Chapter 8: Inviscid Incompressible Flow: a Useful Fantasy

Size: px
Start display at page:

Download "Chapter 8: Inviscid Incompressible Flow: a Useful Fantasy"

Transcription

1 Pofesso Fed Sten Fall 4 Chapte 8: Invscd Incompessble Flow: a Useful Fantasy 8. Intoducton Fo hgh Re etenal flow about steamlned bodes vscous effects ae confned to bounday laye and wake egon. Fo egons whee the BL s thn.e. favoable pessue gadent egons, Vscous/Invscd nteacton s weak and tadtonal BL theoy can be used. Fo egons whee BL s thck and/o the flow s sepaated.e. advese pessue gadent egons moe advanced bounday laye theoy must be used ncludng vscous/invscd nteactons. Fo ntenal flows at hgh Re vscous effects ae always mpotant ecept nea the entance. Recall that votcty s geneated n egons wth lage shea. Theefoe, outsde the B.L and wake and f thee s no upsteam votcty then ω s a good appomaton. Note that fo compessble flow ths s not the case n egons of lage entopy gadent. Also, we ae neglectng nonnetal effects and othe mechansms of votcty geneaton. Potental flow theoy ) Detemne φ fom soluton to Laplace equaton φ B.C: φ at S B : Vn. n at S : V φ Note: F: Suface Functon DF F F + V. F Vn. Dt t F t steady flow Vn. fo

2 Pofesso Fed Sten Fall 4 ) Detemne V fom V φ and p() fom Benoull equaton Theefoe, pmaly fo etenal flow applcaton we now consde nvscd flow theoy ( µ ) and ncompessble flow ( ρ const ) Eule equaton:. V DV ρ p+ ρg Dt V ρ + ρv. V ( p+ γz) t V V. V V ω Whee : ω V votcty flud angula velocty V ρ + ( p+ ρv + γz) ρv ω t If ω e V then V φ: φ ρ + p + ρ φ φ + γz Bt () t Benoull s Equaton fo unsteady ncompessble flow, not f() Contnuty equaton shows that GDE fo φ s the Laplace equaton whch s a nd ode lnea PDE e supeposton pncple s vald. (Lnea combnaton of soluton s also a soluton) V φ φ φ φ + φ φ φ ( φ φ) φ φ φ + + Technques fo solvng Laplace equaton: ) supeposton of elementay soluton (smple geometes) ) suface sngulaty method (ntegal equaton) 3) FD o FE 4) electcal o mechancal analogs 5) Confomal mappng ( fo D flow) 6) Analytcal fo smple geometes (sepaaton of vaable etc)

3 Pofesso Fed Sten Fall Elementay plane-flow solutons: Recall that fo D we can defne a steam functon such that: u ψ y v ψ ω z v u y ( ψ ) ( ψ y ) ψ y.e. ψ Also ecall that φ and ψ ae othogonal. u ψ φ y v ψ φ y dφ φ d + φ dy ud + vdy y dψ ψ d + ψ ydy vd + udy dy u.e. d φ const v dy d ψ const Unfom steam u U ψ y φ const v ψ φ.e. φ U ψ U y y Note: φ ψ s satsfed. V φ U ˆ Say a unfom steam s at an angle α to the -as: ψ φ u U cosα y ψ φ v U snα y

4 Pofesso Fed Sten Fall 4 4 Afte ntegaton, we obtan the followng epessons fo the steam functon and velocty potental: ψ U ycosα snα D Souce o Snk: ( ) ( cos sn ) φ U α + y α Imagne that flud comes out adally at ogn wth unfom ate n all dectons. (sngulaty at ogn whee velocty s nfnte) Consde a ccle of adus enclosng ths souce. Let v be the adal component of velocty assocated wth ths souce (o snk). Then, fom consevaton of mass, fo a cylnde of adus, and unt wdth pependcula to the pape, 3 L Q V da A S Q ( π ) ( b) v O, Q v v m, v θ π b Q Whee: m s the convenent constant wth unt velocty length πb (m> fo souce and m< fo snk). Note that V s sngula at (,) snce v In a pola coodnate system, fo -D flows we wll use: φ φ V φ + θ

5 Pofesso Fed Sten Fall 4 5 And:. V ( v ) + ( vθ ) θ.e.: φ ψ v Radal velocty θ φ ψ vθ Tangental velocty θ Such that V by defnton. Theefoe, v v θ.e. m φ ψ θ φ ψ θ Doublets: φ mln mln ψ mθ m tan y + y The doublet s defned as: ψ m( θ θ θ θ ) snk souce snk souce ψ m tan(θ θ ) tan( ψ tan θ tan θ ) m + tan θ tan θ

6 Pofesso Fed Sten Fall 4 6 snθ snθ tanθ ; tanθ cosθ a cosθ + a snθ snθ ψ cos cos a sn tan( ) a a θ θ θ + m snθ snθ + a cosθ acosθ + a Fo small value of a a snθ amy λy ψ lm m tan ( ) a a + y λcosθ λ am ( Doublet Stength) φ By eaangng: λy λ λ ψ + ( y + ) ( ) + y ψ ψ λ It means that steamlnes ae ccles wth adus R and cente at (, +/-R).e. ψ ccles ae tangent to the ogn wth cente on y as. The flow decton s fom the souce to the snk.

