Aircraft Design Studies Based on the ATR 72

Size: px
Start display at page:

Download "Aircraft Design Studies Based on the ATR 72"

Transcription

1 Aircraft Design Studies Based on the ATR 72 Mihaela Florentina Niţă Supervisor: Prof. Dr.-Ing. Dieter Scholz HAW Hamburg RRDPAE 2008 Recent Research and Design Progress in Aeronautical Engineering and its Influence on Education Brno University of Technology, Czech Republic, October 2008

2 Two Design Steps Preliminary sizing (Paper on RRDPAE CD) Conceptual Design (Master Thesis on WWW) Emphasis of this presentation

3 Overview Preliminary sizing Gives input parameters for the conceptual design:» Maximum take-off mass,» Fuel mass,» Maximum operating empty mass,» Wing area, m F m MTO m OE S W TTO PTO» Take-off thrust, or take-off power,

4 Overview Conceptual design

5 Fuselage The Fuselage Requirements:» Passengers comfort» Drag» Weight Cross section:» Given: Number of passengers n PAX = 70» Yields: Number of seats abreast n SA = 0.45 n = 4 PAX and number of aisles nsa 6 1Aisle (CS )

6 Fuselage» Interior diameter of the fuselage Empirical Equation dfi, = (2 Bench width + Aisle width) m m = 2.57m» Exterior diameter of the fuselage d = d d = 0.084m d d = 2.77m FO, FI, FI, FO,

7 Tail length Fuselage Cabin and fuselage:» Seat pitch: 31in = 0,78 m; k CABIN = 1m An average seat pitch including galleys,lavatories» Cabin Length npax lcabin = kcabin = 19.25m n SA» Fuselage length l = l d + 4m= 27.13m F CABIN F Cockpit length» Emergency exits: 2+2 type I and III

8 Fuselage Other parameters:» Slenderness parameter lf λ F = = d F Important parameter that determines drag and structural weight

9 Wing The Wing Design boundaries All interconnected!!!

10 Wing Design method

11 Wing Results SW M CR = = 61.3m A = ϕ 25 = 3 b= 27.13m Chosen airfoil: NACA 430xx Non linear regression ( t/ c) = k M cosϕ C k = t u v w t DD 25 L M ( t/ c) = 18% r (/ t c) = 13% t NACA NACA ε = 3 t 0 i w Abbot, Pankhurst C = + α0 0.4 ε = 4 C α LCR, 0 t L ν W = 0 0 λ ϕ 25 opt = 0.45 e or statistics λ = c / c = 0.59 t r

12 Wing c r 2b = = 2.6m A[(1 λη ) + λ+ λ] k i c = λc = 1.5m t r 1 1+ λ τ + λ τ Vtank = 0.54 S ( t/ c) = 9.3m > V = 4.5m A (1 + λ) W r 2 tank,nec where (/ t c) t τ = = 0.72 (/ t c) r From preliminary sizing

13 High Lift System The high lift system Design method Start C = 1.1 C = 2.2 L,max L,max, INITIAL SIZING C L,max type of flap : double slotted flap and slats Statistical reasearch Increase in Lift calculation Verify equation Iterative process no yes Stop c = k k k ( c ) = L,max, f L,max base S C = c K = W, f L,max, f L,max, f ϕ SW ' c L,max, s cl, δ,maxηmaxηδδ f c = = c SWs, CL,max, s = cl,max, s cosϕh, L = S W 0.95 CL,max, f + CL,max, s CL,max CL,max, clean DATCOM

14 Empennage Estimating the empennage area from statistics Horizontal tail, vertical tail Configuration: T-tail (engine location on a high wing) Surface area from statistical approach Tail volume Tail volume coefficient Lever arm l = l = 50% l = m V H F C H SH lh = = 1.05 S c W MAC Tail volume coefficient C V SV lv = = S b W S S H V CH SW cmac = = m lh CV SW b 2 = = m l V 2 Results

15 Empennage Other parameters Aspect ratio and taper ratio: A A H V = 0.5A = 6 = 1.6 w λh = 0.6 λ = 0.6 Dihedral and sweep: V V H V = 80 = ϕ ϕ V 25, H 25, V = 8 0 = 25 NACA Airfoil: for the vertical tailplane NACA 0009 for the horizontal tailplane

16 Mass and CG Mass estimation and CG location Estimation per each component using a Class II method (Torenbeek) Example calculation: wing mass 0.30 m b W ref 0.55 bs / t r = bs 1+ nult = 0.17 m MZF b s mmzf / SW m = 0.17 m = 3045kg W MZF The approximations are made by taking into account variations with specific parameters, as it is shown in the next table

17 Mass and CG Parameters used for the mass estimation Results [kg] Wing B ref /b s ; m MZF /S W ;n ult 3045 Fuselage S wet,f ; l H ; V D ; d F 2323 Horizontal Tailplane S H ; V D 124 Vertical Tailplane S V ; V D 179 Landing gear m MTO and coefficients 961 Engine nacelle T, respectively P,η,V 242 Installed engine n E ; m E 1533 Systems m MTO 3114 Supplemental mass n Seat ; n Pax 1050 Operating empty mass Sum of components 12834

18 Mass and CG CG position and position of the wing towards the fuselage - CG position of the wing x mi xi, = = m m WG LEMAC -CG position of the fuselage x FG mi xi = = m m i i Equilibrium of moments 25%C MAC Position of the wing: m x x x x x m ( ) WG LEMAC = FG CG, LEMAC + WG, LEMAC CG, LEMAC = 11 mfg TORENBEEK, E.: "Synthesis of Subsonic Airplane Design Delft University Press, 1988

19 Sizing the empennage according to stability and control requirements Horizontal Tail Sizing after control requirements SH / SW = a xcg AC + b CL CMW, + CME, a = = l b = = H CLH, ηh lh CLH, ηh cmac cmac Sizing after stability requirements SH / SW = a xcg AC CL, α, W a = = ε l H CL, α, H ηh 1 α cmac Intersection of requirements SH SH 9.701m S = = W Stability and Control 2 Following the introduction of the stability margin, according to the next graph

