Introduction to Accelerator Physics 2011 Mexican Particle Accelerator School

Size: px
Start display at page:

Download "Introduction to Accelerator Physics 2011 Mexican Particle Accelerator School"

Transcription

1 Introduction to Accelerator Physics 20 Mexican Particle Accelerator School Lecture 3/7: Quadrupoles, Dipole Edge Focusing, Periodic Motion, Lattice Functions Todd Satogata (Jefferson Lab) Thursday, September 29, 20 T. Satogata / Fall 20 MePAS Intro to Accel Physics

2 MePAS Accelerator Physics Syllabus -2: Wednesday Relativity/EM review, coordinates, cyclotrons Weak focusing, transport matrices, dipole magnets, dispersion 3: Thursday Edge focusing, quadrupoles, accelerator lattices, start FODO 4: Friday Periodic lattices, FODO optics, emittance, phase space 5: Saturday Insertions, beta functions, tunes, dispersion, chromaticity 6: Monday Dispersion suppression, light source optics (DBA, TBA, TME) 7: Tuesday (Nonlinear dynamics), Putting it all together T. Satogata / Fall 20 MePAS Intro to Accel Physics 2

3 Parameterizing Particle Motion: Approximations coordinate system We have specified a coordinate system and made a few reasonable approximations: 0) No local currents (beam in a near-vacuum) ) Paraxial approximation: 2) Perturbative coordinates: 3) Transverse linear B field: 4) Negligible E field: T. Satogata / Fall 20 MePAS Intro to Accel Physics 3

4 Review Drift transport matrix: Dipole transport matrix without focusing: Dipole horizontal transport matrix including focusing and dispersion: T. Satogata / Fall 20 MePAS Intro to Accel Physics 4

5 Focusing Without Bending Quadrupole magnets have but No dipole field: design trajectory is straight Like taking in our previous analysis This is one reason why we changed our parameterizations from horizontal dipole vertical dipole normal quadrupole skew quadrupole T. Satogata / Fall 20 MePAS Intro to Accel Physics 5

6 d dθ = R d ds Quadrupole Equations of Motion d 2 x d nx =0 dθ2 2 y x + (Bρ) By dθ 2 + ny =0 n ρ B 0 (A2) By x =0 y x (Bρ) x + Kx =0 y Ky =0 K (Bρ) By x This is truly a simple harmonic oscillator when K is constant: for a quadrupole of length L focusing x By x T. Satogata / Fall 20 MePAS Intro to Accel Physics 6 y =0 [K] = [length] 2 x(l) cos(l K) x (L) K sin(l K) 0 0 y(l) = K sin(l K) cos(l K) cosh(l K) y K sinh(l K) (L) 0 0 K sinh(l K) cosh(l K) defocusing Thick quadrupole transport matrix Swap places when K goes to -K x 0 x 0 y 0 y 0

7 Thin Quadrupoles In most accelerator uses, we can take L->0 with KL constant Use small-angle approximation to rewrite as a thin quadrupole x(l) x 0 x (L) y(l) = KL 0 0 x y 0 y (L) 0 0 KL y0 This is just like a lens in classical optics with a focal length x(l) x 0 x (L) y(l) = /f 0 0 x y 0 y (L) 0 0 /f y0 Thin quadrupole transport matrix Swap places when K goes to -K f KL T. Satogata / Fall 20 MePAS Intro to Accel Physics 7

8 Picturing Drift and Quadrupole Motion KL=0.5 m -, f=2m KL=0. m -, f=20m KL=20 m -, f=0.05m KL=-0. m -, f=-20m T. Satogata / Fall 20 MePAS Intro to Accel Physics 8

9 Picturing Drift and Quadrupole Motion KL=0.5 m -, f=2m KL=0. m -, f=20m KL=20 m -, f=0.05m KL=-0. m -, f=-20m Thin Quadrupole Approximations T. Satogata / Fall 20 MePAS Intro to Accel Physics 9

10 Dipole Edge Focusing Quadrupoles are not the only place we get focusing! Recall our 3x3 sector dipole matrix Vertical motion is just a drift of length L = ρθ But this magnet is curved and therefore not easy to build In particular, the ends are tilted to be to design trajectory T. Satogata / Fall 20 MePAS Intro to Accel Physics 0

11 Sector and Rectangular Bends Sector bend (sbend) Beam design entry/exit angles are to end faces Simpler to conceptualize, but harder to build Rectangular bend (rbend) Beam design entry/exit angles are half of bend angle Easier to build, but must include effects of edge focusing T. Satogata / Fall 20 MePAS Intro to Accel Physics

12 Dipole End Angles +x displaced particle enters B field later than design trajectory particle Design trajectory particle -x displaced particle enters B field earlier than design trajectory particle Different transverse positions see different B field! Particles displaced by +x see B field later than design Particles displaced by x see B field earlier than design T. Satogata / Fall 20 MePAS Intro to Accel Physics 2

13 Dipole End Angles We treat general case of symmetric dipole end angles Superposition: looks like wedges on end of sector dipole Rectangular bends are a special case T. Satogata / Fall 20 MePAS Intro to Accel Physics 3

14 Kick from a Thin Wedge The edge focusing calculation requires the kick from a thin wedge What is L? (distance in wedge) Quadrupole-like defocusing term, linear in position T. Satogata / Fall 20 MePAS Intro to Accel Physics 4

15 Dipole Matrix with Ends The matrix of a dipole with thick ends is then Rectangular bend is special case where α=θ/2 T. Satogata / Fall 20 MePAS Intro to Accel Physics 5

16 What About Vertical Edge Focusing? Side view N Overhead view, α>0 S Field lines go from y to +y for a positively charged particle B x <0 for y>0; B x >0 for y<0 Net focusing! Field goes like sin(α) get cos(α) from integral length Quadrupole-like focusing y = ( B xy sin α/l)(l/ cos α) (Bρ) = tan α ρ y T. Satogata / Fall 20 MePAS Intro to Accel Physics 6

17 ========== Almost There ========== T. Satogata / Fall 20 MePAS Intro to Accel Physics 7

