Computational Electrodynamics: The Finite-Difference Time-Domain Method

Size: px
Start display at page:

Download "Computational Electrodynamics: The Finite-Difference Time-Domain Method"

Transcription

1 Computational Electrodynamics: The Finite-Difference Time-Domain Method Second Edition Allen Taflove Susan C. Hagness w Artech House Boston London www. artechhouse. com

2 Contents Preface to the Second Edition Preface to the First Edition xvii xxi 1 Electrodynamics Entering the 21st Century Introduction The Heritage of Military Defense Applications Frequency-Domain Solution Techniques Rise of Finite-Difference Time-Domain Methods History of FDTD Techniques for Maxwell's Equations Characteristics of FDTD and Related Space-Grid Time-Domain Techniques Classes of Algorithms Predictive Dynamic Range Scaling to Very Large Problem Sizes Examples of Applications (including Color Plate Section, pages 9-16) Radar-Guided Missile 9, High-Speed Computer Circuit-Board Module 10, Power-Distribution System for a High-Speed Computer Multichip Module 11, Microwave Amplifier 12, Cellular Telephone 13, Optical Microdisk Resonator 14, Photonic Bandgap Microcavity Laser 15, Colliding Spatial Solitons 16, Conclusions 29 References 30 2 The One-Dimensional Scalar Wave Equation Introduction Propagating-Wave Solutions Dispersion Relation Finite Differences Finite-Difference Approximation of the Scalar Wave Equation Numerical Dispersion Relation Case 1: Very Fine Sampling in Time and Space (At > 0, Ax > 0) Case 2: Magic Time-Step (с At = Ax) Case 3: Dispersive Wave Propagation Example of Calculation of Numerical Phase Velocity and Attenuation Examples of Calculations of Pulse Propagation Numerical Stability Complex-Frequency Analysis Examples of Calculations Involving Numerical Instability Summary 61 v

3 vi Computational Electrodynamics: The Finite-Difference Time-Domain Method Appendix 2A: Order of Accuracy 63 2A.1 Lax-Richtmyer Equivalence Theorem 63 2A.2 Limitations 64 References 64 Bibliography on Stability of Finite-Difference Methods 65 Problems 65 3 Introduction to Maxwell's Equations and the Yee Algorithm Introduction Maxwell's Equations in Three Dimensions Reduction to Two Dimensions TM z Mode TE z Mode Reduction to One Dimension дг-directed, z-polarized ТЕМ Mode ^-Directed, y-polarized ТЕМ Mode Equivalence to the Wave Equation in One Dimension The Yee Algorithm Basic Ideas Finite Differences and Notation Finite-Difference Expressions for Maxwell's Equations in Three Dimensions Space Region With a Continuous Variation of Material Properties Space Region With a Finite Number of Distinct Media Space Region With Nonpermeable Media Reduction to the Two-Dimensional TM Z and TE Z Modes Interpretation as Faraday's and Ampere's Laws in Integral Form Divergence-Free Nature Alternative Finite-Difference Grids Cartesian Grids Hexagonal Grids Tetradecahedron / Dual-Tetrahedron Mesh in Three Dimensions Summary 105 References 106 Problems Numerical Dispersion and Stability Introduction Derivation of the Numerical Dispersion Relation for Two-Dimensional Wave Propagation Extension to Three Dimensions Comparison With the Ideal Dispersion Case Anisotropy of the Numerical Phase Velocity Sample Values of Numerical Phase Velocity Intrinsic Grid Velocity Anisotropy Complex-Valued Numerical Wavenumbers Case 1: Numerical Wave Propagation Along the Principal Lattice Axes Case 2: Numerical Wave Propagation Along a Grid Diagonal Example of Calculation of Numerical Phase Velocity and Attenuation Example of Calculation of Wave Propagation 131

4 Contents vii 4.7 Numerical Stability Complex-Frequency Analysis Example of a Numerically Unstable Two-Dimensional FDTD Model Generalized Stability Problem Boundary Conditions Variable and Unstructured Meshing Lossy, Dispersive, Nonlinear, and Gain Materials Modified Yee-Based Algorithms for Improved Numerical Dispersion Strategy 1: Center a Specific Numerical Phase-Velocity Curve About с Strategy 2: Use Fourth-Order-Accurate Spatial Differences Strategy 3: Use Hexagonal Grids Strategy 4: Use Discrete Fourier Transforms to Calculate the Spatial Derivatives Alternating-Direction-Implicit Time-Stepping Algorithm for Operation Beyond the Courant Limit Numerical Formulation of the Zheng/Chen/Zhang Algorithm Numerical Stability Numerical Dispersion Discussion Summary 172 References 172 Problems 173 Projects Incident Wave Source Conditions Introduction Pointwise E and H Hard Sources in One Dimension Pointwise E and H Hard Sources in Two Dimensions Green's Function for the Scalar Wave Equation in Two Dimensions Obtaining Comparative FDTD Data Results for Effective Action Radius of a Hard-Sourced Field Component and M Current Sources in Three Dimensions Sources and Charging Sinusoidal Sources Transient (Pulse) Sources Intrinsic Lattice Capacitance Intrinsic Lattice Inductance Impact Upon FDTD Simulations of Lumped-Element Capacitors and Inductors The Plane-Wave Source Condition The Total-Field/ Scattered-Field Technique: Ideas and One-Dimensional Formulation Ideas One-Dimensional Formulation Two-Dimensional Formulation of the TF/SF Technique Consistency Conditions Calculation of the Incident Field Illustrative Example Three-Dimensional Formulation of the TF/SF Technique Consistency Conditions Calculation of the Incident Field Pure Scattered-Field Formulation 224

5 viii Computational Electrodynamics: The Finite-Difference Time-Domain Method Application to PEC Structures Application to Lossy Dielectric Structures Choice of Incident Plane-Wave Formulation Waveguide Source Conditions Pulsed Electric Field Modal Hard Source Total-Field / Reflected-Field Modal Formulation Resistive Source and Load Conditions Summary 231 References 232 Problems 232 Projects Analytical Absorbing Boundary Conditions Introduction Bayliss-Turkel Radiation Operators Spherical Coordinates Cylindrical Coordinates Engquist-Majda One-Way Wave Equations One-Term and Two-Term Taylor Series Approximations Mur Finite-Difference Scheme Trefethen-Halpern Generalized and Higher Order ABCs Theoretical Reflection Coefficient Analysis Numerical Experiments Higdon Radiation Operators Formulation First Two Higdon Operators Discussion Liao Extrapolation in Space and Time Formulation Discussion Ramahi Complementary Operators Basic Idea Complementary Operators Effect of Multiple Wave Reflections Basis of the Concurrent Complementary Operator Method Illustrative FDTD Modeling Results Obtained Using the C-COM Summary 281 References 281 Problems Perfectly Matched Layer Absorbing Boundary Conditions (Stephen D. Gedney and Allen Taflove) Introduction Plane Wave Incident Upon a Lossy Half-Space Plane Wave Incident Upon Berenger's PML Medium Two-Dimensional TE Z Case Two-Dimensional TM Z Case Three-Dimensional Case 294