20 Stability and Control

21 Stability and Control Vertical Tail S V Sizing after control requirements NE + ND = = m 1 2 c L, δ ' ρvmc δf ( cl, δ ) theory K KΛ lv 2 ( cl, δ ) theory Sizing after stability requirements SV C C b S C l N, β N, β, F W = = W Y, β, V V S = 9.57m V Evaluation of the results If the area S H does not match Empennage results then: m H would need to be re-evaluated and wing position adjusted For the vertical tail the larger area of the two was chosen 2

22 Landing gear Landing Gear To prevent tail tipping Position: corelated with the CG aft position Turn over angle in the x direction: min. 15 Distance between wheels of the main LG Tail clearence: 11 x ytrack, LG, M = 10.77m LG N = 4.10m To prevent side tipping Lateral clearence: min. 7 required

23 Drag and Polar Drag estimation and polar Three major components: Zero lift drag it is being estimated for each component, according to the formula: CD,0 = Cf FFc Qc Swett / Sref Lift dependent drag Mach drag we neglect this from the beginning, as the aircraft flies at lower speed C f FF c Q c S wett /S ref C D,0 Fuselage Wing Horizontal Tailplane Vertical Tailplane Nacelle Total

24 Drag and Polar The polar is given by 2 L 2 CD = CD,0 + C CD = CL π A e» In the preliminary sizing calculation the value e = 0.85 was used» The resulting L/D is E = 15.8

25 DOC Estimation Design evaluation AEA method (Association of European Airliners) for estimating the direct operating costs (DOC) Parameters used for the estimation Depreciation Service life, residual value 0.99 Interest Average interest rate, total price of the aircraft Results [mil$/year] 0.73 Insurance % of aircrafts price 0.07 Fuel Maintenance Price and mass fuel, no. of flights per year Labor and material, inflation factor Crew No. of crew members 2.07 Fees: Landing Maximum take-off mass, no. of flights/year, inflation factor Navigation Maximum take-off mass, inflation factor Handling Maximum payload, inflation factor

26 DOC Estimation Total DOC = the sum of the costs of each of the following elements: CDOC = CDEP + CINT + CINS + CF + CM + CC + CFEE C DOC =10.5 mil US$/year

27 Summary Components Redesign Original Deviation Fuselage Length Diameter Cabin Length Wing Wing Span Wing Surface Wing Loading High Lift Device m 2.77 m m m 61.3 m kg/m 2 Double sloted flaps and slats m 2.57 m m m 61.0 m kg/m 2 Double sloted flaps 0.1% -2.0% 0.1% 0.3 % 0.5 % 0.0 % Power Plant Power Loading W/kg W/kg -0.1 % Horizontal Tail Surface 9.7 m m % Vertical Tail Surface 14.1 m m % Mass Maximum Take-Off Mass kg kg 0.5% Operating Empty Mass kg kg 0.9%

28 For more information please visit the digital library: and check the RRDPAE CD

Aircraft Design Studies Based on the ATR 72

Aircraft Design Studies Based on the ATR 72 Project Department of Automotive and Aeronautical Engineering Aircraft Design Studies Based on the ATR 7 Author: Mihaela Florentina Niţă Examiner: Prof. Dr.-Ing. Dieter Scholz, MSME Delivered: 13.06.008

More information

FROM PRELIMINARY AIRCRAFT CABIN DESIGN TO CABIN OPTIMIZATION - PART II -

FROM PRELIMINARY AIRCRAFT CABIN DESIGN TO CABIN OPTIMIZATION - PART II - U.P.B. Sci. Bull., Series D, Vol. 75, Iss. 4, 013 ISSN 1454-358 ROM PRELIMINARY AIRCRAT CABIN DESIGN TO CABIN OPTIMIZATION - PART II - Mihaela NIŢĂ 1, Dieter SCHOLZ This paper conducts an investigation

More information

The polar for uncambered and cambered airfoils. The angel of attack α

The polar for uncambered and cambered airfoils. The angel of attack α 13-1 13 Drag Prediction 13.1 Drag Polar In Section under Step 14 it was a requirement that the flight performance has to be checked to complete the aircraft design process. This is only possible if the

More information

Based on the Aircraft Design Lecture Notes and Master Thesis of Roberto Segovia García. Hamburg University of Applied Sciences.

Based on the Aircraft Design Lecture Notes and Master Thesis of Roberto Segovia García. Hamburg University of Applied Sciences. Dieter Scholz Drag Estimation Based on the Aircraft Design Lecture Notes and Master Thesis of Roberto Segovia García. Hamburg University of Applied Sciences. 2017 In cruise we calculate the drag coefficient

More information

Flight Dynamics and Control. Lecture 3: Longitudinal stability Derivatives G. Dimitriadis University of Liege

Flight Dynamics and Control. Lecture 3: Longitudinal stability Derivatives G. Dimitriadis University of Liege Flight Dynamics and Control Lecture 3: Longitudinal stability Derivatives G. Dimitriadis University of Liege Previously on AERO0003-1 We developed linearized equations of motion Longitudinal direction

More information

Fundamentals of Airplane Flight Mechanics

Fundamentals of Airplane Flight Mechanics David G. Hull Fundamentals of Airplane Flight Mechanics With 125 Figures and 25 Tables y Springer Introduction to Airplane Flight Mechanics 1 1.1 Airframe Anatomy 2 1.2 Engine Anatomy 5 1.3 Equations of

More information

AE 451 Aeronautical Engineering Design I Aerodynamics. Prof. Dr. Serkan Özgen Dept. Aerospace Engineering December 2017

AE 451 Aeronautical Engineering Design I Aerodynamics. Prof. Dr. Serkan Özgen Dept. Aerospace Engineering December 2017 AE 451 Aeronautical Engineering Design I Aerodynamics Prof. Dr. Serkan Özgen Dept. Aerospace Engineering December 2017 Lift curve 2 Lift curve slope 3 Subsonic lift curve slope C Lα = 2 + 4 + AR2 β 2 η

More information

Relative Wing Thickness, Wave Drag, Fuselage Nose Length from Master Thesis

Relative Wing Thickness, Wave Drag, Fuselage Nose Length from Master Thesis 1 Relative Wing Thickness, Wave Drag, Fuselage Nose Length from Master Thesis Department of Automotive and Aeronautical Engineering Turboprop Aircraft Design Optimization - Tool Development Roberto Segovia

More information

AE 451 Aeronautical Engineering Design I Aerodynamics. Prof. Dr. Serkan Özgen Dept. Aerospace Engineering December 2015