18 Matrix Example: Strong Focusing Consider a doublet of thin quadrupoles separated by drift L f D f F M doublet = 0 f D L 0 0 f F = L f doublet f D f F f F f D f D = f F = f = L f doublet f 2 There is net focusing given by this alternating gradient system A fundamental point of optics, and of accelerator strong focusing = L f F f D f F L f F f D L + L f D T. Satogata / Fall 20 MePAS Intro to Accel Physics 8

19 Strong Focusing: Another View f F f D M doublet = 0 f D incoming paraxial ray L 0 x x 0 f F For this to be focusing, x must have opposite sign of x Equal strength doublet is net focusing under condition that each lens s focal length is greater than distance between them = x0 = M doublet 0 L f F f D f F L f F f D f F = f D x < 0 BUT x>0iff f F >L = L f F f D f F L f F f D L + L f D x 0 T. Satogata / Fall 20 MePAS Intro to Accel Physics 9

20 Strong Focusing Homework f D f F The previous argument also works when the defocusing quadrupole comes before the focusing quadrupole Homework: Calculate the net focusing condition for this system Since quadrupoles focus in one plane and defocus in the other, alternating quadrupoles continuously produces a system that is overall net focusing and stable Horizontal Vertical F O D O FODO lattice: Periodic! T. Satogata / Fall 20 MePAS Intro to Accel Physics 20

21 More Math: Hill s Equation Let s go back to our equations of motion for x + Kx =0 y Ky =0 K (Bρ) What happens when we let the focusing K vary with s? Also assume K is periodic in s with some periodicity C x + K(s)x =0 K(s) (Bρ) By (s) x This periodicity can be one revolution around the accelerator or as small as one repeated cell of the layout (Such as a FODO cell in the previous slide) R By x K(s + C) =K(s) The simple harmonic oscillator equation with a periodically varying spring constant K(s) is known as Hill s Equation T. Satogata / Fall 20 MePAS Intro to Accel Physics 2

22 Hill s Equation Solution Ansatz x + K(s)x =0 K (Bρ) By x Solution is a quasi-periodic harmonic oscillator x(s) =Aw(s) cos[φ(s)+φ 0 ] (s) where w(s) is periodic in C but the phase φ is not!! Substitute this educated guess ( ansatz ) to find x = Aw cos[φ + φ 0 ] Awφ sin[φ + φ 0 ] x = A(w wφ 2 ) cos[φ + φ 0 ] A(2w φ + wφ )sin[φ + φ 0 ] x + K(s)x = A(2w φ + wφ )sin(φ + φ 0 )+A(w wφ 2 + Kw) cos(φ + φ 0 )=0 For w(s) and φ(s) to be independent of φ 0, coefficients of sin and cos terms must vanish identically T. Satogata / Fall 20 MePAS Intro to Accel Physics 22

23 Courant-Snyder Parameters 2ww φ + w 2 φ =(w 2 φ ) =0 φ = k w(s) 2 w (k 2 /w 3 )+Kw =0 w 3 (w + Kw)=k 2 Notice that in both equations w 2 k so we can scale this out and define a new set of functions, Courant-Snyder Parameters or Twiss Parameters β(s) w2 (s) φ = ds φ(s) = k β(s) β(s) α(s) 2 β (s) γ(s) +α(s)2 β(s) Kβ = γ + α β(s), α(s), γ(s) are all periodic in C φ(s)isnot periodic in C T. Satogata / Fall 20 MePAS Intro to Accel Physics 23

24 Towards The Matrix Solution φ = β(s) What is the matrix for this Hill s Equation solution? x x x(s) =A β(s) cos φ(s)+b β(s)sinφ(s) x (s) = β(s) {[B α(s)a] cos φ(s) [A + α(s)b]sinφ(s)} A = x 0 β(s) B = β(s) [β(s)x 0 + α(s)x 0 ] This all looks pretty familiar and pretty tedious We have done this many times so we skip to the solution s 0 +C = cos φc + α(s)sin φ C γ(s)sin φ C φ C = s0 +C s 0 β(s)sin φ C x cos φ C α(s)sin φ C x ds β(s) s 0 T. Satogata / Fall 20 MePAS Intro to Accel Physics 24

25 x x s 0 +C = Interesting Observations cos φc + α(s)sin φ C γ(s)sin φ C φ C = s0 +C s 0 β(s)sin φ C x cos φ C α(s)sin φ C x ds β(s) s 0 φ C is independent of s: betatron phase advance again Determinant of matrix M is still! (Check!) Still looks like a rotation and some scaling M can be written down in a beautiful and deep way M = I cos φ C + J sin φ C I = 0 0 J = α(s) γ(s) β(s) α(s) J 2 = I M = e J(s) φ C and remember x(s) =A β(s) cos[φ(s)+φ 0 ] T. Satogata / Fall 20 MePAS Intro to Accel Physics 25

26 ========== Once Again ========== T. Satogata / Fall 20 MePAS Intro to Accel Physics 26

Introduction to Accelerator Physics 2011 Mexican Particle Accelerator School

Introduction to Accelerator Physics 2011 Mexican Particle Accelerator School Introduction to Accelerator Physics 2011 Mexican Particle Accelerator School Lecture 5/7: Dispersion (including FODO), Dispersion Suppressor, Light Source Lattices (DBA, TBA, TME) Todd Satogata (Jefferson

More information

Transverse dynamics. Transverse dynamics: degrees of freedom orthogonal to the reference trajectory

Transverse dynamics. Transverse dynamics: degrees of freedom orthogonal to the reference trajectory Transverse dynamics Transverse dynamics: degrees of freedom orthogonal to the reference trajectory x : the horizontal plane y : the vertical plane Erik Adli, University of Oslo, August 2016, Erik.Adli@fys.uio.no,

More information

Transverse Dynamics II

Transverse Dynamics II Transverse Dynamics II JAI Accelerator Physics Course Michaelmas Term 217 Dr. Suzie Sheehy Royal Society University Research Fellow University of Oxford Acknowledgements These lectures have been produced

