Calculation of matched beams under space-charge conditions

Size: px
Start display at page:

Download "Calculation of matched beams under space-charge conditions"

Transcription

1 Calculation of matched beams under space-charge conditions Jürgen Struckmeier Vortrag im Rahmen des Winterseminars Aktuelle Probleme der Beschleuniger- und Plasmaphysik des Instituts für Angewandte Physik der Johann Wolfgang Goethe-Universität Frankfurt am Main Riezlern, März 007

2 Outline 1. Review of the K-V envelope equations, reasons for beam matching. Generalized Newton method for vector functions 3. Calculation of the Jacobi matrix of the envelope mapping through a periodic structure 4. Iteration prescription to obtain periodic solutions of the K-V envelope equations 5. Example: Heidelberg Test Storage Ring (TSR) 6. Conclusions

3 1. K-V equations In linear approximation, the transverse motion of a single particle along the reference trajectory under non-negligible space-charge conditions is described by the Hill equations K ei x i + kx () s xi = 0, K = X( X Y + ) 4πε mc,ext β γ K y i + ky,ext() s yi = 0 Y ( X Y + ) k x,y,ext (s) describe the s-dependent strengths of the linear external forces acting on the beam particles. K denotes the scaled beam current ( generalized perveance ). X(s),Y(s) denote the beam envelopes. These functions must be known in advance if K 0 collective effect.

4 1. K-V equations From the single particle equations, we can directly derive the equations for (see Lecture 6.). We thus obtain the K-V equations for the beam envelopes X(s) and Y(s). This closed set of equations describes the transformation of an unbunched beam under non-negligible space-charge conditions in linear approximation d K ε Xs () + k x () s X = 0 x,ext 3 ds X + Y X d K εy () +,ext() = 0 Ys k y sy 3 ds X + Y Y ε x,y denote the beam emittances, which are constants of motion under the given assumptions of both linear external and linear self fields. K 0 induces coupling between X(s) and Y(s) envelope functions.

5 1. K-V equations This is a non-linear system of two ordinary second order differential equations. It is furthermore non-autonomous, since the coefficients k x,y,ext (s) depend explicitly on the independent variable, s. No analytic solutions X(s), Y(s) exist in general. Condition for a matched beam: If k x (s), k y (s) are S-periodic functions, find initial values X(0), X (0), Y(0), Y (0) so that the envelopes X(s) and Y(s) are also S-periodic Xs ( + S) = Xs ( ), X ( s+ S) = X ( s), Ys ( + S) = Ys ( ), Y ( s+ S) = Y ( s) Matching ensures: The maximum beam extents X max, Y max are minimized. Resonances between the particle betatron oscillation and the beat wave of the envelope mismatch oscillation modes are avoided.

6 1. K-V equations Mismatched beam in a periodic quadrupole channel (mixed mode)

7 1. K-V equations Mismatched beam in a periodic quadrupole channel (even mode)

8 1. K-V equations Mismatched beam in a periodic quadrupole channel (odd mode)

9 1. K-V equations Matched beam in a periodic quadrupole channel

10 1. K-V equations Cell Emittance plots (top: x,x, bottom: y,y ) of a PIC simulation of a matched beam propagating through a quadrupole channel at σ 0 = 60, σ = 15

11 1. K-V equations Cell Emittance plots (top: x,x, bottom: y,y ) of a PIC simulation of a mismatched beam propagating through a quadrupole channel at σ 0 = 60, σ = 15

12 . Newton s method for the K-V equations Question: How can we determine the initial conditions X(0), X (0), Y(0), Y (0) for given S-periodic external force functions k x,y,ext (s), scaled beam current K, and given emittances ε x and ε y that yield S-periodic beam envelopes X(s), Y(s)? Answer: We will make use of Newton s iteration method, adapted for the case of a vector function. Problem: We cannot deal with analytic functions and its derivatives, as is usually the case when we apply Newton s method. Instead, we only have functions that are given as numerical solutions of the K-V equations.

13 . Newton s method for the K-V equations We define the abbreviation Xs () Ys () X() s = X () s Y () s Integrating the K-V equations through on focusing period from s = 0 to s = S means to perform the non-linear mapping X(0) X( S), X( S ) = MX(0) M Beam matching thus means to find the particular X m (0) = MX (0) m X m (0) with

14 . Newton s method for the K-V equations Primitive method to determine X m (0) : we perform the iteration ( ) ( S ) t+ 1 1 t t 1 t t X (0) = X (0) + MX (0) = X (0) + X ( ) This method works sometimes, but converges very slowly if at all. Better way: Newton s method. For a function f of one variable x, we determine a zero x 0 of f via x t t 1 t fx ( ) + = x t f ( x ) A zero at x 0 of the function f is a fixed point of a function g, defined as Def gx () = x fx (), fx ( ) = 0 gx ( ) = x 0 0 0

15 . Newton s method for the K-V equations A fixed point of the function g is thus obtained by the iteration x t t 1 = t gx ( ) x x t g ( x ) 1 t + In the case of functions of multiple variables, Newton s method is then 1 ( J E) ( ) X + = X MX X t 1 t t t t with E denoting the unit matrix, and J the Jacobi matrix of M at X( S). Question: How do we determine the Jacobi matrix of a mapping that is only given as the numerical solution of a differential equation? Answer: The Jacobi matrix J is the solution matrix of the system of linear perturbations that is induced by the mapping M.

16 3. Jacobi matrix of K-V solutions With the K-V equations given, we can set up the linear system of equations for the perturbations x(s), y(s) that are defined by Xs () = X() s + xs (), Ys () = Y() s + ys (), x(0) X(0), y(0) Y(0) Herein, X 0 (s) and Y 0 (s) denote reference envelopes, and X(s), Y(s) neighboring envelopes. We insert X(s) and Y(s) into the K-V equations and apply the approximations 1 3 x + y x + y x x 1+ 1, X Y X Y X + + X This yields a linear coupled set of equations for the perturbations, i.e. for the small deviations x(s) and y(s) of reference and neighboring envelopes.