6 Contents ix 7.4 Stretched-Coordinate Formulation of Berenger's PML An Anisotropie PML Absorbing Medium Perfectly Matched Uniaxial Medium Relationship to Berenger's Split-Field PML A Generalized Three-Dimensional Formulation Inhomogeneous Media Theoretical Performance of the PML The Continuous Space The Discrete Space Efficient Implementation of UPML in FDTD Derivation of the Finite-Difference Expressions Computer Implementation of the UPML Numerical Experiments With Berenger's Split-Field PML Outgoing Cylindrical Wave in a Two-Dimensional Open-Region Grid Outgoing Spherical Wave in a Three-Dimensional Open-Region Lattice Dispersive Wave Propagation in Metal Waveguides Dispersive and Multimode Wave Propagation in Dielectric Waveguides Numerical Experiments With UPML Current Source Radiating in an Unbounded Two-Dimensional Region Highly Elongated Domains Microstrip Transmission Line UPML Termination for Conductive Media Theory Numerical Example: Termination of a Conductive Half-Space Medium UPML Termination for Dispersive Media Theory Numerical Example: Reflection by a Lorentz Medium Summary and Conclusions 343 References 345 Projects Near-to-Far-Field Transformation Introduction Two-Dimensional Transformation, Phasor Domain Application of Green's Theorem Far-Field Limit Reduction to Standard Form Obtaining Phasor Quantities Via Discrete Fourier Transformation Surface Equivalence Theorem Extension to Three Dimensions, Phasor Domain Time-Domain Near-to-Far-Field Transformation Summary 371 References 372 Project Dispersive and Nonlinear Materials Introduction Types of Dispersions Considered 374

7 x Computational Electrodynamics: The Finite-Difference Time-Domain Method Debye Media Lorentz Media Piecewise-Linear Recursive Convolution Method, Linear Material Case General Formulation of the Method Application to Debye Media Application to Lorentz Media Numerical Results Piecewise-Linear Recursive Convolution Method, Nonlinear Dispersive Material Case Governing Equations General Formulation of the Method FDTD Realization in One Dimension Numerical Results Auxiliary Differential Equation Method, Linear Material Case Formulation for Multiple Debye Poles Formulation for Multiple Lorentz Pole Pairs Numerical Results Auxiliary Differential Equation Method, Nonlinear Dispersive Material Case Formulation for Multiple Lorentz Pole Pairs, TM Z Case Numerical Results for Temporal Solitons Numerical Results for Spatial Solitons Summary and Conclusions 407 References 408 Problems 409 Projects Local Subcell Models of Fine Geometrical Features Introduction Basis of Contour-Path FDTD Modeling The Simplest Contour-Path Subcell Models Diagonal Split-Cell Model for PEC Surfaces Average Properties Model for Material Surfaces The Contour-Path Model of the Narrow Slot The Contour-Path Model of the Thin Wire Locally Conformal Models of Curved Surfaces Dey-Mittra Technique for PEC Structures Illustrative Results for PEC Structures Dey-Mittra Technique for Material Structures Maloney-Smith Technique for Thin Material Sheets Basis Illustrative Results Dispersive Surface Impedance Maloney-Smith Method Beggs Method Lee Method Relativistic Motion of PEC Boundaries Basis Illustrative Results Summary and Discussion 468 References 470

8 Contents xi Bibliography 471 Projects Nonorthogonal and Unstructured Grids (Stephen D. Gedney and Faiza Lansing) Introduction Nonuniform Orthogonal Grids Locally Conformal Grids, Globally Orthogonal Global Curvilinear Coordinates Nonorthogonal Curvilinear FDTD Algorithm Stability Criterion Irregular Nonorthogonal Structured Grids Irregular Nonorthogonal Unstructured Grids Generalized Yee Algorithm Inhomogeneous Media Practical Implementation of the Generalized Yee Algorithm A Planar Generalized Yee Algorithm Time-Stepping Expressions Projection Operators Efficient Time-Stepping Implementation Examples of Passive-Circuit Modeling Using the Planar Generalized Yee Algorithm GHz Wilkinson Power Divider GHz Gysel Power Divider Signal Lines in an IBM Thermal Conduction Module Summary and Conclusions 522 References 523 Problems 525 Projects Bodies of Revolution (Thomas G. Jürgens, Jeffrey G. Blaschak, and Gregory W. Saewert) Introduction Field Expansion Difference Equations for Off-Axis Cells Ampere's Law Contour Path Integral to Calculate e r Ampere's Law Contour Path Integral to Calculate е ф Ampere's Law Contour Path Integral to Calculate e z Difference Equations Surface-Conforming Contour Path Integrals Difference Equations for On-Axis Cells Ampere's Law Contour Path Integral to Calculate e z on the z-axis Ampere's Law Contour Path Integral to Calculate е ф on the z-axis Faraday's Law Calculation of h r on the z-axis Numerical Stability PML Absorbing Boundary Condition BOR-FDTD Background Extension of PML to the General BOR Case Examples 558

9 xii Computational Electrodynamics: The Finite-Difference Time-Domain Method 12.7 Application to Particle Accelerator Physics Definitions and Concepts Examples Summary 566 References 566 Problems 567 Projects Analysis of Periodic Structures (James G. Maloney and Morris P. Kesler) Introduction Review of Scattering From Periodic Structures Direct Field Methods Normal Incidence Case Multiple Unit Cells for Oblique Incidence Sine-Cosine Method Angled-Update Method Introduction to the Field-Transformation Technique Multiple-Grid Approach Formulation Numerical Stability Analysis Numerical Dispersion Analysis Lossy Materials Lossy Screen Example Split-Field Method, Two Dimensions Formulation Numerical Stability Analysis Numerical Dispersion Analysis Lossy Materials Lossy Screen Example Split-Field Method, Three Dimensions Formulation Numerical Stability Analysis UPML Absorbing Boundary Condition Application of the Periodic FDTD Method Photonic В andgap S tructures Frequency-Selective Surfaces Antenna Arrays Summary and Conclusions 623 Acknowledgments 623 References 623 Projects Modeling of Antennas (James G. Maloney, Glenn S. Smith, Eric T. Thiele, and Om P. Gandhi) Introduction Formulation of the Antenna Problem Transmitting Antenna 628

10 Contents xiii Receiving Antenna Symmetry Excitation Antenna Feed Models Detailed Modeling of the Feed Simple Gap Feed Model for a Monopole Antenna Improved Simple Feed Model Near-to-Far-Field Transformations Use of Symmetry Time-Domain Near-to-Far-Field Transformation Frequency-Domain Near-Field to Far-Field Transformation Plane-Wave Source Effect of an Incremental Displacement of the Surface Currents Effect of an Incremental Time Shift Relation to Total-Field / Scattered-Field Lattice Zoning Case Study I: The Standard-Gain Horn Case Study II: The Vivaldi Slotline Array Background The Planar Element The Vivaldi Pair The Vivaldi Quad The Linear Phased Array Phased-Array Radiation Characteristics Indicated by the FDTD Modeling Active Impedance of the Phased Array Near-Field Simulations Generic 900-MHz Cellphone Handset in Free Space MHz Dipole Antenna Near a Layered Bone-Brain Half-Space MHz Dipole Antenna Near a Rectangular Brain Phantom MHz Infinitesimal Dipole Antenna Near a Spherical Brain Phantom ,900-MHz Half-Wavelength Dipole Near a Spherical Brain Phantom Selected Recent Applications Use of Photonic-Bandgap Materials Ground-Penetrating Radar Antenna-Radome Interaction Personal Wireless Communications Devices Biomedical Applications of Antennas Summary and Conclusions 697 References 697 Projects High-Speed Electronic Circuits With Active and Nonlinear Components (Melinda Piket-May, Bijan Houshmand, and Tatsuo Itoh) Introduction Basic Circuit Parameters Transmission Line Parameters Impedance S Parameters 707

