The Physics of Structure-Structure Impact in Free Surface Flow

Size: px
Start display at page:

Download "The Physics of Structure-Structure Impact in Free Surface Flow"

Transcription

1 The Physics of Structure-Structure Impact in Free Surface Flow Solomon Yim Gang Cao Dept. of Civil Engineering Oregon State University 1

2 Tsunami Effects on Bridges Dec. 26, 2004 Banda Aceh, Indonesia 2

3 Storm Surge Effects on Bridges Aug. 29, 2005 Biloxi, MS, Gulf of Mexico 3

4 Tsunami/Storm Surge Effects on Bridges Dec. 26, 2004 Banda Aceh, Indonesia Aug. 29, 2005 Biloxi, MS, Gulf of Mexico 4

5 Tsunami/Storm Surge Effects on Bridges Dec. 26, 2004 Banda Aceh, Indonesia Aug. 29, 2005 Mobile River, AL, Gulf of Mexico 5

6 Tsunami Effects on Bridges Dec. 26, 2004 Southeast India 6

7 Storm Surge Effects on Bridges Aug. 29, 2005 Mobile, AL 7

8 Tsunami transported bridge at Jantang, Aceh (Sumatra) Higman 8

9 Navier-Stokes Equations u i u σ i 1 ij + uj = + j ρ j t x x f i u x i i = 0 9

10 1 0

11 3D Model of an Oregon Coastal Bridge 1 1

12 3D Model of an Oregon Coastal Bridge 1 2

13 PFEM 2D Fluid-Structure Interaction Examples (CIMNE) 1 3

14 PFEM 2D Fluid-Structure Interaction Examples (CIMNE) 1 4

15 PFEM 2D Fluid-Structure Interaction Examples (CIMNE) 1 5

16 RANS with k-epsilon closure model U x i i = 0 U U P ρ U τ t x x x i i ij + j = + j j i f i k k μ t k Ui ρ + ρu j = μ+ ρuu i j ρε t xj xj σ k xj xj 2 ε ε μ t ε ε Ui ε ρ + ρu j = μ + fε1cε1ρ uu i j fε2cε2ρ t xj xj σ ε xj k xj k U U i j 2 Uk whereτ ij = ( μ+ μt )( + ) ( μ + ρk) δij x x 3 x j i k ρ U U i j 2 uu μ i j = t( + ) k ij x x 3 ρ δ j i 1 6

17 Structure-Structure Impact Structure - structure impact in a fluid medium At low relative speed At high relative speed Free surface effects Computational Aspects 1 7

18 Wall damping function (LRN) Explicitly boundary layer dependent coefficients μ = t ρ fc μ μ 2 k ε f ε = 1+ f μ 3 where f μ R k = 1 e 1+ Rt and R k = 1/2 k y ν Implicitly boundary layer dependent coefficient f = e Rt ε where R t 2 k = νε 1 8

19 Structure-Structure Impact at Low Relative Speed (Low Re) V1 V2 Laminar boundary layer on each structural surface Fluid jets in both orthogonal directions during approach Singular point may appear Overlapping of boundary layers Reversed flow directions and opposite singular effect during separation 1 9

20 Boundary Layer Laminar and turbulent shear in the near wall region 2 0

21 Boundary Layer Typical velocity profile for a turbulent boundary layer 2 1

22 Structure-Structure Impact at Low Relative Speed (Low Re) V1 U Singular point V2 Laminar boundary layer on each structural surface Fluid jets in both orthogonal directions during approach Singular point may appear Overlapping /interacting boundary layers Reversed flow directions and opposite singular effect during separation 2 2

23 Structure-Structure Impact at Low Relative Speed (Low Re) V1 y1 P y2 V2 Laminar boundary layer on each structural surface Fluid jets in both orthogonal directions during approach Singular point may appear Overlapping /interacting boundary layers Reversed flow directions and opposite singular effect during separation 2 3

24 Structure-Structure Impact at Low Relative Speed (Low Re) Laminar boundary layer on each structural surface Fluid jets in both orthogonal directions during approach Singular point may appear Overlapping /interacting boundary layers Reversed flow directions and opposite singular effect during separation 2 4

25 Structure-Structure Impact at Low Relative Speed (Low Re) V1 U Singular point V2 Laminar boundary layer on each structural surface Fluid jets in both orthogonal directions during approach Singular point may appear Overlapping of boundary layers Reversed flow directions and opposite singular effect during separation 2 5

26 Structure-Structure Impact at High Relative Speed (High Re) Turbulent boundary layer on each structural surface Fluid jets in both orthogonal directions during approach Singular point may appear Overlapping/interacting boundary layers Reversed flow directions and opposite singular effect during separation Cavitation may occur 2 6

27 Structure-Structure Impact at High Relative Speed (High Re) Turbulent boundary layer on each structural surface Fluid jets in both orthogonal directions during approach Singular point may appear Overlapping/interacting boundary layers Reversed flow directions and opposite singular effect during separation Cavitation may occur 2 7

28 Structure-Structure Impact at High Relative Speed (High Re) Turbulent boundary layer on each structural surface Fluid jets in both orthogonal directions during approach Singular point may appear Overlapping/interacting boundary layers Reversed flow directions and opposite singular effect during separation Cavitation may occur 2 8

29 Structure-Structure Impact at High Relative Speed (High Re) V1 P V2 Turbulent boundary layer on each structural surface Fluid jets in both orthogonal directions during approach Singular point may appear Overlapping /interacting boundary layers Reversed flow directions and opposite singular effect during separation Cavitation may occur 2 9

30 Structure-Structure Impact at High Relative Speed (High Re) V1 V2 Turbulent boundary layer on each structural surface Fluid jets in both orthogonal directions during approach Singular point may appear Overlapping of boundary layers Reversed flow directions and opposite singular effect during separation Cavitation may occur 3 0

31 Cavitation Cavitation in propeller blades The same phenomenon happens in the tip and root of a propeller blade. The corrosion caused by the implosion of bubbles will crack the blade when sustained cavitation occurs Well studied in propeller analysis literature 3 1

32 Effects of Free Surface V1 P=constant V2 Constant pressure at free surface Preferred fluid jet direction during approach Singular point may appear Interaction of free surface with boundary layers Cavitation may occur and interact with free surface 3 2