17 3. Jacobi matrix of K-V solutions ε K 3 x K x () s kx () s x() s + = 4 ( + ) y() s 0 X Y X0 ( X + Y ) ε K 3 y K y () s ky () s y() s + = 4 ( + ) x() s 0 X Y Y0 ( X + Y ) Again, the coupling is induced by a non-vanishing K. We can rewrite these two second-order equations as a linear system of four firstorder equations: z1() s z1() s d z() s z() s As (), As () = = ds z3() s z3() s a1() s a0() s 0 0 z4() s z4() s a0() s a() s 0 0 As X 0 (s) and Y 0 (s) must be known, this system can only be integrated together with K-V envelope equations.

18 In vector form, we get with 3. Jacobi matrix of K-V solutions z () s = As () z() s z x, z y, z x, z y a () s = K [ X () s + Y () s ] ε a () s k () s a () s 1 x = x X0 () s 0 3ε a () s k () s a () s = y y Y0 () s 0 The general 4 4 solution matrix Z(s) has the property Z () s = As () Z() s

19 4. Iteration prescription The Jacobi matrix J of solutions X(s), Y(s) of the K-V equations is the solution matrix of the system for the perturbations x(s) and y(s) J = Z( S), Z ( s) = As ( ) Z( s), Z(0) = E Recall: The matrix Z(s) maps a perturbation (x(0), y(0), x (0), y (0)) into (x(s), y(s), x (s), y (s)). Its initial value is thus the unit matrix: Z(0) = E. The iteration prescription to find a fixed point of the K-V equations, i.e., to determine the matched beam parameters under space charge conditions for a periodic structure thus finally writes: t+ t t 1 t t X 1 (0) = X (0) Z ( S ) E X ( S ) X (0) ( ) ( )

20 4. Iteration prescription We quantify the residual deviation of the actual beam parameters from an accurate fixed point in terms of the dimensionless mismatch factor: [ α α ] [ β β ][ γ γ ] FMM = ( S) (0) ( S) (0) ( S) (0) with α, β, and γ denoting either the x,x or the y,y CLS ellipse parameters that are related to the beam envelopes and their derivatives. Example: Quadrupole channel at σ 0 = 90 with depressed tune σ = 15. Initial values: matched zero current beam parameters. Iteration cycle 1: Mismatch factor x,x = E+01, Mismatch factor y,y = E+01 Iteration cycle : Mismatch factor x,x = 9.364E-01, Mismatch factor y,y = 3.68E+00 Iteration cycle 3: Mismatch factor x,x = E-03, Mismatch factor y,y = E-03 Iteration cycle 4: Mismatch factor x,x = E-09, Mismatch factor y,y =.0786E-09 Iteration cycle 5: Mismatch factor x,x = E-0, Mismatch factor y,y = E-0

21 5.Example: Heidelberg Test Storage Ring Matched beam in the Heidelberg TSR

22 6. Conclusions 1. In order to maintain maximum beam quality, beam matching to periodic lattices (e.g. storage rings, RFQs) is necessary.. If the self fields of the beam cannot be neglected, we must resort to the K-V envelope equations to find the beam transformation (to first order, i.e. for the linear approximation of all forces). 3. Newton s method to find fixed points of a mapping can be applied even if the mapping cannot be expressed in analytic form. 4. For Newton s method, we need the (linear) differential map that is induced by the original generally nonlinear mapping. 5. For mappings that cannot be expressed in analytic form, the differential map is given by the solution matrix of the system of perturbations.

Feynman s path integral approach to quantum physics and its relativistic generalization

Feynman s path integral approach to quantum physics and its relativistic generalization Feynman s path integral approach to quantum physics and its relativistic generalization Jürgen Struckmeier j.struckmeier@gsi.de, www.gsi.de/ struck Vortrag im Rahmen des Winterseminars Aktuelle Probleme

More information

4. Statistical description of particle beams

4. Statistical description of particle beams 4. Statistical description of particle beams 4.1. Beam moments 4. Statistical description of particle beams 4.1. Beam moments In charged particle beam dynamics, we are commonly not particularly interested

More information

Equations of motion in an accelerator (Lecture 7)

Equations of motion in an accelerator (Lecture 7) Equations of motion in an accelerator (Lecture 7) January 27, 2016 130/441 Lecture outline We consider several types of magnets used in accelerators and write down the vector potential of the magnetic

More information

Transverse Dynamics II

Transverse Dynamics II Transverse Dynamics II JAI Accelerator Physics Course Michaelmas Term 217 Dr. Suzie Sheehy Royal Society University Research Fellow University of Oxford Acknowledgements These lectures have been produced

More information

Analytical approaches for the. dynamics of charged particle beams

Analytical approaches for the. dynamics of charged particle beams Analytical approaches for the dynamics of charged particle beams J. Struckmeier, GSI Frankfurt am Main, 21 December 2001 1 Outline Review: Hamiltonian mechanics of N particle systems Liouville s theorem

More information

Magnets and Lattices. - Accelerator building blocks - Transverse beam dynamics - coordinate system

Magnets and Lattices. - Accelerator building blocks - Transverse beam dynamics - coordinate system Magnets and Lattices - Accelerator building blocks - Transverse beam dynamics - coordinate system Both electric field and magnetic field can be used to guide the particles path. r F = q( r E + r V r B

More information

Introduction to Accelerator Physics 2011 Mexican Particle Accelerator School

Introduction to Accelerator Physics 2011 Mexican Particle Accelerator School Introduction to Accelerator Physics 20 Mexican Particle Accelerator School Lecture 3/7: Quadrupoles, Dipole Edge Focusing, Periodic Motion, Lattice Functions Todd Satogata (Jefferson Lab) satogata@jlab.org

