Effective interactions in the delta-shell model

Size: px
Start display at page:

Download "Effective interactions in the delta-shell model"

Transcription

1 Effective interactions in the delta-shell model Rodrigo Navarro Pérez Enrique Ruiz Arriola José Enrique Amaro Soriano University of Granada Atomic, Molecular and Nuclear Physics Department Few Body, Fukuoka, August Navarro-Pérez R. (UGR) Effective interactions in the δ-shell FB, August /

2 Motivation Delta Shell Potential Fitting np Phaseshifts Scattering Observables Skyrme parameters 5 Summary Navarro-Pérez R. (UGR) Effective interactions in the δ-shell FB, August /

3 Motivation S P P P S D ǫ D D P F ǫ F F D G ǫ G G F H ǫ 5 δ [deg.] 5 5 ELAB [MeV] No unique determination of the NN interaction Different phenomenological potentials Fitted to experimental scattering data High accuracy χ /d.o.f. Dispersion in Phaseshifts OPE as a long range interaction parameters for the short and intermediate range Repulsive core for most of them Short range correlations Nuclear structure calculations become complicated Navarro-Pérez R. (UGR) Effective interactions in the δ-shell FB, August /

4 Motivation Effective coarse graining Oscillator Shell Model Euclidean Lattice EFT V lowk interaction Characteristic distance.5. fm Nyquist Theorem Optimal sampling Finite Bandwidth r k () de Broglie wavelength of the most energetic particle Sampling resolution determined V [fm ] - AV8 uk (r) u(r) u5(r) r [fm] fm - u(r) Navarro-Pérez R. (UGR) Effective interactions in the δ-shell FB, August /

5 Motivation Effective coarse graining Oscillator Shell Model Euclidean Lattice EFT V lowk interaction Characteristic distance.5. fm Nyquist Theorem Optimal sampling Finite Bandwidth r k () de Broglie wavelength of the most energetic particle Sampling resolution determined V [fm ] - AV8 uk (r) u(r) u5(r) r [fm] fm - u(r) Navarro-Pérez R. (UGR) Effective interactions in the δ-shell FB, August /

6 Motivation Effective Interaction [Skyrme, Moshinsky] Useful simplifications in many body calculations Power expansion in CM momenta V (p, p) = d xe ix (p p) ˆV (x) = t ( + x P σ ) + t ( + x P σ )(p + p ) +t ( + x P σ )p p + it V S (p p) + t T + t U +O(p ) [ σ pσ p + σ p σ p ] σ σ (p + p ) [ σ pσ p + σ p σ p ] σ σ p p Navarro-Pérez R. (UGR) Effective interactions in the δ-shell FB, August 5 /

7 Delta Shell Potential A sum of delta functions V (r) = i λ i µ δ(r r i) () [Aviles Phys.Rev. C6 (97) 67] Optimal and minimal sampling of the nuclear interaction Pion production threshold k = fm Optimal sampling around.5 fm Analitic Potential Delta Shell r [fm] 5 k =. fm, u(r) r [fm] Navarro-Pérez R. (UGR) Effective interactions in the δ-shell FB, August 6 /.5.5 5

8 Coarse Graining the AV8 potential V [fm ] -.5 AV8 Delta Shell.5.5 r [fm].5 V [fm ] -.5 AV8 Delta Shell.5.5 r [fm].5 δ [deg] N = 8 N = N = N = 5 N = E LAB [MeV] 5 δ [deg] N = N = N = N = N = E LAB [MeV] 5 Navarro-Pérez R. (UGR) Effective interactions in the δ-shell FB, August 7 /

9 Delta Shell Potential Comparison with V lowk S S Vlowk [fm] Delta Shell AV8.5 k [fm ].5 Vlowk [fm] Delta Shell AV8.5 k [fm ].5 Nuclear structure calculations B [MeV] He UCOM GFMC Exp..6 rm [fm].8 B [MeV] O BHF...6 rm [fm] CC Exp.8 B [MeV] Ca Exp rm [fm] Navarro-Pérez R. (UGR) Effective interactions in the δ-shell FB, August 8 /

10 Delta Shell Potential well defined regions Innermost region r.5 fm Short range interaction No delta shell (No repulsive core) Intermediate region.5 r. fm Unknown interaction λ i parameters fitted to scattering data Outermost region r. fm Long range interaction Described by OPE Sampled with delta shells as well Navarro-Pérez R. (UGR) Effective interactions in the δ-shell FB, August 9 /

11 Delta Shell Potential well defined regions Innermost region r.5 fm Short range interaction No delta shell (No repulsive core) Intermediate region.5 r. fm Unknown interaction λ i parameters fitted to scattering data Outermost region r. fm Long range interaction Described by OPE Sampled with delta shells as well Navarro-Pérez R. (UGR) Effective interactions in the δ-shell FB, August 9 /

12 Delta Shell Potential well defined regions Innermost region r.5 fm Short range interaction No delta shell (No repulsive core) Intermediate region.5 r. fm Unknown interaction λ i parameters fitted to scattering data Outermost region r. fm Long range interaction Described by OPE Sampled with delta shells as well Navarro-Pérez R. (UGR) Effective interactions in the δ-shell FB, August 9 /

13 Fitting np Phase shifts Several high quality potentials produce different np phase shifts PWA Nijm I Nijm II Reid9 Argonne V8 CD-Bonn Covariant Spectator Fit for every partial wave with j 5 Strength coefficients λ i as fit parameters Fixed and equidistant concentration radii r =.6 fm Fit at different energy ranges Navarro-Pérez R. (UGR) Effective interactions in the δ-shell FB, August /

14 Fitting np Phase shifts Several high quality potentials produce different np phase shifts PWA Nijm I Nijm II Reid9 Argonne V8 CD-Bonn Covariant Spectator Fit for every partial wave with j 5 Strength coefficients λ i as fit parameters Fixed and equidistant concentration radii r =.6 fm Fit at different energy ranges Navarro-Pérez R. (UGR) Effective interactions in the δ-shell FB, August /

