and y are: 5(x 2 + x) + 2 = y 2 + y (x s y) = (, ), (, 3 ), (,- 23), (27 s 6). Find a recurrence formula for the x n and y n of a sequence of solutions (i n, 2/n) Also find l±m(x n + /x n ) and lim(# 27# n )- as n -> in terms of a = ( i + ; / 5 ) / 2. Solution by Paul S. Bruckman, Concord, CA. Multiplying the given Diophantine equation throughout by 4 9 completing the square 9 and simplifying yields: () Y 2-5X 2 = 4 5 where (2) X = 2x +, J = 2z/ +. The solutions of () in positive integers are known to be

4 276 ELEMENTARY PROBLEMS AND SOLUTIONS [Oct. However, due to (2), X and Y must also be odd. By inspection of the first few values (mod 3) of the Fibonacci and Lucas sequences, it is apparent that these values are even if and only if their subscripts are multiples of 3. Hence, we must have m ~ ± (mod 3) in (3), Distinguishing between these cases, we obtain two distinct sets of solutions; (5) a 2 ). *J 2> > = <%+*. i>*,+x.o-' In terms of the original problem, this yields the following distinct solution sequences: (6) (atf>, y^) -{W 6n + 2 -».Mhn + 2 ~ D};. 5 (7) (*< 2). J/i 2) ) - { ^ e» + * " D. ^ e +, - D } :. O - It is apparent from the fact that the successive indices of the Fibonacci and Lucas sequences in (6) and (7) "increase by sixes," that we are interested in the second-order equation for a 6, which must be the same for b s. Since a 6 = 8a+5 and a 2 = 44a+89 (special cases of a v = af r + F r _ )* it is evident that a and b satisfy the common equation: (8) s 2-8s 6 + =. Let (9) D n «-3 n * n + + s n, where z n ='*<*> or z/<*>, fc» or 2. We see from (6) and (7) that D n = %(-l ) [using (8)], or () D n = 8, n =,, 2,.... This is a recursion for the x and t/, as required. A homogeneous recursion may be obtained by noting simply that This is equivalent to the following third-order recursion: (ID s n + 3-9s n a B. + - a B -, n =.,, 2,.... It is evident from (6) and (7) that and (3) lim x z lx = lira y$jy = a 2 <fc = or 2). n-»-oo Also solved by the proposer. n-)-oo Trldlagonal Determinants B 4 Proposed by Bart Rice, Crofton, MD. Tridiagonal n by n matrices A n = (a^-) n of the form (a real) for 3 = i for 3 = i ±, otherwise occur in numerical analysis. Let d n - det A n. (i) Show that {d } satisfies a second-order homogeneous linear recur-

5 98] ELEMENTARY PROBLEMS AND SOLUTIONS 277 (ii) Find closed-form and asymptotic expressions for d n. (iii) Derive the combinatorial idantity [<n-l)72] -D./2] i v Solution by Paul S. Bruckman, Concord, CA ( i ) We see that ' Taking determinants along the first row 9 we find that d n = d n _ - det B n, where #..-. ^ B - i? I ^n»2 ^ ^ //(«-l) x(n-l) Taking the determinant of 5 n along its first columns we see easily that det B = d n _ 2 * Hence, we have the following recursions (3) d n d n+ + d n = 9 n =, Note also the initial values of the recursions (4) d x = 9 d 2 = 4a 2 -. The characteristic polynomial of (3) is (b) p(x) = x 2 - x +, which has the zeros (6) u = a + /a 2 -, y = a - /a 2 -. It follows that d n is of the form pu n + at? n 9 for some constants pand q which are determined from the initial conditions. Note that We then find uv =, u + v -. (7) d - ~ ~ ^ ^ «= The behavior of d n as n > depends on the magnitude of a s and we distinguish several cases. Co6e J: <. a <. Let a = cos 9* Then M = e %Q, i? = e~* e, and so (8) <f n = s i n ( n +' l ) 6 / s i n 9.

6 278 ELEMENTARY PROBLEMS AND SOLUTIONS [Oct. In this case, the sequence (d n ) is dense in (-esc 6, esc ) = (-( - a 2 Y h 9 ( - a 2 )'*) and oscillates within this interval without lending itself to approximation by an asymptotic expression. Co6e II: a = -. Then u = V = -. Since n thus k = k = Clearly, d n oscillates between these two values only, in this case. C(Ud llli a =. Here u = V =. Hence, n. d» = X w n "V = = n +. k=o fe=o Therefore, for this case, d n ^ n as n ->. Co6e!(/: a < -l. Then y < - < u <, which implies u n > as n ->. Hence,7 a ^ + Co6 I/: a > l. n + l Then < t; < < u 5 which implies y n + and d n ^ ~ u - v To prove the given combinatorial identity, note that n v as n V«>. h(u - y ) ^., = h(u» - v n ) = %E(^)a n - f e (a 2 - )***(- (-)*) t^(tt-l)] = L 2; +,K a " ( a 2 - i ) l t H k = X ' th(n-l)] / \ fc In (9), let x = a 2 -, supposing Case I above, so that we can have x >. Then, since p = t a n " ^ is in (, %TT), Also, sin 3? = ( - a )" 2. v = t a n ' M d - a 2 ) V2 / a } = cos^m a }. Using the notation of Case I, v = if a > and

7 98] ELEMENTARY PROBLEMS AND SOLUTIONS 279 v = IT - if a <. In either case, sin 9 = sin r. Thus, using (8), Also, a 2 ( sin nr/sin p, if a > ;? _! = sin n/sin = < ( (-)"" sin np/sin r 9 if a <. = ( + tf)", which implies that In either case, it follows from (9) that ( + a:)"^"" ', a > ; "(-ly^a + a?)-^'-", a < o. ih(n-i)} ( + ao-ho-d ^ ( 2^n+ ij ( ~ x ) f e = s i n ^ / s i n ^> which is equivalent to the desired identity. Also solved by the proposer.