More information

S5: Linear Transverse Particle Equations of Motion without Space Charge, Acceleration, and Momentum Spread S5A: Hill's Equation

S5: Linear Transverse Particle Equations of Motion without Space Charge, Acceleration, and Momentum Spread S5A: Hill's Equation S5: Linear Transverse Particle Equations of Motion without Space Charge, Acceleration, and Momentum Spread S5A: Hill's Equation For a periodic lattice: Neglect: Space charge effects: Nonlinear applied

More information

S5: Linear Transverse Particle Equations of Motion without Space Charge, Acceleration, and Momentum Spread S5A: Hill's Equation

S5: Linear Transverse Particle Equations of Motion without Space Charge, Acceleration, and Momentum Spread S5A: Hill's Equation S5: Linear Transverse Particle Equations of Motion without Space Charge, Acceleration, and Momentum Spread S5A: Hill's Equation Neglect: Space charge effects: Nonlinear applied focusing and bends: Acceleration:

More information

Introduction to Transverse Beam Dynamics

Introduction to Transverse Beam Dynamics Introduction to Transverse Beam Dynamics B.J. Holzer CERN, Geneva, Switzerland Abstract In this chapter we give an introduction to the transverse dynamics of the particles in a synchrotron or storage ring.

More information

S9: Momentum Spread Effects and Bending S9A: Formulation

S9: Momentum Spread Effects and Bending S9A: Formulation S9: Momentum Spread Effects and Bending S9A: Formulation Except for brief digressions in S1 and S4, we have concentrated on particle dynamics where all particles have the design longitudinal momentum at

More information

Bernhard Holzer, CERN-LHC

Bernhard Holzer, CERN-LHC Bernhard Holzer, CERN-LHC * Bernhard Holzer, CERN CAS Prague 2014 x Liouville: in reasonable storage rings area in phase space is constant. A = π*ε=const x ε beam emittance = woozilycity of the particle

More information

06. Orbit Stability and the Phase Amplitude Formulation *

06. Orbit Stability and the Phase Amplitude Formulation * 06. Orbit Stability and the Phase Amplitude Formulation * Prof. Steven M. Lund Physics and Astronomy Department Facility for Rare Isotope Beams (FRIB) Michigan State University (MSU) US Particle Accelerator

More information

Particle Accelerators: Transverse Beam Dynamics

Particle Accelerators: Transverse Beam Dynamics Particle Accelerators: Transverse Beam Dynamics Volker Ziemann Department of Physics and Astronomy Uppsala University Research Training course in Detector Technology Stockholm, Sept. 8, 2008 080908 V.

More information

Beam Dynamics. D. Brandt, CERN. CAS Bruges June 2009 Beam Dynamics D. Brandt 1

Beam Dynamics. D. Brandt, CERN. CAS Bruges June 2009 Beam Dynamics D. Brandt 1 Beam Dynamics D. Brandt, CERN D. Brandt 1 Some generalities D. Brandt 2 Units: the electronvolt (ev) The electronvolt (ev)) is the energy gained by an electron travelling, in vacuum, between two points

More information

Non-linear dynamics Yannis PAPAPHILIPPOU CERN

Non-linear dynamics Yannis PAPAPHILIPPOU CERN Non-linear dynamics Yannis PAPAPHILIPPOU CERN United States Particle Accelerator School, University of California - Santa-Cruz, Santa Rosa, CA 14 th 18 th January 2008 1 Summary Driven oscillators and

More information

Lecture 2: Modeling Accelerators Calculation of lattice functions and parameters. X. Huang USPAS, January 2015 Hampton, Virginia

Lecture 2: Modeling Accelerators Calculation of lattice functions and parameters. X. Huang USPAS, January 2015 Hampton, Virginia Lecture 2: Modeling Accelerators Calculation of lattice functions and parameters X. Huang USPAS, January 2015 Hampton, Virginia 1 Outline Closed orbit Transfer matrix, tunes, Optics functions Chromatic

More information

07. The Courant Snyder Invariant and the Betatron Formulation *

07. The Courant Snyder Invariant and the Betatron Formulation * 07. The Courant Snyder Invariant and the Betatron Formulation * Prof. Steven M. Lund Physics and Astronomy Department Facility for Rare Isotope Beams (FRIB) Michigan State University (MSU) US Particle

More information

HALOS AND CHAOS IN SPACE-CHARGE DOMINATED BEAMS

HALOS AND CHAOS IN SPACE-CHARGE DOMINATED BEAMS HALOS AND CHAOS IN SPACE-CHARGE DOMINATED BEAMS J-M. LAGNIEL Commissariat à l Energie Atomique DSM-GECA, CEA-Saclay, LNS 91191 Gif-sur-Yvette Cedex, France Abstract For the high-current ion accelerators

More information

Transverse dynamics. Transverse dynamics: degrees of freedom orthogonal to the reference trajectory

Transverse dynamics. Transverse dynamics: degrees of freedom orthogonal to the reference trajectory Transverse dynamics Transverse dynamics: degrees of freedom orthogonal to the reference trajectory x : the horizontal plane y : the vertical plane Erik Adli, University of Oslo, August 2016, Erik.Adli@fys.uio.no,

More information

HITRAP Low Energy Diagnostics and Emittance Measurement

HITRAP Low Energy Diagnostics and Emittance Measurement HITRAP Low Energy Diagnostics and Emittance Measurement Jochen Pfister 1, Oliver Kester 2, Ulrich Ratzinger 1, Gleb Vorobjev 3 1 Institut für Angewandte Physik, JW Goethe-University Frankfurt, Germany

More information

Accelerator Physics Final Exam pts.