33 Effects of Free Surface Constant pressure at free surface Preferred fluid jet direction during approach Singular point may appear Interaction of free surface with boundary layers Cavitation may occur and interact with free surface 3 3

34 Effects of Free Surface Constant pressure at free surface Preferred fluid jet direction during approach Singular point may appear Interaction of free surface with boundary layers Cavitation may occur and interact with free surface 3 4

35 Effects of Free Surface V1 P=constant V2 Constant pressure at free surface Preferred fluid jet direction during approach Singular point may appear Interaction of free surface with boundary layers Cavitation may occur and interact with free surface 3 5

36 Effects of Free Surface Constant pressure at free surface Preferred fluid jet direction during approach Singular point may appear Interaction of free surface with boundary layers Cavitation may occur and interact with free surface 3 6

37 Computational Aspects V1 y1 P y2 V2 Which normal distance is valid when using damping functions? y1 or y2? When the solid is very close to the wall, say, when y1 and y2 are overlapped, how to calculate y1? Directly use the law for linear layer? After the contact elements are generated in numerical code, can we just neglect this boundary layer? 3 7

38 Summary The physics of structure-structure impact in free surface flow have been examined. The following are important issues that need to be addressed: Interaction between boundary layers around the structures needs to be taken into account for both low and high Re flows Cavitation in high Re flow (propeller literature) Free surface interaction with structural boundary layers Free surface interaction with cavitation 3 8

Numerical Heat and Mass Transfer

Numerical Heat and Mass Transfer Master Degree in Mechanical Engineering Numerical Heat and Mass Transfer 19 Turbulent Flows Fausto Arpino f.arpino@unicas.it Introduction All the flows encountered in the engineering practice become unstable

More information

Physics of turbulent flow

Physics of turbulent flow ECL-MOD 3A & MSc. Physics of turbulent flow Christophe Bailly Université de Lyon, Ecole Centrale de Lyon & LMFA - UMR CNRS 5509 http://acoustique.ec-lyon.fr Outline of the course A short introduction to

More information

Turbulence - Theory and Modelling GROUP-STUDIES:

Turbulence - Theory and Modelling GROUP-STUDIES: Lund Institute of Technology Department of Energy Sciences Division of Fluid Mechanics Robert Szasz, tel 046-0480 Johan Revstedt, tel 046-43 0 Turbulence - Theory and Modelling GROUP-STUDIES: Turbulence

More information

Manhar Dhanak Florida Atlantic University Graduate Student: Zaqie Reza

Manhar Dhanak Florida Atlantic University Graduate Student: Zaqie Reza REPRESENTING PRESENCE OF SUBSURFACE CURRENT TURBINES IN OCEAN MODELS Manhar Dhanak Florida Atlantic University Graduate Student: Zaqie Reza 1 Momentum Equations 2 Effect of inclusion of Coriolis force

More information

Introduction to Turbulence and Turbulence Modeling

Introduction to Turbulence and Turbulence Modeling Introduction to Turbulence and Turbulence Modeling Part I Venkat Raman The University of Texas at Austin Lecture notes based on the book Turbulent Flows by S. B. Pope Turbulent Flows Turbulent flows Commonly

More information

STUDY ON TIP LEAKAGE VORTEX IN AN AXIAL FLOW PUMP BASED ON MODIFIED SHEAR STRESS TRANSPORT k-ω TURBULENCE MODEL

STUDY ON TIP LEAKAGE VORTEX IN AN AXIAL FLOW PUMP BASED ON MODIFIED SHEAR STRESS TRANSPORT k-ω TURBULENCE MODEL THERMAL SCIENCE, Year 213, Vol. 17, No. 5, pp. 1551-1555 1551 STUDY ON TIP AKAGE VORX IN AN AXIAL FLOW PUMP BASED ON MODIFIED SHEAR STRE TRANSPORT k-ω TURBUNCE MODEL Introduction by Desheng ZHANG *, Dazhi

More information

Turbulence Modeling I!

Turbulence Modeling I! Outline! Turbulence Modeling I! Grétar Tryggvason! Spring 2010! Why turbulence modeling! Reynolds Averaged Numerical Simulations! Zero and One equation models! Two equations models! Model predictions!

More information

A Discussion of Low Reynolds Number Flow for the Two-Dimensional Benchmark Test Case

A Discussion of Low Reynolds Number Flow for the Two-Dimensional Benchmark Test Case A Discussion of Low Reynolds Number Flow for the Two-Dimensional Benchmark Test Case M. Weng, P. V. Nielsen and L. Liu Aalborg University Introduction. The use of CFD in ventilation research has arrived

More information

Modeling Complex Flows! Direct Numerical Simulations! Computational Fluid Dynamics!

Modeling Complex Flows! Direct Numerical Simulations! Computational Fluid Dynamics! http://www.nd.edu/~gtryggva/cfd-course/! Modeling Complex Flows! Grétar Tryggvason! Spring 2011! Direct Numerical Simulations! In direct numerical simulations the full unsteady Navier-Stokes equations

More information

DETERMINING OPTIMUM GEOMETRY FOR A BOW THRUSTER PROPELLER

DETERMINING OPTIMUM GEOMETRY FOR A BOW THRUSTER PROPELLER DEERMINING OPIMUM GEOMERY FOR A BOW HRUSER PROPELLER Y.H. OZDEMIR, S. BAYRAKAR,. YILMAZ, M.GUNER Yildiz echnical University, Dept. of Naval Architecture and Marine Engineering, 34349 Besiktas, Istanbul,

More information

RANS Equations in Curvilinear Coordinates

RANS Equations in Curvilinear Coordinates Appendix C RANS Equations in Curvilinear Coordinates To begin with, the Reynolds-averaged Navier-Stokes RANS equations are presented in the familiar vector and Cartesian tensor forms. Each term in the

More information

Numerical Methods in Aerodynamics. Turbulence Modeling. Lecture 5: Turbulence modeling

Numerical Methods in Aerodynamics. Turbulence Modeling. Lecture 5: Turbulence modeling Turbulence Modeling Niels N. Sørensen Professor MSO, Ph.D. Department of Civil Engineering, Alborg University & Wind Energy Department, Risø National Laboratory Technical University of Denmark 1 Outline

More information

SIMPLE Algorithm for Two-Dimensional Channel Flow. Fluid Flow and Heat Transfer

SIMPLE Algorithm for Two-Dimensional Channel Flow. Fluid Flow and Heat Transfer SIMPLE Algorithm for Two-Dimensional Channel Flow Fluid Flow and Heat Transfer by Professor Jung-Yang San Mechanical Engineering Department National Chung Hsing University Two-dimensional, transient, incompressible

