Acceleration of Heavy Ions generated by ECR and EBIS

Size: px
Start display at page:

Download "Acceleration of Heavy Ions generated by ECR and EBIS"

Transcription

1 Acceleration of Heavy Ions generated by ECR and EBIS R.Becker, Goethe-Universität, Frankfurt, Germany O. Kester, NSCL, MSU, USA

2 OUTLINE Ion production in ECR and EBIS is governed by the same collision physics, however with different weights: 1) Stepwise electron impact ionization for producing highly charged ions ) Charge exchange limits the highest charge states 3) Radiative Recombination (RR) asks for highest electron energies 4) Ion heating by small angle elastic Coulomb collisions raises emittances 5) ion-ion-cooling (gas mixing) improves high charge state performance The magnetic emittance requires careful design of the LEBT, especially for ECRs.

3 VENUS Daniela Leitner et al.

4 Recent Results with VENUS in comparison with other high performance sources SECRAL: IMP, Lanzhou, Zhao et al. GTS: Grenoble, Hitz et al. VENUS SECRAL [3,8] GTS [11] f(ghz) 8 or O Ar Xe * U Daniela Leitner et al. ed Curren nt [eµa] Analyz Venus results O O kW 8 GHz 770 W 18 GHz Uranium Mass to Charge Ratio

5 BNL-EBIS

6 EBIS results

7 Charge balance dni dt [ ( ) ] ion ion RR RR σ n σ + σ n + n = neυ e i 1 i i 1 i i+ 1 i i 1 i σi+ 1 i i+ 1 [ ] chex chex σ n n noυ ion i i 1 i σi+ 1 i i+ 1 ν coll i ieu exp kt ieuw kt ion w ion n i Growth by ionisation Loss by ionisation Loss by radiative radiation Win from radiative radiation Loss by charge exchange Win frim charge exchange Loss of confinement of fheated dions

8 -1 3 Ar 15+ Ar 16+ x 10-1 cm Lotz ionisation cross section from 16 to 17 for Z=18 Lotz cross sections 1 Approximate ionisation energies, ionisation cross sections and required jτ-values for bare ions Ion E [V] i [ev] σ [cm ] j*τ [Cb/cm ] Electron Energy (kev) C * N * O * σ = i i+ 1 ln { Ee Ei, nl} [ ] *10 cm nl Ee * E i, nl Ne * Ar * Kr * Xe * Pb * U *

9 Ionisation energies

10 Charge exchange The approximation formula of Salzborn and Müller is based on many measurements with low chage states, however, we have nothing better! σ [ ] i i 1 = i P0 cm In EBIS/T the pressure usually is low enough to avoid CX, only dangerous for extremely high charge states, where ion cooling becomes necessary. In ECRs CX usually limits the build up if higher charge states and produces the wide range of charge state with almost identical abundance.

11 Charge exchange versus Ionisation Vacuum pressure at which gain by ionization equals the loss by charge exchange for lead ion 10-3 Press sure (mbar) A/cm 100 A/cm P b Charge states

12 Radiative Recombination RR is time-reversed photo-ionisation. Therefore RR cross sections may be calculated from cross sections for photo ionisation, which is a well established procedure (T. Stöhlker) : σ = n Z ph 4παa l nl, 3 l = l± 1l + 1 > ( k) 0 ( 1+ n κ ) g(n,l;κ l RR σ nl ( k ) = ( hν ) k 1 m c e σ ph nl ( k )

13 RR versus Ionisation Balance energy at which the gain by ionization equals loss by radiative recombination for lead ions 10 5 Electron energy (ev) P b Charge states

14 Heating Radial well voltages equ- w =kt i to trap multiply charged ions heated by electrons of energy 1 kev (dashed lines) and 10 kev (full lines), typical for ECR and EBIS/T CNO Ne Ar 10 3 Ar Kr Xe Pb Kr 10 Xe Ion energy (e ev) Ne Pb Charge states

15 Results of CBSIM Relative 1 54 Abundance Relative Abundance % Relative Abundance 80 % j τ Cb/cm j τ 1000 Cb/cm Relative Abundance 80 % j τ Cb/cm j τ Cb/cm

16 Charge state breeder setup Post accelerator or experiment Low energetic q + ions Isotopes from 1+ ion source Switch yard EBIS/T ECRIS Analyzing magnet Low energetic 1 + ions Buffer gas emittance cooler

17 Charge breeding ECRs and EBIS have become popular as charge breeders. Nevertheless these are still ion sources for highly charged ions, but the problem of generating simple or difficult or rare singly charged ions has been outsourced leave the hard work to the specialist! ACCU-EBIS TOFEBIS-COOLER U(Z) U(Z) A 1+ A 1+ A q+ hot ion cooled ion A q+ hot ion cooled ion Z Z R. Becker, Proc. EPAC 199, Berlin, March 4-8

18 Magnetic Emittance The conservation of the magnetic moment (Busch s theorem) results in skew trajectories outside of the magnetic field. When this beam is treated as a round one, it has a considerable magnetic emittance: π eq Br ε abs = 4 M U 0 [ m] For modern ECR and EBIS B z =3T and U 0 =0 kv. For bare nuclei we then obtain: r (m) ε abs (m) x x 10-6 Note that dimension m for the emittance gives the same numbers as the old fashioned mm x mrad *) EBIS beam are usually smaller than 1 mm, therefore the magnetic emittance will be negligible in contrast to ECRs, where special attention must be given to transport such a beam through a LEBT, especially, when this is including an analyzing magnet for mass separation. *) R.Becker and W.B.Herrmannsfeldt, Rev. Sci. Instrum.77 (006) 03B907

19 Accelerator applications ECR is an intense dc source, with afterglow also for ms pulses EBIS is an intense sepulsed source exceeding ECRs in pulse current and charge-to-mass - ratio. Dc beams at low intensity have ultra-low emittances. ECR, dc beams: cyclotrons (all over the world) ECR, pulsed beams: Synchrotrons (CERN, NIRS, GSI) EBIS,,pulsed beams: Synchrotrons (Dubna, BNL) EBIS, dc beams: atomic physics studies (Frankfurt, SNLL, KSU)