7 Pofesso Fed Sten Fall 4 7 D vote: Suppose that value of the ψ and φ fo the souce ae evesal. v φ ψ K vθ θ Puely cculatoy flow wth v θ lke /. Integaton esults n: φ Kθ ψ Kln Kconstant D vote s otatonal eveywhee ecept at the ogn whee V and V ae nfnty. Cculaton Cculaton s defned by: Γ V d s Fo otatonal flow c C closed contou O by usng Stokes theoem: ( f no sngulaty of the flow n A) Γ V d s V d A ω. nda c A A Theefoe, fo potental flow Γ n geneal. Howeve, ths s not tue fo the pont vote due to the sngula pont at vote coe whee V and V ae nfnty. If sngulaty ests: Fee vote υ θ π π K Γ v eˆ d eˆ ( d ) K and K θ θ θ θ θ π V ds K Note: fo pont vote, flow stll otatonal eveywhee ecept at ogn tself whee V,.e., fo a path not ncludng (,) Γ Γ π

8 Pofesso Fed Sten Fall 4 8 Also, we can use Stokes theoem to show the estence of φ : V ds V ds φc Snce ABC ' AB C ' ABCB A V. ds Theefoe n geneal fo otatonal moton: V. d φ V d dφ d dφ d V φ. ds ds ds d eˆ s ds ( V φ). eˆ Whee: Snce s e unt tangent vecto along cuve s e s not zeo we have shown: V φ.e. velocty vecto s gadent of a scala functon φ f the moton s otatonal. ) ( V ds s space The pont vote sngulaty s mpotant n aeodynamcs, snce, eta souce and snk can be used to epesent afols and wngs as we shall dscuss shotly. To see ths, consde as an eample: an nfnte ow of votces: πy π ψ K ln K ln (cosh cos ) a a Whee s adus fom ogn of th vote. Equally speed and equal stength (Fg 8. of Tet book)

9 Pofesso Fed Sten Fall 4 9 Fo y a the flow appoaches unfom flow wth ψ πk u ± y a +: below as -: above as Note: ths flow s ust due to nfnte ow of votces and thee sn t any pue unfom flow Vote sheet: Fom afa (.e. y a ) looks that thn sheet occus whch s a velocty dscontnuty. πk Defne γ stength of vote sheet a πk dγ uld uud ( ul uu ) d d a dγ.e. γ Cculaton pe unt span d Note: Thee s no flow nomal to the sheet so that vote sheet can be used to smulate a body suface. Ths s the bass of afol theoy whee we let γ γ () to epesent body geomety. Vote theoem of Helmholtz: (mpotant ole n the study of the flow about wngs) ) The cculaton aound a gven vote lne s constant along ts length ) A vote lne cannot end n the flud. It must fom a closed path, end at a bounday o go to nfnty. 3) No flud patcle can have otaton, f t dd not ognally otate

10 Pofesso Fed Sten Fall Potental Flow Solutons fo Smple Geometes Ccula cylnde (wthout otaton): In the pevous we deved the followng equaton fo the doublet: λy λsnθ ψ Doublet + y When ths doublet s supeposed wth a unfom flow paallel to the - as, we get: λsnθ λ ψ Usnθ U snθ U Whee: λ doublet stength whch s detemned fom the knematc body bounday condton that the body suface must be a steam suface. Recall that fo nvscd flow t s no longe possble to satsfy the no slp condton as a esult of the neglect of vscous tems n PDEs. The nvscd flow bounday condton s: F: Suface Functon DF F F + V. F V n Dt t F t (fo steady flow) Theefoe at R, V.n.e. v. R F F eˆ ˆ + e F θ V veˆ ˆ + ve θ θ, n θ eˆ F F + Fθ ψ λ V n v U cosθ θ U λ UR λ If we eplace the constant by a new constant R, the above equaton becomes: U R ψ U snθ Ths adal velocty s zeo on all ponts on the ccle R. That s, thee can be no velocty nomal to the ccle R. Thus ths ccle tself s a steamlne.

11 Pofesso Fed Sten Fall 4 We can also compute the tangental component of velocty fo flow ove the ccula cylnde. Fom equaton, ψ R vθ U + snθ On the suface of the cylnde R, we get the followng epesson fo the tangental and adal components of velocty: v θ U snθ v How about pessue p? look at the Benoull's equaton: p p + ( v + vθ ) + U ρ ρ Afte some eaangement we get the followng non-dmensonal fom: p p v + vθ Cp (, θ ) ρu U Fo the ccula cylnde beng studed hee, at the suface, the only velocty component that s non-zeo s the tangental component of velocty. Usng vθ U snθ, we get at the cylnde suface the followng epesson fo the pessue coeffcent: C p 4 sn θ Whee θ s the angle measued fom the ea stagnaton pont (at the ntesecton of the back end of the cylnde wth the - as). Cp ove a Ccula Cylnde Cp Theta, Degees

12 Pofesso Fed Sten Fall 4 Fom pessue coeffcent we can calculate the flud foce on the cylnde: F ( p p) nds ρu C p ( R, θ) nds A A ds ( Rdθ ) b bspan length π F ρu br ( 4sn θ)(cosθˆ+ sn θ ˆ ) dθ π Lft F ˆ CL ( 4sn θ )snθ d θ (due to symmety of flow ρu br ρu br aound as) π Dag F ˆ CF ( 4sn θ )cosθ d θ (dálembet paado) ρu br ρu br We see that C L C D s due to symmety of Cp. But how ealstc s ths potental flow soluton. We stated eplan that vscous effects wee confned to thn bounday laye and t has neglgble effect on the nvscd flow fo hgh Rn flow about steamlned bodes. A ccula cylnde s not a steamlned body (lke as afol) but athe a bluff body. Thus, as we shall detemne now the potental flow soluton s not ealstc fo the back poton of the ccula cylnde flows ( θ > 9). Fo geneal: C C + C D C D FORM DRAG C D SKIN FRICTION DFORM DRAG DSKIN FRICTION : dag due to vscous modfcaton of pessue dstbuton : Dag due to vscous shea stess Steamlned Body : C Bluff Body : CD FO > C DSK DSK > C D FO Ccula cylnde wth cculaton: The steam functon assocated wth the flow ove a ccula cylnde, wth a pont vote of stength Γ placed at the cylnde cente s: λsnθ Γ ψ Usnθ ln π Fom V.n at R: λ U R U R snθ Γ Theefoe, ψ Usnθ ln π The adal and tangental velocty s gven by: ψ R v U cosθ v θ θ ψ R U + snθ + Γ π