More information

The Simulation of Wraparound Fins Aerodynamic Characteristics

The Simulation of Wraparound Fins Aerodynamic Characteristics The Simulation of Wraparound Fins Aerodynamic Characteristics Institute of Launch Dynamics Nanjing University of Science and Technology Nanjing Xiaolingwei 00 P. R. China laithabbass@yahoo.com Abstract:

More information

DAY 19: Boundary Layer

DAY 19: Boundary Layer DAY 19: Boundary Layer flat plate : let us neglect the shape of the leading edge for now flat plate boundary layer: in blue we highlight the region of the flow where velocity is influenced by the presence

More information

NUMERIC SIMULATION OF ULTRA-HIGH PRESSURE ROTARY ATOMIZING WATERJET FLOW FIELD

NUMERIC SIMULATION OF ULTRA-HIGH PRESSURE ROTARY ATOMIZING WATERJET FLOW FIELD 2005 WJTA American Waterjet Conference August 21-23, 2005 Houston, Texas Paper 6A-4 NUMERIC SIMULATION OF ULTRA-HIGH PRESSURE ROTARY ATOMIZING WATERJET FLOW FIELD Xue Shengxiong, Li Jiangyun *, Peng Haojun,

More information

ρ t + (ρu j ) = 0 (2.1) x j +U j = 0 (2.3) ρ +ρ U j ρ

ρ t + (ρu j ) = 0 (2.1) x j +U j = 0 (2.3) ρ +ρ U j ρ Chapter 2 Mathematical Models The following sections present the equations which are used in the numerical simulations documented in this thesis. For clarity, equations have been presented in Cartesian

More information

ρ Du i Dt = p x i together with the continuity equation = 0, x i

ρ Du i Dt = p x i together with the continuity equation = 0, x i 1 DIMENSIONAL ANALYSIS AND SCALING Observation 1: Consider the flow past a sphere: U a y x ρ, µ Figure 1: Flow past a sphere. Far away from the sphere of radius a, the fluid has a uniform velocity, u =

More information

Numerical Simulation of Flow Around An Elliptical Cylinder at High Reynolds Numbers

Numerical Simulation of Flow Around An Elliptical Cylinder at High Reynolds Numbers International Journal of Fluids Engineering. ISSN 0974-3138 Volume 5, Number 1 (2013), pp. 29-37 International Research Publication House http://www.irphouse.com Numerical Simulation of Flow Around An

More information

Governing Equations for Turbulent Flow

Governing Equations for Turbulent Flow Governing Equations for Turbulent Flow (i) Boundary Layer on a Flat Plate ρu x Re x = = Reynolds Number µ Re Re x =5(10) 5 Re x =10 6 x =0 u/ U = 0.99 層流區域 過渡區域 紊流區域 Thickness of boundary layer The Origin

More information

Table of Contents. Foreword... xiii. Preface... xv

Table of Contents. Foreword... xiii. Preface... xv Table of Contents Foreword.... xiii Preface... xv Chapter 1. Fundamental Equations, Dimensionless Numbers... 1 1.1. Fundamental equations... 1 1.1.1. Local equations... 1 1.1.2. Integral conservation equations...

More information

Effect of Shape and Flow Control Devices on the Fluid Flow Characteristics in Three Different Industrial Six Strand Billet Caster Tundish

Effect of Shape and Flow Control Devices on the Fluid Flow Characteristics in Three Different Industrial Six Strand Billet Caster Tundish , pp. 1647 1656 Effect of Shape and Flow Control Devices on the Fluid Flow Characteristics in Three Different Industrial Six Strand Billet Caster Tundish Anurag TRIPATHI and Satish Kumar AJMANI Research

More information

An Investigation of Tip-Vortex Turbulence Structure using Large-Eddy Simulation

An Investigation of Tip-Vortex Turbulence Structure using Large-Eddy Simulation An Investigation of Tip-Vortex Turbulence Structure using Large-Eddy Simulation 1 David Hanson ; 1 Michael Kinzel; 1 Kyle Sinding; and 1 Michael Krane 1 The Pennsylvania State University, University Park,

More information

NUMERICAL SIMULATION OF SUDDEN-EXPANSION PARTICLE-LADEN FLOWS USING THE EULERIAN LAGRANGIAN APPROACH. Borj Cedria, 2050 Hammam-Lif, Tunis.

NUMERICAL SIMULATION OF SUDDEN-EXPANSION PARTICLE-LADEN FLOWS USING THE EULERIAN LAGRANGIAN APPROACH. Borj Cedria, 2050 Hammam-Lif, Tunis. NUMERICAL SIMULATION OF SUDDEN-EXPANSION PARTICLE-LADEN FLOWS USING THE EULERIAN LAGRANGIAN APPROACH Mohamed Ali. MERGHENI,2, Jean-Charles SAUTET 2, Hmaied BEN TICHA 3, Sassi BEN NASRALLAH 3 Centre de

More information

What is Turbulence? Fabian Waleffe. Depts of Mathematics and Engineering Physics University of Wisconsin, Madison

What is Turbulence? Fabian Waleffe. Depts of Mathematics and Engineering Physics University of Wisconsin, Madison What is Turbulence? Fabian Waleffe Depts of Mathematics and Engineering Physics University of Wisconsin, Madison it s all around,... and inside us! Leonardo da Vinci (c. 1500) River flow, pipe flow, flow

More information

CFD Modelling of Turbulent Mass Transfer in a Mixing Channel

CFD Modelling of Turbulent Mass Transfer in a Mixing Channel CFD Modelling of Turbulent Mass Transfer in a Mixing Channel Lene K. Hjertager Osenbroch, Bjørn H. Hjertager and Tron Solberg Aalborg University Esbjerg Esbjerg, Denmark Homepage: hugin.aue.auc.dk Prepared

More information

Computational Analysis of an Imploding Gas:

Computational Analysis of an Imploding Gas: 1/ 31 Direct Numerical Simulation of Navier-Stokes Equations Stephen Voelkel University of Notre Dame October 19, 2011 2/ 31 Acknowledges Christopher M. Romick, Ph.D. Student, U. Notre Dame Dr. Joseph