20 Charge selection in LEBT EBIS: REX-ISOLDE MSU ReA3 ECRIS: TRIUMF charge state booster testsource

21 Field guard BNL LEBT without charge selection e valve Electron collector Ion lens Adaptor/16-pole deflector Accelerating tube Magnet lens coil Gridded lens EBIS TRAP B RFQ Spherical bender n Cryopumps yp p EC magnet coil Gate valve ve Flat horizontal o deflectors ec

22 Matching to the accelerator pre-bunching scheme multi harmonic buncher RFQ linac or cyclotron ISAC facility (TRIUMF), ReA3 (MSU) HMI (Berlin) RFQ-bunching scheme REX-ISOLDE (CERN) RFQ with shaper and buncher linac or cyclotron GSI (High charge state injector), BNL (RHIC EBIS injector)

23 Conclusions EBIS and ECR are complementary ion sources for accelerators, either as primary sources or as charge state breeders: EBIS is naturally a pulsed source with high intensity (ma) in short ( µs) pulses of highest h charge states. ECR are naturally dc sources of high intensity for medium charge states. t The atomic collision physics is the same in both sources, however with different influence of charge exchange and radiative recombination, due to vacuum pressure and electron energy distribution.

Investigation of ion capture in an Electron Beam Ion Trap charge-breeder for rare isotopes

Investigation of ion capture in an Electron Beam Ion Trap charge-breeder for rare isotopes Investigation of ion capture in an Electron Beam Ion Trap charge-breeder for rare isotopes Kritsada Kittimanapun ATD seminar August 26, 2014 Outline Electron beam ion source/trap principle EBIT charge

More information

Status of the EBIT in the ReA3 reaccelerator at NSCL

Status of the EBIT in the ReA3 reaccelerator at NSCL Status of the EBIT in the ReA3 reaccelerator at NSCL ReA3 concept and overview: - Gas stopping EBIT RFQ LINAC EBIT commissioning National Science Foundation Michigan State University S. Schwarz, TCP-2010,

More information

Review of ISOL-type Radioactive Beam Facilities

Review of ISOL-type Radioactive Beam Facilities Review of ISOL-type Radioactive Beam Facilities, CERN Map of the nuclear landscape Outline The ISOL technique History and Geography Isotope Separation On-Line Existing facilities First generation facilities

More information

Sources of intense beams of heavy ions

Sources of intense beams of heavy ions Sources of intense beams of heavy ions 517. WE-Heraeus-Seminar Accelerator physics for intense ion beams Oliver Kester Institut für Angewandte Physik, Goethe-Universität Frankfurt and GSI Helmholtzzentrum

More information

2.Ion sources for pulsed beam production(physics and technology) 2-1. Electron beam ion source 2-2. Laser ion source

2.Ion sources for pulsed beam production(physics and technology) 2-1. Electron beam ion source 2-2. Laser ion source Intense highly charged heavy ion beam production T. NAKAGAWA (RIKEN) 1.Introduction 2.Ion sources for pulsed beam production(physics and technology) 2-1. Electron beam ion source 2-2. Laser ion source

More information

TEST MEASUREMENTS WITH THE REX-ISOLDE LINAC STRUCTURES*

TEST MEASUREMENTS WITH THE REX-ISOLDE LINAC STRUCTURES* TEST MEASUREMENTS WITH THE REX-ISOLDE LINAC STRUCTURES* O. Kester, D. Habs, T. Sieber, S. Emhofer, K. Rudolph, LMU München, Garching Germany R. von Hahn, H. Podlech, R. Repnow, D. Schwalm, MPI- K, Heidelberg,

More information

Perspectives in High Intensity Heavy Ion Sources for Future Heavy Ion Accelerators. L. Sun

Perspectives in High Intensity Heavy Ion Sources for Future Heavy Ion Accelerators. L. Sun IMP Perspectives in High Intensity Heavy Ion Sources for Future Heavy Ion Accelerators L. Sun Institute of Modern Physics, CAS, 730000, Lanzhou, China IPAC 18, April 29~May 4, 2018,Vancouver, CA Preface

More information

INTENSE HIGHLY CHARGED HEAVY ION BEAM PRODUCTION

INTENSE HIGHLY CHARGED HEAVY ION BEAM PRODUCTION INTENSE HIGHLY CHARGED HEAVY ION BEAM PRODUCTION T. Nakagawa, RIKEN, Hirosawa 2-1, Wako, Saitama 351-0198, Japan Abstract With the increase in applications of heavy ions in various fields, the production

More information

INTRODUCTION EBIS. Proceedings of HB2012, Beijing, China

INTRODUCTION EBIS. Proceedings of HB2012, Beijing, China INTENSE HIGH CHARGE STATE HEAVY ION BEAM PRODUCTION FOR THE ADVANCED ACCELERATORS # L. Sun, Institute of Modern Physics, CAS, 509 Nanchang Rd., Lanzhou 730000, China Abstract Modern advanced heavy ion

More information

Charge Breeding of Radioactive Ions

Charge Breeding of Radioactive Ions Charge Breeding of Radioactive Ions F.J.C. Wenander CERN, Geneva, Switzerland Abstract Charge breeding is a technique to increase the charge state of ions, in many cases radioactive ions. The singly charged

More information

HIGH-ENERGY HEAVY-ION ACCELERATORS

HIGH-ENERGY HEAVY-ION ACCELERATORS HIGH-ENERGY HEAVY-ION ACCELERATORS D. DINEV Bulgarian Academy of Sciences Institute for Nuclear Research and Nuclear Energy Why heavy ions accelerated to high energies? QCD phase diagram (Artist s view)

More information

TAMU-TRAP facility for Weak Interaction Physics. P.D. Shidling Cyclotron Institute, Texas A&M University

TAMU-TRAP facility for Weak Interaction Physics. P.D. Shidling Cyclotron Institute, Texas A&M University TAMU-TRAP facility for Weak Interaction Physics P.D. Shidling Cyclotron Institute, Texas A&M University Outline of the talk Low energy test of Standard Model T =2 Superallowed transition Facility T-REX