13 Pofesso Fed Sten Fall 4 3 On the suface of the cylnde (R): ψ R v U cosθ θ R π Γ V d v dθ,.e., vote stength s cculaton θ v θ ψ Γ U snθ + π R Net, consde the flow patten as a functon of Γ. To stat lets calculate the stagnaton ponts on the cylnde.e.: Γ vθ U snθ + π R Γ K sn θ β / 4πU R U R Γ K Note: K β π U R So, the locaton of stagnaton pont s functon of Γ. K Γ θ s (stagnaton pont) β UR πur ( sn θ ),8 ( sn θ. 5 ) 3,5 ( sn θ ) 9 >( sn θ > ) Is not on the ccle but whee v v θ Fo flow pattens lke above (ecept a), we should epect to have lft foce n y decton.

14 Pofesso Fed Sten Fall 4 4 Summay of steam and potental functon of elementay -D flows: In Catesan coodnates: u ψ φ y v ψ φ In pola coodnates: φ ψ v θ φ ψ vθ θ y Flow φ ψ Unfom Flow U U y Souce (m>) Snk (m<) mln mθ Doublet λ cosθ λ snθ Vote Kθ - Kln 9 Cone flow / A( y ) Ay Sold-Body otaton Doesn t est ω These elementay solutons can be combned n such a way that the esultng soluton can be ntepeted to have physcal sgnfcance; that s, epesent the potental flow soluton fo vaous geometes. Also, methods fo abtay geometes combne unfom steam wth dstbuton of the elementay soluton on the body suface. Some combnaton of elementay solutons to poduce body geometes of pactcal mpotance Body name Elemental combnaton Flow Pattens Rankne Half Body Unfom steam+souce Rankne Oal Unfom steam+souce+snk

15 Pofesso Fed Sten Fall 4 5 Kelvn Oal Unfom steam+vote pont Ccula Cylnde wthout cculaton Unfom steam+doublet Ccula Cylnde wth cculaton Unfom steam+doublet+vote Keep n mnd that ths s the potental flow soluton and may not well epesent the eal flow especally n egon of advese p. The Kutta Joukowsk lft theoem: Snce we know the tangental component of velocty at any pont on the cylnde (and the adal component of velocty s zeo), we can fnd the pessue feld ove the suface of the cylnde fom Benoull s equaton: p v vθ p U ρ ρ Theefoe: ρ ρu p p ρ Γ U U snθ Γ + p + ρu ρu sn θ snθ Γ + πr 8π R πr A+ Bsnθ + Csn θ whee ργ A p + ρu 8π R ρu B Γ π R C ρu

16 Pofesso Fed Sten Fall 4 6 Calculaton of Lft: Let us fst consde lft. Lft pe unt span, L (.e. pe unt dstance nomal to the plane of the pape) s gven by: L pd pd Lowe On the suface of the cylnde, Rcosθ. Thus, d -Rsnθdθ, and the above ntegals may be thought of as ntegals wth espect to θ. Fo the lowe suface, θ vaes between π and π. Fo the uppe suface, θ vaes between π and. Thus, L R uppe π ( A + B snθ + C sn θ ) snθdθ + R ( A + Bsnθ + C sn θ ) π Revesng the uppe and lowe lmts of the second ntegal, we get: L R π snθdθ π π 3 ( A + Bsnθ + C sn θ ) snθdθ R ( Asnθ + Bsn θ + C sn θ ) dθ BRπ Substtutng fo B,we get: L ρ uγ Ths s an mpotant esult. It says that clockwse votces (negatve numecal values of Γ) wll poduce postve lft that s popotonal to Γ and the fee steam speed wth decton 9 degees fom the steam decton otatng opposte to the cculaton. Kutta and Joukowsk genealzed ths esult to lftng flow ove afols. Equaton L ρ uγ s known as the Kutta-Joukowsk theoem. Dag: We can lkewse ntegate dag foces. The dag pe unt span, D, s gven by: D pdy pdy Font Snce yrsnθ on the cylnde, dyrcosθdθ. Thus, as n the case of lft, we can convet these two ntegals ove y nto ntegals ove θ. On the font sde, θ vaes fom 3π/ to π/. On the ea sde, θ vaes between 3π/ and π/. Pefomng the ntegaton, we can show that D Ths esult s n contast to ealty, whee dag s hgh due to vscous sepaaton. Ths contast between potental flow theoy and dag s the dálembet Paado. The eplanaton of ths paado ae povded by Pandtl (94) wth hs bounday laye theoy.e. vscous effects ae always mpotant vey close to the body whee the no slp bounday condton must be satsfed and lage shea stess ests whch contbutes the dag. ea

17 Pofesso Fed Sten Fall 4 7 Lft fo otatng Cylnde: We know that LρU Γ theefoe: L Γ CL ρu ( R) UR π Γ Defne: vθ Aveage vθ dθ π π R π CL v U θ aveagfe Note: Γ V d s V d A V Rd θ θ θ c c c Velocty ato: aω U Theoetcal and epemental lft and dag of a otatng cylnde Epements have been pefomed that smulate the pevous flow by otatng a ccula cylnde n a unfom steam. In ths case v θ Rω whch s due to no slp bounday condton. - Lft s qute hgh but not as lage as theoy (due to vscous effect e flow sepaaton) - Note dag foce s also fay hgh Flettne (94) used otatng cylnde to poduce fowad moton.