11 xiv Computational Electrodynamics: The Finite-Difference Time-Domain Method 15.3 Differential Capacitance Calculation Differential Inductance Calculation Lumped Inductance Due to a Discontinuity Flux / Current Definition Fitting Z(co) or S(co) to an Equivalent Circuit Discussion: Choice of Methods Inductance of Complex Power-Distribution Systems Method Description Example: Multiplane Meshed Printed-Circuit Board Discussion Parallel Coplanar Microstrips Multilayered Interconnect Modeling Example Digital Signal Processing and Spectrum Estimation Prony's Method Autoregressive Models Pade Approximation Modeling of Lumped Circuit Elements FDTD Formulation Extended to Circuit Elements The Resistor The Resistive Voltage Source The Capacitor The Inductor The Diode The Bipolar Junction Transistor Direct Linking of FDTD and SPICE Basic Idea Norton Equivalent Circuit "Looking Into" the FDTD Space Lattice Thevenin Equivalent Circuit "Looking Into" the FDTD Space Lattice Case Study: A 6-GHz MESFET Amplifier Model Large-Signal Model Amplifier Configuration Analysis of the Circuit Without the Packaging Structure Analysis of the Circuit With the Packaging Structure Summary and Conclusions 759 Acknowledgments 760 References 761 Additional Bibliography 763 Projects Microcavity Optical Resonators Introduction Issues Related to FDTD Modeling of Optical Structures Optical Waveguides Material Dispersion and Nonlinearities Macroscopic Modeling of Optical Gain Media Theory Validation Studies Application to Vertical-Cavity Surface-Emitting Lasers Passive Studies 782

12 Contents xv Active Studies Microcavities Based on Photonic Bandgap Structures, Quasi One-Dimensional Case Microcavities Based on Photonic Bandgap Structures, Two-Dimensional Case Microcavity Ring Resonators FDTD Modeling Considerations Coupling to Straight Waveguides Coupling to Curved Waveguides Elongated Ring Designs Resonances Microcavity Disk Resonators Resonance Behavior Suppression of Higher Order Radial Whispering-Gallery Modes Additional FDTD Modeling Studies Summary and Conclusions 819 References 822 Additional Bibliography 825 Projects 826 Acronyms 827 About the Authors 831 Index 839

Computational Electrodynamics

Computational Electrodynamics Computational Electrodynamics The Finite-Difference Time-Domain Method Third Edition Allen Taflove Susan C. Hagness ARTECH HOUSE BOSTON I LONDON artechhouse.com Contents Preface to the Third Edition xix

More information

The Finite-Difference Time-Domain Method for Electromagnetics with MATLAB Simulations

The Finite-Difference Time-Domain Method for Electromagnetics with MATLAB Simulations The Finite-Difference Time-Domain Method for Electromagnetics with MATLAB Simulations Atef Z. Elsherbeni and Veysel Demir SciTech Publishing, Inc Raleigh, NC scitechpublishing.com Contents Preface Author

More information

Computational Electrodynamics

Computational Electrodynamics Computational Electrodynamics The Finite-Difference Time-Domain Method 1 Allen Taflove Artech House Boston London Contents Preface Chapter 1 Reinventing Electromagnetics 1.1 Background 1.1.1 The Heritage

More information

ELECTROMAGNETIC FIELDS AND WAVES

ELECTROMAGNETIC FIELDS AND WAVES ELECTROMAGNETIC FIELDS AND WAVES MAGDY F. ISKANDER Professor of Electrical Engineering University of Utah Englewood Cliffs, New Jersey 07632 CONTENTS PREFACE VECTOR ANALYSIS AND MAXWELL'S EQUATIONS IN

More information

Engineering Electromagnetics

Engineering Electromagnetics Nathan Ida Engineering Electromagnetics With 821 Illustrations Springer Contents Preface vu Vector Algebra 1 1.1 Introduction 1 1.2 Scalars and Vectors 2 1.3 Products of Vectors 13 1.4 Definition of Fields

More information

Multi-transmission Lines Loaded by Linear and Nonlinear Lumped Elements: FDTD Approach

Multi-transmission Lines Loaded by Linear and Nonlinear Lumped Elements: FDTD Approach Journal of Electrical Engineering 5 (2017) 67-73 doi: 10.17265/2328-2223/2017.02.002 D DAVID PUBLISHING Multi-transmission Lines Loaded by Linear and Nonlinear Lumped Elements: FDTD Approach Ismail ALAOUI

More information

UNIT I ELECTROSTATIC FIELDS

UNIT I ELECTROSTATIC FIELDS UNIT I ELECTROSTATIC FIELDS 1) Define electric potential and potential difference. 2) Name few applications of gauss law in electrostatics. 3) State point form of Ohm s Law. 4) State Divergence Theorem.

More information

ELECTROMAGNETISM. Second Edition. I. S. Grant W. R. Phillips. John Wiley & Sons. Department of Physics University of Manchester

ELECTROMAGNETISM. Second Edition. I. S. Grant W. R. Phillips. John Wiley & Sons. Department of Physics University of Manchester ELECTROMAGNETISM Second Edition I. S. Grant W. R. Phillips Department of Physics University of Manchester John Wiley & Sons CHICHESTER NEW YORK BRISBANE TORONTO SINGAPORE Flow diagram inside front cover

More information

Haus, Hermann A., and James R. Melcher. Electromagnetic Fields and Energy. Englewood Cliffs, NJ: Prentice-Hall, ISBN:

Haus, Hermann A., and James R. Melcher. Electromagnetic Fields and Energy. Englewood Cliffs, NJ: Prentice-Hall, ISBN: MIT OpenCourseWare http://ocw.mit.edu Haus, Hermann A., and James R. Melcher. Electromagnetic Fields and Energy. Englewood Cliffs, NJ: Prentice-Hall, 1989. ISBN: 9780132490207. Please use the following

More information

A Time Domain Approach to Power Integrity for Printed Circuit Boards

A Time Domain Approach to Power Integrity for Printed Circuit Boards A Time Domain Approach to Power Integrity for Printed Circuit Boards N. L. Mattey 1*, G. Edwards 2 and R. J. Hood 2 1 Electrical & Optical Systems Research Division, Faculty of Engineering, University

More information

CHAPTER 2. COULOMB S LAW AND ELECTRONIC FIELD INTENSITY. 2.3 Field Due to a Continuous Volume Charge Distribution

CHAPTER 2. COULOMB S LAW AND ELECTRONIC FIELD INTENSITY. 2.3 Field Due to a Continuous Volume Charge Distribution CONTENTS CHAPTER 1. VECTOR ANALYSIS 1. Scalars and Vectors 2. Vector Algebra 3. The Cartesian Coordinate System 4. Vector Cartesian Coordinate System 5. The Vector Field 6. The Dot Product 7. The Cross

More information

Engineering Electromagnetic Fields and Waves

Engineering Electromagnetic Fields and Waves CARL T. A. JOHNK Professor of Electrical Engineering University of Colorado, Boulder Engineering Electromagnetic Fields and Waves JOHN WILEY & SONS New York Chichester Brisbane Toronto Singapore CHAPTER

More information

Modul 3. Finite-difference time-domain (FDTD)