More information

Modelling of turbulent flows: RANS and LES

Modelling of turbulent flows: RANS and LES Modelling of turbulent flows: RANS and LES Turbulenzmodelle in der Strömungsmechanik: RANS und LES Markus Uhlmann Institut für Hydromechanik Karlsruher Institut für Technologie www.ifh.kit.edu SS 2012

More information

CFD in COMSOL Multiphysics

CFD in COMSOL Multiphysics CFD in COMSOL Multiphysics Mats Nigam Copyright 2016 COMSOL. Any of the images, text, and equations here may be copied and modified for your own internal use. All trademarks are the property of their respective

More information

A Computational Investigation of a Turbulent Flow Over a Backward Facing Step with OpenFOAM

A Computational Investigation of a Turbulent Flow Over a Backward Facing Step with OpenFOAM 206 9th International Conference on Developments in esystems Engineering A Computational Investigation of a Turbulent Flow Over a Backward Facing Step with OpenFOAM Hayder Al-Jelawy, Stefan Kaczmarczyk

More information

Turbulence modelling. Sørensen, Niels N. Publication date: Link back to DTU Orbit

Turbulence modelling. Sørensen, Niels N. Publication date: Link back to DTU Orbit Downloaded from orbit.dtu.dk on: Dec 19, 2017 Turbulence modelling Sørensen, Niels N. Publication date: 2010 Link back to DTU Orbit Citation (APA): Sørensen, N. N. (2010). Turbulence modelling. Paper presented

More information

CFD ANALYSIS OF TURBULENCE EFFECT ON REACTION IN STIRRED TANK REACTORS

CFD ANALYSIS OF TURBULENCE EFFECT ON REACTION IN STIRRED TANK REACTORS CFD ANALYSIS OF TURBULENCE EFFECT ON REACTION IN STIRRED TANK REACTORS Udaya Bhaskar Reddy R*, Gopalakrishnan S, Ramasamy E Department of Chemical Engineering, Coimbatore Institute of Technology, Coimbatore-

More information

A MATHEMATICAL MODEL OF DRIP EMITTER DISCHARGE DEPENDING ON THE GEOMETRIC PARAMETERS OF A LABYRINTH CHANNEL *

A MATHEMATICAL MODEL OF DRIP EMITTER DISCHARGE DEPENDING ON THE GEOMETRIC PARAMETERS OF A LABYRINTH CHANNEL * 11 th National Congress on Theoretical and Applied Mechanics, -5 Sept. 009, Borovets, Bulgaria A MATHEMATICAL MODEL OF DRIP EMITTER DISCHARGE DEPENDING ON THE GEOMETRIC PARAMETERS OF A LABYRINTH CHANNEL

More information

Before we consider two canonical turbulent flows we need a general description of turbulence.

Before we consider two canonical turbulent flows we need a general description of turbulence. Chapter 2 Canonical Turbulent Flows Before we consider two canonical turbulent flows we need a general description of turbulence. 2.1 A Brief Introduction to Turbulence One way of looking at turbulent

More information

WALL ROUGHNESS EFFECTS ON SHOCK BOUNDARY LAYER INTERACTION FLOWS

WALL ROUGHNESS EFFECTS ON SHOCK BOUNDARY LAYER INTERACTION FLOWS ISSN (Online) : 2319-8753 ISSN (Print) : 2347-6710 International Journal of Innovative Research in Science, Engineering and Technology An ISO 3297: 2007 Certified Organization, Volume 2, Special Issue

More information

NUMERICAL INVESTIGATION ON THE FLOW CHARACTERISTICS OF A SUPERSONIC JET IMPINGING ON AN AXI-SYMMETRIC DEFLECTOR

NUMERICAL INVESTIGATION ON THE FLOW CHARACTERISTICS OF A SUPERSONIC JET IMPINGING ON AN AXI-SYMMETRIC DEFLECTOR ICAS 2002 CONGRESS NUMERICAL INVESTIGATION ON THE FLOW CHARACTERISTICS OF A SUPERSONIC JET IMPINGING ON AN AXI-SYMMETRIC DEFLECTOR S.Sankaran, M.Rajeswara Rao, T.N.V.Satyanarayana, N.Satyanarayana K.Visvanathan

More information

7. TURBULENCE SPRING 2019

7. TURBULENCE SPRING 2019 7. TRBLENCE SPRING 2019 7.1 What is turbulence? 7.2 Momentum transfer in laminar and turbulent flow 7.3 Turbulence notation 7.4 Effect of turbulence on the mean flow 7.5 Turbulence generation and transport

More information

LARGE EDDY SIMULATION AND FLOW CONTROL OVER A 25 RAMP MODEL

LARGE EDDY SIMULATION AND FLOW CONTROL OVER A 25 RAMP MODEL LARGE EDDY SIMULATION AND FLOW CONTROL OVER A 25 RAMP MODEL 09/11/2017 Paolo Casco Stephie Edwige Philippe Gilotte Iraj Mortazavi LES and flow control over a 25 ramp model : context 2 Context Validation

More information

Masters in Mechanical Engineering. Problems of incompressible viscous flow. 2µ dx y(y h)+ U h y 0 < y < h,

Masters in Mechanical Engineering. Problems of incompressible viscous flow. 2µ dx y(y h)+ U h y 0 < y < h, Masters in Mechanical Engineering Problems of incompressible viscous flow 1. Consider the laminar Couette flow between two infinite flat plates (lower plate (y = 0) with no velocity and top plate (y =

More information

External Flows. Dye streak. turbulent. laminar transition

External Flows. Dye streak. turbulent. laminar transition Eternal Flos An internal flo is surrounded by solid boundaries that can restrict the development of its boundary layer, for eample, a pipe flo. An eternal flo, on the other hand, are flos over bodies immersed

More information

Massimo GERMANO Politecnico di Torino

Massimo GERMANO Politecnico di Torino Hybrid Massimo GERMANO Politecnico di Torino Martín SÁNCHEZ-ROCHA Dassault Systèmes SIMULIA Corporation Suresh MENON Georgia Institute of Technology 64th Annual APS-DFD Meeting Baltimore, Maryland November

More information

7.6 Example von Kármán s Laminar Boundary Layer Problem

7.6 Example von Kármán s Laminar Boundary Layer Problem CEE 3310 External Flows (Boundary Layers & Drag, Nov. 11, 2016 157 7.5 Review Non-Circular Pipes Laminar: f = 64/Re DH ± 40% Turbulent: f(re DH, ɛ/d H ) Moody chart for f ± 15% Bernoulli-Based Flow Metering