15 Fitting np Phaseshifts χ /d.o.f. = S P H5 5 D F G P H5 5 D F G F 5 D G5 5 5 ELAB [MeV] Navarro-Pérez R. (UGR) Effective interactions in the δ-shell FB, August / S P ǫ ǫ ǫ ǫ5 5 5 ǫ P F H I5 5 D G 5 5 5

16 Scattering Observables Comparing with High Quality Potentials and Experimental data I 5.8 MeV D. MeV Rt 5. MeV I 5. MeV I. MeV At 5. MeV Dt 5. MeV P 5. MeV Compilation Experimental OPE rc =. fm P 5. MeV θ cm [deg] Good agreement with data and other potentials Navarro-Pérez R. (UGR) Effective interactions in the δ-shell FB, August /

17 Skyrme parameters Skyrme parameters in terms of paratial waves Partial Wave potential in momentum space V JS l l (p, p) = (π) M drr j l (p r)j l (pr)vl JS l (r) Using the Bessel function expansion x l [ x ] j l (x) = (l + )!! (l + ) + Navarro-Pérez R. (UGR) Effective interactions in the δ-shell FB, August /

18 Skyrme parameters Comparing similar terms (t, x t ) = d x [ V S (r) ± V S (r) ] (t, x t ) = d xr [ V S (r) ± V S (r) ] (t, x t ) = d xr [ 5 V P (r) + V P (r) + 5V P (r) ± 9V P (r) ] t V = d xr [ 7 V P (r) + V P (r) 5V P (r) ] t U = d xr [ 6 V P (r) + V P (r) V P (r) ] t T = 5 d xr V ɛ (r) Navarro-Pérez R. (UGR) Effective interactions in the δ-shell FB, August /

19 Skyrme parameters Straightforward for δ-shell potential t λi r n i Integrable for OPE starting at r c t f πnn m π Γ(n, m π r c ) Where fπnn /(π).8 Navarro-Pérez R. (UGR) Effective interactions in the δ-shell FB, August 5 /

20 Skyrme parameters Skyrme parameters fitting at different energy ranges DS Coupled S-Waves DS Uncoupled S-Waves AV k CM [MeV] t [MeV fm ] t [MeV fm 5 ] DS Coupled S-Waves DS Uncoupled S-Waves AV k CM [MeV] x x.5.5 DS Coupled S-Waves DS Uncoupled S-Waves AV k CM [MeV]..5.5 DS Coupled S-Waves DS Uncoupled S-Waves AV k CM [MeV] Navarro-Pérez R. (UGR) Effective interactions in the δ-shell FB, August 6 /

21 Skyrme parameters Skyrme parameters fitting at different energy ranges t [MeV fm 5 ] 78 DS 775 AV kcm [MeV] x DS Coupled S-Waves AV kcm [MeV] tv [MeV fm 5 ] DS 5 AV kcm [MeV] tu [MeV fm 5 ] 8 7 DS AV kcm [MeV] tt [MeV fm 5 ] DS AV kcm [MeV] Navarro-Pérez R. (UGR) Effective interactions in the δ-shell FB, August 7 /

22 Skyrme Parameters Fermi type shape density ρ(x) = ρ + e (r R)/a R = r A /, r =.fm and a =.7fm Error band for stable nuclei binding energy 8 -B(A)/A MeV 6 B A = 8A t d x ρ(x) A Navarro-Pérez R. (UGR) Effective interactions in the δ-shell FB, August 8 /

23 Skyrme Parameters Nuclear and Neutron matter Error grows linearly with the density B n.m. A B n A = 8 t ρ.75ρ = [t ( x )]ρ n.5ρ n B/N MeV n fm - B/A MeV n.m. fm - Navarro-Pérez R. (UGR) Effective interactions in the δ-shell FB, August 9 /

24 Summary Sampling of the NN interaction by a delta shell potential / m π M r /m π well defined regions Fit to the np phase shifts given by 7 High Quality Potentials Every partial wave with j 5 Systematic error propagation Good description of scattering observables Compatible with experimental data Effective interaction parametrized trough low momentum expansion δ-shell representation allows straightforward calculations Comparison between δ-shell and a V lowk representation of AV8 Something missing about coupled and uncoupled partial waves Error estimates for stable nuclei, nuclear and neutron matter Navarro-Pérez R. (UGR) Effective interactions in the δ-shell FB, August /

The Pion-Nucleon-Nucleon Coupling Constants

The Pion-Nucleon-Nucleon Coupling Constants The Pion-Nucleon-Nucleon Coupling Constants E. Ruiz Arriola Universidad de Granada Atomic, Molecular and Nuclear Physics Department Determination of the Fundamental Parameters in QCD Mainz Institute for

More information

Short-Ranged Central and Tensor Correlations. Nuclear Many-Body Systems. Reaction Theory for Nuclei far from INT Seattle

Short-Ranged Central and Tensor Correlations. Nuclear Many-Body Systems. Reaction Theory for Nuclei far from INT Seattle Short-Ranged Central and Tensor Correlations in Nuclear Many-Body Systems Reaction Theory for Nuclei far from Stability @ INT Seattle September 6-, Hans Feldmeier, Thomas Neff, Robert Roth Contents Motivation

More information

Renormalization group methods in nuclear few- and many-body problems

Renormalization group methods in nuclear few- and many-body problems Renormalization group methods in nuclear few- and many-body problems Lecture 1 S.K. Bogner (NSCL/MSU) 2011 National Nuclear Physics Summer School University of North Carolina at Chapel Hill Useful readings

More information

Renormalization group methods in nuclear few- and many-body problems

Renormalization group methods in nuclear few- and many-body problems Renormalization group methods in nuclear few- and many-body problems Lecture 1 S.K. Bogner (NSCL/MSU) 2011 National Nuclear Physics Summer School University of North Carolina at Chapel Hill Useful readings