AE 451 Aeronautical Engineering Design I Aerodynamics. Prof. Dr. Serkan Özgen Dept. Aerospace Engineering December 2015 AE 451 Aeronautical Engineering Design I Aerodynamics Prof. Dr. Serkan Özgen Dept. Aerospace Engineering December 2015 Lift curve 2 Lift curve slope 3 Subsonic lift curve slope C Lα = 2 + 4 + AR2 β 2 η

More information

Mechanics of Flight. Warren F. Phillips. John Wiley & Sons, Inc. Professor Mechanical and Aerospace Engineering Utah State University WILEY

Mechanics of Flight. Warren F. Phillips. John Wiley & Sons, Inc. Professor Mechanical and Aerospace Engineering Utah State University WILEY Mechanics of Flight Warren F. Phillips Professor Mechanical and Aerospace Engineering Utah State University WILEY John Wiley & Sons, Inc. CONTENTS Preface Acknowledgments xi xiii 1. Overview of Aerodynamics

More information

Aircraft Structures Design Example

Aircraft Structures Design Example University of Liège Aerospace & Mechanical Engineering Aircraft Structures Design Example Ludovic Noels Computational & Multiscale Mechanics of Materials CM3 http://www.ltas-cm3.ulg.ac.be/ Chemin des Chevreuils

More information

Air Loads. Airfoil Geometry. Upper surface. Lower surface

Air Loads. Airfoil Geometry. Upper surface. Lower surface AE1 Jha Loads-1 Air Loads Airfoil Geometry z LE circle (radius) Chord line Upper surface thickness Zt camber Zc Zl Zu Lower surface TE thickness Camber line line joining the midpoints between upper and

More information

Figure 3.71 example of spanwise loading due to aileron deflection.

Figure 3.71 example of spanwise loading due to aileron deflection. 3.7 ILERON DESIGN 3.7.1 Introduction It s very important for preliminary design to analyze the roll and turn performances of the aircraft, paying attention on its use and category. the system used for

More information

General Remarks and Instructions

General Remarks and Instructions Delft University of Technology Faculty of Aerospace Engineering 1 st Year Examination: AE1201 Aerospace Design and System Engineering Elements I Date: 25 August 2010, Time: 9.00, Duration: 3 hrs. General

More information

APPENDIX C DRAG POLAR, STABILITY DERIVATIVES AND CHARACTERISTIC ROOTS OF A JET AIRPLANE (Lectures 37 to 40)

APPENDIX C DRAG POLAR, STABILITY DERIVATIVES AND CHARACTERISTIC ROOTS OF A JET AIRPLANE (Lectures 37 to 40) APPENDIX C DRAG POLAR, STABILITY DERIVATIVES AND CHARACTERISTIC ROOTS OF A JET AIRPLANE (Lectures 37 to 40 E.G. TULAPURKARA YASHKUMAR A. VENKATTRAMAN REPORT NO: AE TR 2007-3 APRIL 2007 (REVISED NOVEMBER

More information

Degree Project in Aeronautics

Degree Project in Aeronautics DEGREE PROJECT IN VEHICLE ENGINEERING, SECOND CYCLE, 30 CREDITS STOCKHOLM, SWEDEN 2017 Degree Project in Aeronautics Conceptual design, flying and handling qualities of a supersonic transport aircraft.

More information

Drag Analysis of a Supermarine. Spitfire Mk V at Cruise Conditions

Drag Analysis of a Supermarine. Spitfire Mk V at Cruise Conditions Introduction to Flight Aircraft Drag Project April 2016 2016 Drag Analysis of a Supermarine Spitfire Mk V at Cruise Conditions Nicholas Conde nicholasconde@gmail.com U66182304 Introduction to Flight Nicholas

More information

Masters in Mechanical Engineering Aerodynamics 1 st Semester 2015/16

Masters in Mechanical Engineering Aerodynamics 1 st Semester 2015/16 Masters in Mechanical Engineering Aerodynamics st Semester 05/6 Exam st season, 8 January 06 Name : Time : 8:30 Number: Duration : 3 hours st Part : No textbooks/notes allowed nd Part : Textbooks allowed

More information

Flight Vehicle Terminology

Flight Vehicle Terminology Flight Vehicle Terminology 1.0 Axes Systems There are 3 axes systems which can be used in Aeronautics, Aerodynamics & Flight Mechanics: Ground Axes G(x 0, y 0, z 0 ) Body Axes G(x, y, z) Aerodynamic Axes

More information

Drag (2) Induced Drag Friction Drag Form Drag Wave Drag

Drag (2) Induced Drag Friction Drag Form Drag Wave Drag Drag () Induced Drag Friction Drag Form Drag Wave Drag Outline Nomenclature and Concepts Farfield Drag Analysis Induced Drag Multiple Lifting Surfaces Zero Lift Drag :Friction and Form Drag Supersonic

More information

Aircraft Performance, Stability and control with experiments in Flight. Questions

Aircraft Performance, Stability and control with experiments in Flight. Questions Aircraft Performance, Stability and control with experiments in Flight Questions Q. If only the elevator size of a given aircraft is decreased; keeping horizontal tail area unchanged; then the aircraft

More information

Definitions. Temperature: Property of the atmosphere (τ). Function of altitude. Pressure: Property of the atmosphere (p). Function of altitude.