Modul 3. Finite-difference time-domain (FDTD) Modul 3 Finite-difference time-domain (FDTD) based on Dennis Sullivan, A Brief Introduction to The Finite-Difference Time-Domain (FDTD) Method http://www.mrc.uidaho.edu/~dennis/ece538-files/intro(fdtd).doc

More information

Contents. 1 Basic Equations 1. Acknowledgment. 1.1 The Maxwell Equations Constitutive Relations 11

Contents. 1 Basic Equations 1. Acknowledgment. 1.1 The Maxwell Equations Constitutive Relations 11 Preface Foreword Acknowledgment xvi xviii xix 1 Basic Equations 1 1.1 The Maxwell Equations 1 1.1.1 Boundary Conditions at Interfaces 4 1.1.2 Energy Conservation and Poynting s Theorem 9 1.2 Constitutive

More information

ELECTRICITY AND MAGNETISM

ELECTRICITY AND MAGNETISM THIRD EDITION ELECTRICITY AND MAGNETISM EDWARD M. PURCELL DAVID J. MORIN Harvard University, Massachusetts Щ CAMBRIDGE Ell UNIVERSITY PRESS Preface to the third edition of Volume 2 XIII CONTENTS Preface

More information

INTRODUCTION TO ELECTRODYNAMICS

INTRODUCTION TO ELECTRODYNAMICS INTRODUCTION TO ELECTRODYNAMICS Second Edition DAVID J. GRIFFITHS Department of Physics Reed College PRENTICE HALL, Englewood Cliffs, New Jersey 07632 CONTENTS Preface xi Advertisement 1 1 Vector Analysis

More information

Basic. Theory. ircuit. Charles A. Desoer. Ernest S. Kuh. and. McGraw-Hill Book Company

Basic. Theory. ircuit. Charles A. Desoer. Ernest S. Kuh. and. McGraw-Hill Book Company Basic C m ш ircuit Theory Charles A. Desoer and Ernest S. Kuh Department of Electrical Engineering and Computer Sciences University of California, Berkeley McGraw-Hill Book Company New York St. Louis San

More information

Divergent Fields, Charge, and Capacitance in FDTD Simulations

Divergent Fields, Charge, and Capacitance in FDTD Simulations Divergent Fields, Charge, and Capacitance in FDTD Simulations Christopher L. Wagner and John B. Schneider August 2, 1998 Abstract Finite-difference time-domain (FDTD) grids are often described as being

More information

Simulation of Electromagnetic Fields: The Finite-Difference Time-Domain (FDTD) Method and Its Applications

Simulation of Electromagnetic Fields: The Finite-Difference Time-Domain (FDTD) Method and Its Applications Simulation of Electromagnetic Fields: The Finite-Difference Time-Domain (FDTD) Method and Its Applications Veysel Demir, Ph.D. demir@ceet.niu.edu Department of Electrical Engineering, Northern Illinois

More information

COLLOCATED SIBC-FDTD METHOD FOR COATED CONDUCTORS AT OBLIQUE INCIDENCE

COLLOCATED SIBC-FDTD METHOD FOR COATED CONDUCTORS AT OBLIQUE INCIDENCE Progress In Electromagnetics Research M, Vol. 3, 239 252, 213 COLLOCATED SIBC-FDTD METHOD FOR COATED CONDUCTORS AT OBLIQUE INCIDENCE Lijuan Shi 1, 3, Lixia Yang 2, *, Hui Ma 2, and Jianning Ding 3 1 School

More information

Accelerator Physics. Tip World Scientific NEW JERSEY LONDON SINGAPORE BEIJING SHANGHAI HONG KONG TAIPEI BANGALORE. Second Edition. S. Y.

Accelerator Physics. Tip World Scientific NEW JERSEY LONDON SINGAPORE BEIJING SHANGHAI HONG KONG TAIPEI BANGALORE. Second Edition. S. Y. Accelerator Physics Second Edition S. Y. Lee Department of Physics, Indiana University Tip World Scientific NEW JERSEY LONDON SINGAPORE BEIJING SHANGHAI HONG KONG TAIPEI BANGALORE Contents Preface Preface

More information

444 Index Boundary condition at transmission line short circuit, 234 for normal component of B, 170, 180 for normal component of D, 169, 180 for tange

444 Index Boundary condition at transmission line short circuit, 234 for normal component of B, 170, 180 for normal component of D, 169, 180 for tange Index A. see Magnetic vector potential. Acceptor, 193 Addition of complex numbers, 19 of vectors, 3, 4 Admittance characteristic, 251 input, 211 line, 251 Ampere, definition of, 427 Ampere s circuital

More information

Classical Electrodynamics

Classical Electrodynamics Classical Electrodynamics Third Edition John David Jackson Professor Emeritus of Physics, University of California, Berkeley JOHN WILEY & SONS, INC. Contents Introduction and Survey 1 I.1 Maxwell Equations

More information

Publication II Wiley Periodicals. Reprinted by permission of John Wiley & Sons.

Publication II Wiley Periodicals. Reprinted by permission of John Wiley & Sons. Publication II Ilkka Laakso and Tero Uusitupa. 2008. Alternative approach for modeling material interfaces in FDTD. Microwave and Optical Technology Letters, volume 50, number 5, pages 1211-1214. 2008

More information

EFFICIENT SIMULATIONS OF PERIODIC STRUC- TURES WITH OBLIQUE INCIDENCE USING DIRECT SPECTRAL FDTD METHOD

EFFICIENT SIMULATIONS OF PERIODIC STRUC- TURES WITH OBLIQUE INCIDENCE USING DIRECT SPECTRAL FDTD METHOD Progress In Electromagnetics Research M, Vol. 17, 101 111, 2011 EFFICIENT SIMULATIONS OF PERIODIC STRUC- TURES WITH OBLIQUE INCIDENCE USING DIRECT SPECTRAL FDTD METHOD Y. J. Zhou, X. Y. Zhou, and T. J.

More information

Transmission Lines. Plane wave propagating in air Y unguided wave propagation. Transmission lines / waveguides Y. guided wave propagation

Transmission Lines. Plane wave propagating in air Y unguided wave propagation. Transmission lines / waveguides Y. guided wave propagation Transmission Lines Transmission lines and waveguides may be defined as devices used to guide energy from one point to another (from a source to a load). Transmission lines can consist of a set of conductors,

More information

Plane Waves and Planar Boundaries in FDTD Simulations

Plane Waves and Planar Boundaries in FDTD Simulations Plane Waves and Planar Boundaries in FDTD Simulations School of Electrical Engineering and Computer Science John B. Schneider Elec. Eng. & Comp. Sci. Washington State Univ. Pullman, WA Robert J. Kruhlak

More information

fiziks Institute for NET/JRF, GATE, IIT-JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES

fiziks Institute for NET/JRF, GATE, IIT-JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES Content-ELECTRICITY AND MAGNETISM 1. Electrostatics (1-58) 1.1 Coulomb s Law and Superposition Principle 1.1.1 Electric field 1.2 Gauss s law 1.2.1 Field lines and Electric flux 1.2.2 Applications 1.3

More information

Chap. 1 Fundamental Concepts

Chap. 1 Fundamental Concepts NE 2 Chap. 1 Fundamental Concepts Important Laws in Electromagnetics Coulomb s Law (1785) Gauss s Law (1839) Ampere s Law (1827) Ohm s Law (1827) Kirchhoff s Law (1845) Biot-Savart Law (1820) Faradays