Accelerator Physics Final Exam pts. Accelerator Physics Final Exam - 170 pts. S. M. Lund and Y. Hao Graders: C. Richard and C. Y. Wong June 14, 2018 Problem 1 P052 Emittance Evolution 40 pts. a) 5 pts: Consider a coasting beam composed of

More information

D. Brandt, CERN. CAS Frascati 2008 Accelerators for Newcomers D. Brandt 1

D. Brandt, CERN. CAS Frascati 2008 Accelerators for Newcomers D. Brandt 1 Accelerators for Newcomers D. Brandt, CERN D. Brandt 1 Why this Introduction? During this school, you will learn about beam dynamics in a rigorous way but some of you are completely new to the field of

More information

Transverse Centroid and Envelope *

Transverse Centroid and Envelope * Transverse Centroid and Envelope * Descriptions of Beam Evolution Prof. Steven M. Lund Physics and Astronomy Department Facility for Rare Isotope Beams (FRIB) Michigan State University (MSU) US Particle

More information

Nonlinear Single-Particle Dynamics in High Energy Accelerators

Nonlinear Single-Particle Dynamics in High Energy Accelerators Nonlinear Single-Particle Dynamics in High Energy Accelerators Part 4: Canonical Perturbation Theory Nonlinear Single-Particle Dynamics in High Energy Accelerators There are six lectures in this course

More information

Magnetic Multipoles, Magnet Design

Magnetic Multipoles, Magnet Design Magnetic Multipoles, Magnet Design S.A. Bogacz, G.A. Krafft, S. DeSilva and R. Gamage Jefferson Lab and Old Dominion University Lecture 5 - Magnetic Multipoles USPAS, Fort Collins, CO, June 13-24, 2016

More information

Nonlinear Single-Particle Dynamics in High Energy Accelerators

Nonlinear Single-Particle Dynamics in High Energy Accelerators Nonlinear Single-Particle Dynamics in High Energy Accelerators Part 2: Basic tools and concepts Nonlinear Single-Particle Dynamics in High Energy Accelerators This course consists of eight lectures: 1.

More information

Effect of Insertion Devices. Effect of IDs on beam dynamics

Effect of Insertion Devices. Effect of IDs on beam dynamics Effect of Insertion Devices The IDs are normally made of dipole magnets ith alternating dipole fields so that the orbit outside the device is un-altered. A simple planer undulator ith vertical sinusoidal

More information

S2E: Solenoidal Focusing

S2E: Solenoidal Focusing S2E: Solenoidal Focusing Writing out explicitly the terms of this expansion: The field of an ideal magnetic solenoid is invariant under transverse rotations about it's axis of symmetry (z) can be expanded

More information

S2E: Solenoidal Focusing

S2E: Solenoidal Focusing S2E: Solenoidal Focusing The field of an ideal magnetic solenoid is invariant under transverse rotations about it's axis of symmetry (z) can be expanded in terms of the on axis field as as: solenoid.png

More information

Transverse Centroid and Envelope Descriptions of Beam Evolution*

Transverse Centroid and Envelope Descriptions of Beam Evolution* Transverse Centroid and Envelope Model: Outline Transverse Centroid and Envelope Descriptions of Beam Evolution* Overview Derivation of Centroid and Envelope Equations of Motion Centroid Equations of Motion

More information

Comparison of Different Simulation Codes with UNILAC Measurements for High Beam Currents

Comparison of Different Simulation Codes with UNILAC Measurements for High Beam Currents Comparison of Different Simulation Codes with UNILAC Measurements for High Beam Currents L. Groening, W. Barth, W. Bayer, G. Clemente, L. Dahl, P. Forck, P. Gerhard, I. Hofmann, M.S. Kaiser, M..Maier,

More information

Magnetic Multipoles, Magnet Design

Magnetic Multipoles, Magnet Design Magnetic Multipoles, Magnet Design Alex Bogacz, Geoff Krafft and Timofey Zolkin Lecture 5 Magnetic Multipoles USPAS, Fort Collins, CO, June 10-21, 2013 1 Maxwell s Equations for Magnets - Outline Solutions

More information

Low Emittance Machines

Low Emittance Machines Advanced Accelerator Physics Course RHUL, Egham, UK September 2017 Low Emittance Machines Part 1: Beam Dynamics with Synchrotron Radiation Andy Wolski The Cockcroft Institute, and the University of Liverpool,

More information

Low Emittance Machines

Low Emittance Machines Advanced Accelerator Physics Course Trondheim, Norway, August 2013 Low Emittance Machines Part 3: Vertical Emittance Generation, Calculation, and Tuning Andy Wolski The Cockcroft Institute, and the University

More information

TWISS FUNCTIONS. Lecture 1 January P.J. Bryant. JUAS18_01- P.J. Bryant - Lecture 1 Twiss functions

TWISS FUNCTIONS. Lecture 1 January P.J. Bryant. JUAS18_01- P.J. Bryant - Lecture 1 Twiss functions TWISS FUNCTIONS Lecture January 08 P.J. Bryant JUAS8_0- P.J. Bryant - Lecture Slide Introduction These lectures assume knowledge of : The nd order differential equations of motion in hard-edge field models

More information

Practical Lattice Design

Practical Lattice Design Practical Lattice Design S. Alex Bogacz (JLab) and Dario Pellegrini (CERN) dario.pellegrini@cern.ch USPAS January, 15-19, 2018 1/48 D. Pellegrini - Practical Lattice Design Purpose of the Course Gain a

More information

Introduction to Accelerator Physics Old Dominion University. Nonlinear Dynamics Examples in Accelerator Physics

Introduction to Accelerator Physics Old Dominion University. Nonlinear Dynamics Examples in Accelerator Physics Introduction to Accelerator Physics Old Dominion University Nonlinear Dynamics Examples in Accelerator Physics Todd Satogata (Jefferson Lab) email satogata@jlab.org http://www.toddsatogata.net/2011-odu

More information

Bernhard Holzer, CERN-LHC

Bernhard Holzer, CERN-LHC Bernhard Holzer, CERN-LHC * 1 ... in the end and after all it should be a kind of circular machine need transverse deflecting force Lorentz force typical velocity in high energy machines: old greek dictum