Definitions. Temperature: Property of the atmosphere (τ). Function of altitude. Pressure: Property of the atmosphere (p). Function of altitude. Definitions Chapter 3 Standard atmosphere: A model of the atmosphere based on the aerostatic equation, the perfect gas law, an assumed temperature distribution, and standard sea level conditions. Temperature:

More information

AIRFRAME NOISE MODELING APPROPRIATE FOR MULTIDISCIPLINARY DESIGN AND OPTIMIZATION

AIRFRAME NOISE MODELING APPROPRIATE FOR MULTIDISCIPLINARY DESIGN AND OPTIMIZATION AIRFRAME NOISE MODELING APPROPRIATE FOR MULTIDISCIPLINARY DESIGN AND OPTIMIZATION AIAA-2004-0689 Serhat Hosder, Joseph A. Schetz, Bernard Grossman and William H. Mason Virginia Tech Work sponsored by NASA

More information

Semi-Empirical Prediction of Aircraft Low-Speed Aerodynamic Characteristics. Erik D. Olson. NASA Langley Research Center, Hampton, VA 23681

Semi-Empirical Prediction of Aircraft Low-Speed Aerodynamic Characteristics. Erik D. Olson. NASA Langley Research Center, Hampton, VA 23681 Semi-Empirical Prediction of Aircraft Low-Speed Aerodynamic Characteristics Erik D. Olson NASA Langley Research Center, Hampton, VA 23681 This paper lays out a comprehensive methodology for computing a

More information

Airfoils and Wings. Eugene M. Cliff

Airfoils and Wings. Eugene M. Cliff Airfoils and Wings Eugene M. Cliff 1 Introduction The primary purpose of these notes is to supplement the text material related to aerodynamic forces. We are mainly interested in the forces on wings and

More information

Chapter 5 Wing design - selection of wing parameters 2 Lecture 20 Topics

Chapter 5 Wing design - selection of wing parameters 2 Lecture 20 Topics Chapter 5 Wing design - selection of wing parameters Lecture 0 Topics 5..4 Effects of geometric parameters, Reynolds number and roughness on aerodynamic characteristics of airfoils 5..5 Choice of airfoil

More information

Chapter 5 Performance analysis I Steady level flight (Lectures 17 to 20) Keywords: Steady level flight equations of motion, minimum power required,

Chapter 5 Performance analysis I Steady level flight (Lectures 17 to 20) Keywords: Steady level flight equations of motion, minimum power required, Chapter 5 Performance analysis I Steady level flight (Lectures 17 to 20) Keywords: Steady level flight equations of motion, minimum power required, minimum thrust required, minimum speed, maximum speed;

More information

Date: OPerA Optimization in Preliminary Aircraft Design. Summary of Questionnaire Evaluation and Evaluation Results

Date: OPerA Optimization in Preliminary Aircraft Design. Summary of Questionnaire Evaluation and Evaluation Results Memo OPerA_M_QuestionnaireEvaluation_1-05-9 Date: 01-05-9 From: Niţă, Mihaela; Scholz, Dieter Aero Aircraft Design and Systems Group Department of Automotive and Aeronautical Engineering Hamburg University

More information

Study of Preliminary Configuration Design of F-35 using simple CFD

Study of Preliminary Configuration Design of F-35 using simple CFD Study of Preliminary Configuration Design of F-35 using simple CFD http://www.aerospaceweb.org/aircraft/research/x35/pics.shtml David Hall Sangeon Chun David Andrews Center of Gravity Estimation.5873 Conventional

More information

Development of a Wave Drag Prediction Tool for the Conceptual Design Phase

Development of a Wave Drag Prediction Tool for the Conceptual Design Phase Master of Science Thesis Development of a Wave Drag Prediction Tool for the Conceptual Design Phase July 14th, 15 Faculty of Aerospace Engineering - Delft University of Technology J. Vargas Development

More information

MODIFICATION OF AERODYNAMIC WING LOADS BY FLUIDIC DEVICES

MODIFICATION OF AERODYNAMIC WING LOADS BY FLUIDIC DEVICES Journal of KONES Powertrain and Transport, Vol. 21, No. 2 2014 MODIFICATION OF AERODYNAMIC WING LOADS BY FLUIDIC DEVICES Institute of Aviation Department of Aerodynamics and Flight Mechanics Krakowska

More information

Balanced Field Length Calculation for a Learjet 35A/36A with Under-Wing Stores on a Wet Runway

Balanced Field Length Calculation for a Learjet 35A/36A with Under-Wing Stores on a Wet Runway Bachelor Thesis Final Presentation Balanced Field Length for a Learjet 35A/36A with Under-Wing Stores on a Wet Runway, HAW Hamburg 1. Examiner: Professor Dr.-Ing. Dieter Scholz, MSME 2. Examiner: Professor

More information

Stability and Control Some Characteristics of Lifting Surfaces, and Pitch-Moments

Stability and Control Some Characteristics of Lifting Surfaces, and Pitch-Moments Stability and Control Some Characteristics of Lifting Surfaces, and Pitch-Moments The lifting surfaces of a vehicle generally include the wings, the horizontal and vertical tail, and other surfaces such

More information

Aircraft Design Introduction to Aircraft Structures

Aircraft Design Introduction to Aircraft Structures University of Liège Aerospace & Mechanical Engineering Aircraft Design Introduction to Aircraft Structures Ludovic Noels Computational & Multiscale Mechanics of Materials CM3 http://www.ltas-cm3.ulg.ac.be/

More information

Aircraft Design I Tail loads

Aircraft Design I Tail loads Horizontal tail loads Aircraft Design I Tail loads What is the source of loads? How to compute it? What cases should be taken under consideration? Tail small wing but strongly deflected Linearized pressure

More information

Learning. Goals. Page 1 of 6. Document : V1.1

Learning. Goals. Page 1 of 6. Document : V1.1 Learning Goals Lights configurations Airplane Page 1 of 6 Page 2 of 6 The external lights on aircraft fall into two general categories. The first is navigation lights or beacons thatt are always illuminated

More information

DEPARTMENT OF AEROSPACE ENGINEERING, IIT MADRAS M.Tech. Curriculum

DEPARTMENT OF AEROSPACE ENGINEERING, IIT MADRAS M.Tech. Curriculum DEPARTMENT OF AEROSPACE ENGINEERING, IIT MADRAS M.Tech. Curriculum SEMESTER I AS5010 Engg. Aerodyn. & Flt. Mech. 3 0 0 3 AS5020 Elements of Gas Dyn. & Propln. 3 0 0 3 AS5030 Aircraft and Aerospace Structures

More information

F-35: A case study. Eugene Heim Leifur Thor Leifsson Evan Neblett. AOE 4124 Configuration Aerodynamics Virginia Tech April 2003

F-35: A case study. Eugene Heim Leifur Thor Leifsson Evan Neblett. AOE 4124 Configuration Aerodynamics Virginia Tech April 2003 F-35: A case study Eugene Heim Leifur Thor Leifsson Evan Neblett AOE 4124 Configuration Aerodynamics Virginia Tech April 2003 Course: AOE 4124 Configuration Aerodynamics Project: A case study of the F-35