More information

TECHNO INDIA BATANAGAR

TECHNO INDIA BATANAGAR TECHNO INDIA BATANAGAR ( DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING) QUESTION BANK- 2018 1.Vector Calculus Assistant Professor 9432183958.mukherjee@tib.edu.in 1. When the operator operates on

More information

Electromagnetic Theory for Microwaves and Optoelectronics

Electromagnetic Theory for Microwaves and Optoelectronics Keqian Zhang Dejie Li Electromagnetic Theory for Microwaves and Optoelectronics Translated by authors With 259 Figures Springer Contents 1 Basic Electromagnetic Theory 1 1.1 Maxwell's Equations 1 1.1.1

More information

USAGE OF NUMERICAL METHODS FOR ELECTROMAGNETIC SHIELDS OPTIMIZATION

USAGE OF NUMERICAL METHODS FOR ELECTROMAGNETIC SHIELDS OPTIMIZATION October 4-6, 2007 - Chiinu, Rep.Moldova USAGE OF NUMERICAL METHODS FOR ELECTROMAGNETIC SHIELDS OPTIMIZATION Ionu- P. NICA, Valeriu Gh. DAVID, /tefan URSACHE Gh. Asachi Technical University Iai, Faculty

More information

Periodic FDTD Characterization of Guiding and Radiation Properties of Negative Refractive Index Transmission Line Metamaterials

Periodic FDTD Characterization of Guiding and Radiation Properties of Negative Refractive Index Transmission Line Metamaterials Periodic FDTD Characterization of Guiding and Radiation Properties of Negative Refractive Index Transmission Line Metamaterials Costas D. Sarris The Edward S. Rogers Sr. Department of Electrical and Computer

More information

Electromagnetic Theory for Microwaves and Optoelectronics

Electromagnetic Theory for Microwaves and Optoelectronics Keqian Zhang Dejie Li Electromagnetic Theory for Microwaves and Optoelectronics Second Edition With 280 Figures and 13 Tables 4u Springer Basic Electromagnetic Theory 1 1.1 Maxwell's Equations 1 1.1.1

More information

Arbitrary Patterning Techniques for Anisotropic Surfaces, and Line Waves

Arbitrary Patterning Techniques for Anisotropic Surfaces, and Line Waves Arbitrary Patterning Techniques for Anisotropic Surfaces, and Line Waves Dan Sievenpiper, Jiyeon Lee, and Dia a Bisharat January 11, 2016 1 Outline Arbitrary Anisotropic Surface Patterning Surface wave

More information

CLASSICAL ELECTRICITY

CLASSICAL ELECTRICITY CLASSICAL ELECTRICITY AND MAGNETISM by WOLFGANG K. H. PANOFSKY Stanford University and MELBA PHILLIPS Washington University SECOND EDITION ADDISON-WESLEY PUBLISHING COMPANY Reading, Massachusetts Menlo

More information

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK SUB.NAME : ELECTROMAGNETIC FIELDS SUBJECT CODE : EC 2253 YEAR / SEMESTER : II / IV UNIT- I - STATIC ELECTRIC

More information

Application of Computational Fluid Dynamics (CFD) Based Technology to Computational Electromagnetics Ramesh K. Agarwal

Application of Computational Fluid Dynamics (CFD) Based Technology to Computational Electromagnetics Ramesh K. Agarwal Application of Computational Fluid Dynamics (CFD) Based Technology to Computational Electromagnetics Ramesh K. Agarwal IEEE Distinguished Lecturer The William Palm Professor of Engineering Washington University

More information

Comparison Study of the Band-gap Structure of a 1D-Photonic Crystal by Using TMM and FDTD Analyses

Comparison Study of the Band-gap Structure of a 1D-Photonic Crystal by Using TMM and FDTD Analyses Journal of the Korean Physical Society, Vol. 58, No. 4, April 2011, pp. 1014 1020 Comparison Study of the Band-gap Structure of a 1D-Photonic Crystal by Using TMM and FDTD Analyses Jian-Bo Chen, Yan Shen,

More information

Propagation of Surface Plasmon Polariton in the Single Interface of Gallium Lanthanum Sulfide and Silver

Propagation of Surface Plasmon Polariton in the Single Interface of Gallium Lanthanum Sulfide and Silver PHOTONIC SENSORS / Vol., No., : 58 6 Propagation of Surface Plasmon Polariton in the Single Interface of Gallium Lanthanum Sulfide and Silver Rakibul Hasan SAGOR, Md. Ghulam SABER *, and Md. Ruhul AMIN

More information

A thesis submitted to the University of Manchester for the degree of Doctor of Philosophy in the Faculty of Science and Engineering

A thesis submitted to the University of Manchester for the degree of Doctor of Philosophy in the Faculty of Science and Engineering INTRODUCTION OF THE DEBYE MEDIA TO THE FILTERED FINITE-DIFFERENCE TIME-DOMAIN METHOD WITH COMPLEX-FREQUENCY-SHIFTED PERFECTLY MATCHED LAYER ABSORBING BOUNDARY CONDITIONS A thesis submitted to the University

More information

Optics, Optoelectronics and Photonics

Optics, Optoelectronics and Photonics Optics, Optoelectronics and Photonics Engineering Principles and Applications Alan Billings Emeritus Professor, University of Western Australia New York London Toronto Sydney Tokyo Singapore v Contents

More information

Spectral Domain Analysis of Open Planar Transmission Lines

Spectral Domain Analysis of Open Planar Transmission Lines Mikrotalasna revija Novembar 4. Spectral Domain Analysis of Open Planar Transmission Lines Ján Zehentner, Jan Mrkvica, Jan Macháč Abstract The paper presents a new code calculating the basic characteristics

More information

Study of Specific Absorption Rate (SAR) in the human head by metamaterial attachment

Study of Specific Absorption Rate (SAR) in the human head by metamaterial attachment Study of Specific Absorption Rate (SAR) in the human head by metamaterial attachment M. T Islam 1a), M. R. I. Faruque 2b), and N. Misran 1,2c) 1 Institute of Space Science (ANGKASA), Universiti Kebangsaan

More information

Diode Lasers and Photonic Integrated Circuits

Diode Lasers and Photonic Integrated Circuits Diode Lasers and Photonic Integrated Circuits L. A. COLDREN S. W. CORZINE University of California Santa Barbara, California A WILEY-INTERSCIENCE PUBLICATION JOHN WILEY & SONS, INC. NEW YORK / CHICHESTER

More information

Finite-difference time-domain calculation of spontaneous emission lifetime in a microcavity

Finite-difference time-domain calculation of spontaneous emission lifetime in a microcavity Xu et al. Vol. 16, No. 3/March 1999/J. Opt. Soc. Am. B 465 Finite-difference time-domain calculation of spontaneous emission lifetime in a microcavity Y. Xu, J. S. Vučković, R. K. Lee, O. J. Painter, A.