More information

Quantum Monte Carlo calculations of medium mass nuclei

Quantum Monte Carlo calculations of medium mass nuclei Quantum Monte Carlo calculations of medium mass nuclei Diego Lonardoni FRIB Theory Fellow In collaboration with: J. Carlson, LANL S. Gandolfi, LANL X. Wang, Huzhou University, China A. Lovato, ANL & UniTN

More information

Local chiral NN potentials and the structure of light nuclei

Local chiral NN potentials and the structure of light nuclei Local chiral NN potentials and the structure of light nuclei Maria Piarulli @ELBA XIV WORKSHOP June 7-July 1 16, Marciana Marina, Isola d Elba PHYSICAL REVIEW C 91, 43(15) Minimally nonlocal nucleon-nucleon

More information

Nuclear structure I: Introduction and nuclear interactions

Nuclear structure I: Introduction and nuclear interactions Nuclear structure I: Introduction and nuclear interactions Stefano Gandolfi Los Alamos National Laboratory (LANL) National Nuclear Physics Summer School Massachusetts Institute of Technology (MIT) July

More information

Quantum Monte Carlo calculations of neutron and nuclear matter

Quantum Monte Carlo calculations of neutron and nuclear matter Quantum Monte Carlo calculations of neutron and nuclear matter Stefano Gandolfi Los Alamos National Laboratory (LANL) Advances and perspectives in computational nuclear physics, Hilton Waikoloa Village,

More information

RG & EFT for nuclear forces

RG & EFT for nuclear forces RG & EFT for nuclear forces Andreas Nogga, Forschungszentrum Jülich ECT* school, Feb/March 2006 Low momentum interactions: Using the RG to simplify the nuclear force for many-body calculations. Application

More information

Few Body Methods in Nuclear Physics - Lecture I

Few Body Methods in Nuclear Physics - Lecture I Few Body Methods in Nuclear Physics - Lecture I Nir Barnea The Hebrew University, Jerusalem, Israel Sept. 2010 Course Outline 1 Introduction - Few-Body Nuclear Physics 2 Gaussian Expansion - The Stochastic

More information

The nucleon-nucleon system in chiral effective theory

The nucleon-nucleon system in chiral effective theory The nucleon-nucleon system in chiral effective theory Daniel Phillips Ohio University Research supported by the US Department of Energy Plan χet for nuclear forces: the proposal Leading order for S waves

More information

Similarity Renormalization Groups (SRG) for nuclear forces Nuclear structure and nuclear astrophysics

Similarity Renormalization Groups (SRG) for nuclear forces Nuclear structure and nuclear astrophysics Similarity Renormalization Groups (SRG) for nuclear forces Nuclear structure and nuclear astrophysics Philipp Dijkstal 12.05.2016 1 Introduction The talk on Similarity Renormalization Groups (SRG) from

More information

arxiv: v1 [nucl-th] 19 Dec 2014

arxiv: v1 [nucl-th] 19 Dec 2014 Minimally non-local nucleon-nucleon potentials in χeft at order Q 4 M. Piarulli a, L. Girlanda b,c, R. Schiavilla a,d, R. Navarro Pérez e, J.E. Amaro e, and E. Ruiz Arriola e a Department of Physics, Old

More information

RG & EFT for nuclear forces

RG & EFT for nuclear forces RG & EFT for nuclear forces Andreas Nogga, Forschungszentrum Jülich ECT* school, Feb/March 2006 Low momentum interactions: Using the RG to simplify the nuclear force for many-body calculations. Application

More information

Correlations derived from modern nucleon-nucleon potentials

Correlations derived from modern nucleon-nucleon potentials Correlations derived from modern nucleon-nucleon potentials H. Müther Institut für Theoretische Physik, Universität Tübingen, D-72076 Tübingen, Germany A. Polls Departament d Estructura i Costituents de

More information

Simplifying the Nuclear Many-Body Problem with Low-Momentum Interactions

Simplifying the Nuclear Many-Body Problem with Low-Momentum Interactions Simplifying the Nuclear Many-Body Problem with Low-Momentum Interactions Scott Bogner September 2005 Collaborators: Dick Furnstahl, Achim Schwenk, and Andreas Nogga The Conventional Nuclear Many-Body Problem

More information

New Frontiers in Nuclear Structure Theory

New Frontiers in Nuclear Structure Theory New Frontiers in Nuclear Structure Theory From Realistic Interactions to the Nuclear Chart Robert Roth Institut für Kernphysik Technical University Darmstadt Overview Motivation Nucleon-Nucleon Interactions

More information

TRIUMF. Three-body forces in nucleonic matter. Weakly-Bound Systems in Atomic and Nuclear Physics. Kai Hebeler (TRIUMF) INT, Seattle, March 11, 2010

TRIUMF. Three-body forces in nucleonic matter. Weakly-Bound Systems in Atomic and Nuclear Physics. Kai Hebeler (TRIUMF) INT, Seattle, March 11, 2010 Three-body forces in nucleonic matter Kai Hebeler (TRIUMF) INT, Seattle, March 11, 21 TRIUMF A. Schwenk, T. Duguet, T. Lesinski, S. Bogner, R. Furnstahl Weakly-Bound Systems in Atomic and Nuclear Physics

More information

Direct reactions methodologies for use at fragmentation beam energies

Direct reactions methodologies for use at fragmentation beam energies 1 Direct reactions methodologies for use at fragmentation beam energies TU Munich, February 14 th 2008 Jeff Tostevin, Department of Physics Faculty of Engineering and Physical Sciences University of Surrey,

More information

Mean-field concept. (Ref: Isotope Science Facility at Michigan State University, MSUCL-1345, p. 41, Nov. 2006) 1/5/16 Volker Oberacker, Vanderbilt 1

Mean-field concept. (Ref: Isotope Science Facility at Michigan State University, MSUCL-1345, p. 41, Nov. 2006) 1/5/16 Volker Oberacker, Vanderbilt 1 Mean-field concept (Ref: Isotope Science Facility at Michigan State University, MSUCL-1345, p. 41, Nov. 2006) 1/5/16 Volker Oberacker, Vanderbilt 1 Static Hartree-Fock (HF) theory Fundamental puzzle: The