ELEMENTARY PROBLEMS AND SOLUTIONS

ELEMENTARY PROBLEMS AND SOLUTIONS ELEMENTARY PROBLEMS AND SOLUTIONS Edited by A. P. HILLMAN Assistant Editors GLORIA C. PADILLA and CHARLES R. WALL Send all communications regarding ELEMENTARY PROBLEMS and SOLUTIONS to PROFESSOR

More information

ELEMENTARY PROBLEMS AND SOLUTIONS. Edited by A. P. Hillman

ELEMENTARY PROBLEMS AND SOLUTIONS. Edited by A. P. Hillman Edited by A. P. Hillman Please send all material for ELEMENTARY PROBLEMS AND SOLUTIONS to Dr. A. P. HILLMAN; 709 SOLANO DR., S.E.; ALBUQUERQUE, NM 87108. Each solution should be on a separate sheet (or

More information

ELEMENTARY PROBLEMS AND SOLUTIONS. Edited by A. P. Hillman

ELEMENTARY PROBLEMS AND SOLUTIONS. Edited by A. P. Hillman Edited by A. P. Hillman Please send all material for to Dr. A. P. HILLMAN; 709 SOLANO DR., S.E.; ALBUQUERQUE, NM 87108. Each solution should he on a separate sheet (or sheets) and must be received within

More information

ELEMENTARY PROBLEMS AND SOLUTIONS. Edited by Stanley Rabinowitz

ELEMENTARY PROBLEMS AND SOLUTIONS. Edited by Stanley Rabinowitz Edited by Stanley Rabinowitz IMPORTANT NOTICE: There is a new editor of this department and a new address for all submissions. Please send all material for ELEMENTARY PROBLEMS AND SOLUTIONS to DR. STANLEY

More information

PROBLEMS PROPOSED IN THIS ISSUE

PROBLEMS PROPOSED IN THIS ISSUE Edited by A. P. Hillman Please send all material for ELEMENTARY PROBLEMS AND SOLUTIONS to Dr. A. P. HILLMAN; 709 SOLANO DR., S.E.; ALBUQUERQUE, NM 87108. Each solution should be on a separate sheet (or

More information

X X + 1 " P n ) = P m "

X X + 1  P n ) = P m ELEMENTARY PROBLEMS AND SOLUTIONS Edited by A. P. HILLiVIAW University of New IVSexico, Albuquerque, New Mexico Send all communications regarding Elementary Problems and Solutions to Professor A. P. Hillman,

More information

GENERATING FUNCTIONS OF CENTRAL VALUES IN GENERALIZED PASCAL TRIANGLES. CLAUDIA SMITH and VERNER E. HOGGATT, JR.

GENERATING FUNCTIONS OF CENTRAL VALUES IN GENERALIZED PASCAL TRIANGLES. CLAUDIA SMITH and VERNER E. HOGGATT, JR. GENERATING FUNCTIONS OF CENTRAL VALUES CLAUDIA SMITH and VERNER E. HOGGATT, JR. San Jose State University, San Jose, CA 95. INTRODUCTION In this paper we shall examine the generating functions of the central

More information

ELEMENTARY PROBLEMS AND SOLUTIONS. Edited by Stanley Rabinowitz

ELEMENTARY PROBLEMS AND SOLUTIONS. Edited by Stanley Rabinowitz Edited by Stanley Rabinowitz Please send all material for to Dr. STANLEY RABINOWITZ; 12 VINE BROOK RD; WESTFORD f AM 01886-4212 USA. Correspondence may also be sent to the problem editor by electronic

More information

^ ) = ^ : g ' f ^4(x)=a(xr + /xxr,

^ ) = ^ : g ' f ^4(x)=a(xr + /xxr, Edited by Stanley Rablnowitz Please send all material for ELEMENTARY PROBLEMS AND SOLUTIONS to Dr. STANLEY RABINOWITZ; 12 VINE BROOK RD; WESTFORD, MA 01886-4212 USA. Correspondence may also be sent to

More information

ADVANCED PROBLEMS AND SOLUTIONS

ADVANCED PROBLEMS AND SOLUTIONS Edited by RAYMOND E. WHITNEY Please send all communications concerning ADVANCED PROBLEMS AND SOLUTIONS to RAYMOND E. WHITNEY, MATHEMATICS DEPARTMENT, LOCK HAVEN UNIVERSITY, LOCK HA PA 17745, This department

More information

ELEMENTARY PROBLEMS AND SOLUTIONS. Edited by Stanley Rablnowltz

ELEMENTARY PROBLEMS AND SOLUTIONS. Edited by Stanley Rablnowltz Edited by Stanley Rablnowltz Please send all material for ELEMENTARY PROBLEMS AND SOLUTIONS to Dr. STANLEY RABINOWITZ; 12 VINE BROOK RD; WESTFORD, MA 01886-4212 USA. Correspondence may also he sent to

More information

ADVANCED PROBLEMS AND SOLUTIONS

ADVANCED PROBLEMS AND SOLUTIONS ADVANCED PROBLEMS AND SOLUTIONS Edited by RAYMOND E.WHITNEY Lk Haven State College, Lock Haven, Pennsylvania 17745 Send all communications concerning Advanced Problems and Solutions to Raymond E. Whitney,

More information

COMPOSITIONS AND FIBONACCI NUMBERS

COMPOSITIONS AND FIBONACCI NUMBERS COMPOSITIONS AND FIBONACCI NUMBERS V. E. HOGGATT, JR., and D. A. LIND San Jose State College, San Jose, California and University of Cambridge, England 1, INTRODUCTION A composition of n is an ordered

More information

(i) ^ ( ^ ) 5 *, <±i) 21- ( ^ I J ^ - l,

(i) ^ ( ^ ) 5 *, <±i) 21- ( ^ I J ^ - l, Edited by A. P. Hillma Please sed all material for ELEMENTARY PROBLEMS AND SOLUTIONS to Dr. A. P. HILLMAN; 709 SOLANO DR., S.E.; ALBUQUERQUE, NM 87108. Each solutio should be o a separate sheet (or sheets)