More information

APPLIED PARTIM DIFFERENTIAL EQUATIONS with Fourier Series and Boundary Value Problems

APPLIED PARTIM DIFFERENTIAL EQUATIONS with Fourier Series and Boundary Value Problems APPLIED PARTIM DIFFERENTIAL EQUATIONS with Fourier Series and Boundary Value Problems Fourth Edition Richard Haberman Department of Mathematics Southern Methodist University PEARSON Prentice Hall PEARSON

More information

Advanced Engineering Electromagnetics, ECE750 LECTURE 11 THE FDTD METHOD PART III

Advanced Engineering Electromagnetics, ECE750 LECTURE 11 THE FDTD METHOD PART III Advanced Engineering Electromagnetics, ECE750 LECTURE 11 THE FDTD METHOD PART III 1 11. Yee s discrete algorithm Maxwell s equations are discretized using central FDs. We set the magnetic loss equal to

More information

METHODS OF THEORETICAL PHYSICS

METHODS OF THEORETICAL PHYSICS METHODS OF THEORETICAL PHYSICS Philip M. Morse PROFESSOR OF PHYSICS MASSACHUSETTS INSTITUTE OF TECHNOLOGY Herman Feshbach PROFESSOR OF PHYSICS MASSACHUSETTS INSTITUTE OF TECHNOLOGY PART II: CHAPTERS 9

More information

Boundary. DIFFERENTIAL EQUATIONS with Fourier Series and. Value Problems APPLIED PARTIAL. Fifth Edition. Richard Haberman PEARSON

Boundary. DIFFERENTIAL EQUATIONS with Fourier Series and. Value Problems APPLIED PARTIAL. Fifth Edition. Richard Haberman PEARSON APPLIED PARTIAL DIFFERENTIAL EQUATIONS with Fourier Series and Boundary Value Problems Fifth Edition Richard Haberman Southern Methodist University PEARSON Boston Columbus Indianapolis New York San Francisco

More information

PRINCIPLES OF PHYSICAL OPTICS

PRINCIPLES OF PHYSICAL OPTICS PRINCIPLES OF PHYSICAL OPTICS C. A. Bennett University of North Carolina At Asheville WILEY- INTERSCIENCE A JOHN WILEY & SONS, INC., PUBLICATION CONTENTS Preface 1 The Physics of Waves 1 1.1 Introduction

More information

ELECTRODYNAMICS OF CONTINUOUS MEDIA

ELECTRODYNAMICS OF CONTINUOUS MEDIA ELECTRODYNAMICS OF CONTINUOUS MEDIA by L. D. LANDAU and E. M. LIFSHITZ Institute of Physical Problems, USSR Academy of Sciences Volume 8 of Course of Theoretical Physics Translated from the Russian by

More information

THE total-field/scattered-field (TFSF) boundary, first proposed

THE total-field/scattered-field (TFSF) boundary, first proposed 454 IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, VOL. 5, 2006 Analytic Field Propagation TFSF Boundary for FDTD Problems Involving Planar Interfaces: Lossy Material and Evanescent Fields Kakhkhor Abdijalilov

More information

From Active Metamaterials to Transformation Electromagnetics: AMULET from the academic's perspective

From Active Metamaterials to Transformation Electromagnetics: AMULET from the academic's perspective From Active Metamaterials to Transformation Electromagnetics: AMULET from the academic's perspective Khalid Z. Rajab and Yang Hao School of Electronic Engineering and Computer Science, Queen Mary University

More information

Distributed feedback semiconductor lasers

Distributed feedback semiconductor lasers Distributed feedback semiconductor lasers John Carroll, James Whiteaway & Dick Plumb The Institution of Electrical Engineers SPIE Optical Engineering Press 1 Preface Acknowledgments Principal abbreviations

More information

Simulation and Numerical Modeling of a Rectangular Patch Antenna Using Finite Difference Time Domain (FDTD) Method

Simulation and Numerical Modeling of a Rectangular Patch Antenna Using Finite Difference Time Domain (FDTD) Method Journal of Computer Science and Information Technology June 2014, Vol. 2, No. 2, pp. 01-08 ISSN: 2334-2366 (Print), 2334-2374 (Online) Copyright The Author(s). 2014. All Rights Reserved. Published by American

More information

A Single-Field Finite-Difference Time-Domain Formulations for Electromagnetic Simulations

A Single-Field Finite-Difference Time-Domain Formulations for Electromagnetic Simulations Syracuse University SURFACE Electrical Engineering and Computer Science - Dissertations College of Engineering and Computer Science 2011 A Single-Field Finite-Difference Time-Domain Formulations for Electromagnetic

More information

1 Chapter 8 Maxwell s Equations

1 Chapter 8 Maxwell s Equations Electromagnetic Waves ECEN 3410 Prof. Wagner Final Review Questions 1 Chapter 8 Maxwell s Equations 1. Describe the integral form of charge conservation within a volume V through a surface S, and give

More information

FINITE ELEMENTS, ELECTROMAGNETICS AND DESIGN

FINITE ELEMENTS, ELECTROMAGNETICS AND DESIGN FINITE ELEMENTS, ELECTROMAGNETICS AND DESIGN Edited by S. RATNAJEEVAN H. HOOLE Professor of Engineering Harvey Mudd College Claremont, CA, USA and Senior Fellow, 1993/94 Department of Electrical Engineering

More information

Spontaneous emission rate of an electric dipole in a general microcavity

Spontaneous emission rate of an electric dipole in a general microcavity PHYSICAL REVIEW B VOLUME 60, NUMBER 7 15 AUGUST 1999-I Spontaneous emission rate of an electric dipole in a general microcavity Jeong-Ki Hwang, Han-Youl Ryu, and Yong-Hee Lee Department of Physics, Korea

More information

Lasers and Electro-optics

Lasers and Electro-optics Lasers and Electro-optics Second Edition CHRISTOPHER C. DAVIS University of Maryland III ^0 CAMBRIDGE UNIVERSITY PRESS Preface to the Second Edition page xv 1 Electromagnetic waves, light, and lasers 1

More information

Electromagnetic Waves

Electromagnetic Waves Electromagnetic Waves Maxwell s equations predict the propagation of electromagnetic energy away from time-varying sources (current and charge) in the form of waves. Consider a linear, homogeneous, isotropic

More information

Publication I Institute of Physics Publishing (IOPP) Reprinted by permission of Institute of Physics Publishing.

Publication I Institute of Physics Publishing (IOPP) Reprinted by permission of Institute of Physics Publishing. Publication I Ilkka Laakso, Sami Ilvonen, and Tero Uusitupa. 7. Performance of convolutional PML absorbing boundary conditions in finite-difference time-domain SAR calculations. Physics in Medicine and

More information

Roberto B. Armenta and Costas D. Sarris

Roberto B. Armenta and Costas D. Sarris A Method for Introducing Nonuniform Grids into the FDTD Solution of the Transmission-Line Equations Based on the Renormalization of the Per-Unit-Length Parameters Roberto B. Armenta and Costas D. Sarris

More information

TENTATIVE CONTENTS OF THE COURSE # EE-271 ENGINEERING ELECTROMAGNETICS, FS-2012 (as of 09/13/12) Dr. Marina Y. Koledintseva

TENTATIVE CONTENTS OF THE COURSE # EE-271 ENGINEERING ELECTROMAGNETICS, FS-2012 (as of 09/13/12) Dr. Marina Y. Koledintseva TENTATIVE CONTENTS OF THE COURSE # EE-271 ENGINEERING ELECTROMAGNETICS, FS-2012 (as of 09/13/12) Dr. Marina Y. Koledintseva Part 1. Introduction Basic Physics and Mathematics for Electromagnetics. Lecture

More information

Numerical Assessment of Finite Difference Time Domain and Complex-Envelope Alternating-Direction-Implicit Finite-Difference-Time-Domain

Numerical Assessment of Finite Difference Time Domain and Complex-Envelope Alternating-Direction-Implicit Finite-Difference-Time-Domain Proceedings of the Federated Conference on Computer Science and Information Systems pp. 255 260 ISBN 978-83-60810-22-4 Numerical Assessment of Finite Difference Time Domain and Complex-Envelope Alternating-Direction-Implicit