More information

ADVANCED ECR SOURCES FOR HIGHLY CHARGED IONS

ADVANCED ECR SOURCES FOR HIGHLY CHARGED IONS ADVANCED ECR SOURCES FOR HIGHLY CHARGED IONS S. Gammino, G. Ciavola, L. Celona, L. Andò Istituto Nazionale di Fisica Nucleare-Laboratori Nazionali del Sud, Via S. Sofia 44, 95123 Catania, ITALY D. Hitz,

More information

Development of the UNILAC towards a Megawatt Beam Injector

Development of the UNILAC towards a Megawatt Beam Injector Development of the UNILAC towards a Megawatt Beam Injector W. Barth, GSI - Darmstadt 1. GSI Accelerator Facility Injector for FAIR 2. Heavy Ion Linear Accelerator UNILAC 3. SIS 18 Intensity Upgrade Program

More information

A high intensity p-linac and the FAIR Project

A high intensity p-linac and the FAIR Project A high intensity p-linac and the FAIR Project Oliver Kester Institut für Angewandte Physik, Goethe-Universität Frankfurt and GSI Helmholtzzentrum für Schwerionenforschung Facility for Antiproton and Ion

More information

Charge State Breeding for the. at TRIUMF

Charge State Breeding for the. at TRIUMF CANADA S NATIONAL LABORATORY FOR PARTICLE AND NUCLEAR PHYSICS Owned and operated as a joint venture by a consortium of Canadian universities via a contribution through the National Research Council Canada

More information

Evaluation of charge-breeding options for EURISOL

Evaluation of charge-breeding options for EURISOL Evaluation of charge-breeding options for EURISOL P. Delahaye, O. Kester, C. Barton, T. Lamy, M. Marie-Jeanne, F. Wenander To cite this version: P. Delahaye, O. Kester, C. Barton, T. Lamy, M. Marie-Jeanne,

More information

Introduction to REX-ISOLDE concept and overview of (future) European projects

Introduction to REX-ISOLDE concept and overview of (future) European projects Introduction to REX-ISOLDE concept and overview of (future) European projects Thanks to: Y. Blumenfeld, P. Butler, M. Huyse, M. Lindroos, K. Riisager, P. Van Duppen Energetic Radioactive Beam Facilities

More information

OVERVIEW OF RECENT RFQ PROJECTS *

OVERVIEW OF RECENT RFQ PROJECTS * OVERVIEW OF RECENT RFQ PROJECTS * A. Schempp Institut für Angewandte Physik, J. W. Goethe-Universität, D-60486 Frankfurt am Main, Germany Abstract RFQs are the new standard injector for a number of projects.

More information

Main Magnetic Focus Ion Trap, new tool for trapping of highly charged ions

Main Magnetic Focus Ion Trap, new tool for trapping of highly charged ions V. P. Ovsyannikov a Main Magnetic Focus Ion Trap, new tool for trapping of highly charged ions Hochschulstr. 13, 01069, Dresden, Germany It is proposed to produce the highly charged ions in the local ion

More information

Trapping in 2-D The Radio Frequency Quadrupole

Trapping in 2-D The Radio Frequency Quadrupole Trapping in -D The Radio Frequency Quadrupole The Radio Frequency Quadrupole (RFQ) uses time dependent electric fields with alternating polarity to trap ions in two dimensions. These devices are generally

More information

Preliminary Simulation of Beam Extraction for the 28 GHz ECR Ion Source

Preliminary Simulation of Beam Extraction for the 28 GHz ECR Ion Source Preliminary Simulation of Beam Extraction for the 28 GHz ECR Ion Source Bum-Sik Park*, Yonghwan Kim and Seokjin Choi RISP, Institute for Basic Science, Daejeon 305-811, Korea The 28 GHz ECR(Electron Cyclotron

More information

RADIO-FREQUENCY QUADRUPOLE LINACS

RADIO-FREQUENCY QUADRUPOLE LINACS RADIO-FREQUENCY QUADRUPOLE LINACS A. Schempp Johann Wolfgang Goethe University, Frankfurt am Main, Germany 1. INTRODUCTION Abstract Radio-Frequency Quadrupole (RFQ) linacs are efficient, compact, lowenergy

More information

Performance of the ANL ECR Charge Breeder. with Low Mass Beams. Investigations with low mass species. Review of charge breeder design

Performance of the ANL ECR Charge Breeder. with Low Mass Beams. Investigations with low mass species. Review of charge breeder design Review of charge breeder design Investigations with low mass species Injection simulations Richard Vondrasek, Sergey Kutsaev, Richard Pardo, Robert Scott Argonne National Laboratory Pierre Delahaye, Laurent

More information

ECR ION SOURCES : A BRIEF HISTORY AND LOOK INTO THE NEXT GENERATION

ECR ION SOURCES : A BRIEF HISTORY AND LOOK INTO THE NEXT GENERATION ECR ION SOURCES : A BRIEF HISTORY AND LOOK INTO THE NEXT GENERATION T. Nakagawa, Nishina center for accelerator based science, RIKEN, Hirosawa 2-1, Wako, Saitama 351-0198, Japan Abstract In the last three

More information

DEVELOPMENT OF JINR FLNR HEAVY-ION ACCELERATOR COMPLEX IN THE NEXT 7 YEARS

DEVELOPMENT OF JINR FLNR HEAVY-ION ACCELERATOR COMPLEX IN THE NEXT 7 YEARS Ó³ Ÿ. 2010.. 7, º 7(163).. 827Ä834 ˆ ˆŠ ˆ ˆŠ Š ˆ DEVELOPMENT OF JINR FLNR HEAVY-ION ACCELERATOR COMPLEX IN THE NEXT 7 YEARS G. Gulbekyan, B. Gikal, I. Kalagin, N. Kazarinov Joint Institute for Nuclear

More information

O 2+ Pb 27+ O 3+ H dipole current (lower scale) mass/charge ratio (top scale)

O 2+ Pb 27+ O 3+ H dipole current (lower scale) mass/charge ratio (top scale) Investigation of the Afterglow Mode with the Caprice ECRIS for the GSI Heavy{Ion{Synchrotron Operation K. Tinschert, J. Bossler, R. Lang, K. Langbein*, H. Schulte, P. Spadtke Gesellschaft fur Schwerionenforschung