More information

ADVANCED PROBLEMS AND SOLUTIONS

ADVANCED PROBLEMS AND SOLUTIONS Edited by Raymond E 0 Whitney Please send all communications concerning to RAYMOND E. WHITNEY, MATHEMATICS DEPARTMENT, LOCK HAVEN UNIVERSITY, LOCK HAVEN, PA 17745. This department especially welcomes problems

More information

ELEMENTARY PROBLEMS AND SOLUTIONS. Edited by Stanley Rabinowltz

ELEMENTARY PROBLEMS AND SOLUTIONS. Edited by Stanley Rabinowltz Edited by Stanley Rabinowltz Please send all material for ELEMENTARY PROBLEMS AND SOLUTIONS to Dr. STANLEY RABINOWLTZ; 12 VINE BROOK RD; WESTFORD, MA 01886-4212 USA. Correspondence may also he sent to

More information

ADVANCED PROBLEMS AND SOLUTIONS

ADVANCED PROBLEMS AND SOLUTIONS Edited by Florian Luca Please send all communications concerning ADVANCED PROBLEMS AND SOLU- TIONS to FLORIAN LUCA, IMATE, UNAM, AP. POSTAL 61-3 (XANGARI),CP 58 089, MORELIA, MICHOACAN, MEXICO, or by e-mail

More information

Logic and Discrete Mathematics. Section 6.7 Recurrence Relations and Their Solution

Logic and Discrete Mathematics. Section 6.7 Recurrence Relations and Their Solution Logic and Discrete Mathematics Section 6.7 Recurrence Relations and Their Solution Slides version: January 2015 Definition A recurrence relation for a sequence a 0, a 1, a 2,... is a formula giving a n

More information

ELEMENTARY PROBLEMS AND SOLUTIONS. Edited by Stanley Rabinowitz

ELEMENTARY PROBLEMS AND SOLUTIONS. Edited by Stanley Rabinowitz Edited by Stanley Rabinowitz Please send all material for to Dr. STANLEY RABINOWITZ; 12 VINE BROOK RD; WESTFORD, MA 01886-4212 USA. Correspondence may also be sent to the problem editor by electronic mail

More information

ELEMENTARY PROBLEMS AND SOLUTIONS. Edited by Stanley Rablnowitz

ELEMENTARY PROBLEMS AND SOLUTIONS. Edited by Stanley Rablnowitz Edited by Stanley Rablnowitz Please send all material for ELEMENTARY PROBLEMS AND SOLUTLONS to Dr. STANLEY RABINOWLTZ; 12 VINE BROOK RD; WESTFORD, MA 01886-4212 USA. Correspondence may also he sent to

More information

ELEMENTARY PROBLEMS AND SOLUTIONS. Edited by Stanley Rabinowitz

ELEMENTARY PROBLEMS AND SOLUTIONS. Edited by Stanley Rabinowitz . Edited by Stanley Rabinowitz Please send all material for ELEMENTARY PROBLEMS AND SOLUTIONS to Dr. STANLEY RABINOWITZ; VINE BROOK RD; WESTFORD, MA 886-4 USA. Correspondence may also be sent to the problem

More information

ADVANCED PROBLEMS AND SOLUTIONS. Edited by Raymond E. Whitney

ADVANCED PROBLEMS AND SOLUTIONS. Edited by Raymond E. Whitney Edited by Raymond E. Whitney Please send all communications concerning ADVANCED PROBLEMS AND SOLUTIONS to RAYMOND E. WHITNEY, MATHEMATICS DEPARTMENT, LOCK HAVEN UNIVERSITY, LOCK HAVEN, PA 7745. This department

More information

ELEMENTARY PROBLEMS AND SOLUTIONS. Edited by Stanley Rabinowitz

ELEMENTARY PROBLEMS AND SOLUTIONS. Edited by Stanley Rabinowitz Edited by Stanley Rabinowitz Please send all material for ELEMENTARY PROBLEMS AND SOLUTIONS to Dr. STANLEY RABINOWITZ; 12 VINE BROOK RD; WESTFORD, MA 01886-4212 USA. Correspondence may also he sent to

More information

ADVANCED PROBLEMS AND SOLUTIONS Edited By RAYMOND E.WHITNEY Lock Haven State College, Lock Haven, Pennsylvania

ADVANCED PROBLEMS AND SOLUTIONS Edited By RAYMOND E.WHITNEY Lock Haven State College, Lock Haven, Pennsylvania ADVANCED PROBLEMS AND SOLUTIONS Edited By RAYMOND E.WHITNEY Loc Haven State College, Loc Haven, Pennsylvania Send all communications concerning Advanced Problems and Solutions to Raymond E. Whitney, Mathematics

More information

Divisibility in the Fibonacci Numbers. Stefan Erickson Colorado College January 27, 2006

Divisibility in the Fibonacci Numbers. Stefan Erickson Colorado College January 27, 2006 Divisibility in the Fibonacci Numbers Stefan Erickson Colorado College January 27, 2006 Fibonacci Numbers F n+2 = F n+1 + F n n 1 2 3 4 6 7 8 9 10 11 12 F n 1 1 2 3 8 13 21 34 89 144 n 13 14 1 16 17 18

More information

ADVANCED PROBLEMS AND SOLUTIONS

ADVANCED PROBLEMS AND SOLUTIONS Edited by RAYMOND E. WHITNEY Please send all communications concerning to RAYMOND E. WHITNEY, MATHEMATICS DEPARTMENT, LOCK HAVEN UNIVERSITY, LOCK HAVEN, PA 17745. This department especially welcomes problems

More information

William Stallings Copyright 2010

William Stallings Copyright 2010 A PPENDIX E B ASIC C ONCEPTS FROM L INEAR A LGEBRA William Stallings Copyright 2010 E.1 OPERATIONS ON VECTORS AND MATRICES...2 Arithmetic...2 Determinants...4 Inverse of a Matrix...5 E.2 LINEAR ALGEBRA

More information

2011 Olympiad Solutions

2011 Olympiad Solutions 011 Olympiad Problem 1 Let A 0, A 1, A,..., A n be nonnegative numbers such that Prove that A 0 A 1 A A n. A i 1 n A n. Note: x means the greatest integer that is less than or equal to x.) Solution: We

More information

Introduction to Number Theory

Introduction to Number Theory INTRODUCTION Definition: Natural Numbers, Integers Natural numbers: N={0,1,, }. Integers: Z={0,±1,±, }. Definition: Divisor If a Z can be writeen as a=bc where b, c Z, then we say a is divisible by b or,

More information

2x 1 7. A linear congruence in modular arithmetic is an equation of the form. Why is the solution a set of integers rather than a unique integer?