More information

Applications of Renormalization Group Methods in Nuclear Physics 2

Applications of Renormalization Group Methods in Nuclear Physics 2 Applications of Renormalization Group Methods in Nuclear Physics 2 Dick Furnstahl Department of Physics Ohio State University HUGS 2014 Outline: Lecture 2 Lecture 2: SRG in practice Recap from lecture

More information

Toward a unified description of equilibrium and dynamics of neutron star matter

Toward a unified description of equilibrium and dynamics of neutron star matter Toward a unified description of equilibrium and dynamics of neutron star matter Omar Benhar INFN and Department of Physics Sapienza Università di Roma I-00185 Roma, Italy Based on work done in collaboration

More information

The theory of nuclear forces: Is the never-ending ending story coming to an end? R. Machleidt University of Idaho

The theory of nuclear forces: Is the never-ending ending story coming to an end? R. Machleidt University of Idaho The theory of nuclear forces: Is the never-ending ending story coming to an end? University of Idaho What s left to say? Put the recent progress into a wider perspective. Fill in some missing details.

More information

arxiv: v1 [nucl-th] 8 Nov 2016 The falsification of Chiral Nuclear Forces

arxiv: v1 [nucl-th] 8 Nov 2016 The falsification of Chiral Nuclear Forces EPJ Web of Conferences will be set by the publisher DOI: will be set by the publisher c Owned by the authors, published by EDP Sciences, 2018 arxiv:1611.02607v1 [nucl-th] 8 Nov 2016 The falsification of

More information

Baryon-Baryon Forces from Lattice QCD

Baryon-Baryon Forces from Lattice QCD Baryon-Baryon Forces from Lattice QCD quarks nuclei 1 fm neutron stars Tetsuo Hatsuda (Univ. Tokyo) T(r)opical QCD WS @ Cairns, Oct.1, 2010 [1] Why 10 fmbb forces? [2] NN force from lattice QCD [3] YN,

More information

Nucleon-nucleon interaction

Nucleon-nucleon interaction Nucleon-nucleon interaction Shell structure in nuclei and lots more to be explained on the basis of how nucleons interact with each other in free space QCD Lattice calculations Effective field theory Exchange

More information

Atomic Nuclei at Low Resolution

Atomic Nuclei at Low Resolution Atomic Department of Physics Ohio State University November, 29 Collaborators: E. Anderson, S. Bogner, S. Glazek, E. Jurgenson, R. Perry, S. Ramanan, A. Schwenk + UNEDF collaboration Overview DOFs EFT

More information

Three-nucleon potentials in nuclear matter. Alessandro Lovato

Three-nucleon potentials in nuclear matter. Alessandro Lovato Three-nucleon potentials in nuclear matter Alessandro Lovato PRC 83, 054003 (2011) arxiv:1109.5489 Outline Ab initio many body method Nuclear Hamiltonian: 2- and 3- body potentials Density dependent potential

More information

Coarse graining nuclear and hadronic interactions

Coarse graining nuclear and hadronic interactions Coarse graining nuclear and hadronic interactions E. Ruiz Arriola Universidad de Granada Atomic, Molecular and Nuclear Physics Department JLAB-Theory Seminar 14 November 216 Rodrigo Navarro Pérez (Livermore)

More information

Nuclear physics: a laboratory for many-particle quantum mechanics or From model to theory in nuclear structure physics

Nuclear physics: a laboratory for many-particle quantum mechanics or From model to theory in nuclear structure physics Nuclear physics: a laboratory for many-particle quantum mechanics or From model to theory in nuclear structure physics G.F. Bertsch University of Washington Stockholm University and the Royal Institute

More information

Hadronic Interactions and Nuclear Physics

Hadronic Interactions and Nuclear Physics Williamsburg,VA LATT2008 7/2008 p. 1/35 Hadronic Interactions and Nuclear Physics Silas Beane University of New Hampshire Williamsburg,VA LATT2008 7/2008 p. 2/35 Outline Motivation Signal/Noise Estimates

More information

Covariant spectator theory of np scattering

Covariant spectator theory of np scattering Departamento de Física da Universidade de Évora and Centro de Física Nuclear da Universidade de Lisboa Portugal October 20, 2009 Collaborators Franz Gross (Jlab) Sérgio Aleandre Pinto (PhD student, University

More information

Pion couplings to the scalar B meson. Antoine Gérardin

Pion couplings to the scalar B meson. Antoine Gérardin Antoine Gérardin 1 Pion couplings to the scalar B meson Pion couplings to the scalar B meson Antoine Gérardin In collaboration with B. Blossier and N. Garron Based on [arxiv:141.349] LPT Orsay January

More information

NN-Correlations in the spin symmetry energy of neutron matter

NN-Correlations in the spin symmetry energy of neutron matter NN-Correlations in the spin symmetry energy of neutron matter Symmetry energy of nuclear matter Spin symmetry energy of neutron matter. Kinetic and potential energy contributions. A. Rios, I. Vidaña, A.

More information

Light hypernuclei based on chiral and phenomenological interactions

Light hypernuclei based on chiral and phenomenological interactions Mitglied der Helmholtz-Gemeinschaft Light hypernuclei based on chiral and phenomenological interactions Andreas Nogga, Forschungszentrum Jülich International Conference on Hypernuclear and Strange Particle

More information

Nuclear forces and their impact on structure, reactions and astrophysics

Nuclear forces and their impact on structure, reactions and astrophysics Nuclear forces and their impact on structure, reactions and astrophysics Lectures for Week 2 Dick Furnstahl Ohio State University July, 213 M. Chiral EFT 1 (as); χ-symmetry in NN scattering, QCD 2 (rjf)

More information

Static and covariant meson-exchange interactions in nuclear matter

Static and covariant meson-exchange interactions in nuclear matter Workshop on Relativistic Aspects of Two- and Three-body Systems in Nuclear Physics - ECT* - 19-23/10/2009 Static and covariant meson-exchange interactions in nuclear matter Brett V. Carlson Instituto Tecnológico