More information

Chopping High-Intensity Ion Beams at FRANZ

Chopping High-Intensity Ion Beams at FRANZ Chopping High-Intensity Ion Beams at FRANZ C. Wiesner, M. Droba, O. Meusel, D. Noll, O. Payir, U. Ratzinger, P. Schneider IAP, Goethe-Universität Frankfurt am Main Outline 1) Introduction: The FRANZ facility

More information

The Accelerator System for ReA3 the New Re-accelerated RIBs Facility at MSU

The Accelerator System for ReA3 the New Re-accelerated RIBs Facility at MSU The Accelerator System for ReA3 the New Re-accelerated RIBs Facility at MSU Xiaoyu Wu National Superconducting Cyclotron Laboratory Michigan State University on behalf of the NSCL ReA3 team X. Wu, Cyclotrons

More information

Recent development in ECR sources

Recent development in ECR sources NUKLEONIKA 2003;48(Supplement 2):S93 S98 PROCEEDINGS Recent development in ECR sources Claude Bieth, Saïd Kantas, Pascal Sortais, Dinakar Kanjilal, Gerard Rodrigues Abstract Recent developments and improvements

More information

Atomic Physics with Stored and Cooled Ions

Atomic Physics with Stored and Cooled Ions Lecture #3 Atomic Physics with Stored and Cooled Ions Klaus Blaum Gesellschaft für Schwerionenforschung, GSI, Darmstadt and CERN, Physics Department, Geneva, Switzerland Summer School, Lanzhou, China,

More information

SC-ECR ion source for RIKEN RIBF

SC-ECR ion source for RIKEN RIBF SC-ECR ion source for RIKEN RIBF T. NAKAGAWA (RIKEN) 1. Introduction Requirements for RIKEN RIBF 2. Physics of ECR ion source Effects of the key components on the beam intensity and ECR plasma 3. RIKEN

More information

Study of Analyzing and Matching of Mixed High Intensity Highly Charged Heavy Ion Beams

Study of Analyzing and Matching of Mixed High Intensity Highly Charged Heavy Ion Beams Study of Analyzing and Matching of Mixed High Intensity Highly Charged Heavy Ion Beams Youjin Yuan Institute of Modern Physics (IMP) Chinese Academy of Sciences 2016-7-6 HB2016, Malmö, Sweden New HIRFL

More information

Heavy Ion Accelerators for RIKEN RI Beam Factory and Upgrade Plans. Upgrade Injector

Heavy Ion Accelerators for RIKEN RI Beam Factory and Upgrade Plans. Upgrade Injector Heavy Ion Accelerators for RIKEN RI Beam Factory and Upgrade Plans RI Beam Factory (1997-) Heavy Ion Beams (2007-) Low intensity Beam now (2008) (Goal: 1pμA U-ion beam) Upgrade Injector H. Okuno, et. al.

More information

Progress in April December 2007 Schedule in Jan. March 2008

Progress in April December 2007 Schedule in Jan. March 2008 A Report to the Advisory Committee of CNS The Accelerator Group Outline Upgrade of AVF Cyclotron Progress in April December 2007 Schedule in Jan. March 2008 Shigeru Kubono, Yukimitsu Ohshiro, Shin-ichi

More information

RFQ BEAM DYNAMICS DESIGN FOR LARGE SCIENCE FACILITIES AND ACCELERATOR-DRIVEN SYSTEMS

RFQ BEAM DYNAMICS DESIGN FOR LARGE SCIENCE FACILITIES AND ACCELERATOR-DRIVEN SYSTEMS RFQ BEAM DYNAMICS DESIGN FOR LARGE SCIENCE FACILITIES AND ACCELERATOR-DRIVEN SYSTEMS Chuan Zhang # Institut für Angewandte Physik, Goethe-Universität, D-60438 Frankfurt a. M., Germany Abstract Serving

More information

The FAIR Accelerator Facility

The FAIR Accelerator Facility The FAIR Accelerator Facility SIS300 existing GSI proton linac SIS18 UNILAC SIS100 HESR pbar target SuperFRS goals: higher intensity (low charge states) higher energy (high charge states) production of

More information

HIGH INTENSITY HIGH CHARGE STATE ECR ION SOURCES*

HIGH INTENSITY HIGH CHARGE STATE ECR ION SOURCES* HIGH INTENSITY HIGH CHARGE STATE ECR ION SOURCES* D. Leitner and C.M. Lyneis, Lawrence Berkeley Natal Laboratory, Berkeley, CA, U.S.A. Abstract The next-generat heavy beam accelerators such as the proposed

More information

LIST - Development at Mainz for ISOLDE

LIST - Development at Mainz for ISOLDE LIST - Development at Mainz for ISOLDE K. Wendt, T. Gottwald, Ch. Mattolat, C. Ohlert, F. Schwellnus, K. Wies & K. Blaum, Universität Mainz V. Fedoseyev, F. Österdahl, M. Menna, ISOLDE, CERN, Geneva Ch.

More information

Electron Beam Ion Sources

Electron Beam Ion Sources Electron Beam Ion Sources G.Zschornack a,b, M.Schmidt b and A.Thorn b a University of Technology Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany b Dreebit GmbH, Dresden, Germany 1 Introduction

More information

Operation of the Coupled Cyclotron Facility at Michigan State University

Operation of the Coupled Cyclotron Facility at Michigan State University Operation of the Coupled Cyclotron Facility at Michigan State University Andreas Stolz Workshop on Accelerator Operations Head, Operations Department SLAC National Accelerator Laboratory NSCL / Michigan

More information

Report on novel techniques for the production and selection of ECRionized radioactive ions beams

Report on novel techniques for the production and selection of ECRionized radioactive ions beams Report on novel techniques for the production and selection of ECRionized radioactive ions beams Different novel techniques were studied or tested for the production of pure metallic radioactive ion beams

More information

THE DESIGN AND COMMISSIONING OF THE ACCELERATOR SYSTEM OF THE RARE ISOTOPE REACCELERATOR ReA3 AT MICHIGAN STATE UNIVERSITY*

THE DESIGN AND COMMISSIONING OF THE ACCELERATOR SYSTEM OF THE RARE ISOTOPE REACCELERATOR ReA3 AT MICHIGAN STATE UNIVERSITY* THE DESIGN AND COMMISSIONING OF THE ACCELERATOR SYSTEM OF THE RARE ISOTOPE REACCELERATOR ReA3 AT MICHIGAN STATE UNIVERSITY* X. Wu#, B. Arend, C. Compton, A. Facco, M. Johnson, D. Lawton, D. Leitner, F.