2x 1 7. A linear congruence in modular arithmetic is an equation of the form. Why is the solution a set of integers rather than a unique integer? Chapter 3: Theory of Modular Arithmetic 25 SECTION C Solving Linear Congruences By the end of this section you will be able to solve congruence equations determine the number of solutions find the multiplicative

More information

Objective Type Questions

Objective Type Questions DISTANCE EDUCATION, UNIVERSITY OF CALICUT NUMBER THEORY AND LINEARALGEBRA Objective Type Questions Shyama M.P. Assistant Professor Department of Mathematics Malabar Christian College, Calicut 7/3/2014

More information

PROBLEMS ON CONGRUENCES AND DIVISIBILITY

PROBLEMS ON CONGRUENCES AND DIVISIBILITY PROBLEMS ON CONGRUENCES AND DIVISIBILITY 1. Do there exist 1,000,000 consecutive integers each of which contains a repeated prime factor? 2. A positive integer n is powerful if for every prime p dividing

More information

LINEAR RECURRENCE RELATIONS - PART US JAMES A. JESKE San Jose State College, San Jose, California

LINEAR RECURRENCE RELATIONS - PART US JAMES A. JESKE San Jose State College, San Jose, California LINEAR RECURRENCE RELATIONS - PART US JAMES A. JESKE San Jose State College, San Jose, California. INTRODUCTION We continue our study to acquaint the beginner with l i n e a r r e - c u r r e n c e relations

More information

PUTNAM PROBLEMS SEQUENCES, SERIES AND RECURRENCES. Notes

PUTNAM PROBLEMS SEQUENCES, SERIES AND RECURRENCES. Notes PUTNAM PROBLEMS SEQUENCES, SERIES AND RECURRENCES Notes. x n+ = ax n has the general solution x n = x a n. 2. x n+ = x n + b has the general solution x n = x + (n )b. 3. x n+ = ax n + b (with a ) can be

More information

Homework #2 solutions Due: June 15, 2012

Homework #2 solutions Due: June 15, 2012 All of the following exercises are based on the material in the handout on integers found on the class website. 1. Find d = gcd(475, 385) and express it as a linear combination of 475 and 385. That is

More information

GENERALIZED RABBITS FOR GENERALIZED FIBONACCI NUMBERS. V.E.Hoggatt^Jro. San Jose State College, San Jose, Calif e 1. INTRODUCTION

GENERALIZED RABBITS FOR GENERALIZED FIBONACCI NUMBERS. V.E.Hoggatt^Jro. San Jose State College, San Jose, Calif e 1. INTRODUCTION GENERALIZED RABBITS FOR GENERALIZED FIBONACCI NUMBERS V.E.Hoggatt^ro San ose State College, San ose, Calif e 1. INTRODUCTION The original Fibonacci number sequence arose from an academic rabbit production

More information

2x 1 7. A linear congruence in modular arithmetic is an equation of the form. Why is the solution a set of integers rather than a unique integer?

2x 1 7. A linear congruence in modular arithmetic is an equation of the form. Why is the solution a set of integers rather than a unique integer? Chapter 3: Theory of Modular Arithmetic 25 SECTION C Solving Linear Congruences By the end of this section you will be able to solve congruence equations determine the number of solutions find the multiplicative

More information

AND RELATED NUMBERS. GERHARD ROSENBERGER Dortmund, Federal Republic of Germany (Submitted April 1982)

AND RELATED NUMBERS. GERHARD ROSENBERGER Dortmund, Federal Republic of Germany (Submitted April 1982) ON SOME D I V I S I B I L I T Y PROPERTIES OF FIBONACCI AND RELATED NUMBERS Universitat GERHARD ROSENBERGER Dortmund, Federal Republic of Germany (Submitted April 1982) 1. Let x be an arbitrary natural

More information

Number Theory Marathon. Mario Ynocente Castro, National University of Engineering, Peru

Number Theory Marathon. Mario Ynocente Castro, National University of Engineering, Peru Number Theory Marathon Mario Ynocente Castro, National University of Engineering, Peru 1 2 Chapter 1 Problems 1. (IMO 1975) Let f(n) denote the sum of the digits of n. Find f(f(f(4444 4444 ))). 2. Prove

More information

Week 9-10: Recurrence Relations and Generating Functions

Week 9-10: Recurrence Relations and Generating Functions Week 9-10: Recurrence Relations and Generating Functions April 3, 2017 1 Some number sequences An infinite sequence (or just a sequence for short is an ordered array a 0, a 1, a 2,..., a n,... of countably

More information

Fall 2017 Test II review problems

Fall 2017 Test II review problems Fall 2017 Test II review problems Dr. Holmes October 18, 2017 This is a quite miscellaneous grab bag of relevant problems from old tests. Some are certainly repeated. 1. Give the complete addition and

More information

Number Theory Marathon. Mario Ynocente Castro, National University of Engineering, Peru

Number Theory Marathon. Mario Ynocente Castro, National University of Engineering, Peru Number Theory Marathon Mario Ynocente Castro, National University of Engineering, Peru 1 2 Chapter 1 Problems 1. (IMO 1975) Let f(n) denote the sum of the digits of n. Find f(f(f(4444 4444 ))). 2. Prove