More information

Nuclear and Nucleon Matter Constraints on Three-Nucleon Forces

Nuclear and Nucleon Matter Constraints on Three-Nucleon Forces Nuclear and Nucleon Matter Constraints on Three-Nucleon Forces Robert B. Wiringa, Physics Division, Argonne National Laboratory Joe Carlson, Los Alamos Stefano Gandolfi, Los Alamos Alessandro Lovato, Argonne

More information

Nuclear structure III: Nuclear and neutron matter. National Nuclear Physics Summer School Massachusetts Institute of Technology (MIT) July 18-29, 2016

Nuclear structure III: Nuclear and neutron matter. National Nuclear Physics Summer School Massachusetts Institute of Technology (MIT) July 18-29, 2016 Nuclear structure III: Nuclear and neutron matter Stefano Gandolfi Los Alamos National Laboratory (LANL) National Nuclear Physics Summer School Massachusetts Institute of Technology (MIT) July 18-29, 2016

More information

hg: Chiral Structure of Few-Nucleon Systems

hg: Chiral Structure of Few-Nucleon Systems Chiral Structure of Few-Nucleon Systems H. W. Grießhammer Center for Nuclear Studies, The George Washington University, Washington DC, USA D. R. Phillips: Chiral Dynamics with πs, Ns and s Done. hg: Chiral

More information

Nucelon self-energy in nuclear matter and how to probe ot with RIBs

Nucelon self-energy in nuclear matter and how to probe ot with RIBs Nucelon self-energy in nuclear matter and how to probe ot with RIBs Christian Fuchs University of Tübingen Germany Christian Fuchs - Uni Tübingen p.1/?? Outline relativistic dynamics E/A [MeV] 6 5 4 3

More information

Central density. Consider nuclear charge density. Frois & Papanicolas, Ann. Rev. Nucl. Part. Sci. 37, 133 (1987) QMPT 540

Central density. Consider nuclear charge density. Frois & Papanicolas, Ann. Rev. Nucl. Part. Sci. 37, 133 (1987) QMPT 540 Central density Consider nuclear charge density Frois & Papanicolas, Ann. Rev. Nucl. Part. Sci. 37, 133 (1987) Central density (A/Z* charge density) about the same for nuclei heavier than 16 O, corresponding

More information

The No-Core Shell Model

The No-Core Shell Model The No-Core Shell Model New Perspectives on P-shell Nuclei - The Shell Model and Beyond Erich Ormand Petr Navratil Christian Forssen Vesselin Gueorguiev Lawrence Livermore National Laboratory Collaborators:

More information

Analyticity and crossing symmetry in the K-matrix formalism.

Analyticity and crossing symmetry in the K-matrix formalism. Analyticity and crossing symmetry in the K-matrix formalism. KVI, Groningen 7-11 September, 21 Overview Motivation Symmetries in scattering formalism K-matrix formalism (K S ) (K A ) Pions and photons

More information

Perturbative treatment of the many-body problem in nuclear matter.

Perturbative treatment of the many-body problem in nuclear matter. Perturbative treatment of the many-body problem in nuclear matter. Kassem Moghrabi and Marcella Grasso Institut de Physique Nucléaire, Université Paris-Sud, IN2P3-CNRS, F-91406 Orsay Cedex, France. 10-14

More information

Light Nuclei from chiral EFT interactions

Light Nuclei from chiral EFT interactions Light Nuclei from chiral EFT interactions Petr Navratil Lawrence Livermore National Laboratory* Collaborators: V. G. Gueorguiev (UCM), J. P. Vary (ISU), W. E. Ormand (LLNL), A. Nogga (Julich), S. Quaglioni

More information

Electromagentic Reactions and Structure of Light Nuclei

Electromagentic Reactions and Structure of Light Nuclei Electromagentic Reactions and Structure of Light Nuclei Sonia Bacca CANADA'S NATIONAL LABORATORY FOR PARTICLE AND NUCLEAR PHYSICS Owned and operated as a joint venture by a consortium of Canadian universities

More information

Few-nucleon contributions to π-nucleus scattering

Few-nucleon contributions to π-nucleus scattering Mitglied der Helmholtz-Gemeinschaft Few-nucleon contributions to π-nucleus scattering Andreas Nogga, Forschungszentrum Jülich INT Program on Simulations and Symmetries: Cold Atoms, QCD, and Few-hadron

More information

Evgeny Epelbaum. Forschungszentrum Jülich & Universität Bonn

Evgeny Epelbaum. Forschungszentrum Jülich & Universität Bonn Evgeny Epelbaum KHuK Jahrestagung, GSI, 25.10.2007 Evgeny Epelbaum Forschungszentrum Jülich & Universität Bonn Outline Motivation & Introduction Few nucleons in chiral EFT: where do we stand Work in progress:

More information

Hartree-Fock and Hartree-Fock-Bogoliubov with Modern Effective Interactions

Hartree-Fock and Hartree-Fock-Bogoliubov with Modern Effective Interactions Hartree-Fock and Hartree-Fock-Bogoliubov with Modern Effective Interactions Heiko Hergert Institut für Kernphysik, TU Darmstadt Overview Motivation Modern Effective Interactions Unitary Correlation Operator

More information

Calculations of three-nucleon reactions

Calculations of three-nucleon reactions Calculations of three-nucleon reactions H. Witała Jagiellonian University, Kraków in collaboration with: J. Golak, R. Skibiński, K. Topolnicki, Kraków H. Kamada, Kyushu Institute of Technology E. Epelbaum,

More information

Nuclear Forces - Lecture 1 - R. Machleidt University of Idaho

Nuclear Forces - Lecture 1 - R. Machleidt University of Idaho CNS Summer School, Univ. of Tokyo, at Wako campus of RIKEN, Aug. 18-23, 2005 Nuclear Forces - Lecture 1 - R. Machleidt University of Idaho 1 Nuclear Forces - Overview of all lectures - Lecture 1: History,