More information

THE FINITE-DIFFERENCE TIME-DOMAIN (FDTD) METHOD

THE FINITE-DIFFERENCE TIME-DOMAIN (FDTD) METHOD THE FINITE-DIFFERENCE TIME-DOMAIN (FDTD) METHOD Applied to the analysis of crosstalk between parallel striplines Edward Chan June 10, 1996 0. Introduction 1. The FDTD method 1.1 Maxwell s equations 1.2

More information

Density of modes maps for design of photonic crystal devices

Density of modes maps for design of photonic crystal devices RESEARCH Revista Mexicana de Física 62 (2016) 193 198 MAY-JUNE 2016 Density of modes maps for design of photonic crystal devices I. Guryev, I. Sukhoivanov, R.I. Mata Chavez, N. Gurieva, J.A. Andrade Lucio,

More information

Electromagnetics in COMSOL Multiphysics is extended by add-on Modules

Electromagnetics in COMSOL Multiphysics is extended by add-on Modules AC/DC Module Electromagnetics in COMSOL Multiphysics is extended by add-on Modules 1) Start Here 2) Add Modules based upon your needs 3) Additional Modules extend the physics you can address 4) Interface

More information

INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad Electronics and Communicaton Engineering

INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad Electronics and Communicaton Engineering INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad - 00 04 Electronics and Communicaton Engineering Question Bank Course Name : Electromagnetic Theory and Transmission Lines (EMTL) Course Code :

More information

Modeling of Kerr non-linear photonic components with mode expansion

Modeling of Kerr non-linear photonic components with mode expansion Modeling of Kerr non-linear photonic components with mode expansion Björn Maes (bjorn.maes@intec.ugent.be), Peter Bienstman and Roel Baets Department of Information Technology, Ghent University IMEC, St.-Pietersnieuwstraat

More information

Generalized Analysis of Stability and Numerical Dispersion in the Discrete-Convolution FDTD Method

Generalized Analysis of Stability and Numerical Dispersion in the Discrete-Convolution FDTD Method IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 48, NO. 6, JUNE 2000 887 Generalized Analysis of Stability and Numerical Dispersion in the Discrete-Convolution FDTD Method William A. Beck, Member,

More information

Finite Difference Solution of Maxwell s Equations

Finite Difference Solution of Maxwell s Equations Chapter 1 Finite Difference Solution of Maxwell s Equations 1.1 Maxwell s Equations The principles of electromagnetism have been deduced from experimental observations. These principles are Faraday s law,

More information

Author(s) Tamayama, Y; Nakanishi, T; Sugiyama. Citation PHYSICAL REVIEW B (2006), 73(19)

Author(s) Tamayama, Y; Nakanishi, T; Sugiyama. Citation PHYSICAL REVIEW B (2006), 73(19) Observation of Brewster's effect fo Titleelectromagnetic waves in metamateri theory Author(s) Tamayama, Y; Nakanishi, T; Sugiyama Citation PHYSICAL REVIEW B (2006), 73(19) Issue Date 2006-05 URL http://hdl.handle.net/2433/39884

More information

Physics of Classical Electromagnetism

Physics of Classical Electromagnetism Physics of Classical Electromagnetism Minoru Fujimoto Physics of Classical Electromagnetism Minoru Fujimoto Department of Physics University of Guelph Guelph, Ontario Canada, N1G 2W1 Library of Congress

More information

AISSCE 2016 EXPECTED (SURE SHORT) QUESTIONS WEIGHTAGE-WISE 2016

AISSCE 2016 EXPECTED (SURE SHORT) QUESTIONS WEIGHTAGE-WISE 2016 CLASS: XII AISSCE 2016 Subject: Physics EXPECTED (SURE SHORT) QUESTIONS WEIGHTAGE-WISE 2016 Q3 Section A ( 1 Mark ) A force F is acting between two charges placed some distances apart in vacuum. If a brass

More information

Full Wave Analysis of RF Signal Attenuation in a Lossy Rough Surface Cave Using a High Order Time Domain Vector Finite Element Method

Full Wave Analysis of RF Signal Attenuation in a Lossy Rough Surface Cave Using a High Order Time Domain Vector Finite Element Method Progress In Electromagnetics Research Symposium 2006, Cambridge, USA, March 26-29 425 Full Wave Analysis of RF Signal Attenuation in a Lossy Rough Surface Cave Using a High Order Time Domain Vector Finite

More information

Electromagnetic wave propagation. ELEC 041-Modeling and design of electromagnetic systems

Electromagnetic wave propagation. ELEC 041-Modeling and design of electromagnetic systems Electromagnetic wave propagation ELEC 041-Modeling and design of electromagnetic systems EM wave propagation In general, open problems with a computation domain extending (in theory) to infinity not bounded

More information

New Scaling Factors of 2-D Isotropic-Dispersion Finite Difference Time Domain (ID-FDTD) Algorithm for Lossy Media

New Scaling Factors of 2-D Isotropic-Dispersion Finite Difference Time Domain (ID-FDTD) Algorithm for Lossy Media IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 56, NO., FEBRUARY 8 63 is shown by squares. Each point is computed by averaging reflection coefficient values calculated for each component of the regular

More information

B. H. Jung Department of Information and Communication Engineering Hoseo University Asan, Chungnam , Korea

B. H. Jung Department of Information and Communication Engineering Hoseo University Asan, Chungnam , Korea Progress In Electromagnetics Research, PIER 77, 111 120, 2007 ANALYSIS OF TRANSIENT ELECTROMAGNETIC SCATTERING WITH PLANE WAVE INCIDENCE USING MOD-FDM B. H. Jung Department of Information and Communication

More information

/$ IEEE

/$ IEEE IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS, VOL. 55, NO. 9, SEPTEMBER 2008 937 Analytical Stability Condition of the Latency Insertion Method for Nonuniform GLC Circuits Subramanian N.

More information

Polarized Light. Second Edition, Revised and Expanded. Dennis Goldstein Air Force Research Laboratory Eglin Air Force Base, Florida, U.S.A.

Polarized Light. Second Edition, Revised and Expanded. Dennis Goldstein Air Force Research Laboratory Eglin Air Force Base, Florida, U.S.A. Polarized Light Second Edition, Revised and Expanded Dennis Goldstein Air Force Research Laboratory Eglin Air Force Base, Florida, U.S.A. ш DEK KER MARCEL DEKKER, INC. NEW YORK BASEL Contents Preface to

More information

Presented at the COMSOL Conference 2009 Milan. Analysis of Electromagnetic Propagation for Evaluating the

Presented at the COMSOL Conference 2009 Milan. Analysis of Electromagnetic Propagation for Evaluating the Presented at the COMSOL Conference 2009 Milan Analysis of Electromagnetic Propagation for Evaluating the Dimensions of a Large Lossy Medium A. Pellegrini, FCosta F. 14-16 October 2009 Outline Introduction

More information

Dispersion of Homogeneous and Inhomogeneous Waves in the Yee Finite-Difference Time-Domain Grid

Dispersion of Homogeneous and Inhomogeneous Waves in the Yee Finite-Difference Time-Domain Grid 280 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 49, NO. 2, FEBRUARY 2001 Dispersion of Homogeneous and Inhomogeneous Waves in the Yee Finite-Difference Time-Domain Grid John B. Schneider,