More information

Production of HCI with an electron beam ion trap

Production of HCI with an electron beam ion trap Production of HCI with an electron beam ion trap I=450 ma E= 5 kev axially: electrodes radially: electron beam space charge total trap potential U trap 200 V (U trap ion charge) 10000 ev 15000 A/cm 2 n

More information

Ion Beam Cocktail Development and ECR Ion Source Plasma Physics Experiments at JYFL

Ion Beam Cocktail Development and ECR Ion Source Plasma Physics Experiments at JYFL Ion Beam Cocktail Development and ECR Ion Source Plasma Physics Experiments at JYFL Olli Tarvainen 11th International Conference on Heavy Ion Accelerator Technology Venice, Italy 8-12 June 29 Outline JYFL

More information

Nuclear Structure Studies along the Z=28 and 82 Closed Proton Shells using Radioactive Ion Beams

Nuclear Structure Studies along the Z=28 and 82 Closed Proton Shells using Radioactive Ion Beams Nuclear Structure Studies along the Z=28 and 82 Closed Proton Shells using Radioactive Ion Beams Piet Van Duppen Instituut voor Kern- en Stralingsfysica K.U. Leuven, Belgium 1. Radioactive Ion Beam Production

More information

HIGH CURRENT PROTON BEAM INVESTIGATIONS AT THE SILHI-LEBT AT CEA/SACLAY

HIGH CURRENT PROTON BEAM INVESTIGATIONS AT THE SILHI-LEBT AT CEA/SACLAY TU31 Proceedings of LINAC 26, Knoxville, Tennessee USA HIGH CURRENT PROTON BEAM INVESTIGATIONS AT THE SILHI-LEBT AT CEA/SACLAY R. Hollinger, W. Barth, L. Dahl, M. Galonska, L. Groening, P. Spaedtke, GSI,

More information

Proton LINAC for the Frankfurt Neutron Source FRANZ

Proton LINAC for the Frankfurt Neutron Source FRANZ 1 Proton LINAC for the Frankfurt Neutron Source FRANZ O. Meusel 1, A. Bechtold 1, L.P. Chau 1, M. Heilmann 1, H. Podlech 1, U. Ratzinger 1, A. Schempp 1, C. Wiesner 1, S. Schmidt 1, K. Volk 1, M. Heil

More information

TRIUMF The TITAN EBIT: Status & Research Plans

TRIUMF The TITAN EBIT: Status & Research Plans The TITAN EBIT: Status & Research Plans A. Lapierre, T. Brunner, C. Champagne, P. Delheij, and J. Dilling for the TITAN collaboration Canada s National Laboratory for Nuclear and Particle Physics, Vancouver,

More information

X = Z H + N n TBE. X = d 1 Z 2 + d 2 Z d 3 + d + d 4, where d i = f (Ci, A) 75 Se 75 Br. 75 Zn. 75 Ga. 75 Kr. 75 Ge 75 As

X = Z H + N n TBE. X = d 1 Z 2 + d 2 Z d 3 + d + d 4, where d i = f (Ci, A) 75 Se 75 Br. 75 Zn. 75 Ga. 75 Kr. 75 Ge 75 As 1 Lecture 4 : Beta stability, the LD Mass Formula, and Accelerators Simplest form of LD Mass Formula TBE = C 1 A C 2 A 2/3 C 3 Z 2 /A 1/3 C 4 (N-Z) 2 /A 2 + C 6 /A 1/2 = C 1 C 2 A 1/3 C 3 Z 2 /A 4/3

More information

Beam Cooling. Beam Cooling. M. Steck, GSI, Darmstadt CERN Accelerator School Chios, Greece September 18 30, Introduction. 1.

Beam Cooling. Beam Cooling. M. Steck, GSI, Darmstadt CERN Accelerator School Chios, Greece September 18 30, Introduction. 1. Beam Cooling, GSI, Darmstadt CERN Accelerator School, September 18 30, 2011 Beam Cooling Introduction 1.Electron Cooling 2.Ionization Cooling 3.Laser Cooling 4.Stochastic Cooling Beam Cooling Beam cooling

More information

Accelerated radioactive beams and the future of nuclear physics. David Jenkins

Accelerated radioactive beams and the future of nuclear physics. David Jenkins Accelerated radioactive beams and the future of nuclear physics David Jenkins Particle accelerators 1930s: Cockcroft and Walton 1990s: Superconducting niobium cavities Energetic Radioactive Beam Facilities

More information

A 60 GHz ECRIS For the Beta Beams

A 60 GHz ECRIS For the Beta Beams A 60 GHz ECRIS For the Beta Beams T. Thuillier,T. Lamy, L. Latrasse, C. Fourel, J. Giraud Laboratoire de Physique Subatomique et de Cosmologie, Grenoble, France C. Trophime, P. Sala, J. Dumas,, F. Debray

More information

Design Note TRI-DN Low Energy Beam Transport Line for the CANREB Charge State Breeder

Design Note TRI-DN Low Energy Beam Transport Line for the CANREB Charge State Breeder Design Note Low Energy Beam Transport Line for the CANREB Charge State Breeder Document Type: Design Note Release: 03 Release Date: 2016/09/09 Author(s): S. Saminathan & R. Baartman Author(s): Reviewed

More information

TARGETS AND ION SOURCES DEVELOPMENT AT ISAC-TRIUMF*

TARGETS AND ION SOURCES DEVELOPMENT AT ISAC-TRIUMF* TARGETS AND ION SOURCES DEVELOPMENT AT ISAC-TRIUMF* P. Bricault, TRIUMF, Vancouver, Canada Abstract The ISAC Radioactive Ion Beams (RIB) facility is operational since November 1998. The facility utilizes