More information

Nuclear structure from chiral-perturbation-theory two- plus three-nucleon interactions

Nuclear structure from chiral-perturbation-theory two- plus three-nucleon interactions Nuclear structure from chiral-perturbation-theory two- plus three-nucleon interactions Petr Navratil Lawrence Livermore National Laboratory* Collaborators: W. E. Ormand (LLNL), J. P. Vary (ISU), E. Caurier

More information

Renormalization group methods in nuclear few- and many-body problems

Renormalization group methods in nuclear few- and many-body problems Renormalization group methods in nuclear few- and many-body problems Lecture 3 S.K. Bogner (NSCL/MSU) 2011 National Nuclear Physics Summer School University of North Carolina at Chapel Hill Lecture 2 outline

More information

Modeling the EOS. Christian Fuchs 1 & Hermann Wolter 2. 1 University of Tübingen/Germany. 2 University of München/Germany

Modeling the EOS. Christian Fuchs 1 & Hermann Wolter 2. 1 University of Tübingen/Germany. 2 University of München/Germany Modeling the EOS Christian Fuchs 1 & Hermann Wolter 2 1 University of Tübingen/Germany 2 University of München/Germany Christian Fuchs - Uni Tübingen p.1/20 Outline Christian Fuchs - Uni Tübingen p.2/20

More information

Quantitative understanding nuclear structure and scattering processes, based on underlying NN interactions.

Quantitative understanding nuclear structure and scattering processes, based on underlying NN interactions. Microscopic descriptions of nuclear scattering and reaction processes on the basis of chiral EFT M. Kohno Research Center for Nuclear Physics, Osaka, Japan Quantitative understanding nuclear structure

More information

Photopion photoproduction and neutron radii

Photopion photoproduction and neutron radii Photopion photoproduction and neutron radii Dan Watts, Claire Tarbert University of Edinburgh Crystal Ball and A2 collaboration at MAMI Jefferson Lab PREX workshop, August 2008 Talk Outline Nuclear (π

More information

Nuclear few- and many-body systems in a discrete variable representation basis

Nuclear few- and many-body systems in a discrete variable representation basis Nuclear few- and many-body systems in a discrete variable representation basis Jeremy W. Holt* Department of Physics University of Washington *with A. Bulgac, M. M. Forbes L. Coraggio, N. Itaco, R. Machleidt,

More information

Nuclear matter inspired Energy density functional for finite nuc

Nuclear matter inspired Energy density functional for finite nuc Nuclear matter inspired Energy density functional for finite nuclei: the BCP EDF M. Baldo a, L.M. Robledo b, P. Schuck c, X. Vinyes d a Instituto Nazionale di Fisica Nucleare, Sezione di Catania, Catania,

More information

Neutron Matter: EOS, Spin and Density Response

Neutron Matter: EOS, Spin and Density Response Neutron Matter: EOS, Spin and Density Response LANL : A. Gezerlis, M. Dupuis, S. Reddy, J. Carlson ANL: S. Pieper, R.B. Wiringa How can microscopic theories constrain mean-field theories and properties

More information

Nuclear Structure for the Crust of Neutron Stars

Nuclear Structure for the Crust of Neutron Stars Nuclear Structure for the Crust of Neutron Stars Peter Gögelein with Prof. H. Müther Institut for Theoretical Physics University of Tübingen, Germany September 11th, 2007 Outline Neutron Stars Pasta in

More information

Nuclear Binding Energy

Nuclear Binding Energy Nuclear Energy Nuclei contain Z number of protons and (A - Z) number of neutrons, with A the number of nucleons (mass number) Isotopes have a common Z and different A The masses of the nucleons and the

More information

RFSS: Lecture 2 Nuclear Properties

RFSS: Lecture 2 Nuclear Properties RFSS: Lecture 2 Nuclear Properties Readings: Modern Nuclear Chemistry: Chapter 2 Nuclear Properties Nuclear and Radiochemistry: Chapter 1 Introduction, Chapter 2 Atomic Nuclei Nuclear properties Masses

More information

Modern Theory of Nuclear Forces

Modern Theory of Nuclear Forces Evgeny Epelbaum, FZ Jülich & University Bonn Lacanau, 29.09.2009 Modern Theory of Nuclear Forces Lecture 1: Lecture 2: Lecture 3: Introduction & first look into ChPT EFTs for two nucleons Nuclear forces

More information

Renormalization Group Methods for the Nuclear Many-Body Problem

Renormalization Group Methods for the Nuclear Many-Body Problem Renormalization Group Methods for the Nuclear Many-Body Problem A. Schwenk a,b.friman b and G.E. Brown c a Department of Physics, The Ohio State University, Columbus, OH 41 b Gesellschaft für Schwerionenforschung,

More information

Microscopically Based Energy Functionals. S.K. Bogner (NSCL/MSU)

Microscopically Based Energy Functionals. S.K. Bogner (NSCL/MSU) Microscopically Based Energy Functionals S.K. Bogner (NSCL/MSU) Dream Scenario: From QCD to Nuclei 2 SciDAC 2 Project Building a Universal Nuclear Energy Density Functional See http://undef.org for details

More information

arxiv:nucl-th/ v1 16 Jul 2002

arxiv:nucl-th/ v1 16 Jul 2002 Evolution of Nuclear Spectra with Nuclear Forces R. B. Wiringa[*] and Steven C. Pieper[ ] Physics Division, Argonne National Laboratory, Argonne, IL 60439 (Dated: February 8, 2008) We first define a series

More information

EFFECTIVE FIELD THEORY FOR LATTICE NUCLEI

EFFECTIVE FIELD THEORY FOR LATTICE NUCLEI EFFECTIVE FIELD THEORY FOR LATTICE NUCLEI Francesco Pederiva Physics Deparment Unversity of Trento INFN-TIFPA, Trento Institue for Fundamental Physics and Applications LISC, Interdisciplinary Laboratory