18 Pofesso Fed Sten Fall 4 8

19 Pofesso Fed Sten Fall 4 9

20 Pofesso Fed Sten Fall Method of Images The method of mage s used to model slp wall effects by constuctng appopate mage sngulaty dstbutons. Plane Boundaes: -D: ln ( ) m [ + y ] + ln[ ( + ) + y ] ln[ ( ) + y ][( + ) y ] Q m + 3-D: φ M ( ) + y + z + ( + ) + y + z Smla esults can be obtaned fo dpoles and votces:

21 Pofesso Fed Sten Fall 4 Sphecal and Cuvlnea Boundaes: The esults fo plane boundaes ae obtaned fom consdeaton of symmety. Fo sphecal and ccula boundaes, mage systems can be detemned fom the Sphee & Ccle Theoems, espectvely. Fo eample: Flow feld Souce of stength M at c outsde sphee of adus a, c>a Dpole of stength µ at l outsde sphee of adus a, l>a Souce of stength m at b outsde ccle of adus a, b>a Image System Souces of stength ma at a and lne c c snk of stength m etendng fom cente a of sphee to a c dpole of stength a a 3 µ l at a equal souce at and snk of same b stength at the cente of the ccle l

22 Pofesso Fed Sten Fall 4 Multple Boundaes: The method can be etended fo multple boundaes by usng successve mages. () Fo eample, the soluton fo a souce equally spaced between two paallel planes w( z) m m m, ±, ±, [ ln[ z ( 4n + a) ] + ln[ z ( 4n + a) ] [ ln( z a) + ln( z + a) + ln( z 4 + a) + ln( z 6 + a) + ln( z + 4 a) + ln( z + + a) + ]

23 Pofesso Fed Sten Fall 4 3 () As a second eample of the method of successve mages fo multple boundaes consde two sphees A and B movng along a lne though the centes at veloctes U and U, espectvely: Consde the knematc BC fo A: F(, t) ( yt) + y + z a DF V eˆ ˆ ˆ R Uk er o φr Ucosν Dt 3 whee ϕ cos Ua ν, φ R 3 cos ν fo sngle sphee R R Smlaly fo B φ U cos ' ν R Ths suggests the potental n the fom ϕ Uϕ + U ϕ whee φ and φ both satsfy the Laplace equaton and the bounday condton: φ φ cos ν, R R' R a R' b (*) φ φ, cos ν ' R R' R a R' b (**) φ potental when sphee A moves wth unt velocty towads B, wth B at est φ potental when sphee B moves wth unt velocty towads A, wth A at est

24 Pofesso Fed Sten Fall 4 4 If B wee absent. 3 φ a cos cos R ν R ν, 3 a but ths does not satsfy the second condton n (*). To satsfy ths, we ntoduce the mage of n B, whch s a doublet dected along BA at A, the nvese pont of A wth espect to B. Ths mage eques an mage at A, the nvese of A wth espect to A, and so on. Thus we have an nfnte sees of mages A, A, of stengths,, 3 etc. whee the odd suffes efe to ponts wthn B and the even to ponts wthn A. Let fn AAn & AB c b a b f c, f, f 3 c, c f c f b, a 3 c 3, b 3 f 3 ( ), c f 3 adus whee mage dpole stength, dpole stength 3 sstance cosν cosν cosν φ wth a smla development pocedue fo φ. R R R Although eact, ths soluton s of unweldy fom. Let s nvestgate the possblty of an appomate soluton whch s vald fo lage c (.e. lage sepaaton dstance) c c R ' R + c c cosν R cosν + R R c c R R cosν cosν + + R' R R R c c c c Consdeng the fome epesentaton fst defnng µ and u cosυ R [ uµ + µ ] R' R

25 Pofesso Fed Sten Fall 4 5 By the bnomal theoem vald fo < ( ) + α + α + α 3 + Hence f u µ µ < α, 3 α and 3 ( n ) α n 4 n [ ] α + α ( u µ µ ) + α ( ) + P ( u) + P ( u) µ + P ( u) µ Afte collectng tems n powes of µ, whee the P n ae Legende functons of the fst knd (.e. Legende polynomals whch ae Legende functons of the fst knd of ode zeo). Thus, R R R< C: + P ( cosν) + P 3 ( cosν) + R' c c c c c R> C: + P ( cosν) + P 3 ( cosν) + R' R R R Net, consde a doublet of stength at A cosα ( Rcosν c) φ 3 R' c ( R + c cr cosν) ( R + c cr cosν) Thus, cosα RP( cosν) 3R P( cosν) R< c: φ R' c c cν c 3c R> c: φ P ( cosν) + P 3 ( cosν) + P 4 3( cosν) + R R R Gong back to the two sphee poblem. If B wee absent 3 a φ cos ν R R ' usng the above epesson fo the ogn at B and nea B < c, R R, ν ν ' a a arp ' ( cosν ) φ cosν R c c 3 a cosν φr + 3 c