More information

CHAPTER VI RIB SOURCES

CHAPTER VI RIB SOURCES CHAPTER VI RIB SOURCES 6.1 General criteria for target and ion-sources The ion-sources dedicated to the production of Radioactive Ion Beams (RIB) have to be highly efficient, selective (to reduce the isobar

More information

Opportunities with collinear laser spectroscopy at DESIR:

Opportunities with collinear laser spectroscopy at DESIR: Opportunities with collinear laser spectroscopy at DESIR: the LUMIERE facility GOALS of LUMIERE experiments: Gerda Neyens, K.U. Leuven, Belgium (1) measure ground state properties of exotic isotopes: (see

More information

HIRFL STATUS AND HIRFL-CSR PROJECT IN LANZHOU

HIRFL STATUS AND HIRFL-CSR PROJECT IN LANZHOU HIRFL STATUS AND HIRFL-CSR PROJECT IN LANZHOU J. W. Xia, Y. F. Wang, Y. N. Rao, Y. J. Yuan, M. T. Song, W. Z. Zhang, P. Yuan, W. Gu, X. T. Yang, X. D. Yang, S. L. Liu, H.W.Zhao, J.Y.Tang, W. L. Zhan, B.

More information

Recent developments at ISOL-based facilities. Piet Van Duppen KU Leuven, Belgium

Recent developments at ISOL-based facilities. Piet Van Duppen KU Leuven, Belgium Recent developments at ISOL-based facilities Piet Van Duppen KU Leuven, Belgium 1 Introductory remarks on RIB research Target materials Ion Sources Laser Resonance Ionization Ion manipulation Hg laser

More information

Magnetic Field Design for a 2.45-GHz ECR Ion Source with Permanent Magnets

Magnetic Field Design for a 2.45-GHz ECR Ion Source with Permanent Magnets Journal of the Korean Physical Society, Vol. 55, No. 2, August 2009, pp. 409 414 Magnetic Field Design for a 2.45-GHz ECR Ion Source with Permanent Magnets J. Y. Park Department of Physics, Pusan National

More information

Section 4 : Accelerators

Section 4 : Accelerators Section 4 : Accelerators In addition to their critical role in the evolution of nuclear science, nuclear particle accelerators have become an essential tool in both industry and medicine. Table 4.1 summarizes

More information

Short Introduction to CLIC and CTF3, Technologies for Future Linear Colliders

Short Introduction to CLIC and CTF3, Technologies for Future Linear Colliders Short Introduction to CLIC and CTF3, Technologies for Future Linear Colliders Explanation of the Basic Principles and Goals Visit to the CTF3 Installation Roger Ruber Collider History p p hadron collider

More information

NICA Project at JINR Nuclotron-based Ion Collider facility I.Meshkov for NICA team

NICA Project at JINR Nuclotron-based Ion Collider facility I.Meshkov for NICA team Workshop on Beam Cooling and Related Topics COOL 11 NICA Project at JINR Nuclotron-based Ion Collider facility I.Meshkov for NICA team, Ukraine hosted by JINR, Dubna 1 Contents Introduction: The goal of

More information

ELECTRON COOLING EXPERIMENTS IN CSR*

ELECTRON COOLING EXPERIMENTS IN CSR* ELECTRON COOLING EXPERIMENTS IN CSR* Xiaodong Yang #, Guohong Li, Jie Li, Xiaoming Ma, Lijun Mao, Ruishi Mao, Tailai Yan, Jiancheng Yang, Youjin Yuan, IMP, Lanzhou, 730000, China Vasily V. Parkhomchuk,

More information

Present ISOLDE facility Aims of HIE-ISOLDE upgrade First steps towards HIE-ISOLDE

Present ISOLDE facility Aims of HIE-ISOLDE upgrade First steps towards HIE-ISOLDE The HIE-ISOLDE ISOLDE Project Alexander Herlert, CERN Present ISOLDE facility Aims of HIE-ISOLDE upgrade First steps towards HIE-ISOLDE Hirschegg Workshop 2008 B. Jonson s talk at the last ISOLDE workshop

More information

This is an electronic reprint of the original article. This reprint may differ from the original in pagination and typographic detail.

This is an electronic reprint of the original article. This reprint may differ from the original in pagination and typographic detail. This is an electronic reprint of the original article. This reprint may differ from the original in pagination and typographic detail. Author(s): Lamy, T.; Angot, J.; Thuillier, T.; Delahaye, P.; Maunoury,

More information

Introduction Frankfurt Neutron Source at Stern-Gerlach-Zentrum FRANZ Development of new accelerator concepts for intense proton and ion beams. High in

Introduction Frankfurt Neutron Source at Stern-Gerlach-Zentrum FRANZ Development of new accelerator concepts for intense proton and ion beams. High in 2009/12/16 Proton Linac for the Frankfurt Neutron Source Christoph Wiesner Introduction Frankfurt Neutron Source at Stern-Gerlach-Zentrum FRANZ Development of new accelerator concepts for intense proton

More information

University of Groningen. Extraction and transport of ion beams from an ECR ion source Saminathan, Suresh

University of Groningen. Extraction and transport of ion beams from an ECR ion source Saminathan, Suresh University of Groningen Extraction and transport of ion beams from an ECR ion source Saminathan, Suresh IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish

More information

Report on PIAVE G. Bisoffi

Report on PIAVE G. Bisoffi Report on PIAVE G. Bisoffi International Scientific Committee, Legnaro February 10th, 2005 Context: Upgrade of the LNL Nuclear Physics Facility 3. CRYOGENIC SYSTEM UPGRADE 5. ALPI Energy Upgrade 4 3 4.