More information

Recitation 7: Existence Proofs and Mathematical Induction

Recitation 7: Existence Proofs and Mathematical Induction Math 299 Recitation 7: Existence Proofs and Mathematical Induction Existence proofs: To prove a statement of the form x S, P (x), we give either a constructive or a non-contructive proof. In a constructive

More information

DYNAMICS OF THE ZEROS OF FIBONACCI POLYNOMIALS M. X. He Nova Southeastern University, Fort Lauderdale, FL. D, Simon

DYNAMICS OF THE ZEROS OF FIBONACCI POLYNOMIALS M. X. He Nova Southeastern University, Fort Lauderdale, FL. D, Simon M. X. He Nova Southeastern University, Fort Lauderdale, FL D, Simon Nova Southeastern University, Fort Lauderdale, FL P. E. Ricci Universita degli Studi di Roma "La Sapienza," Rome, Italy (Submitted December

More information

Solution Sheet (i) q = 5, r = 15 (ii) q = 58, r = 15 (iii) q = 3, r = 7 (iv) q = 6, r = (i) gcd (97, 157) = 1 = ,

Solution Sheet (i) q = 5, r = 15 (ii) q = 58, r = 15 (iii) q = 3, r = 7 (iv) q = 6, r = (i) gcd (97, 157) = 1 = , Solution Sheet 2 1. (i) q = 5, r = 15 (ii) q = 58, r = 15 (iii) q = 3, r = 7 (iv) q = 6, r = 3. 2. (i) gcd (97, 157) = 1 = 34 97 21 157, (ii) gcd (527, 697) = 17 = 4 527 3 697, (iii) gcd (2323, 1679) =

More information

Some congruences concerning second order linear recurrences

Some congruences concerning second order linear recurrences Acta Academiae Paedagogicae Agriensis, Sectio Mathematicae,. (1997) pp. 9 33 Some congruences concerning second order linear recurrences JAMES P. JONES PÉTER KISS Abstract. Let U n V n (n=0,1,,...) be

More information

Math 324 Summer 2012 Elementary Number Theory Notes on Mathematical Induction

Math 324 Summer 2012 Elementary Number Theory Notes on Mathematical Induction Math 4 Summer 01 Elementary Number Theory Notes on Mathematical Induction Principle of Mathematical Induction Recall the following axiom for the set of integers. Well-Ordering Axiom for the Integers If

More information

THE GENERALIZED TRIBONACCI NUMBERS WITH NEGATIVE SUBSCRIPTS

THE GENERALIZED TRIBONACCI NUMBERS WITH NEGATIVE SUBSCRIPTS #A3 INTEGERS 14 (014) THE GENERALIZED TRIBONACCI NUMBERS WITH NEGATIVE SUBSCRIPTS Kantaphon Kuhapatanakul 1 Dept. of Mathematics, Faculty of Science, Kasetsart University, Bangkok, Thailand fscikpkk@ku.ac.th

More information

G E N E R A L I Z E D C O N V O L U T I O N A R R A Y S

G E N E R A L I Z E D C O N V O L U T I O N A R R A Y S G E N E R A L I Z E D C O N V O L U T I O N A R R A Y S V. E. HOGGATT,JR. San Jose State University, San Jose, California 00192 G. E. BERGUM South Dakota State University, Brookings, Sooth Dakota 57006

More information

SECOND-ORDER RECURRENCES. Lawrence Somer Department of Mathematics, Catholic University of America, Washington, D.C

SECOND-ORDER RECURRENCES. Lawrence Somer Department of Mathematics, Catholic University of America, Washington, D.C p-stability OF DEGENERATE SECOND-ORDER RECURRENCES Lawrence Somer Department of Mathematics, Catholic University of America, Washington, D.C. 20064 Walter Carlip Department of Mathematics and Computer

More information

(1.1) A j y ( t + j) = 9

(1.1) A j y ( t + j) = 9 LIEAR HOOGEEOUS DIFFERECE EQUATIOS ROBERT.GIULI San Jose State College, San Jose, California 1. LIEAE HOOGEEOUS DIFFERECE EQUATIOS Since Its founding, this quarterly has essentially devoted its effort

More information

ELEMENTARY PROBLEMS AND SOLUTIONS. Edited by Stanley Rabinowitz

ELEMENTARY PROBLEMS AND SOLUTIONS. Edited by Stanley Rabinowitz Edited by Stanley Rabinowitz Please send all material for ELEMENTARY PROBLEMS AND SOLUTIONS to Dr. STANLEY RABINOWITZ; 2 VINE BROOK RD; WESTFORD, MA 0886-422 USA. Correspondence may also he sent to the

More information

Applications. More Counting Problems. Complexity of Algorithms

Applications. More Counting Problems. Complexity of Algorithms Recurrences Applications More Counting Problems Complexity of Algorithms Part I Recurrences and Binomial Coefficients Paths in a Triangle P(0, 0) P(1, 0) P(1,1) P(2, 0) P(2,1) P(2, 2) P(3, 0) P(3,1) P(3,

More information

CHAPTER 1 POLYNOMIALS

CHAPTER 1 POLYNOMIALS 1 CHAPTER 1 POLYNOMIALS 1.1 Removing Nested Symbols of Grouping Simplify. 1. 4x + 3( x ) + 4( x + 1). ( ) 3x + 4 5 x 3 + x 3. 3 5( y 4) + 6 y ( y + 3) 4. 3 n ( n + 5) 4 ( n + 8) 5. ( x + 5) x + 3( x 6)

More information

Generating Functions (Revised Edition)

Generating Functions (Revised Edition) Math 700 Fall 06 Notes Generating Functions (Revised Edition What is a generating function? An ordinary generating function for a sequence (a n n 0 is the power series A(x = a nx n. The exponential generating