More information

HEAT TRANSFER IN A RECIRCULATION ZONE AT STEADY-STATE AND OSCILLATING CONDITIONS - THE BACK FACING STEP TEST CASE

HEAT TRANSFER IN A RECIRCULATION ZONE AT STEADY-STATE AND OSCILLATING CONDITIONS - THE BACK FACING STEP TEST CASE HEAT TRANSFER IN A RECIRCULATION ZONE AT STEADY-STATE AND OSCILLATING CONDITIONS - THE BACK FACING STEP TEST CASE A.K. Pozarlik 1, D. Panara, J.B.W. Kok 1, T.H. van der Meer 1 1 Laboratory of Thermal Engineering,

More information

FLUID MECHANICS. Atmosphere, Ocean. Aerodynamics. Energy conversion. Transport of heat/other. Numerous industrial processes

FLUID MECHANICS. Atmosphere, Ocean. Aerodynamics. Energy conversion. Transport of heat/other. Numerous industrial processes SG2214 Anders Dahlkild Luca Brandt FLUID MECHANICS : SG2214 Course requirements (7.5 cr.) INL 1 (3 cr.) 3 sets of home work problems (for 10 p. on written exam) 1 laboration TEN1 (4.5 cr.) 1 written exam

More information

Turbulence is a ubiquitous phenomenon in environmental fluid mechanics that dramatically affects flow structure and mixing.

Turbulence is a ubiquitous phenomenon in environmental fluid mechanics that dramatically affects flow structure and mixing. Turbulence is a ubiquitous phenomenon in environmental fluid mechanics that dramatically affects flow structure and mixing. Thus, it is very important to form both a conceptual understanding and a quantitative

More information

HYBRID LES-RANS: Inlet Boundary Conditions for Flows With Recirculation

HYBRID LES-RANS: Inlet Boundary Conditions for Flows With Recirculation 1 HYBRID LES-RANS: Inlet Boundary Conditions for Flows With Recirculation Lars Davidson Div. of Fluid Dynamics Dept. of Applied Mechanics Chalmers University of Technology, Göteborg, Sweden E-mail lada@chalmers.se

More information

A dynamic global-coefficient subgrid-scale eddy-viscosity model for large-eddy simulation in complex geometries

A dynamic global-coefficient subgrid-scale eddy-viscosity model for large-eddy simulation in complex geometries Center for Turbulence Research Annual Research Briefs 2006 41 A dynamic global-coefficient subgrid-scale eddy-viscosity model for large-eddy simulation in complex geometries By D. You AND P. Moin 1. Motivation

More information

Analytical Study of Volumetric Scroll Pump for Liquid Hydrogen Circulating System

Analytical Study of Volumetric Scroll Pump for Liquid Hydrogen Circulating System Journal of NUCLEAR SCIENCE and TECHNOLOGY, Vol. 39, No., p. 0 07 January 2002 TECHNICAL REPORT Analytical Study of Volumetric Scroll Pump for Liquid Hydrogen Circulating System Phichai KRITMAITREE, Mitsunobu

More information

Module 6: Free Convections Lecture 26: Evaluation of Nusselt Number. The Lecture Contains: Heat transfer coefficient. Objectives_template

Module 6: Free Convections Lecture 26: Evaluation of Nusselt Number. The Lecture Contains: Heat transfer coefficient. Objectives_template The Lecture Contains: Heat transfer coefficient file:///d /Web%20Course%20(Ganesh%20Rana)/Dr.%20gautam%20biswas/Final/convective_heat_and_mass_transfer/lecture26/26_1.html[12/24/2014 6:08:23 PM] Heat transfer

More information

ABSTRACT OF ONE-EQUATION NEAR-WALL TURBULENCE MODELS. Ricardo Heinrich Diaz, Doctor of Philosophy, 2003

ABSTRACT OF ONE-EQUATION NEAR-WALL TURBULENCE MODELS. Ricardo Heinrich Diaz, Doctor of Philosophy, 2003 ABSTRACT Title of dissertation: CRITICAL EVALUATION AND DEVELOPMENT OF ONE-EQUATION NEAR-WALL TURBULENCE MODELS Ricardo Heinrich Diaz, Doctor of Philosophy, 2003 Dissertation directed by: Professor Jewel

More information

Micro-Scale Gas Transport Modeling

Micro-Scale Gas Transport Modeling Micro-Scale Gas Transport Modeling Continuum & Slip Flow Regimes: Navier-Stokes Equations Slip Boundary Conditions U g U w = ( σ ) σ U Kn n Slip, Transitional & Free Molecular: Direct Simulation Monte

More information

Chapter 9 Flow over Immersed Bodies

Chapter 9 Flow over Immersed Bodies 57:00 Mechanics of Fluids and Transport Processes Chapter 9 Professor Fred Stern Fall 009 1 Chapter 9 Flow over Immersed Bodies Fluid flows are broadly categorized: 1. Internal flows such as ducts/pipes,

More information

Boundary layer flows The logarithmic law of the wall Mixing length model for turbulent viscosity

Boundary layer flows The logarithmic law of the wall Mixing length model for turbulent viscosity Boundary layer flows The logarithmic law of the wall Mixing length model for turbulent viscosity Tobias Knopp D 23. November 28 Reynolds averaged Navier-Stokes equations Consider the RANS equations with

More information

4.2 Concepts of the Boundary Layer Theory

4.2 Concepts of the Boundary Layer Theory Advanced Heat by Amir Faghri, Yuwen Zhang, and John R. Howell 4.2 Concepts of the Boundary Layer Theory It is difficult to solve the complete viscous flow fluid around a body unless the geometry is very

More information

Mass Transfer in Turbulent Flow

Mass Transfer in Turbulent Flow Mass Transfer in Turbulent Flow ChEn 6603 References: S.. Pope. Turbulent Flows. Cambridge University Press, New York, 2000. D. C. Wilcox. Turbulence Modeling for CFD. DCW Industries, La Caada CA, 2000.