More information

1.4 The Tools of the Trade!

1.4 The Tools of the Trade! 1.4 The Tools of the Trade! Two things are required for material analysis: excitation mechanism for originating characteristic signature (radiation) radiation detection and identification system (spectroscopy)

More information

CERN LIBRARIES, GENEVA CM-P Nuclear Physics Institute, Siberian Branch of the USSR Academy of Sciences. Preprint

CERN LIBRARIES, GENEVA CM-P Nuclear Physics Institute, Siberian Branch of the USSR Academy of Sciences. Preprint CERN LIBRARIES, GENEVA CM-P00100512 Nuclear Physics Institute, Siberian Branch of the USSR Academy of Sciences Preprint Experimental Study of Charge Exchange Injection of Protons into Accelerator and Storage

More information

NSCL Operations and ReAcclerator Facility at MSU. Daniela Leitner Michigan State University

NSCL Operations and ReAcclerator Facility at MSU. Daniela Leitner Michigan State University NSCL Operations and ReAcclerator Facility at MSU Daniela Leitner Michigan State University CCF Operations In Perspective NSCL is funded by NSF in support of a versatile user program with a historical average

More information

arxiv: v1 [physics.acc-ph] 20 Jun 2013

arxiv: v1 [physics.acc-ph] 20 Jun 2013 Beam dynamics design of the main accelerating section with KONUS in the CSR-LINAC arxiv:1306.4729v1 [physics.acc-ph] 20 Jun 2013 ZHANG Xiao-Hu 1,2;1) YUAN You-Jin 1 XIA Jia-Wen 1 YIN Xue-Jun 1 DU Heng

More information

positron source EPOS - general concept - timing system - digital lifetime measurement

positron source EPOS - general concept - timing system - digital lifetime measurement The pulsed high-brightness positron source EPOS R. Krause-Rehberg 1, G. Brauer 2, A. Krille 1, M. Jungmann 1, S. Sachert 1, A. Rogov 2, K. Nowak 2 1 Martin-Luther-University Halle, Germany 2 Research Center

More information

THE SUPER-FRS PROJECT AT GSI

THE SUPER-FRS PROJECT AT GSI THE SUPER-FRS PROJECT AT GSI M. Winkler 1,2, H. Geissel 2,1,, G. Münzenberg 2, V. Shiskine 2, H. Weick 2, H. Wollnik 1, M. Yavor 3 1 University of Giessen, Germany, 2 GSI, Germany, 3 Institute for Analytical

More information

Status & Plans for the TRIUMF ISAC Facility

Status & Plans for the TRIUMF ISAC Facility Status & Plans for the TRIUMF ISAC Facility P.W. Schmor APAC 07, Jan 29-Feb 2 Indore, India TRIUMF ISAC Schematic Layout of TRIUMF/ISAC with H- Driver, ISOL Production & Post Accelerators ISAC-II High

More information

RFQ Status. Mathew Smith: UBC/TRIUMF TITAN Collaboration meeting June 10th 2005

RFQ Status. Mathew Smith: UBC/TRIUMF TITAN Collaboration meeting June 10th 2005 RFQ Status Mathew Smith: UBC/TRIUMF TITAN Collaboration meeting June 10th 2005 RFQ Status & Testing of the RFQ Mathew Smith: UBC/TRIUMF TITAN Collaboration meeting June 10th 2005 Overview TITAN Background

More information

Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory

Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory Title A high transmission analyzing magnet for intense high charge state beams Permalink https://escholarship.org/uc/item/25g1x3b4

More information

Proton LINAC for the Frankfurt Neutron Source FRANZ

Proton LINAC for the Frankfurt Neutron Source FRANZ Proton LINAC for the Frankfurt Neutron Source FRANZ - IAEA - International Topical Meeting on Nuclear Research Applications and Utilization of Accelerators Oliver Meusel 4-8 May 2009 Vienna, Austria Motivation

More information

1.5-GeV FFAG Accelerator as Injector to the BNL-AGS

1.5-GeV FFAG Accelerator as Injector to the BNL-AGS 1.5-GeV FFAG Accelerator as Injector to the BNL-AGS Alessandro G. Ruggiero M. Blaskiewicz,, T. Roser, D. Trbojevic,, N. Tsoupas,, W. Zhang Oral Contribution to EPAC 04. July 5-9, 5 2004 Present BNL - AGS

More information

GANIL STATUS REPORT. B. Jacquot, F. Chautard, A.Savalle, & Ganil Staff GANIL-DSM/CEA,IN2P3/CNRS, BP 55027, Caen Cedex, France.

GANIL STATUS REPORT. B. Jacquot, F. Chautard, A.Savalle, & Ganil Staff GANIL-DSM/CEA,IN2P3/CNRS, BP 55027, Caen Cedex, France. GANIL STATUS REPORT B. Jacquot, F. Chautard, A.Savalle, & Ganil Staff GANIL-DSM/CEA,IN2P3/CNRS, BP 55027, 4076 Caen Cedex, France Abstract The GANIL-Spiral facility (Caen, France) is dedicated to the acceleration

More information

Theory of electron cooling

Theory of electron cooling Theory of electron cooling Daria Astapovych 03/12/2014 HSC Meeting Outline Motivation and idea of the particle beam cooling Cooler Low energy, high energy beam Electron beam Kinetics of electron cooling

More information

Advanced Design of the FAIR Storage Ring Complex

Advanced Design of the FAIR Storage Ring Complex Advanced Design of the FAIR Storage Ring Complex M. Steck for the FAIR Technical Division and the Accelerator Division of GSI The FAIR Accelerator Facility SIS300 existing GSI proton linac SIS18 UNILAC

More information

Diagnostics Requirements for the ARIEL Low Energy Beam Transport

Diagnostics Requirements for the ARIEL Low Energy Beam Transport Document-121991 Diagnostics Requirements for the ARIEL Low Energy Beam Transport Document Type: Requirement Document Release: 02 Release Date: 2017-03-22 Authors: S. Saminathan, M. Marchetto, C. Barquest

More information

Progress of RAON Heavy Ion Accelerator Project in Korea

Progress of RAON Heavy Ion Accelerator Project in Korea Progress of RAON Heavy Ion Accelerator Project in Korea Sunchan Jeong Rare Isotope Science Project (RISP) 중이온가속기 사업단 Institute for Basic Science (IBS) May 13, 2016 IPAC2016 Contents Rare Isotope Science

More information

"SHIPTRAP, HITRAP and MATS: Status and Plans for ion trap projects at GSI and FAIR"

SHIPTRAP, HITRAP and MATS: Status and Plans for ion trap projects at GSI and FAIR H.-Jürgen Kluge GSI/Darmstadt and Universität Heidelberg TRIUMF, Vancouver, Canada TITAN Workshop, June 10-11, 2005 "SHIPTRAP, HITRAP and MATS: Status and Plans for ion trap projects at GSI and FAIR" 1.