More information

USPAS Accelerator Physics 2017 University of California, Davis

USPAS Accelerator Physics 2017 University of California, Davis USPAS Accelerator Physics 207 University of California, Davis Lattice Extras: Linear Errors, Doglegs, Chicanes, Achromatic Conditions, Emittance Exchange Todd Satogata (Jefferson Lab) / satogata@jlab.org

More information

Equations of motion in an accelerator (Lecture 7)

Equations of motion in an accelerator (Lecture 7) Equations of motion in an accelerator (Lecture 7) January 27, 2016 130/441 Lecture outline We consider several types of magnets used in accelerators and write down the vector potential of the magnetic

More information

Hill s equations and. transport matrices

Hill s equations and. transport matrices Hill s equations and transport matrices Y. Papaphilippou, N. Catalan Lasheras USPAS, Cornell University, Ithaca, NY 20 th June 1 st July 2005 1 Outline Hill s equations Derivation Harmonic oscillator Transport

More information

Introduction to Accelerator Physics 2011 Mexican Particle Accelerator School

Introduction to Accelerator Physics 2011 Mexican Particle Accelerator School Introduction to Accelerator Physics 2011 Mexican Particle Accelerator School Lecture 1-2/7: Intro, Relativity, E&M, Weak Focusing, Betatrons, Transport Matrices Todd Satogata (Jefferson Lab) satogata@jlab.org

More information

Accelerator Physics Homework #3 P470 (Problems: 1-5)

Accelerator Physics Homework #3 P470 (Problems: 1-5) Accelerator Physics Homework #3 P470 (Problems: -5). Particle motion in the presence of magnetic field errors is (Sect. II.2) y + K(s)y = B Bρ, where y stands for either x or z. Here B = B z for x motion,

More information

E. Wilson - CERN. Components of a synchrotron. Dipole Bending Magnet. Magnetic rigidity. Bending Magnet. Weak focusing - gutter. Transverse ellipse

E. Wilson - CERN. Components of a synchrotron. Dipole Bending Magnet. Magnetic rigidity. Bending Magnet. Weak focusing - gutter. Transverse ellipse Transverse Dynamics E. Wilson - CERN Components of a synchrotron Dipole Bending Magnet Magnetic rigidity Bending Magnet Weak focusing - gutter Transverse ellipse Fields and force in a quadrupole Strong

More information

USPAS Accelerator Physics 2013 Duke University

USPAS Accelerator Physics 2013 Duke University USPAS Accelerator Physics 2013 Duke University Lattice Extras: Linear Errors, Doglegs, Chicanes, Achromatic Conditions, Emittance Exchange Todd Satogata (Jefferson Lab) / satogata@jlab.org Waldo MacKay

More information

Introduction to Accelerator Physics Old Dominion University. Nonlinear Dynamics Examples in Accelerator Physics

Introduction to Accelerator Physics Old Dominion University. Nonlinear Dynamics Examples in Accelerator Physics Introduction to Accelerator Physics Old Dominion University Nonlinear Dynamics Examples in Accelerator Physics Todd Satogata (Jefferson Lab) email satogata@jlab.org http://www.toddsatogata.net/2011-odu

More information

Thu June 16 Lecture Notes: Lattice Exercises I

Thu June 16 Lecture Notes: Lattice Exercises I Thu June 6 ecture Notes: attice Exercises I T. Satogata: June USPAS Accelerator Physics Most o these notes ollow the treatment in the class text, Conte and MacKay, Chapter 6 on attice Exercises. The portions

More information

Accelerator Physics. Elena Wildner. Transverse motion. Benasque. Acknowldements to Simon Baird, Rende Steerenberg, Mats Lindroos, for course material

Accelerator Physics. Elena Wildner. Transverse motion. Benasque. Acknowldements to Simon Baird, Rende Steerenberg, Mats Lindroos, for course material Accelerator Physics Transverse motion Elena Wildner Acknowldements to Simon Baird, Rende Steerenberg, Mats Lindroos, for course material E.Wildner NUFACT08 School Accelerator co-ordinates Horizontal Longitudinal

More information

Magnets and Lattices. - Accelerator building blocks - Transverse beam dynamics - coordinate system

Magnets and Lattices. - Accelerator building blocks - Transverse beam dynamics - coordinate system Magnets and Lattices - Accelerator building blocks - Transverse beam dynamics - coordinate system Both electric field and magnetic field can be used to guide the particles path. r F = q( r E + r V r B

More information

Particle Accelerators: Transverse Beam Dynamics

Particle Accelerators: Transverse Beam Dynamics Particle Accelerators: Transverse Beam Dynamics Volker Ziemann Department of Physics and Astronomy Uppsala University Research Training course in Detector Technology Stockholm, Sept. 8, 2008 080908 V.

More information

Practical Lattice Design

Practical Lattice Design Practical Lattice Design S. Alex Bogacz (JLab) and Dario Pellegrini (CERN) dario.pellegrini@cern.ch USPAS January, 15-19, 2018 1/48 D. Pellegrini - Practical Lattice Design Purpose of the Course Gain a

More information

Lattice Design in Particle Accelerators

Lattice Design in Particle Accelerators Lattice Design in Particle Accelerators Bernhard Holzer, DESY Historical note:... Particle acceleration where lattice design is not needed 4 N ntz e i N( θ ) = * 4 ( 8πε ) r K sin 0 ( θ / ) uo P Rutherford

More information

Beam Dynamics. D. Brandt, CERN. CAS Bruges June 2009 Beam Dynamics D. Brandt 1

Beam Dynamics. D. Brandt, CERN. CAS Bruges June 2009 Beam Dynamics D. Brandt 1 Beam Dynamics D. Brandt, CERN D. Brandt 1 Some generalities D. Brandt 2 Units: the electronvolt (ev) The electronvolt (ev)) is the energy gained by an electron travelling, in vacuum, between two points

More information

Accelerator Physics Final Exam pts.