More information

DISTRIBUTION OF FIBONACCI AND LUCAS NUMBERS MODULO 3 k

DISTRIBUTION OF FIBONACCI AND LUCAS NUMBERS MODULO 3 k DISTRIBUTION OF FIBONACCI AND LUCAS NUMBERS MODULO 3 k RALF BUNDSCHUH AND PETER BUNDSCHUH Dedicated to Peter Shiue on the occasion of his 70th birthday Abstract. Let F 0 = 0,F 1 = 1, and F n = F n 1 +F

More information

q-counting hypercubes in Lucas cubes

q-counting hypercubes in Lucas cubes Turkish Journal of Mathematics http:// journals. tubitak. gov. tr/ math/ Research Article Turk J Math (2018) 42: 190 203 c TÜBİTAK doi:10.3906/mat-1605-2 q-counting hypercubes in Lucas cubes Elif SAYGI

More information

Notes on Continued Fractions for Math 4400

Notes on Continued Fractions for Math 4400 . Continued fractions. Notes on Continued Fractions for Math 4400 The continued fraction expansion converts a positive real number α into a sequence of natural numbers. Conversely, a sequence of natural

More information

ADVANCED PROBLEMS AND SOLUTIONS

ADVANCED PROBLEMS AND SOLUTIONS Edited by Raymond E. Whitney Please send all communications concerning ADVANCED PROBLEMS AND SOLUTIONS to RAYMOND E. WHITNEY, MATHEMATICS DEPARTMENT, LOCK HAVEN UNIVERSITY, LOCK HA VEN, PA 17745. This

More information

ALGORITHMS FOR THIRD-ORDER RECURSION SEQUENCES

ALGORITHMS FOR THIRD-ORDER RECURSION SEQUENCES ALGORITHMS FOR THIRD-ORDER RECURSION SEQUENCES BROTHER ALFRED BROUSSEAU St. Mary's College, Moraga, California 947 Given a third-order recursion relation (D T n + 1 = a l T n " a 2 T n _ i + a T n Let

More information

F. T. HOWARD AND CURTIS COOPER

F. T. HOWARD AND CURTIS COOPER SOME IDENTITIES FOR r-fibonacci NUMBERS F. T. HOWARD AND CURTIS COOPER Abstract. Let r 1 be an integer. The r-generalized Fibonacci sequence {G n} is defined as 0, if 0 n < r 1; G n = 1, if n = r 1; G

More information

MATH 4400 SOLUTIONS TO SOME EXERCISES. 1. Chapter 1

MATH 4400 SOLUTIONS TO SOME EXERCISES. 1. Chapter 1 MATH 4400 SOLUTIONS TO SOME EXERCISES 1.1.3. If a b and b c show that a c. 1. Chapter 1 Solution: a b means that b = na and b c that c = mb. Substituting b = na gives c = (mn)a, that is, a c. 1.2.1. Find

More information

Arithmetic properties of lacunary sums of binomial coefficients

Arithmetic properties of lacunary sums of binomial coefficients Arithmetic properties of lacunary sums of binomial coefficients Tamás Mathematics Department Occidental College 29th Journées Arithmétiques JA2015, July 6-10, 2015 Arithmetic properties of lacunary sums

More information

PUTNAM TRAINING NUMBER THEORY. Exercises 1. Show that the sum of two consecutive primes is never twice a prime.

PUTNAM TRAINING NUMBER THEORY. Exercises 1. Show that the sum of two consecutive primes is never twice a prime. PUTNAM TRAINING NUMBER THEORY (Last updated: December 11, 2017) Remark. This is a list of exercises on Number Theory. Miguel A. Lerma Exercises 1. Show that the sum of two consecutive primes is never twice

More information

On the Pell Polynomials

On the Pell Polynomials Applied Mathematical Sciences, Vol. 5, 2011, no. 37, 1833-1838 On the Pell Polynomials Serpil Halici Sakarya University Department of Mathematics Faculty of Arts and Sciences 54187, Sakarya, Turkey shalici@sakarya.edu.tr

More information

Elementary Differential Equations, Section 2 Prof. Loftin: Practice Test Problems for Test Find the radius of convergence of the power series

Elementary Differential Equations, Section 2 Prof. Loftin: Practice Test Problems for Test Find the radius of convergence of the power series Elementary Differential Equations, Section 2 Prof. Loftin: Practice Test Problems for Test 2 SOLUTIONS 1. Find the radius of convergence of the power series Show your work. x + x2 2 + x3 3 + x4 4 + + xn

More information

Consider an infinite row of dominoes, labeled by 1, 2, 3,, where each domino is standing up. What should one do to knock over all dominoes?

Consider an infinite row of dominoes, labeled by 1, 2, 3,, where each domino is standing up. What should one do to knock over all dominoes? 1 Section 4.1 Mathematical Induction Consider an infinite row of dominoes, labeled by 1,, 3,, where each domino is standing up. What should one do to knock over all dominoes? Principle of Mathematical

More information

M381 Number Theory 2004 Page 1

M381 Number Theory 2004 Page 1 M81 Number Theory 2004 Page 1 [[ Comments are written like this. Please send me (dave@wildd.freeserve.co.uk) details of any errors you find or suggestions for improvements. ]] Question 1 20 = 2 * 10 +

More information

RECREATIONAL MATHEMATICS

RECREATIONAL MATHEMATICS RECREATIONAL MATHEMATICS Joseph S. Madachy 4761 Bigger Rd., Kettering, O h i o Before I go on with new business, readers of this column should make the following corrections in the February 1968 issue

More information

EXPANSION OF ANALYTIC FUNCTIONS IN TERMS INVOLVING LUCAS NUMBERS OR SIMILAR NUMBER SEQUENCES

EXPANSION OF ANALYTIC FUNCTIONS IN TERMS INVOLVING LUCAS NUMBERS OR SIMILAR NUMBER SEQUENCES EXPANSION OF ANALYTIC FUNCTIONS IN TERMS INVOLVING LUCAS NUMBERS OR SIMILAR NUMBER SEQUENCES PAUL F. BYRD San Jose State College, San Jose, California 1. INTRODUCTION In a previous article [_ 1J, certain