More information

Issues of Electron Cooling

Issues of Electron Cooling Issues of Electron Cooling Yaroslav Derbenev derbenev@jlab.org JLEIC Spring 2016 Collaboration Meeting JLab, March 29-31, 2016 Outline Friction force Magnetized cooling Misalignment impact Cooling rates

More information

Physics of heavy multiply-charged ions: Studies on the borderile of atomic and nuclear physics

Physics of heavy multiply-charged ions: Studies on the borderile of atomic and nuclear physics Physics of heavy multiply-charged ions: Studies on the borderile of atomic and nuclear physics Andrey Surzhykov Technische Universität Braunschweig Physikalisch-Technische Bundesanstalt (PTB) Lecture 1

More information

DUBNA CYCLOTRONS STATUS AND PLANS

DUBNA CYCLOTRONS STATUS AND PLANS DUBNA CYCLOTRONS STATUS AND PLANS B.N. Gikal *, S.L. Bogomolov, S.N. Dmitriev, G.G. Gulbekyan, M.G. Itkis, V.V. Kalagin, Yu.Ts. Oganessian, V.A. Sokolov Joint Institute for Nuclear Research, Dubna, Moscow

More information

Beam Cooling M. Steck, GSI Darmstadt CAS Advanced Accelerator Physics, Royal Holloway University of London, 3-15 September 2017

Beam Cooling M. Steck, GSI Darmstadt CAS Advanced Accelerator Physics, Royal Holloway University of London, 3-15 September 2017 Beam Cooling M. Steck, GSI Darmstadt CAS Advanced Accelerator Physics, Royal Holloway University of London, 3-15 September 2017 Observation of Cooling Xe 54+ beam at 400 MeV/u cooled with electron current

More information

Longitudinal stacking and electron cooling of ion beams in the ESR as a proof of principle for FAIR. C. Dimopoulou

Longitudinal stacking and electron cooling of ion beams in the ESR as a proof of principle for FAIR. C. Dimopoulou Longitudinal stacking and electron cooling of ion beams in the ESR as a proof of principle for FAIR C. Dimopoulou B. Franzke, T. Katayama, D. Möhl, G. Schreiber, M. Steck DESY Seminar, 20 November 2007

More information

A Project to convert TLS Booster to hadron accelerator 1. Basic design. 2. The injection systems:

A Project to convert TLS Booster to hadron accelerator 1. Basic design. 2. The injection systems: A Project to convert TLS Booster to hadron accelerator 1. Basic design TLS is made of a 50 MeV electron linac, a booster from 50 MeV to 1.5 GeV, and a storage ring. The TLS storage ring is currently operating

More information

Multi-Purpose Accelerator-Accumulator ITEP-TWAC for Nuclear Physics and Practical Applications

Multi-Purpose Accelerator-Accumulator ITEP-TWAC for Nuclear Physics and Practical Applications Multi-Purpose Accelerator-Accumulator ITEP-TWAC for Nuclear Physics and Practical Applications N.N.Alexeev, D.G.Koshkarev and B.Yu.Sharkov Institute for Theoretical and Experimental Physics, B.Cheremushk.

More information

Beam Cooling. M. Steck, GSI, Darmstadt. JUAS, Archamps, France March 9, 2015

Beam Cooling. M. Steck, GSI, Darmstadt. JUAS, Archamps, France March 9, 2015 Beam Cooling M. Steck, GSI, Darmstadt JUAS, Archamps, France March 9, 2015 time longitudinal (momentum) cooling Cooling injection into storage ring transverse cooling Xe 54+ 50 MeV/u p/p cooling off with

More information

Atomic Physics with Stored and Cooled Ions

Atomic Physics with Stored and Cooled Ions Lecture #8 Atomic Physics with Stored and Cooled Ions Klaus Blaum Gesellschaft für Schwerionenforschung, GSI, Darmstadt and CERN, Physics Department, Geneva, Switzerland Summer School, Lanzhou, China,

More information

Operational Experience in PIAVI-ALPI Complex. E. Fagotti INFN-LNL

Operational Experience in PIAVI-ALPI Complex. E. Fagotti INFN-LNL Operational Experience in PIAVI-ALPI Complex E. Fagotti INFN-LNL Operational Experience in PIAVI-ALPI Complex E. Fagotti INFN-LNL Machine History Operational Experience in PIAVI-ALPI Complex E. Fagotti

More information

Particle physics experiments

Particle physics experiments Particle physics experiments Particle physics experiments: collide particles to produce new particles reveal their internal structure and laws of their interactions by observing regularities, measuring

More information

STUDY ON SPACE CHARGE COMPENSATION OF LOW ENERGY HIGH INTENSITY ION BEAM IN PEKING UNIVERSITY*

STUDY ON SPACE CHARGE COMPENSATION OF LOW ENERGY HIGH INTENSITY ION BEAM IN PEKING UNIVERSITY* STUDY ON SPACE CHARGE COMPENSATION OF LOW ENERGY HIGH INTENSITY ION BEAM IN PEKING UNIVERSITY* S. X. Peng 1,, A. L. Zhang 1, 2, H. T. Ren 1, T. Zhang 1, J. F. Zhang 1, Y. Xu 1, J. M. Wen 1, W. B. Wu 1,

More information

Accelerators for the Advanced Exotic Beam Facility

Accelerators for the Advanced Exotic Beam Facility Accelerators for the Advanced Exotic Beam Facility Peter N. Ostroumov Physics Division Content Facility for Radioactive Ion Beams (FRIB) Short introduction to the current status Major differences from

More information

ELECTRON COOLING EXPERIMENTS AT S-LSR

ELECTRON COOLING EXPERIMENTS AT S-LSR ELECTRON COOLING EXPERIMENTS AT S-LSR T. Shirai #, S. Fujimoto, M. Ikegami, H. Tongu, M. Tanabe, H. Souda, A. Noda ICR, Kyoto-U, Uji, Kyoto, Japan, K. Noda, NIRS, Anagawa, Inage, Chiba, Japan, T. Fujimoto,

More information