More information

OpenFOAM selected solver

OpenFOAM selected solver OpenFOAM selected solver Roberto Pieri - SCS Italy 16-18 June 2014 Introduction to Navier-Stokes equations and RANS Turbulence modelling Numeric discretization Navier-Stokes equations Convective term {}}{

More information

Turbulent Boundary Layers & Turbulence Models. Lecture 09

Turbulent Boundary Layers & Turbulence Models. Lecture 09 Turbulent Boundary Layers & Turbulence Models Lecture 09 The turbulent boundary layer In turbulent flow, the boundary layer is defined as the thin region on the surface of a body in which viscous effects

More information

2 D.D. Joseph To make things simple, consider flow in two dimensions over a body obeying the equations ρ ρ v = 0;

2 D.D. Joseph To make things simple, consider flow in two dimensions over a body obeying the equations ρ ρ   v  = 0; Accepted for publication in J. Fluid Mech. 1 Viscous Potential Flow By D.D. Joseph Department of Aerospace Engineering and Mechanics, University of Minnesota, MN 55455 USA Email: joseph@aem.umn.edu (Received

More information

VIRTUE / WP4 Delft Twisted Foil in steady flow Simulation with EOLE

VIRTUE / WP4 Delft Twisted Foil in steady flow Simulation with EOLE 6 th Framework Programme "Sustainable development, global change and ecosystems" Project No. 516201 / WP4 Delft Twisted Foil in steady flow Simulation with EOLE Workshop Oct. 17-18, 2007 R. Marcer Principia

More information

FLOW CHARACTERISTICS IN A VOLUTE-TYPE CENTRIFUGAL PUMP USING LARGE EDDY SIMULATION

FLOW CHARACTERISTICS IN A VOLUTE-TYPE CENTRIFUGAL PUMP USING LARGE EDDY SIMULATION FLOW CHARACTERISTICS IN A VOLUTE-TYPE CENTRIFUGAL PUMP USING LARGE EDDY SIMULATION Beomjun Kye Keuntae Park Department of Mechanical & Aerospace Engineering Department of Mechanical & Aerospace Engineering

More information

SOME THOUGHTS ON DIFFERENTIAL VISCOELASTIC MODELS AND THEIR NUMERICAL SOLUTION

SOME THOUGHTS ON DIFFERENTIAL VISCOELASTIC MODELS AND THEIR NUMERICAL SOLUTION CONFERENCE ON COMPLEX FLOWS OF COMPLEX FLUIDS University of Liverpool, UK, March 17-19, 2008 SOME THOUGHTS ON DIFFERENTIAL VISCOELASTIC MODELS AND THEIR NUMERICAL SOLUTION Paulo J. Oliveira Universidade

More information

MA3D1 Fluid Dynamics Support Class 5 - Shear Flows and Blunt Bodies

MA3D1 Fluid Dynamics Support Class 5 - Shear Flows and Blunt Bodies MA3D1 Fluid Dynamics Support Class 5 - Shear Flows and Blunt Bodies 13th February 2015 Jorge Lindley email: J.V.M.Lindley@warwick.ac.uk 1 2D Flows - Shear flows Example 1. Flow over an inclined plane A

More information

The Phenomena of Fluid Flow

The Phenomena of Fluid Flow The Phenomena of Fluid Flow Nicholas S. Vlachos Lab. Fluid Mechanics & Turbomachines Department of Mechanical Engineering University of Thessaly Program of Graduate Studies Academic Year 2009-2010 2010

More information

+ = + t x x x x u. The standard Smagorinsky model has been used in the work to provide the closure for the subgridscale eddy viscosity in (2):

+ = + t x x x x u. The standard Smagorinsky model has been used in the work to provide the closure for the subgridscale eddy viscosity in (2): International Conference on Methods of Aerophysical Research, ICMAR 008 LARGE EDDY SIMULATION OF TURBULENT ROUND IMPINGING JET B.B. Ilyushin, D.V. Krasinsky Kutateladze Institute of Thermophysics SB RAS

More information

Computational Fluid Dynamics 2

Computational Fluid Dynamics 2 Seite 1 Introduction Computational Fluid Dynamics 11.07.2016 Computational Fluid Dynamics 2 Turbulence effects and Particle transport Martin Pietsch Computational Biomechanics Summer Term 2016 Seite 2

More information

TME225 Learning outcomes 2018: week 1

TME225 Learning outcomes 2018: week 1 J. TME225 Learning outcomes 2018 360 J TME225 Learning outcomes 2018 Note that the questions related to the movies are not part of the learning outcomes. They are included to enhance you learning and understanding.

More information

DEVELOPMENT OF A REYNOLDS STRESS MODEL TO PREDICT TURBULENT FLOWS WITH VISCOELASTIC FLUIDS

DEVELOPMENT OF A REYNOLDS STRESS MODEL TO PREDICT TURBULENT FLOWS WITH VISCOELASTIC FLUIDS CONFERÊNCIA NACIONAL DE MÉTODOS NUMÉRICOS EM MECÂNICA DOS FLUIDOS E TERMODINÂMICA 6 FCT-UNL, Monte de Caparica, 8 e 9 de Junho, 6 APMTAC, Portugal, 6 DEVELOPMENT OF A REYNOLDS STRESS MODEL TO PREDICT TURBULENT

More information

Candidates must show on each answer book the type of calculator used. Log Tables, Statistical Tables and Graph Paper are available on request.

Candidates must show on each answer book the type of calculator used. Log Tables, Statistical Tables and Graph Paper are available on request. UNIVERSITY OF EAST ANGLIA School of Mathematics Spring Semester Examination 2004 FLUID DYNAMICS Time allowed: 3 hours Attempt Question 1 and FOUR other questions. Candidates must show on each answer book

More information

Numerical Computation of Inception Point Location for Flat-sloped Stepped Spillway

Numerical Computation of Inception Point Location for Flat-sloped Stepped Spillway International Journal of Hydraulic Engineering 2013, 2(3): 47-52 DOI: 10.5923/j.ijhe.20130203.03 Numerical Computation of Inception Point Location for Flat-sloped Stepped Spillway Bentalha Chakib Department

More information

3D Numerical Simulation of Supercritical Flow in Bends of Channel

3D Numerical Simulation of Supercritical Flow in Bends of Channel 3D Numerical Simulation of Supercritical Flow in Bends of Channel Masoud. Montazeri-Namin, Reyhaneh-Sadat. Ghazanfari-Hashemi, and Mahnaz. Ghaeini- Hessaroeyeh Abstract An attempt has been made to simulate