More information

Design, Analysis and Research Corporation (DARcorporation) ERRATA: Airplane Flight Dynamics and Automatic Flight Controls Part I

Design, Analysis and Research Corporation (DARcorporation) ERRATA: Airplane Flight Dynamics and Automatic Flight Controls Part I Design, Analysis and Research Corporation (DARcorporation) ERRATA: Airplane Flight Dynamics and Automatic Flight Controls Part I Copyright 00 by Dr. Jan Roskam Year of Print, 00 (Errata Revised August

More information

Wing geometric parameter studies of a box wing aircraft configuration for subsonic flight

Wing geometric parameter studies of a box wing aircraft configuration for subsonic flight DOI:.139/EUCASS17-7 7 TH EUROPEAN CONFERENCE FOR AERONAUTICS AND SPACE SCIENCES (EUCASS) Wing geometric parameter studies of a box wing aircraft configuration for subsonic flight Fábio Cruz Ribeiro*, Adson

More information

Application of larger wings to create more lift force in aeroplane Lokendra Bhati 1,Rajat Malviya 2 1 B.E.in mechanical engineering, I.I.ST.

Application of larger wings to create more lift force in aeroplane Lokendra Bhati 1,Rajat Malviya 2 1 B.E.in mechanical engineering, I.I.ST. Application of larger wings to create more lift force in aeroplane Lokendra Bhati 1,Rajat Malviya 2 1 B.E.in mechanical engineering, I.I.ST. Indore, India 2 B.E.in mechanical engineering, I.I.ST. Indore,

More information

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad - 500 043 AERONAUTICAL ENGINEERING TUTORIAL QUESTION BANK Course Name : LOW SPEED AERODYNAMICS Course Code : AAE004 Regulation : IARE

More information

Low-Order Aero-Structural Analysis Using OpenVSP and ASWing

Low-Order Aero-Structural Analysis Using OpenVSP and ASWing Low-Order Aero-Structural Analysis Using OpenVSP and ASWing Erik Olson, Ph.D. NASA-Langley Research Center Quinten Henricks, B.S. Ohio State University OpenVSP Workshop 2017 Outline Background & Motivation

More information

PERFORMANCE ANALYSIS OF A PISTON ENGINED AIRPLANE - PIPER CHEROKEE PA E.G.TULAPURKARA S.ANANTH TEJAS M. KULKARNI REPORT NO: AE TR

PERFORMANCE ANALYSIS OF A PISTON ENGINED AIRPLANE - PIPER CHEROKEE PA E.G.TULAPURKARA S.ANANTH TEJAS M. KULKARNI REPORT NO: AE TR Appendix - A PERFORMANCE ANALYSIS OF A PISTON ENGINED AIRPLANE - PIPER CHEROKEE PA-28-180 E.G.TULAPURKARA S.ANANTH TEJAS M. KULKARNI REPORT NO: AE TR 2007-1 FEBRUARY 2007 Performance Analysis of a piston

More information

Introduction to Aerospace Engineering

Introduction to Aerospace Engineering Introduction to Aerospace Engineering Lecture slides Challenge the future 1 Introduction Aerospace Engineering Flight Mechanics Dr. ir. Mark Voskuijl 15-12-2012 Delft University of Technology Challenge

More information

Improvement of a Preliminary Design and Optimization Program for the Evaluation of Future Aircraft Projects

Improvement of a Preliminary Design and Optimization Program for the Evaluation of Future Aircraft Projects Reprint of the 7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, St. Louis, Sept. 15-18, 1998. AIAA Paper 98-4828 Improvement of a Preliminary Design and Optimization Program

More information

Consider a wing of finite span with an elliptic circulation distribution:

Consider a wing of finite span with an elliptic circulation distribution: Question 1 (a) onsider a wing of finite span with an elliptic circulation distribution: Γ( y) Γo y + b = 1, - s y s where s=b/ denotes the wing semi-span. Use this equation, in conjunction with the Kutta-Joukowsky

More information

Mathematical Techniques for Pre-conceptual Design

Mathematical Techniques for Pre-conceptual Design Mathematical Techniques for Pre-conceptual Design Mathematical Modeling in Industry XI IMA University of Minnesota Mentor: John Hoffman, Lockheed Martin Tactical Systems Michael Case 1, Jeff Haack 2, MoonChang

More information

TUTORIAL SHEET 1. magnitude of P and the values of ø and θ. Ans: ø =74 0 and θ= 53 0

TUTORIAL SHEET 1. magnitude of P and the values of ø and θ. Ans: ø =74 0 and θ= 53 0 TUTORIAL SHEET 1 1. The rectangular platform is hinged at A and B and supported by a cable which passes over a frictionless hook at E. Knowing that the tension in the cable is 1349N, determine the moment

More information

Project 2 Conceptual Design

Project 2 Conceptual Design Project onceptual Design Second Project, entitled onceptual Design includes two parts: 1. Estimation of selected (basic) geometric and weight parameters of an aircraft,. Drawing (in three views/projections)

More information

CFD COMPUTATION OF THE GROUND EFFECT ON AIRPLANE WITH HIGH ASPECT RATIO WING

CFD COMPUTATION OF THE GROUND EFFECT ON AIRPLANE WITH HIGH ASPECT RATIO WING 28 TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES CFD COMPUTATION OF THE GROUND EFFECT ON AIRPLANE WITH HIGH ASPECT RATIO WING Sun Tae Kim*, Youngtae Kim**, Tae Kyu Reu* *Agency for Defense Development,

More information

Introduction to Geometric Programming Based Aircraft Design

Introduction to Geometric Programming Based Aircraft Design Introduction to Geometric Programming Based Aircraft Design Warren Hoburg University of California, Berkeley Electrical Engineering and Computer Science Department 8 th Research Consortium for Multidisciplinary

More information

Introduction to Atmospheric Flight. Dr. Guven Aerospace Engineer (P.hD)

Introduction to Atmospheric Flight. Dr. Guven Aerospace Engineer (P.hD) Introduction to Atmospheric Flight Dr. Guven Aerospace Engineer (P.hD) What is Atmospheric Flight? There are many different ways in which Aerospace engineering is associated with atmospheric flight concepts.