More information

Alex Gezerlis. New Ideas in Constraining Nuclear Forces ECT*, Trento, Italy June 5, 2018

Alex Gezerlis. New Ideas in Constraining Nuclear Forces ECT*, Trento, Italy June 5, 2018 Quantum Monte Carlo interactions with From microscopic to effective Chiral Effective Field Theory Interactions using Quantum Monte Carlo Alex Gezerlis New Ideas in Constraining Nuclear Forces ECT*, Trento,

More information

Abstract. 1 r 2n+m (1)

Abstract. 1 r 2n+m (1) MENU 27 11th International Conference on Meson-Nucleon Physics and the Structure of the Nucleon September1-14, 27 IKP, Forschungzentrum Jülich, Germany RENORMALIZING THE SCHRÖDINGER EQUATION FOR NN SCATTERING

More information

Some new developments in relativistic point-coupling models

Some new developments in relativistic point-coupling models Some new developments in relativistic point-coupling models T. J. Buervenich 1, D. G. Madland 1, J. A. Maruhn 2, and P.-G. Reinhard 3 1 Los Alamos National Laboratory 2 University of Frankfurt 3 University

More information

Superfluid Heat Conduction in the Neutron Star Crust

Superfluid Heat Conduction in the Neutron Star Crust Superfluid Heat Conduction in the Neutron Star Crust Sanjay Reddy Los Alamos National Lab Collaborators : Deborah Aguilera Vincenzo Cirigliano Jose Pons Rishi Sharma arxiv:0807.4754 Thermal Conduction

More information

Lattice Simulations with Chiral Nuclear Forces

Lattice Simulations with Chiral Nuclear Forces Lattice Simulations with Chiral Nuclear Forces Hermann Krebs FZ Jülich & Universität Bonn July 23, 2008, XQCD 2008, NCSU In collaboration with B. Borasoy, E. Epelbaum, D. Lee, U. Meißner Outline EFT and

More information

First Order Relativistic Three-Body Scattering. Ch. Elster

First Order Relativistic Three-Body Scattering. Ch. Elster First Order Relativistic Three-Body Scattering Ch. Elster T. Lin, W. Polyzou W. Glöcle 4//7 Supported by: U.S. DOE, NERSC,OSC Nucleons: Binding Energy of H NN Model E t [MeV] Nijm I -7.7 Nijm II -7.64

More information

Structure of Atomic Nuclei. Anthony W. Thomas

Structure of Atomic Nuclei. Anthony W. Thomas Structure of Atomic Nuclei Anthony W. Thomas JLab Users Meeting Jefferson Lab : June 2 nd 2015 The Issues What lies at the heart of nuclear structure? Start from a QCD-inspired model of hadron structure

More information

Effective Field Theory and. the Nuclear Many-Body Problem

Effective Field Theory and. the Nuclear Many-Body Problem Effective Field Theory and the Nuclear Many-Body Problem Thomas Schaefer North Carolina State University 1 Schematic Phase Diagram of Dense Matter T nuclear matter µ e neutron matter? quark matter µ 2

More information

The Nuclear Equation of State

The Nuclear Equation of State The Nuclear Equation of State Abhishek Mukherjee University of Illinois at Urbana-Champaign Work done with : Vijay Pandharipande, Gordon Baym, Geoff Ravenhall, Jaime Morales and Bob Wiringa National Nuclear

More information

Observables predicted by HF theory

Observables predicted by HF theory Observables predicted by HF theory Total binding energy of the nucleus in its ground state separation energies for p / n (= BE differences) Ground state density distribution of protons and neutrons mean

More information

PoS(Confinement8)147. Universality in QCD and Halo Nuclei

PoS(Confinement8)147. Universality in QCD and Halo Nuclei Helmholtz-Institut für Strahlen- und Kernphysik (Theorie) and Bethe Center for Theoretical Physics, University of Bonn, Germany E-mail: hammer@itkp.uni-bonn.de Effective Field Theory (EFT) provides a powerful

More information

Symmetry Energy within the Brueckner-Hartree-Fock approximation

Symmetry Energy within the Brueckner-Hartree-Fock approximation Symmetry Energy within the Brueckner-Hartree-Fock approximation Isaac Vidaña CFC, University of Coimbra International Symposium on Nuclear Symmetry Energy Smith College, Northampton ( Massachusetts) June

More information

The No Core Shell Model: Its Formulation, Application and Extensions. Bruce R. Barrett University of Arizona,

The No Core Shell Model: Its Formulation, Application and Extensions. Bruce R. Barrett University of Arizona, The No Core Shell Model: Its Formulation, Application and Extensions Bruce R. Barrett University of Arizona, Tucson, INT Spring Program 2011 March 23, 2011 MICROSCOPIC NUCLEAR-STRUCTURE THEORY 1. Start

More information

The NN system: why and how we iterate

The NN system: why and how we iterate The NN system: why and how we iterate Daniel Phillips Ohio University Research supported by the US department of energy Plan Why we iterate I: contact interactions Why we iterate II: pion exchange How

More information

arxiv: v1 [nucl-th] 24 May 2011

arxiv: v1 [nucl-th] 24 May 2011 Tensor effective interaction in self-consistent Random Phase Approximation calculations arxiv:1105.4782v1 [nucl-th] 24 May 2011 M. Anguiano 1, G. Co 2,3, V. De Donno 2,3 and A. M. Lallena 1 1) Departamento

More information

Weak reactions with light nuclei

Weak reactions with light nuclei Weak reactions with light nuclei Nir Barnea, Sergey Vaintraub The Hebrew University Doron Gazit INT, University of Washington Eilat, November 9-14, 2008 Nir Barnea (HUJI) Weak reactions with light nuclei

More information

Renormalization group methods in nuclear few- and many-body problems

Renormalization group methods in nuclear few- and many-body problems Renormalization group methods in nuclear few- and many-body problems Lecture 2 S.K. Bogner (NSCL/MSU) 2011 National Nuclear Physics Summer School University of North Carolina at Chapel Hill Lecture 2 outline