More information

7. Basics of Turbulent Flow Figure 1.

7. Basics of Turbulent Flow Figure 1. 1 7. Basics of Turbulent Flow Whether a flow is laminar or turbulent depends of the relative importance of fluid friction (viscosity) and flow inertia. The ratio of inertial to viscous forces is the Reynolds

More information

Flow Structure Investigations in a "Tornado" Combustor

Flow Structure Investigations in a Tornado Combustor Flow Structure Investigations in a "Tornado" Combustor Igor Matveev Applied Plasma Technologies, Falls Church, Virginia, 46 Serhiy Serbin National University of Shipbuilding, Mikolayiv, Ukraine, 545 Thomas

More information

Bernoulli and Pipe Flow

Bernoulli and Pipe Flow Civil Engineering Hydraulics Mechanics of Fluids Head Loss Calculations Bernoulli and The Bernoulli equation that we worked with was a bit simplistic in the way it looked at a fluid system All real systems

More information

Flow and Heat Transfer Profiles in a Square Channel with 45 V-Downstream Orifices

Flow and Heat Transfer Profiles in a Square Channel with 45 V-Downstream Orifices Journal of Mathematics and Statistics Original Research Paper Flow and Heat Transfer Profiles in a Square Channel with 45 V-Downstream Orifices 1 Withada Jedsadaratanachai and 2 Amnart Boonloi 1 Department

More information

PERTURBATION ANALYSIS OF k ω AND k ɛ TURBULENT MODELS. WALL FUNCTIONS

PERTURBATION ANALYSIS OF k ω AND k ɛ TURBULENT MODELS. WALL FUNCTIONS EPJ Web of Conferences 45, 01097 2013 DOI: 10.1051/ epjconf/ 20134501097 C Owned by the authors, published by EDP Sciences, 2013 PERTURBATION ANALYSIS OF k ω AND k ɛ TURBULENT MODELS. WALL FUNCTIONS Karel

More information

Centro de Estudos de Fenómenos de Transporte, FEUP & Universidade do Minho, Portugal

Centro de Estudos de Fenómenos de Transporte, FEUP & Universidade do Minho, Portugal DEVELOPING CLOSURES FOR TURBULENT FLOW OF VISCOELASTIC FENE-P FLUIDS F. T. Pinho Centro de Estudos de Fenómenos de Transporte, FEUP & Universidade do Minho, Portugal C. F. Li Dep. Energy, Environmental

More information

Turbulence Modeling. Cuong Nguyen November 05, The incompressible Navier-Stokes equations in conservation form are u i x i

Turbulence Modeling. Cuong Nguyen November 05, The incompressible Navier-Stokes equations in conservation form are u i x i Turbulence Modeling Cuong Nguyen November 05, 2005 1 Incompressible Case 1.1 Reynolds-averaged Navier-Stokes equations The incompressible Navier-Stokes equations in conservation form are u i x i = 0 (1)

More information

AA214B: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS

AA214B: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS AA214B: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS 1 / 29 AA214B: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS Hierarchy of Mathematical Models 1 / 29 AA214B: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS 2 / 29

More information

Comparison of Turbulence Models in the Flow over a Backward-Facing Step Priscila Pires Araujo 1, André Luiz Tenório Rezende 2

Comparison of Turbulence Models in the Flow over a Backward-Facing Step Priscila Pires Araujo 1, André Luiz Tenório Rezende 2 Comparison of Turbulence Models in the Flow over a Backward-Facing Step Priscila Pires Araujo 1, André Luiz Tenório Rezende 2 Department of Mechanical and Materials Engineering, Military Engineering Institute,

More information

PROPOSAL OF HEAT EXCHANGER IN MICRO COGENERATION UNIT, CONFIGURATION WITH BIOMASS COMBUSTION. Jozef HUŽVÁR, Patrik NEMEC

PROPOSAL OF HEAT EXCHANGER IN MICRO COGENERATION UNIT, CONFIGURATION WITH BIOMASS COMBUSTION. Jozef HUŽVÁR, Patrik NEMEC PROPOSAL OF HEAT EXCHANGER IN MICRO COGENERATION UNIT, CONFIGURATION WITH BIOMASS COMBUSTION Jozef HUŽVÁR, Patri NEMEC Authors: Worplace: Jozef Hužvár, MSc. Eng. Patri Nemec, MSc. Eng. Faculty of Mechanical

More information

Eddy viscosity. AdOc 4060/5060 Spring 2013 Chris Jenkins. Turbulence (video 1hr):

Eddy viscosity. AdOc 4060/5060 Spring 2013 Chris Jenkins. Turbulence (video 1hr): AdOc 4060/5060 Spring 2013 Chris Jenkins Eddy viscosity Turbulence (video 1hr): http://cosee.umaine.edu/programs/webinars/turbulence/?cfid=8452711&cftoken=36780601 Part B Surface wind stress Wind stress

More information

A Low Reynolds Number Variant of Partially-Averaged Navier-Stokes Model for Turbulence

A Low Reynolds Number Variant of Partially-Averaged Navier-Stokes Model for Turbulence Int. J. Heat Fluid Flow, Vol., pp. 65-669 (), doi:.6/j.ijheatfluidflow... A Low Reynolds Number Variant of Partially-Averaged Navier-Stokes Model for Turbulence J.M. Ma,, S.-H. Peng,, L. Davidson, and

More information

Tutorial School on Fluid Dynamics: Aspects of Turbulence Session I: Refresher Material Instructor: James Wallace

Tutorial School on Fluid Dynamics: Aspects of Turbulence Session I: Refresher Material Instructor: James Wallace Tutorial School on Fluid Dynamics: Aspects of Turbulence Session I: Refresher Material Instructor: James Wallace Adapted from Publisher: John S. Wiley & Sons 2002 Center for Scientific Computation and

More information

1 Introduction to Governing Equations 2 1a Methodology... 2

1 Introduction to Governing Equations 2 1a Methodology... 2 Contents 1 Introduction to Governing Equations 2 1a Methodology............................ 2 2 Equation of State 2 2a Mean and Turbulent Parts...................... 3 2b Reynolds Averaging.........................