More information

and K becoming functions of Mach number i.e.: (3.49)

and K becoming functions of Mach number i.e.: (3.49) Chapter 3 Lecture 11 Drag polar 6 Topics 3.3.4 Parabolic drag polar at high speeds 3.3.5 Guidelines for variations of C Do and K for subsonic jet transport airplanes 3.3.6 Variations of C Do and K for

More information

ν δ - 1 -

ν δ - 1 - ν δ - 1 - δ ν ν δ ν ν - 2 - ρ δ ρ θ θ θ δ τ ρ θ δ δ θ δ δ δ δ τ μ δ μ δ ν δ δ δ - 3 - τ ρ δ ρ δ ρ δ δ δ δ δ δ δ δ δ δ δ - 4 - ρ μ ρ μ ρ ρ μ μ ρ - 5 - ρ τ μ τ μ ρ δ δ δ - 6 - τ ρ μ τ ρ μ ρ δ θ θ δ θ - 7

More information

Cruising Flight Envelope Robert Stengel, Aircraft Flight Dynamics, MAE 331, 2018

Cruising Flight Envelope Robert Stengel, Aircraft Flight Dynamics, MAE 331, 2018 Cruising Flight Envelope Robert Stengel, Aircraft Flight Dynamics, MAE 331, 018 Learning Objectives Definitions of airspeed Performance parameters Steady cruising flight conditions Breguet range equations

More information

Flight Dynamics and Control

Flight Dynamics and Control Flight Dynamics and Control Lecture 1: Introduction G. Dimitriadis University of Liege Reference material Lecture Notes Flight Dynamics Principles, M.V. Cook, Arnold, 1997 Fundamentals of Airplane Flight

More information

An Investigation of the Attainable Efficiency of Flight at Mach One or Just Beyond

An Investigation of the Attainable Efficiency of Flight at Mach One or Just Beyond An Investigation of the Attainable Efficiency of Flight at Mach One or Just Beyond Antony Jameson Department of Aeronautics and Astronautics AIAA Aerospace Sciences Meeting, Reno, NV AIAA Paper 2007-0037

More information

AEROTAXI ground static test and finite element model validation

AEROTAXI ground static test and finite element model validation AEROTAXI ground static test and finite element model validation Dorin LOZICI-BRINZEI* 1, Simion TATARU, Radu BISCA 1 *Corresponding author * 1 INCAS - National Institute for Aerospace Research Elie Carafoli

More information

Why Should You Consider a Freezing Point Depressant Ice Protection System? Icing Certification Present and Future. CAV Aerospace Limited

Why Should You Consider a Freezing Point Depressant Ice Protection System? Icing Certification Present and Future. CAV Aerospace Limited Why Should You Consider a Freezing Point Depressant Ice Protection System? Icing Certification Present and Future OVERVIEW Presentation Aircraft Review of Current Icing Environments Pending Changes to

More information

Aircraft Stability and Control Prof. A.K.Ghosh Department of Aerospace Engineering Indian Institution of Technology-Kanpur

Aircraft Stability and Control Prof. A.K.Ghosh Department of Aerospace Engineering Indian Institution of Technology-Kanpur Aircraft Stability and Control Prof. A.K.Ghosh Department of Aerospace Engineering Indian Institution of Technology-Kanpur Problems Stability Tail Contribution Completed We were trying to understand whatever

More information

A Novel Airfoil Circulation Augment Flow Control Method Using Co-Flow Jet

A Novel Airfoil Circulation Augment Flow Control Method Using Co-Flow Jet AIAA Paper 2004-2208, 2004 A Novel Airfoil Circulation Augment Flow Control Method Using Co-Flow Jet Ge-Cheng Zha and Craig D. Paxton Dept. of Mechanical & Aerospace Engineering University of Miami Coral

More information

1. Attempt any ten of the following : 20

1. Attempt any ten of the following : 20 *17204* 17204 21314 3 Hours/100 Marks Seat No. Instructions : (1) All questions are compulsory. (2) Answer each next main question on a new page. (3) Illustrate your answers with neat sketches wherever

More information

The Importance of drag

The Importance of drag Drag Computation The Importance of drag Its effects on aircraft performances On the Concorde, one count drag increase (ΔC D =.0001) requires two passengers, out of the 90 ~ 100 passenger capacity, be taken

More information

Spacecraft and Aircraft Dynamics

Spacecraft and Aircraft Dynamics Spacecraft and Aircraft Dynamics Matthew M. Peet Illinois Institute of Technology Lecture 4: Contributions to Longitudinal Stability Aircraft Dynamics Lecture 4 In this lecture, we will discuss Airfoils:

More information

MODULAR AEROPLANE SYSTEM. A CONCEPT AND INITIAL INVESTIGATION

MODULAR AEROPLANE SYSTEM. A CONCEPT AND INITIAL INVESTIGATION 28 TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES MODULAR AEROPLANE SYSTEM. A CONCEPT AND INITIAL INVESTIGATION Marcin Figat, Cezary Galiński, Agnieszka Kwiek Warsaw University of Technology mfigat@meil.pw.edu.pl;

More information

Drag Computation (1)

Drag Computation (1) Drag Computation (1) Why drag so concerned Its effects on aircraft performances On the Concorde, one count drag increase ( C D =.0001) requires two passengers, out of the 90 ~ 100 passenger capacity, be

More information

Aircraft stability and control Prof: A. K. Ghosh Dept of Aerospace Engineering Indian Institute of Technology Kanpur

Aircraft stability and control Prof: A. K. Ghosh Dept of Aerospace Engineering Indian Institute of Technology Kanpur Aircraft stability and control Prof: A. K. Ghosh Dept of Aerospace Engineering Indian Institute of Technology Kanpur Lecture- 05 Stability: Tail Contribution and Static Margin (Refer Slide Time: 00:15)

More information

The Fighter of the 21 st Century. Presented By Michael Weisman Configuration Aerodynamics 4/23/01

The Fighter of the 21 st Century. Presented By Michael Weisman Configuration Aerodynamics 4/23/01 The Fighter of the 21 st Century Presented By Michael Weisman Configuration Aerodynamics 4/23/01 1 Joint Strike Fighter (JSF) Program Its purpose is to develop and field an affordable and highly common

More information

Nonlinear Aerodynamic Predictions Of Aircraft and Missiles Employing Trailing-Edge Flaps