More information

198 VOLUME 46/47, NUMBER 3

198 VOLUME 46/47, NUMBER 3 LAWRENCE SOMER Abstract. Rotkiewicz has shown that there exist Fibonacci pseudoprimes having the forms p(p + 2), p(2p 1), and p(2p + 3), where all the terms in the products are odd primes. Assuming Dickson

More information

{ 0! = 1 n! = n(n 1)!, n 1. n! =

{ 0! = 1 n! = n(n 1)!, n 1. n! = Summations Question? What is the sum of the first 100 positive integers? Counting Question? In how many ways may the first three horses in a 10 horse race finish? Multiplication Principle: If an event

More information

Solutions to Section 2.1 Homework Problems S. F. Ellermeyer

Solutions to Section 2.1 Homework Problems S. F. Ellermeyer Solutions to Section 21 Homework Problems S F Ellermeyer 1 [13] 9 = f13; 22; 31; 40; : : :g [ f4; 5; 14; : : :g [3] 10 = f3; 13; 23; 33; : : :g [ f 7; 17; 27; : : :g [4] 11 = f4; 15; 26; : : :g [ f 7;

More information

Covering Subsets of the Integers and a Result on Digits of Fibonacci Numbers

Covering Subsets of the Integers and a Result on Digits of Fibonacci Numbers University of South Carolina Scholar Commons Theses and Dissertations 2017 Covering Subsets of the Integers and a Result on Digits of Fibonacci Numbers Wilson Andrew Harvey University of South Carolina

More information

s-generalized Fibonacci Numbers: Some Identities, a Generating Function and Pythagorean Triples

s-generalized Fibonacci Numbers: Some Identities, a Generating Function and Pythagorean Triples International Journal of Mathematical Analysis Vol. 8, 2014, no. 36, 1757-1766 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ijma.2014.47203 s-generalized Fibonacci Numbers: Some Identities,

More information

Partition of Integers into Distinct Summands with Upper Bounds. Partition of Integers into Even Summands. An Example

Partition of Integers into Distinct Summands with Upper Bounds. Partition of Integers into Even Summands. An Example Partition of Integers into Even Summands We ask for the number of partitions of m Z + into positive even integers The desired number is the coefficient of x m in + x + x 4 + ) + x 4 + x 8 + ) + x 6 + x

More information

A Readable Introduction to Real Mathematics

A Readable Introduction to Real Mathematics Solutions to selected problems in the book A Readable Introduction to Real Mathematics D. Rosenthal, D. Rosenthal, P. Rosenthal Chapter 7: The Euclidean Algorithm and Applications 1. Find the greatest

More information

a 11 x 1 + a 12 x a 1n x n = b 1 a 21 x 1 + a 22 x a 2n x n = b 2.

a 11 x 1 + a 12 x a 1n x n = b 1 a 21 x 1 + a 22 x a 2n x n = b 2. Chapter 1 LINEAR EQUATIONS 11 Introduction to linear equations A linear equation in n unknowns x 1, x,, x n is an equation of the form a 1 x 1 + a x + + a n x n = b, where a 1, a,, a n, b are given real

More information

Counting Perfect Polynomials

Counting Perfect Polynomials Enrique Treviño joint work with U. Caner Cengiz and Paul Pollack 49th West Coast Number Theory December 18, 2017 49th West Coast Number Theory 2017 1 Caner (a) Caner Cengiz (b) Paul Pollack 49th West Coast

More information

GOLDEN SEQUENCES OF MATRICES WITH APPLICATIONS TO FIBONACCI ALGEBRA

GOLDEN SEQUENCES OF MATRICES WITH APPLICATIONS TO FIBONACCI ALGEBRA GOLDEN SEQUENCES OF MATRICES WITH APPLICATIONS TO FIBONACCI ALGEBRA JOSEPH ERCOLANO Baruch College, CUNY, New York, New York 10010 1. INTRODUCTION As is well known, the problem of finding a sequence of

More information

The generalized order-k Fibonacci Pell sequence by matrix methods

The generalized order-k Fibonacci Pell sequence by matrix methods Journal of Computational and Applied Mathematics 09 (007) 33 45 wwwelseviercom/locate/cam The generalized order- Fibonacci Pell sequence by matrix methods Emrah Kilic Mathematics Department, TOBB University

More information

UNIT DETERMINANTS IN GENERALIZED PASCAL TRIANGLES

UNIT DETERMINANTS IN GENERALIZED PASCAL TRIANGLES UNI DEERMINANS IN GENERALIZED PASCAL RIANGLES MARJORf E BtCKNELL and V. E. HOGGA, JR. San Jose State University, San Jose, California here are many ways in which one can select a square array from Pascal's

More information

POLYNOMIALS. Maths 4 th ESO José Jaime Noguera

POLYNOMIALS. Maths 4 th ESO José Jaime Noguera POLYNOMIALS Maths 4 th ESO José Jaime Noguera 1 Algebraic expressions Book, page 26 YOUR TURN: exercises 1, 2, 3. Exercise: Find the numerical value of the algebraic expression xy 2 8x + y, knowing that

More information

1. Introduction Definition 1.1. Let r 1 be an integer. The r-generalized Fibonacci sequence {G n } is defined as

1. Introduction Definition 1.1. Let r 1 be an integer. The r-generalized Fibonacci sequence {G n } is defined as SOME IDENTITIES FOR r-fibonacci NUMBERS F. T. HOWARD AND CURTIS COOPER Abstract. Let r 1 be an integer. The r-generalized Fibonacci sequence {G n} is defined as 8 >< 0, if 0 n < r 1; G n = 1, if n = r

More information

X(^+(2^i) = i + X02^r + i.

X(^+(2^i) = i + X02^r + i. Peter R. Christopher Department of Mathematics Sciences Worcester Polytechnic Institute, Worcester, MA 69 John W. Kennedy Mathematics Department, Pace University, New York, NY 38 (Submitted May 995). INTRODUCTION

More information

Linear Systems and Matrices

Linear Systems and Matrices Department of Mathematics The Chinese University of Hong Kong 1 System of m linear equations in n unknowns (linear system) a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2.......