More information

External Flow and Boundary Layer Concepts

External Flow and Boundary Layer Concepts 1 2 Lecture (8) on Fayoum University External Flow and Boundary Layer Concepts By Dr. Emad M. Saad Mechanical Engineering Dept. Faculty of Engineering Fayoum University Faculty of Engineering Mechanical

More information

RANS COMPUTATIONS OF A CAVITATING VORTEX ROPE AT FULL LOAD

RANS COMPUTATIONS OF A CAVITATING VORTEX ROPE AT FULL LOAD 6 th IAHR International Meeting of the Workgroup on Cavitation and Dynamic Problems in Hydraulic Machinery and Systems, September 9-11, 2015, Ljubljana, Slovenia RANS COMPUTATIONS OF A CAVITATING VORTEX

More information

Periodic planes v i+1 Top wall u i. Inlet. U m y. Jet hole. Figure 2. Schematic of computational domain.

Periodic planes v i+1 Top wall u i. Inlet. U m y. Jet hole. Figure 2. Schematic of computational domain. Flow Characterization of Inclined Jet in Cross Flow for Thin Film Cooling via Large Eddy Simulation Naqavi, I.Z. 1, Savory, E. 2 and Martinuzzi, R. J. 3 1,2 The Univ. of Western Ontario, Dept. of Mech.

More information

INFLUENCE OF TURBULENCE ON THE STABILITY OF LIQUID SHEETS

INFLUENCE OF TURBULENCE ON THE STABILITY OF LIQUID SHEETS ILASS-Europe 22 Zaragoza 9 11 September 22 INFLUENCE OF TURBULENCE ON THE STABILITY OF LIQUID SHEETS K. Heukelbach, S. Jakirlić, R. Nakić and C. Tropea Kai.Heukelbach@sla.tu-darmstadt.de FG Strömungslehre

More information

* Ho h h (3) D where H o is the water depth of undisturbed flow, D is the thickness of the bridge deck, and h is the distance from the channel floor t

* Ho h h (3) D where H o is the water depth of undisturbed flow, D is the thickness of the bridge deck, and h is the distance from the channel floor t The Seventh International Colloquium on Bluff Body Aerodynamics and Applications (BBAA7) Shanghai, China; September -6, 01 Numerical simulation of hydrodynamic loading on submerged rectangular bridge decks

More information

Recap: Static Fluids

Recap: Static Fluids Recap: Static Fluids Archimedes principal states that the buoyant force acting on an object is equal to the weight of fluid displaced. If the average density of object is greater than density of fluid

More information

NUMERICAL STUDY OF THE EFFECT OF BLADE SZE ON PUMPING EFFECTIVENESS OF A PADDLE IMPELLER IN AN UNBAFFLED MIXING VESSEL

NUMERICAL STUDY OF THE EFFECT OF BLADE SZE ON PUMPING EFFECTIVENESS OF A PADDLE IMPELLER IN AN UNBAFFLED MIXING VESSEL Third International Conference on CFD in the Minerals and Process Industries CSIRO, Melbourne, Australia 10-12 December 2003 NUMERICAL STUDY OF THE EFFECT OF BLADE SZE ON PUMPING EFFECTIVENESS OF A PADDLE

More information

Prediction of CO Burnout using a CHEMKIN based Network Tool

Prediction of CO Burnout using a CHEMKIN based Network Tool Prediction of CO Burnout using a CHEMKIN based Network Tool Engler-Bunte-Institut / Bereich Verbrennungstechnik Universität Karlsruhe Contents Complex reaction schemes vs. complex transport models. Complex

More information

Physical Properties of Fluids

Physical Properties of Fluids Physical Properties of Fluids Viscosity: Resistance to relative motion between adjacent layers of fluid. Dynamic Viscosity:generally represented as µ. A flat plate moved slowly with a velocity V parallel

More information

PIPE FLOWS: LECTURE /04/2017. Yesterday, for the example problem Δp = f(v, ρ, μ, L, D) We came up with the non dimensional relation

PIPE FLOWS: LECTURE /04/2017. Yesterday, for the example problem Δp = f(v, ρ, μ, L, D) We came up with the non dimensional relation /04/07 ECTURE 4 PIPE FOWS: Yesterday, for the example problem Δp = f(v, ρ, μ,, ) We came up with the non dimensional relation f (, ) 3 V or, p f(, ) You can plot π versus π with π 3 as a parameter. Or,

More information

Introduction to Fluid Mechanics

Introduction to Fluid Mechanics Introduction to Fluid Mechanics Tien-Tsan Shieh April 16, 2009 What is a Fluid? The key distinction between a fluid and a solid lies in the mode of resistance to change of shape. The fluid, unlike the

More information

Evaluation of tsunami force on concrete girder by experiment simulating steady flow

Evaluation of tsunami force on concrete girder by experiment simulating steady flow Journal of Structural Engineering Vol.61A (March 215) JSCE Evaluation of tsunami force on concrete girder by experiment simulating steady flow Li Fu*, Kenji Kosa**, Tatsuo Sasaki*** and Takashi Sato****

More information

On the transient numerical modelling of impinging jets heat transfer

On the transient numerical modelling of impinging jets heat transfer 2YQIVMGEP,IEX8VERWJIV4EVX%%TTPMGEXMSRW:SP-WWYITT On the transient numerical modelling of impinging jets heat transfer Abstract This work compares a number of CFD transient models of an impinging jet. The

More information

Simulation of Three-Dimensional Flow Field around Unconventional Bridge Piers

Simulation of Three-Dimensional Flow Field around Unconventional Bridge Piers Simulation of Three-Dimensional Flow Field around Unconventional Bridge Piers Adnan Ismael 1, Hamid Hussein 2, Mohammed Tareq 3, Mustafa gunal 4 1 Technical Institute/ Mosul-Iraq, 2 Technical College,

More information

The impact of vegetation on the characteristics of the flow in an inclined open channel using the piv method

The impact of vegetation on the characteristics of the flow in an inclined open channel using the piv method Water Resources and Ocean Science 2012;1(1):1-6 Published online December 30, 2012 (http:// www.sciencepublishinggroup.com/j/wors) doi:.11648/j.wors.201201.11 The impact of vegetation on the characteristics

More information

Numerical Study of Natural Unsteadiness Using Wall-Distance-Free Turbulence Models

Numerical Study of Natural Unsteadiness Using Wall-Distance-Free Turbulence Models Numerical Study of Natural Unsteadiness Using Wall-Distance-Free urbulence Models Yi-Lung Yang* and Gwo-Lung Wang Department of Mechanical Engineering, Chung Hua University No. 707, Sec 2, Wufu Road, Hsin

More information