More information

Perfectly Matched Layer (PML) for Computational Electromagnetics

Perfectly Matched Layer (PML) for Computational Electromagnetics Perfectly Matched Layer (PML) for Computational Electromagnetics Copyright 2007 by Morgan & Claypool All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or

More information

CBSE 12th Physics 2016 Unsolved Paper Delhi Board ARYAN INSTITUTE

CBSE 12th Physics 2016 Unsolved Paper Delhi Board ARYAN INSTITUTE CBSE 12th Physics 2016 Unsolved Paper Delhi Board CBSE 12th Physics 2016 Unsolved Paper Delhi Board TIME - 3HR. QUESTIONS - 26 THE MARKS ARE MENTIONED ON EACH QUESTION SECTION-A Q.1. A point charge +Q

More information

THE ADI-FDTD METHOD INCLUDING LUMPED NET- WORKS USING PIECEWISE LINEAR RECURSIVE CON- VOLUTION TECHNIQUE

THE ADI-FDTD METHOD INCLUDING LUMPED NET- WORKS USING PIECEWISE LINEAR RECURSIVE CON- VOLUTION TECHNIQUE Progress In Electromagnetics Research M, Vol. 30, 67 77, 203 THE ADI-FDTD METHOD INCLUDING LUMPED NET- WORKS USING PIECEWISE LINEAR RECURSIVE CON- VOLUTION TECHNIQUE Fen Xia, Qing-Xin Chu *, Yong-Dan Kong,

More information

A MATLAB GUI FOR SIMULATING THE PROPAGATION OF THE ELECTROMAGNETIC FIELD IN A 2-D INFINITE SPACE

A MATLAB GUI FOR SIMULATING THE PROPAGATION OF THE ELECTROMAGNETIC FIELD IN A 2-D INFINITE SPACE A MATLAB GUI FOR SIMULATING THE PROPAGATION OF THE ELECTROMAGNETIC FIELD IN A 2-D INFINITE SPACE Ioana SĂRĂCUŢ Victor POPESCU Marina Dana ŢOPA Technical University of Cluj-Napoca, G. Bariţiu Street 26-28,

More information

Liquid Crystals IAM-CHOON 1(1100 .,4 WILEY 2007 WILEY-INTERSCIENCE A JOHN WILEY & SONS, INC., PUBLICATION. 'i; Second Edition. n z

Liquid Crystals IAM-CHOON 1(1100 .,4 WILEY 2007 WILEY-INTERSCIENCE A JOHN WILEY & SONS, INC., PUBLICATION. 'i; Second Edition. n z Liquid Crystals Second Edition IAM-CHOON 1(1100.,4 z 'i; BICENTCNNIAL 1 8 0 7 WILEY 2007 DICENTENNIAL n z z r WILEY-INTERSCIENCE A JOHN WILEY & SONS, INC., PUBLICATION Contents Preface xiii Chapter 1.

More information

SPHERICAL NEAR-FIELD ANTENNA MEASUREMENTS

SPHERICAL NEAR-FIELD ANTENNA MEASUREMENTS SPHERICAL NEAR-FIELD ANTENNA MEASUREMENTS Edited by J.E.Hansen Peter Peregrinus Ltd. on behalf of the Institution of Electrical Engineers Contents Contributing authors listed Preface v xiii 1 Introduction

More information

PROCEEDINGS OF SPIE. FDTD method and models in optical education. Xiaogang Lin, Nan Wan, Lingdong Weng, Hao Zhu, Jihe Du

PROCEEDINGS OF SPIE. FDTD method and models in optical education. Xiaogang Lin, Nan Wan, Lingdong Weng, Hao Zhu, Jihe Du PROCEEDINGS OF SPIE SPIEDigitalLibrary.org/conference-proceedings-of-spie FDTD method and models in optical education Xiaogang Lin, Nan Wan, Lingdong Weng, Hao Zhu, Jihe Du Xiaogang Lin, Nan Wan, Lingdong

More information

Angular-Stability Low-Profile Miniaturized Frequency Selective Surface Based on Complementary Structure

Angular-Stability Low-Profile Miniaturized Frequency Selective Surface Based on Complementary Structure Progress In Electromagnetics Research M, Vol. 57, 119 128, 2017 Angular-Stability Low-Profile Miniaturized Frequency Selective Surface Based on Complementary Structure Wenxing Li and Yuanyuan Li * Abstract

More information

PRE-BOARD EXAMINATION STD : XII MARKS : 150

PRE-BOARD EXAMINATION STD : XII MARKS : 150 PRE-BOARD EXAMINATION STD : XII MARKS : 150 SUB : PHYSICS TIME : 3.00 Hrs I.Choose the correct answer: 30x1=30 1.Which of the following quantities not a scalar? a)electric flux b) electric potential c)

More information

High-Order FDTD with Exponential Time Differencing Algorithm for Modeling Wave Propagation in Debye Dispersive Materials

High-Order FDTD with Exponential Time Differencing Algorithm for Modeling Wave Propagation in Debye Dispersive Materials Progress In Electromagnetics Research Letters, Vol. 77, 103 107, 01 High-Order FDTD with Exponential Time Differencing Algorithm for Modeling Wave Propagation in Debye Dispersive Materials Wei-Jun Chen

More information

Microwave Network Analysis

Microwave Network Analysis Prof. Dr. Mohammad Tariqul Islam titareq@gmail.my tariqul@ukm.edu.my Microwave Network Analysis 1 Text Book D.M. Pozar, Microwave engineering, 3 rd edition, 2005 by John-Wiley & Sons. Fawwaz T. ILABY,

More information

3.4 Elliptical Parameters of the Polarization Ellipse References

3.4 Elliptical Parameters of the Polarization Ellipse References Contents Preface to the Second Edition Preface to the First Edition A Historical Note Edward Collett iii v xiii PART 1: THE CLASSICAL OPTICAL FIELD Chapter 1 Chapter 2 Chapter 3 Chapter 4 Introduction

More information

1) Electronic Circuits & Laboratory

1) Electronic Circuits & Laboratory ENSEA COURSES TAUGHT IN ENGLISH SPRING Semester 1) Electronic Circuits & Laboratory Lecture : 45 hours Laboratory : 45 hours US Credits : 6 Analysis of integrated amplifiers with bipolar junction transistors

More information

New Aspects of Old Equations: Metamaterials and Beyond (Part 2) 신종화 KAIST 물리학과

New Aspects of Old Equations: Metamaterials and Beyond (Part 2) 신종화 KAIST 물리학과 New Aspects of Old Equations: Metamaterials and Beyond (Part 2) 신종화 KAIST 물리학과 Metamaterial Near field Configuration in Periodic Structures New Material Material and Metamaterial Material Metamaterial

More information

Finite-Difference Time-Domain and Beam Propagation Methods for Maxwell s Equations

Finite-Difference Time-Domain and Beam Propagation Methods for Maxwell s Equations Finite-Difference Time-Domain and Beam Propagation Methods for Maxwell s Equations Wolfgang Freude and Jan Brosi Institute of High-Frequency and Quantum Electronics (IHQ), University of Karlsruhe, Germany

More information

Introduction to Mathematical Physics

Introduction to Mathematical Physics Introduction to Mathematical Physics Methods and Concepts Second Edition Chun Wa Wong Department of Physics and Astronomy University of California Los Angeles OXFORD UNIVERSITY PRESS Contents 1 Vectors

More information