Accelerator Physics Final Exam pts. Accelerator Physics Final Exam - 170 pts. S. M. Lund and Y. Hao Graders: C. Richard and C. Y. Wong June 14, 2018 Problem 1 P052 Emittance Evolution 40 pts. a) 5 pts: Consider a coasting beam composed of

More information

Physics 598ACC Accelerators: Theory and Applications

Physics 598ACC Accelerators: Theory and Applications Physics 598ACC Accelerators: Theory and Instructors: Fred Mills, Deborah Errede Lecture 4: Betatron Oscillations 1 Summary A. Mathieu-Hill equation B. Transfer matrix properties C. Floquet theory solutions

More information

Introduction to Transverse Beam Dynamics

Introduction to Transverse Beam Dynamics Introduction to Transverse Beam Dynamics B.J. Holzer CERN, Geneva, Switzerland Abstract In this chapter we give an introduction to the transverse dynamics of the particles in a synchrotron or storage ring.

More information

LECTURE 7. insertion MATCH POINTS. Lattice design: insertions and matching

LECTURE 7. insertion MATCH POINTS. Lattice design: insertions and matching LECTURE 7 Lattice design: insertions and matching Linear deviations from an ideal lattice: Dipole errors and closed orbit deformations Lattice design: insertions and matching The bacbone of an accelerator

More information

Medical Linac. Block diagram. Electron source. Bending magnet. Accelerating structure. Klystron or magnetron. Pulse modulator.

Medical Linac. Block diagram. Electron source. Bending magnet. Accelerating structure. Klystron or magnetron. Pulse modulator. Block diagram Medical Linac Electron source Bending magnet Accelerating structure Pulse modulator Klystron or magnetron Treatment head 1 Medical Linac 2 Treatment Head 3 Important Accessories Wedges Dynamic

More information

D. Brandt, CERN. CAS Frascati 2008 Accelerators for Newcomers D. Brandt 1

D. Brandt, CERN. CAS Frascati 2008 Accelerators for Newcomers D. Brandt 1 Accelerators for Newcomers D. Brandt, CERN D. Brandt 1 Why this Introduction? During this school, you will learn about beam dynamics in a rigorous way but some of you are completely new to the field of

More information

S5: Linear Transverse Particle Equations of Motion without Space Charge, Acceleration, and Momentum Spread S5A: Hill's Equation

S5: Linear Transverse Particle Equations of Motion without Space Charge, Acceleration, and Momentum Spread S5A: Hill's Equation S5: Linear Transverse Particle Equations of Motion without Space Charge, Acceleration, and Momentum Spread S5A: Hill's Equation For a periodic lattice: Neglect: Space charge effects: Nonlinear applied

More information

S5: Linear Transverse Particle Equations of Motion without Space Charge, Acceleration, and Momentum Spread S5A: Hill's Equation

S5: Linear Transverse Particle Equations of Motion without Space Charge, Acceleration, and Momentum Spread S5A: Hill's Equation S5: Linear Transverse Particle Equations of Motion without Space Charge, Acceleration, and Momentum Spread S5A: Hill's Equation Neglect: Space charge effects: Nonlinear applied focusing and bends: Acceleration:

More information

FODO Cell Introduction to OptiM

FODO Cell Introduction to OptiM FODO Cell Introduction to OptiM S. Alex Bogacz Jefferson Lab 1 FODO Optics cell Most accelerator lattices are designed in modular ways Design and operational clarity, separation of functions One of the

More information

Transverse dynamics Selected topics. Erik Adli, University of Oslo, August 2016, v2.21

Transverse dynamics Selected topics. Erik Adli, University of Oslo, August 2016, v2.21 Transverse dynamics Selected topics Erik Adli, University of Oslo, August 2016, Erik.Adli@fys.uio.no, v2.21 Dispersion So far, we have studied particles with reference momentum p = p 0. A dipole field

More information

Lattice Design II: Insertions Bernhard Holzer, DESY

Lattice Design II: Insertions Bernhard Holzer, DESY Lattice Design II: Insertions Bernhard Holzer, DESY .) Reminder: equation of motion ẑ x'' + K( s)* x= 0 K = k+ ρ θ ρ s x z single particle trajectory xs () x0 = M * x '( s ) x ' 0 e.g. matrix for a quadrupole

More information

Transverse Beam Dynamics II

Transverse Beam Dynamics II Transverse Beam Dynamics II II) The State of the Art in High Energy Machines: The Theory of Synchrotrons: Linear Beam Optics The Beam as Particle Ensemble Emittance and Beta-Function Colliding Beams &

More information

04.sup Equations of Motion and Applied Fields *

04.sup Equations of Motion and Applied Fields * 04.sup Equations of Motion and Applied Fields * Prof. Steven M. Lund Physics and Astronomy Department Facility for Rare Isotope Beams (FRIB) Michigan State University (MSU) S2: Transverse Particle Equations

More information

Three Loose Ends: Edge Focusing; Chromaticity; Beam Rigidity.

Three Loose Ends: Edge Focusing; Chromaticity; Beam Rigidity. Linear Dynamics, Lecture 5 Three Loose Ends: Edge Focusing; Chromaticity; Beam Rigidity. Andy Wolski University of Liverpool, and the Cockcroft Institute, Daresbury, UK. November, 2012 What we Learned

More information

Lecture 2: Modeling Accelerators Calculation of lattice functions and parameters. X. Huang USPAS, January 2015 Hampton, Virginia

Lecture 2: Modeling Accelerators Calculation of lattice functions and parameters. X. Huang USPAS, January 2015 Hampton, Virginia Lecture 2: Modeling Accelerators Calculation of lattice functions and parameters X. Huang USPAS, January 2015 Hampton, Virginia 1 Outline Closed orbit Transfer matrix, tunes, Optics functions Chromatic

More information

Bernhard Holzer, CERN-LHC

Bernhard Holzer, CERN-LHC Bernhard Holzer, CERN-LHC * Bernhard Holzer, CERN CAS Prague 2014 Lattice Design... in 10 seconds... the Matrices Transformation of the coordinate vector (x,x ) in a lattice x(s) x = M 0 x'(s) 1 2 x' 0

More information

ÆThe Betatron. Works like a tranformer. Primary winding : coils. Secondary winding : beam. Focusing from beveled gap.