More information

( ) and then eliminate t to get y(x) or x(y). Not that the

( ) and then eliminate t to get y(x) or x(y). Not that the 2. First-order linear equations We want the solution (x,y) of () ax, ( y) x + bx, ( y) y = 0 ( ) and b( x,y) are given functions. If a and b are constants, then =F(bx-ay) where ax, y where F is an arbitrary

More information

Accelerator Physics. Elena Wildner. Transverse motion. Benasque. Acknowldements to Simon Baird, Rende Steerenberg, Mats Lindroos, for course material

Accelerator Physics. Elena Wildner. Transverse motion. Benasque. Acknowldements to Simon Baird, Rende Steerenberg, Mats Lindroos, for course material Accelerator Physics Transverse motion Elena Wildner Acknowldements to Simon Baird, Rende Steerenberg, Mats Lindroos, for course material E.Wildner NUFACT08 School Accelerator co-ordinates Horizontal Longitudinal

More information

(6.2) -The Shooting Method for Nonlinear Problems

(6.2) -The Shooting Method for Nonlinear Problems (6.2) -The Shooting Method for Nonlinear Problems Consider the boundary value problems (BVPs) for the second order differential equation of the form (*) y f x,y,y, a x b, y a and y b. When f x,y,y is linear

More information

An Efficient Computational Solution Scheme of the Random Eigenvalue Problems

An Efficient Computational Solution Scheme of the Random Eigenvalue Problems 50th AIAA SDM Conference, 4-7 May 2009 An Efficient Computational Solution Scheme of the Random Eigenvalue Problems Rajib Chowdhury & Sondipon Adhikari School of Engineering Swansea University Swansea,

More information

CERN Accelerator School. Intermediate Accelerator Physics Course Chios, Greece, September Low Emittance Rings

CERN Accelerator School. Intermediate Accelerator Physics Course Chios, Greece, September Low Emittance Rings CERN Accelerator School Intermediate Accelerator Physics Course Chios, Greece, September 2011 Low Emittance Rings Part 1: Beam Dynamics with Synchrotron Radiation Andy Wolski The Cockcroft Institute, and

More information

Transverse Beam Dynamics II

Transverse Beam Dynamics II Transverse Beam Dynamics II II) The State of the Art in High Energy Machines: The Theory of Synchrotrons: Linear Beam Optics The Beam as Particle Ensemble Emittance and Beta-Function Colliding Beams &

More information

Transverse Equilibrium Distributions

Transverse Equilibrium Distributions * Prof. Steven M. Lund Physics and Astronomy Department Facility for Rare Isotope Beams (FRIB) Michigan State University (MSU) US Particle Accelerator School (USPAS) Lectures on Beam Physics with Intense

More information

Transverse Equilibrium Distributions

Transverse Equilibrium Distributions * Transverse Equilibrium Distribution Functions: Outline Prof. Steven M. Lund Physics and Astronomy Department Facility for Rare Isotope Beams (FRIB) Michigan State University (MSU) Review: Equations of

More information

Bernhard Holzer, CERN-LHC

Bernhard Holzer, CERN-LHC Bernhard Holzer, CERN-LHC * Bernhard Holzer, CERN CAS Prague 2014 Lattice Design... in 10 seconds... the Matrices Transformation of the coordinate vector (x,x ) in a lattice x(s) x = M 0 x'(s) 1 2 x' 0

More information

04.sup Equations of Motion and Applied Fields *

04.sup Equations of Motion and Applied Fields * 04.sup Equations of Motion and Applied Fields * Prof. Steven M. Lund Physics and Astronomy Department Facility for Rare Isotope Beams (FRIB) Michigan State University (MSU) S2: Transverse Particle Equations

More information

The Sommerfeld Polynomial Method: Harmonic Oscillator Example

The Sommerfeld Polynomial Method: Harmonic Oscillator Example Chemistry 460 Fall 2017 Dr. Jean M. Standard October 2, 2017 The Sommerfeld Polynomial Method: Harmonic Oscillator Example Scaling the Harmonic Oscillator Equation Recall the basic definitions of the harmonic

More information

Storage Ring Optics Measurement, Model, and Correction. Yiton T. Yan SLAC, 2575 Sand Hill Road, Menlo Park, CA 94025, USA.

Storage Ring Optics Measurement, Model, and Correction. Yiton T. Yan SLAC, 2575 Sand Hill Road, Menlo Park, CA 94025, USA. SLAC-PUB-12438 April 2007 Storage Ring Optics Measurement, Model, and Correction Yiton T. Yan SLAC, 2575 Sand Hill Road, Menlo Park, CA 94025, USA 1 Introduction To improve the optics of a storage ring,

More information

Transverse Equilibrium Distributions

Transverse Equilibrium Distributions * Transverse Equilibrium Distribution Functions: Outline Vlasov Model Vlasov Equilibria The KV Equilibrium Distribution Continuous Focusing Limit of the KV Equilibrium Distribution Equilibrium Distributions

More information

Optimal axes of Siberian snakes for polarized proton acceleration

Optimal axes of Siberian snakes for polarized proton acceleration PHYSICAL REVIEW SPECIAL TOPICS - ACCELERATORS AND BEAMS 7, 121001 (2004) Optimal axes of Siberian snakes for polarized proton acceleration Georg H. Hoffstaetter Department of Physics, Cornell University,

More information

Transverse Centroid and Envelope * Descriptions of Beam Evolution

Transverse Centroid and Envelope * Descriptions of Beam Evolution Transverse Centroid and Envelope * Descriptions of Beam Evolution Steven M. Lund Lawrence Livermore National Laboratory (LLNL) Steven M. Lund and John J. Barnard USPAS: UCB: Beam Physics with Intense Space

More information

Physics 598ACC Accelerators: Theory and Applications

Physics 598ACC Accelerators: Theory and Applications Physics 598ACC Accelerators: Theory and Instructors: Fred Mills, Deborah Errede Lecture 4: Betatron Oscillations 1 Summary A. Mathieu-Hill equation B. Transfer matrix properties C. Floquet theory solutions