26 Pofesso Fed Sten Fall 4 6 whch can be cancelled by addng a tem to the fst appomaton,.e a cosν ab cos ν ' φ 3 R c R' to confm ths a a3 R'cos ν ' ab cosν φ 3 3 c c c R ' φ ' a cos ν ' ab cosν ( R b) + ' hot ' R c c R Smlaly, the soluton fo f s 3 ' 3 3 b cosν ab cos ' 3 φ R These appomate solutons ae conveted to Ο ( c 3 ). c ν R To fnd the knetc enegy of the flud, we have K ρ φφnds φφnds + SA S B ρ K n A U + A U U + A U φφ ds SA+ SB A ρ φ φ ds A, A ρ φ φ φ φ dsb n, A ρ ds ds n φ ρ φ A B n n A B A B whee ds πr snυdυ 3 3 π ab A π 3 a ρ, A ρ, 3 A π 3 b ρ, 3 c πabρ K M' U + UU 3 + M' U : usng the appomate fom of the potentals 4 c 4 whee M ' U, M ' U : masses of lqud dsplaced by sphee Comple vaable and confomal mappng Ths method povdes a vey poweful method fo solvng -D flow poblems. Although the method can be etended fo abtay geometes, othe technques ae equally useful. Thus, the geatest applcaton s fo gettng smple flow geometes fo whch t povdes closed fom analytc soluton whch povdes basc solutons and can be used to valdate numecal methods.

27 Pofesso Fed Sten Fall 4 7 Functon of a comple vaable Confomal mappng eles entely on comple mathematcs. Theefoe, a bef evew s undetaken at ths pont. A comple numbe z s a sum of a eal and magnay pat; z eal + magnay The tem, efes to the comple numbe so that;,,, 3 4 Comple numbes can be pesented n a gaphcal fomat. If the eal poton of a comple numbe s taken as the abscssa, and the magnay poton as the odnate, a twodmensonal plane s fomed. z eal + magnay + y y, magnay, eal -A comple numbe can be wtten n pola fom usng Eule's equaton; Whee: + y z + y e θ (cosθ + snθ) - Comple multplcaton: z z ( +y )( +y ) ( - y y ) + ( y + y ) θ ( θ e e e - Conugate: z + y z y z. z + y -Comple functon: w(z) f(z) φ (,y) + ψ (,y) θ + θ )

28 Pofesso Fed Sten Fall 4 8 If functon w(z) s dffeentable fo all values of z n a egon of z plane s sad to be egula and analytc n that egon. Snce a comple functon elates two planes, a pont can be appoached along an nfnte numbe of paths, and thus, n ode to defne a unque devatve f(z) must be ndependent of path. δ w w w φ+ ψ ( φ+ ψ) PP( δ y ) : δ z z z dw φ + ψ dz Note: w φ( + δy, ) + ψ( + δy, ) δ w w w φ + ψ ( φ+ ψ) PP( δ ) : δ z zz y ( y) dw φy + ψ y dz dw Fo to be unque and ndependent of path: dz φ ψ and φ ψ Cauchy Remann Eq. y y Recall that the velocty potental and steam functon wee shown to satsfy ths elatonshp as a esult of the othogonalty. Thus, comple functon w φ + ψ epesents -D flows. φ ψ φ ψ.e. φ φ and smlaly fo ψ. Theefoe f analytc and y yy y + yy egula also hamonc,.e., satsfy Laplace equaton.

29 Pofesso Fed Sten Fall 4 9 Applcaton to potental flow wz ( ) φ+ ψ Comple potental whee φ : velocty potental, ψ : steam functon dw θ φ + ψ u v ( u uθ ) e Comple velocty dz ' θ ' ( θ + α ) ' ' e ρe whee ρ (magnfcaton) and θ θ + α (otaton) Tangle about z s tansfomed nto a smla tangle n the ζ-plane whch s magnfed and otated. Implcaton: -Angles ae peseved between the ntesectons of any two lnes n the physcal doman and n the mapped doman. -The mappng s one-to-one, so that to each pont n the physcal doman, thee s one and only one coespondng pont n the mapped doman. Fo these easons, such tansfomatons ae called confomal.

30 Pofesso Fed Sten Fall 4 3 Usually the flow-feld soluton n the ζ-plane s known: Then W ( ς ) Φ( ξ, η) + Ψ( ξ, η) ( f ( z) ) φ (, y) + ψ (, ) w( z) W y o φ Φ & ψ Ψ Confomal mappng The eal powe of the use of comple vaables fo flow analyss s though the applcaton of confomal mappng: technques wheeby a complcated geomety n the physcal z-doman s mapped onto a smple geomety n the ζ-plane (ccula cylnde) fo whch the flow-feld soluton s known. The flow-feld soluton n the z-plane s obtaned by elatng the ζ-plane soluton to the z-plane though the confomal tansfomaton ζf(z) (o nvese mappng zg(ζ)). Befoe consdeng the applcaton of the technque, we shall evew some of the moe mpotant popetes and theoems assocated wth t. Consde the tansfomaton, ζf(z) whee f(z) s analytc at a egula pont Z whee f (z ) δζ f (z ) δz θ ' δς ' e, δ z e θ ' α, f ( z ) ρe The steamlnes and equpotental lnes of the ζ-plane (Φ, Ψ) become the steamlnes of equpotental lnes of the z-plane (φ, ψ). zϕ ςφ ψ ψ z ς s the ζ-plane..e. Laplace equaton n the z-plane tansfoms nto Laplace equaton