ÆThe Betatron. Works like a tranformer. Primary winding : coils. Secondary winding : beam. Focusing from beveled gap. Weak Focusing Not to be confused with weak folk cussing. Lawrence originally thought that the cyclotron needed to have a uniform (vertical) field. Actually unstable: protons with p vert 0 would crash into

More information

Low Emittance Machines

Low Emittance Machines Advanced Accelerator Physics Course RHUL, Egham, UK September 2017 Low Emittance Machines Part 1: Beam Dynamics with Synchrotron Radiation Andy Wolski The Cockcroft Institute, and the University of Liverpool,

More information

06.lec Acceleration and Normalized Emittance *

06.lec Acceleration and Normalized Emittance * 06.lec Acceleration and Normalized Emittance * Prof. Steven M. Lund Physics and Astronomy Department Facility for Rare Isotope Beams (FRIB) Michigan State University (MSU) PHY 905 Lectures Accelerator

More information

Bernhard Holzer, CERN-LHC

Bernhard Holzer, CERN-LHC Bernhard Holzer, CERN-LHC * Bernhard Holzer, CERN CAS Prague 2014 x Liouville: in reasonable storage rings area in phase space is constant. A = π*ε=const x ε beam emittance = woozilycity of the particle

More information

S1: Particle Equations of Motion S1A: Introduction: The Lorentz Force Equation

S1: Particle Equations of Motion S1A: Introduction: The Lorentz Force Equation S1: Particle Equations of Motion S1A: Introduction: The Lorentz Force Equation The Lorentz force equation of a charged particle is given by (MKS Units):... particle mass, charge... particle coordinate...

More information

An Introduction to Particle Accelerators. v short

An Introduction to Particle Accelerators. v short An Introduction to Particle Accelerators v1.42 - short LHC FIRST BEAM 10-sep-2008 Introduction Part 1 Particle accelerators for HEP LHC: the world biggest accelerator, both in energy and size (as big as

More information

Introduction to Accelerators

Introduction to Accelerators Introduction to Accelerators D. Brandt, CERN CAS Platja d Aro 2006 Introduction to Accelerators D. Brandt 1 Why an Introduction? The time where each accelerator sector was working alone in its corner is

More information

Accelerator Physics Closed Orbits and Chromaticity. G. A. Krafft Old Dominion University Jefferson Lab Lecture 14

Accelerator Physics Closed Orbits and Chromaticity. G. A. Krafft Old Dominion University Jefferson Lab Lecture 14 Accelerator Physics Closed Orbits and Chromaticity G. A. Krafft Old Dominion University Jefferson Lab Lecture 4 Kick at every turn. Solve a toy model: Dipole Error B d kb d k B x s s s il B ds Q ds i x

More information

07. The Courant Snyder Invariant and the Betatron Formulation *

07. The Courant Snyder Invariant and the Betatron Formulation * 07. The Courant Snyder Invariant and the Betatron Formulation * Prof. Steven M. Lund Physics and Astronomy Department Facility for Rare Isotope Beams (FRIB) Michigan State University (MSU) US Particle

More information

CERN Accelerator School. Intermediate Accelerator Physics Course Chios, Greece, September Low Emittance Rings

CERN Accelerator School. Intermediate Accelerator Physics Course Chios, Greece, September Low Emittance Rings CERN Accelerator School Intermediate Accelerator Physics Course Chios, Greece, September 2011 Low Emittance Rings Part 1: Beam Dynamics with Synchrotron Radiation Andy Wolski The Cockcroft Institute, and

More information

TWISS FUNCTIONS. Lecture 1 January P.J. Bryant. JUAS18_01- P.J. Bryant - Lecture 1 Twiss functions

TWISS FUNCTIONS. Lecture 1 January P.J. Bryant. JUAS18_01- P.J. Bryant - Lecture 1 Twiss functions TWISS FUNCTIONS Lecture January 08 P.J. Bryant JUAS8_0- P.J. Bryant - Lecture Slide Introduction These lectures assume knowledge of : The nd order differential equations of motion in hard-edge field models

More information

Bernhard Holzer, CERN-LHC

Bernhard Holzer, CERN-LHC Bernhard Holzer, CERN-LHC * 1 ... in the end and after all it should be a kind of circular machine need transverse deflecting force Lorentz force typical velocity in high energy machines: old greek dictum

More information

12. Acceleration and Normalized Emittance *

12. Acceleration and Normalized Emittance * 12. Acceleration and Normalized Emittance * Prof. Steven M. Lund Physics and Astronomy Department Facility for Rare Isotope Beams (FRIB) Michigan State University (MSU) US Particle Accelerator School Accelerator

More information

06. Orbit Stability and the Phase Amplitude Formulation *

06. Orbit Stability and the Phase Amplitude Formulation * 06. Orbit Stability and the Phase Amplitude Formulation * Prof. Steven M. Lund Physics and Astronomy Department Facility for Rare Isotope Beams (FRIB) Michigan State University (MSU) US Particle Accelerator

More information

S9: Momentum Spread Effects and Bending S9A: Formulation

S9: Momentum Spread Effects and Bending S9A: Formulation S9: Momentum Spread Effects and Bending S9A: Formulation Except for brief digressions in S1 and S4, we have concentrated on particle dynamics where all particles have the design longitudinal momentum at

More information

Introduction to Collider Physics

Introduction to Collider Physics Introduction to Collider Physics William Barletta United States Particle Accelerator School Dept. of Physics, MIT The Very Big Picture Accelerators Figure of Merit 1: Accelerator energy ==> energy frontier

More information

accelerator physics and ion optics summary longitudinal optics

accelerator physics and ion optics summary longitudinal optics accelerator physics and ion optics summary longitudinal optics Sytze Brandenburg sb/accphys007_5/1 coupling energy difference acceleration phase stability when accelerating on slope of sine low energy:

More information

Accelerator Physics Homework #7 P470 (Problems: 1-4)