More information

z x = f x (x, y, a, b), z y = f y (x, y, a, b). F(x, y, z, z x, z y ) = 0. This is a PDE for the unknown function of two independent variables.

z x = f x (x, y, a, b), z y = f y (x, y, a, b). F(x, y, z, z x, z y ) = 0. This is a PDE for the unknown function of two independent variables. Chapter 2 First order PDE 2.1 How and Why First order PDE appear? 2.1.1 Physical origins Conservation laws form one of the two fundamental parts of any mathematical model of Continuum Mechanics. These

More information

Nonlinear dynamics. Yichao Jing

Nonlinear dynamics. Yichao Jing Yichao Jing Outline Examples for nonlinearities in particle accelerator Approaches to study nonlinear resonances Chromaticity, resonance driving terms and dynamic aperture Nonlinearities in accelerator

More information

LECTURE 7. insertion MATCH POINTS. Lattice design: insertions and matching

LECTURE 7. insertion MATCH POINTS. Lattice design: insertions and matching LECTURE 7 Lattice design: insertions and matching Linear deviations from an ideal lattice: Dipole errors and closed orbit deformations Lattice design: insertions and matching The bacbone of an accelerator

More information

Introduction to Accelerators

Introduction to Accelerators Introduction to Accelerators D. Brandt, CERN CAS Platja d Aro 2006 Introduction to Accelerators D. Brandt 1 Why an Introduction? The time where each accelerator sector was working alone in its corner is

More information

50 MeV 1.4 GeV 25GeV 450 GeV 8 TeV. Sources of emittance growth CAS 07 Liverpool. Sept D. Möhl, slide 1

50 MeV 1.4 GeV 25GeV 450 GeV 8 TeV. Sources of emittance growth CAS 07 Liverpool. Sept D. Möhl, slide 1 * 5 KeV 750 KeV 50 MeV 1.4 GeV 5GeV 450 GeV 8 TeV Sources of emittance growth CAS 07 Liverpool. Sept. 007 D. Möhl, slide 1 Sources of Emittance Growth Dieter Möhl Menu Overview Definition of emittance,

More information

12. Acceleration and Normalized Emittance *

12. Acceleration and Normalized Emittance * 12. Acceleration and Normalized Emittance * Prof. Steven M. Lund Physics and Astronomy Department Facility for Rare Isotope Beams (FRIB) Michigan State University (MSU) US Particle Accelerator School Accelerator

More information

Low Emittance Machines

Low Emittance Machines CERN Accelerator School Advanced Accelerator Physics Course Trondheim, Norway, August 2013 Low Emittance Machines Part 1: Beam Dynamics with Synchrotron Radiation Andy Wolski The Cockcroft Institute, and

More information

Intro. Lecture 06: Initial Distributions

Intro. Lecture 06: Initial Distributions Intro. Lecture 06: Initial Distributions * Prof. Steven M. Lund Physics and Astronomy Department Facility for Rare Isotope Beams (FRIB) Michigan State University (MSU) US Particle Accelerator School (USPAS)

More information

E. Wilson - CERN. Components of a synchrotron. Dipole Bending Magnet. Magnetic rigidity. Bending Magnet. Weak focusing - gutter. Transverse ellipse

E. Wilson - CERN. Components of a synchrotron. Dipole Bending Magnet. Magnetic rigidity. Bending Magnet. Weak focusing - gutter. Transverse ellipse Transverse Dynamics E. Wilson - CERN Components of a synchrotron Dipole Bending Magnet Magnetic rigidity Bending Magnet Weak focusing - gutter Transverse ellipse Fields and force in a quadrupole Strong

More information

TC412 Microwave Communications. Lecture 8 Rectangular waveguides and cavity resonator

TC412 Microwave Communications. Lecture 8 Rectangular waveguides and cavity resonator TC412 Microwave Communications Lecture 8 Rectangular waveguides and cavity resonator 1 TM waves in rectangular waveguides Finding E and H components in terms of, WG geometry, and modes. From 2 2 2 xye

More information

APPLICATIONS OF ADVANCED SCALING FFAG ACCELERATOR

APPLICATIONS OF ADVANCED SCALING FFAG ACCELERATOR APPLICATIONS OF ADVANCED SCALING FFAG ACCELERATOR JB. Lagrange ), T. Planche ), E. Yamakawa ), Y. Ishi ), Y. Kuriyama ), Y. Mori ), K. Okabe ), T. Uesugi ), ) Graduate School of Engineering, Kyoto University,

More information

Efficient Computation of Matched Solutions of the KV Envelope Equations for Periodic * Focusing Lattices

Efficient Computation of Matched Solutions of the KV Envelope Equations for Periodic * Focusing Lattices Efficient Computation of Matched Solutions of the KV Envelope Equations for Periodic * Focusing Lattices Sven H. Chilton,1 Steven M. Lund2 and Edward P. Lee1 1 Lawrence Berkeley National Laboratory (LBNL)

More information

Math 46, Applied Math (Spring 2008): Final

Math 46, Applied Math (Spring 2008): Final Math 46, Applied Math (Spring 2008): Final 3 hours, 80 points total, 9 questions, roughly in syllabus order (apart from short answers) 1. [16 points. Note part c, worth 7 points, is independent of the

More information

Accelerator Physics Closed Orbits and Chromaticity. G. A. Krafft Old Dominion University Jefferson Lab Lecture 14

Accelerator Physics Closed Orbits and Chromaticity. G. A. Krafft Old Dominion University Jefferson Lab Lecture 14 Accelerator Physics Closed Orbits and Chromaticity G. A. Krafft Old Dominion University Jefferson Lab Lecture 4 Kick at every turn. Solve a toy model: Dipole Error B d kb d k B x s s s il B ds Q ds i x