More information

Parity-Violating Asymmetry for 208 Pb

Parity-Violating Asymmetry for 208 Pb Parity-Violating Asymmetry for 208 Pb Matteo Vorabbi Dipartimento di Fisica - Università di Pavia INFN - Sezione di Pavia Rome - 2015 January 15 Matteo Vorabbi (Università di Pavia) Parity-Violating Asymmetry

More information

Three-nucleon forces and shell structure of neutron-rich Ca isotopes

Three-nucleon forces and shell structure of neutron-rich Ca isotopes Three-nucleon forces and shell structure of neutron-rich Ca isotopes Javier Menéndez Institut für Kernphysik (TU Darmstadt) and ExtreMe Matter Institute (EMMI) NUSTAR Week 3, Helsinki, 9 October 13 Outline

More information

Shell evolution and pairing in calcium isotopes with two- and three-body forces

Shell evolution and pairing in calcium isotopes with two- and three-body forces Shell evolution and pairing in calcium isotopes with two- and three-body forces Javier Menéndez Institut für Kernphysik, TU Darmstadt ExtreMe Matter Institute (EMMI) with Jason D. Holt, Achim Schwenk and

More information

Coupled-cluster theory for medium-mass nuclei

Coupled-cluster theory for medium-mass nuclei Coupled-cluster theory for medium-mass nuclei Thomas Papenbrock and G. Hagen (ORNL) D. J. Dean (ORNL) M. Hjorth-Jensen (Oslo) A. Nogga (Juelich) A. Schwenk (TRIUMF) P. Piecuch (MSU) M. Wloch (MSU) Seattle,

More information

Aman Sood, Christoph Hartnack, Elena Bratkovskaya

Aman Sood, Christoph Hartnack, Elena Bratkovskaya What strange particles can tell us about hadronic matter and what hadronic matter tells us about strange particles Aman Sood, Christoph Hartnack, Elena Bratkovskaya Strangeness production at threshold:

More information

Nuclear symmetry energy and Neutron star cooling

Nuclear symmetry energy and Neutron star cooling Nuclear symmetry energy and Neutron star cooling Yeunhwan Lim 1 1 Daegu University. July 26, 2013 In Collaboration with J.M. Lattimer (SBU), C.H. Hyun (Daegu), C-H Lee (PNU), and T-S Park (SKKU) NuSYM13

More information

Alpha decay. Introduction to Nuclear Science. Simon Fraser University Spring NUCS 342 February 21, 2011

Alpha decay. Introduction to Nuclear Science. Simon Fraser University Spring NUCS 342 February 21, 2011 Alpha decay Introduction to Nuclear Science Simon Fraser University Spring 2011 NUCS 342 February 21, 2011 NUCS 342 (Lecture 13) February 21, 2011 1 / 29 Outline 1 The decay processes NUCS 342 (Lecture

More information

Low-lying dipole response in stable and unstable nuclei

Low-lying dipole response in stable and unstable nuclei Low-lying dipole response in stable and unstable nuclei Marco Brenna Xavier Roca-Maza, Giacomo Pozzi Kazuhito Mizuyama, Gianluca Colò and Pier Francesco Bortignon X. Roca-Maza, G. Pozzi, M.B., K. Mizuyama,

More information

Few- Systems. Selected Topics in Correlated Hyperspherical Harmonics. Body. A. Kievsky

Few- Systems. Selected Topics in Correlated Hyperspherical Harmonics. Body. A. Kievsky Few-Body Systems 0, 11 16 (2003) Few- Body Systems c by Springer-Verlag 2003 Printed in Austria Selected Topics in Correlated Hyperspherical Harmonics A. Kievsky INFN and Physics Department, Universita

More information

Novel NN interaction and the spectroscopy of light nuclei

Novel NN interaction and the spectroscopy of light nuclei Physics Letters B 621 (2005) 96 101 www.elsevier.com/locate/physletb Novel NN interaction and the spectroscopy of light nuclei A.M. Shirokov a,j.p.vary b, A.I. Mazur c,s.a.zaytsev c,t.a.weber b a Skobeltsyn

More information

Electric Dipole Moment of Light Nuclei. Iraj R. Afnan. (The Flinders University of South Australia) Happy Birthday Tony

Electric Dipole Moment of Light Nuclei. Iraj R. Afnan. (The Flinders University of South Australia) Happy Birthday Tony Electric ipole Moment of Light Nuclei Iraj R. Afnan (The Flinders University of South Australia) Happy Birthday Tony Collaborator: Benjamin F. Gibson, Los Alamos National Laboratory. 1 How I met Tony ate:

More information

Chiral Model in Nuclear Medium and Hypernuclear Production

Chiral Model in Nuclear Medium and Hypernuclear Production WDS'10 Proceedings of ontributed Papers, Part III, 2 6, 2010. ISBN 978-80-7378-141-5 MATFYZPRESS hiral Model in Nuclear Medium and Hypernuclear Production V. Krejčiřík harles University, Faculty of Mathematics

More information

Effective Field Theory for Many-Body Systems

Effective Field Theory for Many-Body Systems Outline Systems EFT Dilute DFT Future Effective Field Theory for Many-Body Systems Department of Physics Ohio State University February 19, 2004 Outline Systems EFT Dilute DFT Future Principles of Effective

More information

Small bits of cold, dense matter

Small bits of cold, dense matter Small bits of cold, dense matter Alessandro Roggero (LANL) with: S.Gandolfi & J.Carlson (LANL), J.Lynn (TUD) and S.Reddy (INT) ArXiv:1712.10236 Nuclear ab initio Theories and Neutrino Physics INT - Seattle

More information

Unitary-model-operator approach to nuclear many-body problems

Unitary-model-operator approach to nuclear many-body problems Unitary-model-operator approach to nuclear many-body problems in collaboration with Structure calc. for many-nucleon systems Kenji Suzuki (Kyushu Inst. of Tech.) Ryoji kamoto (Kyushu Inst. of Tech.) V

More information