Nonlinear Aerodynamic Predictions Of Aircraft and Missiles Employing Trailing-Edge Flaps Nonlinear Aerodynamic Predictions Of Aircraft and Missiles Employing Trailing-Edge Flaps Daniel J. Lesieutre 1 Nielsen Engineering & Research, Inc., Santa Clara, CA, 95054 The nonlinear missile aerodynamic

More information

The Wright Stuff. Engineering Analysis. Aaron Lostutter Adam Nelessen Brandon Perez Zev Vallance Jacob Vincent. November 2012

The Wright Stuff. Engineering Analysis. Aaron Lostutter Adam Nelessen Brandon Perez Zev Vallance Jacob Vincent. November 2012 The Wright Stuff Engineering Analysis November 2012 Aaron Lostutter Adam Nelessen Brandon Perez Zev Vallance Jacob Vincent 1 Agenda Static Analysis Aerodynamic Systems Propulsion Systems Structural & Material

More information

Experimental Studies on Complex Swept Rotor Blades

Experimental Studies on Complex Swept Rotor Blades International Journal of Engineering Research and Technology. ISSN 974-3154 Volume 6, Number 1 (213), pp. 115-128 International Research Publication House http://www.irphouse.com Experimental Studies on

More information

Rotor reference axis

Rotor reference axis Rotor reference axis So far we have used the same reference axis: Z aligned with the rotor shaft Y perpendicular to Z and along the blade (in the rotor plane). X in the rotor plane and perpendicular do

More information

Study. Aerodynamics. Small UAV. AVL Software

Study. Aerodynamics. Small UAV. AVL Software Study of the Aerodynamics of a Small UAV using AVL Software Prepared For: Prof. Luis Bernal Prepared By: Paul Dorman April 24, 2006 Table of Contents Introduction.1 Aerodynamic Data...2 Flight Assessment..

More information

Design, Analysis and Research Corporation (DARcorporation) ERRATA: Airplane Flight Dynamics and Automatic Flight Controls Part I

Design, Analysis and Research Corporation (DARcorporation) ERRATA: Airplane Flight Dynamics and Automatic Flight Controls Part I Design, Analysis and Research orporation (DARcorporation) ERRATA: Airplane Flight Dynamics and Automatic Flight ontrols Part I opyright 995 by Dr. Jan Roskam Year of Print, 995 (Errata Revised August 7,

More information

Aero-Propulsive-Elastic Modeling Using OpenVSP

Aero-Propulsive-Elastic Modeling Using OpenVSP Aero-Propulsive-Elastic Modeling Using OpenVSP August 8, 213 Kevin W. Reynolds Intelligent Systems Division, Code TI NASA Ames Research Center Our Introduction To OpenVSP Overview! Motivation and Background!

More information

AERO-STRUCTURAL MDO OF A SPAR-TANK-TYPE WING FOR AIRCRAFT CONCEPTUAL DESIGN

AERO-STRUCTURAL MDO OF A SPAR-TANK-TYPE WING FOR AIRCRAFT CONCEPTUAL DESIGN 1 26th INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES AERO-STRUCTURAL MDO OF A SPAR-TANK-TYPE WING FOR AIRCRAFT CONCEPTUAL DESIGN Paulo R. Caixeta Jr., Álvaro M. Abdalla, Flávio D. Marques, Fernando

More information

Example of Aircraft Climb and Maneuvering Performance. Dr. Antonio A. Trani Professor

Example of Aircraft Climb and Maneuvering Performance. Dr. Antonio A. Trani Professor Example of Aircraft Climb and Maneuvering Performance CEE 5614 Analysis of Air Transportation Systems Dr. Antonio A. Trani Professor Example - Aircraft Climb Performance Aircraft maneuvering performance

More information

JAVA FRAMEWORK FOR PARAMETRIC AIRCRAFT DESIGN PERFORMANCE ANALYSIS MODULE

JAVA FRAMEWORK FOR PARAMETRIC AIRCRAFT DESIGN PERFORMANCE ANALYSIS MODULE JAVA FRAMEWORK FOR PARAMETRIC AIRCRAFT DESIGN PERFORMANCE ANALYSIS MODULE Vittorio Trifari Manuela Ruocco Vincenzo Cusati Dept. of Industrial Engineering, University of Naples Federico II Dept. of Industrial

More information

AE Stability and Control of Aerospace Vehicles

AE Stability and Control of Aerospace Vehicles AE 430 - Stability and ontrol of Aerospace Vehicles Static/Dynamic Stability Longitudinal Static Stability Static Stability We begin ith the concept of Equilibrium (Trim). Equilibrium is a state of an

More information

April 15, 2011 Sample Quiz and Exam Questions D. A. Caughey Page 1 of 9

April 15, 2011 Sample Quiz and Exam Questions D. A. Caughey Page 1 of 9 April 15, 2011 Sample Quiz Exam Questions D. A. Caughey Page 1 of 9 These pages include virtually all Quiz, Midterm, Final Examination questions I have used in M&AE 5070 over the years. Note that some

More information

CHAPTER 3 ANALYSIS OF NACA 4 SERIES AIRFOILS

CHAPTER 3 ANALYSIS OF NACA 4 SERIES AIRFOILS 54 CHAPTER 3 ANALYSIS OF NACA 4 SERIES AIRFOILS The baseline characteristics and analysis of NACA 4 series airfoils are presented in this chapter in detail. The correlations for coefficient of lift and

More information

Extended longitudinal stability theory at low Re - Application to sailplane models

Extended longitudinal stability theory at low Re - Application to sailplane models Extended longitudinal stability theory at low Re - Application to sailplane models matthieu.scherrer@free.fr November 26 C L C m C m W X α NP W X V NP W Lift coefficient Pitching moment coefficient Pitching

More information

University of California at Berkeley Department of Mechanical Engineering ME 163 ENGINEERING AERODYNAMICS FINAL EXAM, 13TH DECEMBER 2005

University of California at Berkeley Department of Mechanical Engineering ME 163 ENGINEERING AERODYNAMICS FINAL EXAM, 13TH DECEMBER 2005 University of California at Berkeley Department of Mechanical Engineering ME 163 ENGINEERING AERODYNAMICS FINAL EXAM, 13TH DECEMBER 2005 Answer both questions. Question 1 is worth 30 marks and question