More information

Fibonacci Diophantine Triples

Fibonacci Diophantine Triples Fibonacci Diophantine Triples Florian Luca Instituto de Matemáticas Universidad Nacional Autonoma de México C.P. 58180, Morelia, Michoacán, México fluca@matmor.unam.mx László Szalay Institute of Mathematics

More information

ELEMENTARY LINEAR ALGEBRA

ELEMENTARY LINEAR ALGEBRA ELEMENTARY LINEAR ALGEBRA K R MATTHEWS DEPARTMENT OF MATHEMATICS UNIVERSITY OF QUEENSLAND First Printing, 99 Chapter LINEAR EQUATIONS Introduction to linear equations A linear equation in n unknowns x,

More information

A RESULT ON RAMANUJAN-LIKE CONGRUENCE PROPERTIES OF THE RESTRICTED PARTITION FUNCTION p(n, m) ACROSS BOTH VARIABLES

A RESULT ON RAMANUJAN-LIKE CONGRUENCE PROPERTIES OF THE RESTRICTED PARTITION FUNCTION p(n, m) ACROSS BOTH VARIABLES #A63 INTEGERS 1 (01) A RESULT ON RAMANUJAN-LIKE CONGRUENCE PROPERTIES OF THE RESTRICTED PARTITION FUNCTION p(n, m) ACROSS BOTH VARIABLES Brandt Kronholm Department of Mathematics, Whittier College, Whittier,

More information

12.1 Arithmetic Progression Geometric Progression General things about sequences

12.1 Arithmetic Progression Geometric Progression General things about sequences ENGR11 Engineering Mathematics Lecture Notes SMS, Victoria University of Wellington Week Five. 1.1 Arithmetic Progression An arithmetic progression is a sequence where each term is found by adding a fixed

More information

A Note on the Determinant of Five-Diagonal Matrices with Fibonacci Numbers

A Note on the Determinant of Five-Diagonal Matrices with Fibonacci Numbers Int. J. Contemp. Math. Sciences, Vol. 3, 2008, no. 9, 419-424 A Note on the Determinant of Five-Diagonal Matrices with Fibonacci Numbers Hacı Civciv Department of Mathematics Faculty of Art and Science

More information

9 MODULARITY AND GCD PROPERTIES OF GENERALIZED FIBONACCI NUMBERS

9 MODULARITY AND GCD PROPERTIES OF GENERALIZED FIBONACCI NUMBERS #A55 INTEGERS 14 (2014) 9 MODULARITY AND GCD PROPERTIES OF GENERALIZED FIBONACCI NUMBERS Rigoberto Flórez 1 Department of Mathematics and Computer Science, The Citadel, Charleston, South Carolina rigo.florez@citadel.edu

More information

MATH 215 Final. M4. For all a, b in Z, a b = b a.

MATH 215 Final. M4. For all a, b in Z, a b = b a. MATH 215 Final We will assume the existence of a set Z, whose elements are called integers, along with a well-defined binary operation + on Z (called addition), a second well-defined binary operation on

More information

MIXED PELL POLYNOMIALS. A. F, HORADAM University of New England, Armidale, Australia

MIXED PELL POLYNOMIALS. A. F, HORADAM University of New England, Armidale, Australia A. F, HORADAM University of New England, Armidale, Australia Bro. J. M. MAHON Catholic College of Education, Sydney, Australia (Submitted April 1985) 1. INTRODUCTION Pell polynomials P n (x) are defined

More information

DIVISIBILITY BY FIBONACCI AND LUCAS SQUARES

DIVISIBILITY BY FIBONACCI AND LUCAS SQUARES DIVISIBILITY BY FIBONACCI AND LUCAS SQUARES V. E. HOGGATT, JR., and MARJORIE B5CKNELL JOHNSON San Jose State University, San Jose, California 95192 1. INTRODUCTION In Matijasevic's paper [1] on Hilbert's

More information

Summation of certain infinite Fibonacci related series

Summation of certain infinite Fibonacci related series arxiv:52.09033v (30 Dec 205) Summation of certain infinite Fibonacci related series Bakir Farhi Laboratoire de Mathématiques appliquées Faculté des Sciences Exactes Université de Bejaia 06000 Bejaia Algeria

More information

Leapfrog Constructions: From Continuant Polynomials to Permanents of Matrices

Leapfrog Constructions: From Continuant Polynomials to Permanents of Matrices Leapfrog Constructions: From Continuant Polynomials to Permanents of Matrices Alberto Facchini Dipartimento di Matematica Università di Padova Padova, Italy facchini@mathunipdit André Leroy Faculté Jean

More information

ABSTRACT 1. INTRODUCTION

ABSTRACT 1. INTRODUCTION THE FIBONACCI NUMBER OF GENERALIZED PETERSEN GRAPHS Stephan G. Wagner Department of Mathematics, Graz University of Technology, Steyrergasse 30, A-8010 Graz, Austria e-mail: wagner@finanz.math.tu-graz.ac.at

More information

Infinite arctangent sums involving Fibonacci and Lucas numbers

Infinite arctangent sums involving Fibonacci and Lucas numbers Infinite arctangent sums involving Fibonacci and Lucas numbers Kunle Adegoke Department of Physics and Engineering Physics, Obafemi Awolowo University, Ile-Ife, 0005 Nigeria Saturday 3 rd July, 06, 6:43

More information

arxiv: v1 [math.ho] 28 Jul 2017

arxiv: v1 [math.ho] 28 Jul 2017 Generalized Fibonacci Sequences and Binet-Fibonacci Curves arxiv:1707.09151v1 [math.ho] 8 Jul 017 Merve Özvatan and Oktay K. Pashaev Department of Mathematics Izmir Institute of Technology Izmir, 35430,

More information