31 Pofesso Fed Sten Fall 4 3 The comple veloctes n each plane ae also smply elated dw dw d dw ς f ' ( z ) dz dς dz dς dw dw ( z) u v ( U V ) f '( z) ( ζ f ( z)) dz dζ.e. veloctes n two planes ae popotonal. Two ndependent theoems concenng confomal tansfomatons ae: () Closed cuves map to closed cuves () Reman mappng theoem: an abtay closed pofle can be mapped onto the unt ccle. Moe theoems ae gven and dscussed n AMF Secton 43. Note that these ae fo the nteo poblems, but ae equally vald fo the eteo poblems though the nveson mappng. Many tansfomatons have been nvestgated and ae compled n handbooks. The AMF contans many eamples: ) Elementay tansfomatons: az + b a) lnea: w, ad bc cz + d n b) cone flow: w Az c) Jowkowsky: w ς + c ς n d) eponental: w e s e) w z, s atonal ) Flow feld fo specfc geometes a) ccle theoem b) flat plate c) ccula ac d) ellpse e) Jowkowsk fols f) ogve (two ccula aeas) g) Thn fol theoy [solutons by mappng flat plate wth thn fol BC onto unt ccle] h) multple bodes 3) Schwaz-Cstoffel mappng 4) Fee-steamlne theoy

32 Pofesso Fed Sten Fall 4 3 The technques of confomal mappng ae best leaned though the applcatons. Hee we shall consde cone flow. A smple eample: Cone flow. In ζ-plane, let W ( ς ) ς.e. unfom steam π θ. Say ς f ( z) z π θ 3. w ( z) W ( f ( z)) z.e. cone flow Note that -3 ae unt unfom steam. n n n w( z) Uz UR cosθ + UR sn nθ, whee.e. φ UR n cos nθ, ψ UR n sn nθ ψ UR n sn nθ const.steamlnes φ UR n cos nθ const.equpotentals z Re θ dw dw dς nuz nur e ( nur cos nθ + nur sn nθ) e dz dς dz ( u u ) e θ θ n n ( n) θ n n θ u u θ nur n nur θ < ( π ) n ( π ) < θ < ( π ) cos nθ n sn nθ < u >, u < n u < n, u θ < n.e. w ( z) Uz θ epesents cone flow: n unfom steam, n 9 cone

33 Pofesso Fed Sten Fall Intoducton to Suface Sngulaty methods (also known as Bounday Integal and Panels Methods) Net, we consde the soluton of the potental flow poblem fo an abtay geomety. Consde the BVP fo a body of abtay geomety fed n a unfom steam of an nvscd, ncompessble, and otatonal flud. The suface sngulaty method s founded on the symmetc fom of Geens theoem and what s known as Geens functon. ( G ΦΦ G) dv G Φ ds () V S S + S B+ S S Φ n G n whee Φ and G ae any two scala feld n V (contol volume bounded by s nfnty S body and S nseted to ende the doman smply connected) and fo ou applcaton. Φ velocty potental G Geen s functon Say, G δ ( ) n V+V (.e. ente doman) whee δ s the Dac delta functon. G on S Soluton fo G (obtaned Foue Tansfoms) s: -D souce at of unt stength, and () becomes Φ S S B Φ G G Φ ds n n G ln,,.e. elementay

34 Pofesso Fed Sten Fall 4 34 Fst tem n ntegand epesents souce dstbuton and second tem dpole dstbuton, whch can be tansfomed to vote dstbuton usng ntegaton by pats. By etendng the defnton of Φ nto V t can be shown that Φ can be epesented by dstbutons of souces, dpoles o votces,.e. o Φ Φ S σ GdS : souce dstbuton, σ : souce stength S S B S B G λ ds : dpole dstbuton, λ : dpole stength n Also, t can be shown that a souce dstbuton epesentaton can only be used to epesent the flow fo a non-lftng body; that s, fo lftng flow dpole o vote dstbutons must be used. As ths stage, let s consde the soluton of the flow about a non-lftng body of abtay geomety fed n a unfom steam. Note that snce G on S Φ aleady satsfy the condton S. The emanng condton,.e. the condton s a steam suface s used to detemne the souce dstbuton stength. Consde a souce dstbuton method fo epesentng non-lftng flow aound a body of abtay geomety. V U + φ : total velocty U : unfom steam, φ : petubaton potental due to pesence of body U U (cosα ˆ + snαˆ) : note that fo non-lftng flow Γ must be zeo (.e. fo a symmetc fol α o fo cambeed fled α αolft ) K φ ln ds : souce dstbuton on body suface π S B

35 Pofesso Fed Sten Fall 4 35 Now, K s detemned fom the body bounday condton. φ V n.e. U n+ φ n o U n n.e. nomal velocty nduced by souces must cancel unfom K steam ds U n n ln π S B Ths sngula ntegal equaton fo K s solved by descetzng the suface nto a numbe of panels ove whch K s assumed constant,.e. we wte M no. of panels K ln ds U n n π S,,M,,M + z z dstance fom th panel contol pont to whee ( ) ( ) vecto along th panel. poston Note that the ntegal equaton s sngula snce ln n n at fo ths ntegal blows up; that s, when and we tyng to detemne the contbuton of the panel to ts own souce stength. Specal cae must be taken. It can be shown that the lmt does est at the ntegal equaton can be wtten K K ln ds π n S S M K K + ds U π n S whee n n + n [( ) n + ( z z ) n ] n whee ( ) + ( z z ) z z n z

36 Pofesso Fed Sten Fall 4 36 Consde the th panel S cosδ ˆ + snδ ˆ, n S ˆ snδ ˆ + cosδ ˆ n n snδ, nz cosδ S B K ln ds U π n + SS, : ogn of th panel coodnate system, S S : dstance along th panel