More information

AIAA Investigation of Reynolds Number Effects on a Generic Fighter Configuration in the National Transonic Facility (Invited)

AIAA Investigation of Reynolds Number Effects on a Generic Fighter Configuration in the National Transonic Facility (Invited) Investigation of Reynolds Number Effects on a Generic Fighter Configuration in the National Transonic Facility (Invited) W. G. Tomek, R. M. Hall, R. A. Wahls, J. M. Luckring, and L. R. Owens NASA Langley

More information

PART ONE Parameters for Performance Calculations

PART ONE Parameters for Performance Calculations PART ONE Parameters for Performance Calculations As an amateur designer/builder of homebuilt aircraft, you are chief aerodynamicist, structural engineer, dynamicist, mechanic, artist and draftsman all

More information

Experimental Aerodynamics. Experimental Aerodynamics

Experimental Aerodynamics. Experimental Aerodynamics Lecture 6: Slender Body Aerodynamics G. Dimitriadis Slender bodies! Wings are only one of the types of body that can be tested in a wind tunnel.! Although wings play a crucial role in aeronautical applications

More information

MAV Unsteady Characteristics in-flight Measurement with the Help of SmartAP Autopilot

MAV Unsteady Characteristics in-flight Measurement with the Help of SmartAP Autopilot MAV Unsteady Characteristics in-flight Measurement with the Help of SmartAP Autopilot S. Serokhvostov, N. Pushchin and K. Shilov Moscow Institute of Physics and Technology Department of Aeromechanics and

More information

Mach number, relative thickness, sweep and lift coefficient of the wing - An empirical investigation of parameters and equations

Mach number, relative thickness, sweep and lift coefficient of the wing - An empirical investigation of parameters and equations Project Department of Automotive and Aeronautical Engineering ach number, relative thickness, sweep and lift coefficient of the wing - An empirical investigation of parameters and equations Author: Simona

More information

Flight and Orbital Mechanics. Exams

Flight and Orbital Mechanics. Exams 1 Flight and Orbital Mechanics Exams Exam AE2104-11: Flight and Orbital Mechanics (23 January 2013, 09.00 12.00) Please put your name, student number and ALL YOUR INITIALS on your work. Answer all questions

More information

Introduction to Aerospace Engineering

Introduction to Aerospace Engineering Introduction to Aerospace Engineering Lecture slides Challenge the future 1 Aircraft & spacecraft loads Translating loads to stresses Faculty of Aerospace Engineering 29-11-2011 Delft University of Technology

More information

Blended Wing Body Propulsion System Design

Blended Wing Body Propulsion System Design International Journal of Aviation, Aeronautics, and Aerospace Volume 4 Issue 4 Article 6 1-8-217 Blended Wing Body Propulsion System Design Parth Kumar Georgia Institute of Technology, pkumar75@gatech.edu

More information

A SIMPLIFIED ANALYSIS OF NONLINEAR LONGITUDINAL DYNAMICS AND CONCEPTUAL CONTROL SYSTEM DESIGN

A SIMPLIFIED ANALYSIS OF NONLINEAR LONGITUDINAL DYNAMICS AND CONCEPTUAL CONTROL SYSTEM DESIGN A SIMPLIFIED ANALYSIS OF NONLINEAR LONGITUDINAL DYNAMICS AND CONCEPTUAL CONTROL SYSTEM DESIGN ROBBIE BUNGE 1. Introduction The longitudinal dynamics of fixed-wing aircraft are a case in which classical

More information

Prediction of Aircraft s Longitudinal Motion Based on Aerodynamic Coefficients and Derivatives by Surrogate Model Approach

Prediction of Aircraft s Longitudinal Motion Based on Aerodynamic Coefficients and Derivatives by Surrogate Model Approach Journal of Mechanics Engineering and Automation 4 (2014) 584-594 D DAVID PUBLISHING Prediction of Aircraft s Longitudinal Motion Based on Aerodynamic Coefficients and Derivatives by Surrogate Model Approach

More information

Aerostructural design optimization of a 100-passenger regional jet with surrogate-based mission analysis

Aerostructural design optimization of a 100-passenger regional jet with surrogate-based mission analysis Aerostructural design optimization of a 100-passenger regional jet with surrogate-based mission analysis Rhea P. Liem, Charles A. Mader, Edmund Lee University of Toronto Institute for Aerospace Studies,

More information

A Medium-Fidelity Method for Rapid Maximum Lift Estimation

A Medium-Fidelity Method for Rapid Maximum Lift Estimation A Medium-Fidelity Method for Rapid Maximum Lift Estimation Thesis Report Technische Universiteit Delft B. Singh B.Sc. A MEDIUM-FIDELITY METHOD FOR RAPID MAXIMUM LIFT ESTIMATION THESIS REPORT by B. Singh

More information

To highlight the change in drag with lift: Drag = Zero-Lift Drag + Lift-Dependent Drag + Compressibility Drag

To highlight the change in drag with lift: Drag = Zero-Lift Drag + Lift-Dependent Drag + Compressibility Drag Drag Drag Bookkeeping Drag may be divided into components in several ways: To highlight the change in drag with lift: Drag = Zero-Lift Drag + Lift-Dependent Drag + Compressibility Drag To emphasize the

More information

Rainer Buffo Eike Stumpf Institute of Aerospace Systems (ILR) RWTH Aachen University, Germany

Rainer Buffo Eike Stumpf Institute of Aerospace Systems (ILR) RWTH Aachen University, Germany Rainer Buffo Eike Stumpf Institute of Aerospace Systems (ILR) RWTH Aachen University, Germany Revisiting wake vortex mitigation by means of passive devices Concept and current validation status of a novel

More information

Industrial Applications of Aerodynamic Shape Optimization

Industrial Applications of Aerodynamic Shape Optimization Industrial Applications of Aerodynamic Shape Optimization John C. Vassberg Boeing Technical Fellow Advanced Concepts Design Center Boeing Commercial Airplanes Long Beach, CA 90846, USA Antony Jameson T.

More information

Figure 1 UAV Geometry Base Case Design

Figure 1 UAV Geometry Base Case Design Unmanned Aerial Vehicle Design Endurance Optimization for Surveillance Missions ME 555 Design Optimization Progress Report Britton Bush, Jonathon Gold, and Erik Hand University of Michigan, Ann Arbor MI

More information