More information

Poisson Brackets and Lie Operators

Poisson Brackets and Lie Operators Poisson Brackets and Lie Operators T. Satogata January 22, 2008 1 Symplecticity and Poisson Brackets 1.1 Symplecticity Consider an n-dimensional 2n-dimensional phase space) linear system. Let the canonical

More information

Invariant Manifolds of Dynamical Systems and an application to Space Exploration

Invariant Manifolds of Dynamical Systems and an application to Space Exploration Invariant Manifolds of Dynamical Systems and an application to Space Exploration Mateo Wirth January 13, 2014 1 Abstract In this paper we go over the basics of stable and unstable manifolds associated

More information

Implementation of an iterative matching scheme for the Kapchinskij-Vladimirskij equations in the WARP code. Sven H. Chilton

Implementation of an iterative matching scheme for the Kapchinskij-Vladimirskij equations in the WARP code. Sven H. Chilton Implementation of an iterative matching scheme for the Kapchinskij-Vladimirskij equations in the WARP code by Sven H. Chilton S.B. (Massachusetts Institute of Technology) 2005 A thesis submitted in partial

More information

PBL SCENARIO ON ACCELERATORS: SUMMARY

PBL SCENARIO ON ACCELERATORS: SUMMARY PBL SCENARIO ON ACCELERATORS: SUMMARY Elias Métral Elias.Metral@cern.ch Tel.: 72560 or 164809 CERN accelerators and CERN Control Centre Machine luminosity Transverse beam dynamics + space charge Longitudinal

More information

Phase Space Gymnastics

Phase Space Gymnastics Phase Space Gymnastics As accelerator technology advances, the requirements on accelerator beam quality become increasingly demanding. Phase space gymnastics becomes a new focus of accelerator physics

More information

SC forces RMS Envelope SC Child Langmuir law SCC Simulation Codes LEBT Simulation

SC forces RMS Envelope SC Child Langmuir law SCC Simulation Codes LEBT Simulation Space Charge Effects N. Chauvin Commissariat à l Energie Atomique et aux Energies Alternatives, DSM/Irfu; F-91191 Gif-sur-Yvette, France. Nicolas.Chauvin@cea.fr May 31, 2012 N. Chauvin Space Charge Effects

More information

Method of Perturbative-PIC Simulation for CSR Effect

Method of Perturbative-PIC Simulation for CSR Effect Method of Perturbative-PIC Simulation for CSR Effect Jack J. Shi Department of Physics & Astronomy, University of Kansas OUTLINE Why Do We Want to Do This? Perturbation Expansion of the Retardation of

More information

8 Example 1: The van der Pol oscillator (Strogatz Chapter 7)

8 Example 1: The van der Pol oscillator (Strogatz Chapter 7) 8 Example 1: The van der Pol oscillator (Strogatz Chapter 7) So far we have seen some different possibilities of what can happen in two-dimensional systems (local and global attractors and bifurcations)

More information

Lattice Design in Particle Accelerators

Lattice Design in Particle Accelerators Lattice Design in Particle Accelerators Bernhard Holzer, DESY Historical note:... Particle acceleration where lattice design is not needed 4 N ntz e i N( θ ) = * 4 ( 8πε ) r K sin 0 ( θ / ) uo P Rutherford

More information

David Sagan. The standard analysis for a coupled lattice is based upon the formalism of Edwards

David Sagan. The standard analysis for a coupled lattice is based upon the formalism of Edwards Twiss Analysis With a Mobius Lattice David Sagan CBN 98{14 July 10, 1998 1 Introduction The standard analysis for a coupled lattice is based upon the formalism of Edwards and Teng[1]. This is ne for weak

More information

Transverse dynamics Selected topics. Erik Adli, University of Oslo, August 2016, v2.21

Transverse dynamics Selected topics. Erik Adli, University of Oslo, August 2016, v2.21 Transverse dynamics Selected topics Erik Adli, University of Oslo, August 2016, Erik.Adli@fys.uio.no, v2.21 Dispersion So far, we have studied particles with reference momentum p = p 0. A dipole field

More information

HALO SIMULATION IN A REALISTIC PROTON LINAC DESIGN

HALO SIMULATION IN A REALISTIC PROTON LINAC DESIGN HALO SIMULATION IN A REALISTIC PROTON LINAC DESIGN M. Pabst and K. Bongardt, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany A.P. Letchford, Rutherford Appleton Laboratory, Chilton, Didcot, UK Abstract

More information

S1: Particle Equations of Motion S1A: Introduction: The Lorentz Force Equation

S1: Particle Equations of Motion S1A: Introduction: The Lorentz Force Equation S1: Particle Equations of Motion S1A: Introduction: The Lorentz Force Equation The Lorentz force equation of a charged particle is given by (MKS Units):... particle mass, charge... particle coordinate...

More information

Physics 598ACC Accelerators: Theory and Applications

Physics 598ACC Accelerators: Theory and Applications Physics 598ACC Accelerators: Theory and Instructors: Fred Mills, Deborah Errede Lecture 6: Collective Effects 1 Summary A. Transverse space charge defocusing effects B. Longitudinal space charge effects

More information

Influence of beam space charge on dynamical aperture of TWAC storage ring. V.V. Kapin, A.Ye. Bolshakov, P.R. Zenkevich ITEP, Moscow, Russia

Influence of beam space charge on dynamical aperture of TWAC storage ring. V.V. Kapin, A.Ye. Bolshakov, P.R. Zenkevich ITEP, Moscow, Russia Influence of beam space charge on dynamical aperture of TWAC storage ring V.V. Kapin, A.Ye. Bolshakov, P.R. Zenkevich ITEP, Moscow, Russia Abstract High intensity ion beams are planned to store in Terra

More information

Part II Effect of Insertion Devices on the Electron Beam

Part II Effect of Insertion Devices on the Electron Beam Part II Effect of Insertion Devices on the Electron Beam Pascal ELLEAUME European Synchrotron Radiation Facility, Grenoble II, 1/14, P. Elleaume, CAS, Brunnen July -9, 3. Effect of an Insertion Device