37 Pofesso Fed Sten Fall 4 37 V U + φ K φ ln ds π S B K V n ds U n n ln π K Let + M K π S S B n ds S n K K + I π I l l I ds U n U sn and RHS U ( α δ ) ( α δ ) sn, then M ( ) n + ( z z ) nz RHS, I ds S ( ) + ( z z ) l ( S nz ) n + ( z z S n ) nz ds ( S nz ) + ( z z S n ) ( ) n + ( z z ) nz + S ( nnz nzn ) ( ) + ( z z ) + S [ n ( ) + n ( z z )], n snδ ˆ + cosδ ˆ z z S CS + D + AS whee A cosδ B C D I I + ds B ( ) snδ ( z z ) ( ) + ( z z ) sn( δ δ ) ( ) snδ + ( z z ) cosδ S D Χ Χ depends on f q< o > whee + S l l ds + C ds DI + CI whee Χ S + AS + B I ln Χ M K K AI q 4B 4A ( ) n + ( z z ) nz ds U n RHS ( ) + ( z z ) + S π RHS [ cos α snδ + snα cosδ ] U sn( α δ ) U K K + I π M RHS : Mat equaton fo K and can be solved usng Standad methods such as Gauss-Sedel Iteaton. ds

38 Pofesso Fed Sten Fall 4 38 In ode to evaluate I, we make the substtuton S S z z S S + + S S + whee S dstance along the th panel l S z z n S n S δ δ sn cos Afte substtuton, I becomes ( ) ( ) ( ) ( ) ( )( ) [ ] ( ) ( ) ( ) ( ) sn cos sn cos sn cos z z z z z z z z A B δ δ δ δ δ δ ( ) ( ) ( ) [ ] cos sn 4 4 z z A B q δ δ.e. q> and as a esult, E A S E q A S q I + + tan tan whee E A B q ( ) ( ) Χ + Χ + B B Al z l C E A E A l E CA D C I CA D AI C DI I l ln tan tan ln ln whee B AS S + + Χ Theefoe, we can wte the ntegal equaton n the fom ( ) M U I K K δ α π + sn

39 Pofesso Fed Sten Fall 4 39 k I π k I π K RHS whch can be solved by standad technques fo lnea systems of equatons wth Gauss- Sedel Iteaton. Once K s known, V U + φ And p s obtaned fom Benoull equaton,.e. V V p U Mentoned potental flow soluton only depend on s ndependent of flow condton,.e. U,.e. only s scaled On the suface of the body Vn so that VS C p whee V S V S tangental suface velocty U V S Φ S U S + ϕ S ϕ VS U S + U cos ( α δ ) + QS S whee U S U ( ˆ ˆ ) ( ˆ ˆ cosα + snα cosδ + snδ ) φ K φs ln ds S S π SB M K φs ( ln ) ds π : tem s zeo snce souce panel nduces no tangental S l ln ) S flow on tself. ( ( ) ds J S ( ln ) whee S l S S + S z z cosδ, S snδ z S {( ) S + ( z z ) S } z

40 Pofesso Fed Sten Fall 4 4 C J V S U V U K J π cos α δ + p, ( ) l ( ) n + ( z z ) nz ds ds l S S ( ) + ( z z ) ( S S ) S + ( z z S S z ) S z ds ( S S ) + ( z z S S ) z whee S cosδ, S z snδ S S + z z S + +, ( ) ( S ) S AS B ( ) cosδ + ( z z ) snδ + S ( S S S S ) λ D CS + D ds S AS C ( ) cosδ + ( z z ) C cos J ( δ δ ) ( D AC) cosδ cosδ snδ snδ snδ DI + CI DI + C ln Χ AI C D AC l A A C l + Al I + E + + ln Χ tan tan ln E E B cosδ + z z snδ D AC ( ) ( ) [ ( ) cosδ ( z z ) snδ ]( cos( δ δ ) [( ) cosδ + ( z z ) snδ ]( snδ snδ cosδ cosδ ) ( )[ cosδ snδ snδ cosδ cosδ cos δ ] ( z z )[ snδ snδ sn δ cosδ cosδ snδ ] ( )[ cosδ ( cos δ ) snδ snδ cosδ ] ( z z )[ snδ ( sn δ ) cosδ cosδ snδ ] ( ) snδ [ cosδ snδ snδ cosδ ] ( z z ) cosδ [ snδ cosδ + cosδ snδ ] D AC whee sn ( δ δ ) E z z z + B

41 Pofesso Fed Sten Fall 4 4

42 Pofesso Fed Sten Fall 4 4

43 Pofesso Fed Sten Fall 4 43

44 Pofesso Fed Sten Fall 4 44

45 Pofesso Fed Sten Fall 4 45

46 Pofesso Fed Sten Fall 4 46

47 Pofesso Fed Sten Fall 4 47

48 Pofesso Fed Sten Fall 4 48

49 Pofesso Fed Sten Fall 4 49

Integral Vector Operations and Related Theorems Applications in Mechanics and E&M

Integral Vector Operations and Related Theorems Applications in Mechanics and E&M Dola Bagayoko (0) Integal Vecto Opeatons and elated Theoems Applcatons n Mechancs and E&M Ι Basc Defnton Please efe to you calculus evewed below. Ι, ΙΙ, andιιι notes and textbooks fo detals on the concepts

More information

24-2: Electric Potential Energy. 24-1: What is physics

24-2: Electric Potential Energy. 24-1: What is physics D. Iyad SAADEDDIN Chapte 4: Electc Potental Electc potental Enegy and Electc potental Calculatng the E-potental fom E-feld fo dffeent chage dstbutons Calculatng the E-feld fom E-potental Potental of a