Accelerator Physics Homework #7 P470 (Problems: 1-4) Accelerator Physics Homework #7 P470 (Problems: -4) This exercise derives the linear transfer matrix for a skew quadrupole, where the magnetic field is B z = B 0 a z, B x = B 0 a x, B s = 0; with B 0 a

More information

Lecture 3: Modeling Accelerators Fringe fields and Insertion devices. X. Huang USPAS, January 2015 Hampton, Virginia

Lecture 3: Modeling Accelerators Fringe fields and Insertion devices. X. Huang USPAS, January 2015 Hampton, Virginia Lecture 3: Modeling Accelerators Fringe fields and Insertion devices X. Huang USPAS, January 05 Hampton, Virginia Fringe field effects Dipole Quadrupole Outline Modeling of insertion devices Radiation

More information

Lattice Design II: Insertions Bernhard Holzer, CERN

Lattice Design II: Insertions Bernhard Holzer, CERN Lattice Design II: Insertions Bernhard Holzer, ERN β x, y D .) Reminder: equation of motion x'' + K( s)* x= K = k+ ρ single particle trajectory considering both planes " x(s) % " x(s ) % $ ' $ ' $ x'(s)

More information

Practical Lattice Design

Practical Lattice Design Practical Lattice Design Dario Pellegrini (CERN) dario.pellegrini@cern.ch USPAS January, 15-19, 2018 1/17 D. Pellegrini - Practical Lattice Design Lecture 5. Low Beta Insertions 2/17 D. Pellegrini - Practical

More information

S2E: Solenoidal Focusing

S2E: Solenoidal Focusing S2E: Solenoidal Focusing Writing out explicitly the terms of this expansion: The field of an ideal magnetic solenoid is invariant under transverse rotations about it's axis of symmetry (z) can be expanded

More information

S2E: Solenoidal Focusing

S2E: Solenoidal Focusing S2E: Solenoidal Focusing The field of an ideal magnetic solenoid is invariant under transverse rotations about it's axis of symmetry (z) can be expanded in terms of the on axis field as as: solenoid.png

More information

accelerator physics and ion optics summary longitudinal optics

accelerator physics and ion optics summary longitudinal optics accelerator physics and ion optics summary longitudinal optics Sytze Brandenburg sb/accphys003_5/1 feedback energy difference acceleration phase stability when accelerating on slope of sine low energy:

More information

Low Emittance Machines

Low Emittance Machines CERN Accelerator School Advanced Accelerator Physics Course Trondheim, Norway, August 2013 Low Emittance Machines Part 1: Beam Dynamics with Synchrotron Radiation Andy Wolski The Cockcroft Institute, and

More information

09.lec Momentum Spread Effects in Bending and Focusing*

09.lec Momentum Spread Effects in Bending and Focusing* 09.lec Momentum Spread Effects in Bending and Focusing* Outline Review see: 09.rev.momentum_spread 9) Momentum Spread Effects in Bending and Focusing Prof. Steven M. Lund Physics and Astronomy Department

More information

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH AN INTRODUCTION TO TRANSVERSE BEAM DYNAMICS IN ACCELERATORS. M. Martini. Abstract

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH AN INTRODUCTION TO TRANSVERSE BEAM DYNAMICS IN ACCELERATORS. M. Martini. Abstract EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH CERN/PS 96{ (PA) March 996 AN INTRODUCTION TO TRANSVERSE BEAM DYNAMICS IN ACCELERATORS M. Martini Abstract This text represents an attempt to give a comprehensive

More information

The A, B, C and D are determined by these 4 BCs to obtain

The A, B, C and D are determined by these 4 BCs to obtain Solution:. Floquet transformation: (a) Defining a new coordinate η = y/ β and φ = (/ν) s 0 ds/β, we find ds/dφ = νβ, and dη dφ = ds dη dφ d 2 η dφ 2 = ν2 β ( β y ) ( 2 β 3/2 β y = ν β /2 y ) 2 β /2 β y,

More information

Low Emittance Machines

Low Emittance Machines Advanced Accelerator Physics Course Trondheim, Norway, August 2013 Low Emittance Machines Part 3: Vertical Emittance Generation, Calculation, and Tuning Andy Wolski The Cockcroft Institute, and the University

More information

Physics 663. Particle Physics Phenomenology. April 9, Physics 663, lecture 2 1

Physics 663. Particle Physics Phenomenology. April 9, Physics 663, lecture 2 1 Physics 663 Particle Physics Phenomenology April 9, 2002 Physics 663, lecture 2 1 History Two Principles Electrostatic Cockcroft-Walton Accelerators Van de Graaff and tandem Van de Graaff Transformers

More information

Wed Jan 25 Lecture Notes: Coordinate Transformations and Nonlinear Dynamics

Wed Jan 25 Lecture Notes: Coordinate Transformations and Nonlinear Dynamics Wed Jan 25 Lecture Notes: Coordinate Transformations and Nonlinear Dynamics T. Satogata: January 2017 USPAS Accelerator Physics Most of these notes kindasortasomewhat follow the treatment in the class

More information

Nonlinear Single-Particle Dynamics in High Energy Accelerators

Nonlinear Single-Particle Dynamics in High Energy Accelerators Nonlinear Single-Particle Dynamics in High Energy Accelerators Part 4: Canonical Perturbation Theory Nonlinear Single-Particle Dynamics in High Energy Accelerators There are six lectures in this course

More information

Xiaobiao Huang Accelerator Physics August 28, The Dipole Passmethod for Accelerator Toolbox

Xiaobiao Huang Accelerator Physics August 28, The Dipole Passmethod for Accelerator Toolbox STANFORD SYNCHROTRON RADIATION LABORATORY Accelerator Physics Note CODE SERIAL PAGE 021 8 AUTHOR GROUP DATE/REVISION Xiaobiao Huang Accelerator Physics August 28, 2009 TITLE The Dipole Passmethod for Accelerator

More information

COMBINER RING LATTICE

COMBINER RING LATTICE CTFF3 TECHNICAL NOTE INFN - LNF, Accelerator Division Frascati, April 4, 21 Note: CTFF3-2 COMBINER RING LATTICE C. Biscari 1. Introduction The 3 rd CLIC test facility, CTF3, is foreseen to check the feasibility