More information

A plane autonomous system is a pair of simultaneous first-order differential equations,

A plane autonomous system is a pair of simultaneous first-order differential equations, Chapter 11 Phase-Plane Techniques 11.1 Plane Autonomous Systems A plane autonomous system is a pair of simultaneous first-order differential equations, ẋ = f(x, y), ẏ = g(x, y). This system has an equilibrium

More information

A Low Energy Beam Transport Design with high SCC for TAC Proton Accelerator

A Low Energy Beam Transport Design with high SCC for TAC Proton Accelerator A Low Energy Beam Transport Design with high SCC for TAC Proton Accelerator * A. Caliskan 1, H. F. Kisoglu 2, S. Sultansoy 3,4, M. Yilmaz 5 1 Department of Engineering Physics, Gumushane University, Gumushane,

More information

Axioms of Kleene Algebra

Axioms of Kleene Algebra Introduction to Kleene Algebra Lecture 2 CS786 Spring 2004 January 28, 2004 Axioms of Kleene Algebra In this lecture we give the formal definition of a Kleene algebra and derive some basic consequences.

More information

36. Nonlinear optics: χ(2) processes

36. Nonlinear optics: χ(2) processes 36. Nonlinear optics: χ() processes The wave equation with nonlinearity Second-harmonic generation: making blue light from red light approximations: SVEA, zero pump depletion phase matching quasi-phase

More information

Beam halo formation in high-intensity beams

Beam halo formation in high-intensity beams Beam halo formation in high-intensity beams Alexei V. Fedotov,1,2 Brookhaven National Laboratory, Upton, NY 11973, USA Abstract Studies of beam halo became an unavoidable feature of high-intensity machines

More information

parameter symbol value beam energy E 15 GeV transverse rms beam size x;y 25 m rms bunch length z 20 m charge per bunch Q b 1nC electrons per bunch N b

parameter symbol value beam energy E 15 GeV transverse rms beam size x;y 25 m rms bunch length z 20 m charge per bunch Q b 1nC electrons per bunch N b LCLS{TN{98{2 March 1998 SLAC/AP{109 November 1997 Ion Eects in the LCLS Undulator 1 Frank Zimmermann Stanford Linear Accelerator Center, Stanford University, Stanford, CA 94309 Abstract I calculate the

More information

Lattice Design II: Insertions Bernhard Holzer, DESY

Lattice Design II: Insertions Bernhard Holzer, DESY Lattice Design II: Insertions Bernhard Holzer, DESY .) Reminder: equation of motion ẑ x'' + K( s)* x= 0 K = k+ ρ θ ρ s x z single particle trajectory xs () x0 = M * x '( s ) x ' 0 e.g. matrix for a quadrupole

More information

Two Posts to Fill On School Board

Two Posts to Fill On School Board Y Y 9 86 4 4 qz 86 x : ( ) z 7 854 Y x 4 z z x x 4 87 88 Y 5 x q x 8 Y 8 x x : 6 ; : 5 x ; 4 ( z ; ( ) ) x ; z 94 ; x 3 3 3 5 94 ; ; ; ; 3 x : 5 89 q ; ; x ; x ; ; x : ; ; ; ; ; ; 87 47% : () : / : 83

More information

LMI Methods in Optimal and Robust Control

LMI Methods in Optimal and Robust Control LMI Methods in Optimal and Robust Control Matthew M. Peet Arizona State University Lecture 15: Nonlinear Systems and Lyapunov Functions Overview Our next goal is to extend LMI s and optimization to nonlinear

More information

Thu June 16 Lecture Notes: Lattice Exercises I

Thu June 16 Lecture Notes: Lattice Exercises I Thu June 6 ecture Notes: attice Exercises I T. Satogata: June USPAS Accelerator Physics Most o these notes ollow the treatment in the class text, Conte and MacKay, Chapter 6 on attice Exercises. The portions

More information

L = 1 2 a(q) q2 V (q).

L = 1 2 a(q) q2 V (q). Physics 3550, Fall 2011 Motion near equilibrium - Small Oscillations Relevant Sections in Text: 5.1 5.6 Motion near equilibrium 1 degree of freedom One of the most important situations in physics is motion

More information

Directional Derivative and the Gradient Operator

Directional Derivative and the Gradient Operator Chapter 4 Directional Derivative and the Gradient Operator The equation z = f(x, y) defines a surface in 3 dimensions. We can write this as z f(x, y) = 0, or g(x, y, z) = 0, where g(x, y, z) = z f(x, y).

More information

THEODORE VORONOV DIFFERENTIABLE MANIFOLDS. Fall Last updated: November 26, (Under construction.)

THEODORE VORONOV DIFFERENTIABLE MANIFOLDS. Fall Last updated: November 26, (Under construction.) 4 Vector fields Last updated: November 26, 2009. (Under construction.) 4.1 Tangent vectors as derivations After we have introduced topological notions, we can come back to analysis on manifolds. Let M

More information

Beam Transfer Lines. Brennan Goddard CERN

Beam Transfer Lines. Brennan Goddard CERN Beam Transfer Lines Distinctions between transfer lines and circular machines Linking machines together Trajectory correction Emittance and mismatch measurement Blow-up from steering errors, optics mismatch

More information

LOW EMITTANCE STORAGE RING DESIGN. Zhenghao Gu. Department of Physics, Indiana University. March 10, 2013

LOW EMITTANCE STORAGE RING DESIGN. Zhenghao Gu.   Department of Physics, Indiana University. March 10, 2013 LOW EMITTANCE STORAGE RING DESIGN Zhenghao Gu Email: guzh@indiana.edu Department of Physics, Indiana University March 10, 2013 Zhenghao Gu Department of Physics, Indiana University 1 / 32 Outline Introduction

More information