More information

Introduction to Transverse Beam Optics. II.) Twiss Parameters & Lattice Design

Introduction to Transverse Beam Optics. II.) Twiss Parameters & Lattice Design Introduction to Transverse Beam Optics Bernhard Holzer, CERN II.) Twiss Parameters & Lattice esign ( Z X Y) Bunch in a storage ring Introduction to Transverse Beam Optics Bernhard Holzer, CERN... don't

More information

Nonlinear dynamics. Yichao Jing

Nonlinear dynamics. Yichao Jing Yichao Jing Outline Examples for nonlinearities in particle accelerator Approaches to study nonlinear resonances Chromaticity, resonance driving terms and dynamic aperture Nonlinearities in accelerator

More information

Effect of Insertion Devices. Effect of IDs on beam dynamics

Effect of Insertion Devices. Effect of IDs on beam dynamics Effect of Insertion Devices The IDs are normally made of dipole magnets ith alternating dipole fields so that the orbit outside the device is un-altered. A simple planer undulator ith vertical sinusoidal

More information

08. Equations of Motion including Acceleration, Space Charge, Bending, and Momentum Spread*

08. Equations of Motion including Acceleration, Space Charge, Bending, and Momentum Spread* 08. Equations of Motion including Acceleration, Space Charge, Bending, and Momentum Spread* Prof. Steven M. Lund Physics and Astronomy Department Facility for Rare Isotope Beams (FRIB) Michigan State University

More information

ILC Damping Ring Alternative Lattice Design **

ILC Damping Ring Alternative Lattice Design ** ILC Damping Ring Alternative Lattice Design ** Yi-Peng Sun *,1,2, Jie Gao 1, Zhi-Yu Guo 2 1 Institute of High Energy Physics, CAS, Beijing 2 Key Laboratory of Heavy Ion Physics, Peking University, Beijing

More information

Magnetic Multipoles, Magnet Design

Magnetic Multipoles, Magnet Design Magnetic Multipoles, Magnet Design S.A. Bogacz, G.A. Krafft, S. DeSilva and R. Gamage Jefferson Lab and Old Dominion University Lecture 5 - Magnetic Multipoles USPAS, Fort Collins, CO, June 13-24, 2016

More information

Suppression of Radiation Excitation in Focusing Environment * Abstract

Suppression of Radiation Excitation in Focusing Environment * Abstract SLAC PUB 7369 December 996 Suppression of Radiation Excitation in Focusing Environment * Zhirong Huang and Ronald D. Ruth Stanford Linear Accelerator Center Stanford University Stanford, CA 94309 Abstract

More information

ILC Damping Ring Alternative Lattice Design (Modified FODO)

ILC Damping Ring Alternative Lattice Design (Modified FODO) ILC Damping Ring Alternative Lattice Design (Modified FODO) Yi-Peng Sun 1,2, Jie Gao 1, Zhi-Yu Guo 2 Wei-Shi Wan 3 1 Institute of High Energy Physics, CAS, China 2 State Key Laboratory of Nuclear Physics

More information

Lattices and Emittance

Lattices and Emittance Lattices and Emittance Introduction Design phases Interfaces Space Lattice building blocks local vs. global Approximations Fields and Magnets Beam dynamics pocket tools Transfer matrices and betafunctions

More information

Calculation of matched beams under space-charge conditions

Calculation of matched beams under space-charge conditions Calculation of matched beams under space-charge conditions Jürgen Struckmeier j.struckmeier@gsi.de www.gsi.de/~struck Vortrag im Rahmen des Winterseminars Aktuelle Probleme der Beschleuniger- und Plasmaphysik

More information

Free electron lasers

Free electron lasers Preparation of the concerned sectors for educational and R&D activities related to the Hungarian ELI project Free electron lasers Lecture 2.: Insertion devices Zoltán Tibai János Hebling 1 Outline Introduction

More information

Poisson Brackets and Lie Operators

Poisson Brackets and Lie Operators Poisson Brackets and Lie Operators T. Satogata January 22, 2008 1 Symplecticity and Poisson Brackets 1.1 Symplecticity Consider an n-dimensional 2n-dimensional phase space) linear system. Let the canonical

More information

Nonlinear Single-Particle Dynamics in High Energy Accelerators

Nonlinear Single-Particle Dynamics in High Energy Accelerators Nonlinear Single-Particle Dynamics in High Energy Accelerators Part 2: Basic tools and concepts Nonlinear Single-Particle Dynamics in High Energy Accelerators This course consists of eight lectures: 1.

More information

04.sup Equations of Motion and Applied Fields*

04.sup Equations of Motion and Applied Fields* 04.sup Equations of Motion and Applied Fields* Prof. Steven M. Lund Physics and Astronomy Department Facility for Rare Isotope Beams (FRIB) Michigan State University (MSU) PHY 905 Lectures Steven M. Lund

More information

Longitudinal Dynamics

Longitudinal Dynamics Longitudinal Dynamics F = e (E + v x B) CAS Bruges 16-25 June 2009 Beam Dynamics D. Brandt 1 Acceleration The accelerator has to provide kinetic energy to the charged particles, i.e. increase the momentum

More information

Magnetic Multipoles, Magnet Design

Magnetic Multipoles, Magnet Design Magnetic Multipoles, Magnet Design Alex Bogacz, Geoff Krafft and Timofey Zolkin Lecture 5 Magnetic Multipoles USPAS, Fort Collins, CO, June 10-21, 2013 1 Maxwell s Equations for Magnets - Outline Solutions

More information

Lattice Design and Performance for PEP-X Light Source

Lattice Design and Performance for PEP-X Light Source Lattice Design and Performance for PEP-X Light Source Yuri Nosochkov SLAC National Accelerator Laboratory With contributions by M-H. Wang, Y. Cai, X. Huang, K. Bane 48th ICFA Advanced Beam Dynamics Workshop

More information

4. Statistical description of particle beams

4. Statistical description of particle beams 4. Statistical description of particle beams 4.1. Beam moments 4. Statistical description of particle beams 4.1. Beam moments In charged particle beam dynamics, we are commonly not particularly interested

More information

Accelerator Physics. Tip World Scientific NEW JERSEY LONDON SINGAPORE BEIJING SHANGHAI HONG KONG TAIPEI BANGALORE. Second Edition. S. Y.

Accelerator Physics. Tip World Scientific NEW JERSEY LONDON SINGAPORE BEIJING SHANGHAI HONG KONG TAIPEI BANGALORE. Second Edition. S. Y. Accelerator Physics Second Edition S. Y. Lee Department of Physics, Indiana University Tip World Scientific NEW JERSEY LONDON SINGAPORE BEIJING SHANGHAI HONG KONG TAIPEI BANGALORE Contents Preface Preface

More information

On-axis injection into small dynamic aperture

On-axis injection into small dynamic aperture On-axis injection into small dynamic aperture L. Emery Accelerator Systems Division Argonne National Laboratory Future Light Source Workshop 2010 Tuesday March 2nd, 2010 On-Axis (Swap-Out) injection for

More information

Accelerator. Physics of PEP-I1. Lecture #7. March 13,1998. Dr. John Seeman

Accelerator. Physics of PEP-I1. Lecture #7. March 13,1998. Dr. John Seeman Accelerator Physics of PEP-1 Lecture #7 March 13,1998 Dr. John Seeman Accelerator Physics of PEPJ John Seeman March 13,1998 1) What is PEP-? Lecture 1 2) 3) Beam parameters for an luminosity of 3~1~~/cm~/sec

More information

{ } Double Bend Achromat Arc Optics for 12 GeV CEBAF. Alex Bogacz. Abstract. 1. Dispersion s Emittance H. H γ JLAB-TN

{ } Double Bend Achromat Arc Optics for 12 GeV CEBAF. Alex Bogacz. Abstract. 1. Dispersion s Emittance H. H γ JLAB-TN JLAB-TN-7-1 Double Bend Achromat Arc Optics for 12 GeV CEBAF Abstract Alex Bogacz Alternative beam optics is proposed for the higher arcs to limit emittance dilution due to quantum excitations. The new

More information

Introduction to particle accelerators

Introduction to particle accelerators Introduction to particle accelerators Walter Scandale CERN - AT department Lecce, 17 June 2006 Introductory remarks Particle accelerators are black boxes producing either flux of particles impinging on

More information

PBL SCENARIO ON ACCELERATORS: SUMMARY

PBL SCENARIO ON ACCELERATORS: SUMMARY PBL SCENARIO ON ACCELERATORS: SUMMARY Elias Métral Elias.Metral@cern.ch Tel.: 72560 or 164809 CERN accelerators and CERN Control Centre Machine luminosity Transverse beam dynamics + space charge Longitudinal

More information

Lattices for Light Sources

Lattices for Light Sources Andreas Streun Swiss Light Source SLS, Paul Scherrer Institute, Villigen, Switzerland Contents: Global requirements: size, brightness, stability Lattice building blocks: magnets and other devices Emittance:

More information

Transverse beam dynamics studies from turn-by-turn beam position monitor data in the ALBA storage ring

Transverse beam dynamics studies from turn-by-turn beam position monitor data in the ALBA storage ring ACDIV-217-13 October 217 Transverse beam dynamics studies from turn-by-turn beam position monitor data in the ALBA storage ring Michele Carla - ALBA Synchrotron Abstract The purpose of the thesis was testing

More information

Small Synchrotrons. Michael Benedikt. CERN, AB-Department. CAS, Zeegse, 30/05/05 Small Synchrotrons M. Benedikt 1

Small Synchrotrons. Michael Benedikt. CERN, AB-Department. CAS, Zeegse, 30/05/05 Small Synchrotrons M. Benedikt 1 Small Synchrotrons Michael Benedikt CERN, AB-Department CAS, Zeegse, 30/05/05 Small Synchrotrons M. Benedikt 1 Contents Introduction Synchrotron linac - cyclotron Main elements of the synchrotron Accelerator

More information

Appendix A Quadrupole Doublets, Triplets & Lattices

Appendix A Quadrupole Doublets, Triplets & Lattices Appendix A Quadrupole Doublets, Triplets & Lattices George H. Gillespie G. H. Gillespie Associates, Inc. P. O. Box 2961 Del Mar, California 92014, U.S.A. Presented at Sandia National Laboratory (SNL) Albuquerque,

More information

Beam Transfer Lines. Brennan Goddard CERN

Beam Transfer Lines. Brennan Goddard CERN Beam Transfer Lines Distinctions between transfer lines and circular machines Linking machines together Trajectory correction Emittance and mismatch measurement Blow-up from steering errors, optics mismatch

More information

ELECTRON DYNAMICS WITH SYNCHROTRON RADIATION

ELECTRON DYNAMICS WITH SYNCHROTRON RADIATION ELECTRON DYNAMICS WITH SYNCHROTRON RADIATION Lenny Rivkin Ecole Polythechnique Federale de Lausanne (EPFL) and Paul Scherrer Institute (PSI), Switzerland CERN Accelerator School: Introduction to Accelerator

More information

HIRFL STATUS AND HIRFL-CSR PROJECT IN LANZHOU

HIRFL STATUS AND HIRFL-CSR PROJECT IN LANZHOU HIRFL STATUS AND HIRFL-CSR PROJECT IN LANZHOU J. W. Xia, Y. F. Wang, Y. N. Rao, Y. J. Yuan, M. T. Song, W. Z. Zhang, P. Yuan, W. Gu, X. T. Yang, X. D. Yang, S. L. Liu, H.W.Zhao, J.Y.Tang, W. L. Zhan, B.

More information

Historical developments. of particle acceleration

Historical developments. of particle acceleration Historical developments of particle acceleration Y.Papaphilippou N. Catalan-Lasheras USPAS, Cornell University, Ithaca, NY 20 th June 1 st July 2005 1 Outline Principles of Linear Acceleration Electrostatic

More information