More information

Physics 11b Lecture #2. Electric Field Electric Flux Gauss s Law

Physics 11b Lecture #2. Electric Field Electric Flux Gauss s Law Physcs 11b Lectue # Electc Feld Electc Flux Gauss s Law What We Dd Last Tme Electc chage = How object esponds to electc foce Comes n postve and negatve flavos Conseved Electc foce Coulomb s Law F Same

More information

Chapter Fifiteen. Surfaces Revisited

Chapter Fifiteen. Surfaces Revisited Chapte Ffteen ufaces Revsted 15.1 Vecto Descpton of ufaces We look now at the vey specal case of functons : D R 3, whee D R s a nce subset of the plane. We suppose s a nce functon. As the pont ( s, t)

More information

Chapter 23: Electric Potential

Chapter 23: Electric Potential Chapte 23: Electc Potental Electc Potental Enegy It tuns out (won t show ths) that the tostatc foce, qq 1 2 F ˆ = k, s consevatve. 2 Recall, fo any consevatve foce, t s always possble to wte the wok done

More information

Set of square-integrable function 2 L : function space F

Set of square-integrable function 2 L : function space F Set of squae-ntegable functon L : functon space F Motvaton: In ou pevous dscussons we have seen that fo fee patcles wave equatons (Helmholt o Schödnge) can be expessed n tems of egenvalue equatons. H E,

More information

Chapter I Matrices, Vectors, & Vector Calculus 1-1, 1-9, 1-10, 1-11, 1-17, 1-18, 1-25, 1-27, 1-36, 1-37, 1-41.

Chapter I Matrices, Vectors, & Vector Calculus 1-1, 1-9, 1-10, 1-11, 1-17, 1-18, 1-25, 1-27, 1-36, 1-37, 1-41. Chapte I Matces, Vectos, & Vecto Calculus -, -9, -0, -, -7, -8, -5, -7, -36, -37, -4. . Concept of a Scala Consde the aa of patcles shown n the fgue. he mass of the patcle at (,) can be epessed as. M (,

More information

Rigid Bodies: Equivalent Systems of Forces

Rigid Bodies: Equivalent Systems of Forces Engneeng Statcs, ENGR 2301 Chapte 3 Rgd Bodes: Equvalent Sstems of oces Intoducton Teatment of a bod as a sngle patcle s not alwas possble. In geneal, the se of the bod and the specfc ponts of applcaton

More information

PHYS Week 5. Reading Journals today from tables. WebAssign due Wed nite

PHYS Week 5. Reading Journals today from tables. WebAssign due Wed nite PHYS 015 -- Week 5 Readng Jounals today fom tables WebAssgn due Wed nte Fo exclusve use n PHYS 015. Not fo e-dstbuton. Some mateals Copyght Unvesty of Coloado, Cengage,, Peason J. Maps. Fundamental Tools

More information

CSJM University Class: B.Sc.-II Sub:Physics Paper-II Title: Electromagnetics Unit-1: Electrostatics Lecture: 1 to 4

CSJM University Class: B.Sc.-II Sub:Physics Paper-II Title: Electromagnetics Unit-1: Electrostatics Lecture: 1 to 4 CSJM Unvesty Class: B.Sc.-II Sub:Physcs Pape-II Ttle: Electomagnetcs Unt-: Electostatcs Lectue: to 4 Electostatcs: It deals the study of behavo of statc o statonay Chages. Electc Chage: It s popety by

More information

PHY126 Summer Session I, 2008

PHY126 Summer Session I, 2008 PHY6 Summe Sesson I, 8 Most of nfomaton s avalable at: http://nngoup.phscs.sunsb.edu/~chak/phy6-8 ncludng the sllabus and lectue sldes. Read sllabus and watch fo mpotant announcements. Homewok assgnment

More information

Engineering Mechanics. Force resultants, Torques, Scalar Products, Equivalent Force systems

Engineering Mechanics. Force resultants, Torques, Scalar Products, Equivalent Force systems Engneeng echancs oce esultants, Toques, Scala oducts, Equvalent oce sstems Tata cgaw-hll Companes, 008 Resultant of Two oces foce: acton of one bod on anothe; chaacteed b ts pont of applcaton, magntude,

More information

Scalars and Vectors Scalar

Scalars and Vectors Scalar Scalas and ectos Scala A phscal quantt that s completel chaacteed b a eal numbe (o b ts numecal value) s called a scala. In othe wods a scala possesses onl a magntude. Mass denst volume tempeatue tme eneg

More information

PHYS 705: Classical Mechanics. Derivation of Lagrange Equations from D Alembert s Principle

PHYS 705: Classical Mechanics. Derivation of Lagrange Equations from D Alembert s Principle 1 PHYS 705: Classcal Mechancs Devaton of Lagange Equatons fom D Alembet s Pncple 2 D Alembet s Pncple Followng a smla agument fo the vtual dsplacement to be consstent wth constants,.e, (no vtual wok fo

More information

Review of Vector Algebra and Vector Calculus Operations

Review of Vector Algebra and Vector Calculus Operations Revew of Vecto Algeba and Vecto Calculus Opeatons Tpes of vaables n Flud Mechancs Repesentaton of vectos Dffeent coodnate sstems Base vecto elatons Scala and vecto poducts Stess Newton s law of vscost

More information

1. A body will remain in a state of rest, or of uniform motion in a straight line unless it

1. A body will remain in a state of rest, or of uniform motion in a straight line unless it Pncples of Dnamcs: Newton's Laws of moton. : Foce Analss 1. A bod wll eman n a state of est, o of unfom moton n a staght lne unless t s acted b etenal foces to change ts state.. The ate of change of momentum

More information

Physics 2A Chapter 11 - Universal Gravitation Fall 2017

Physics 2A Chapter 11 - Universal Gravitation Fall 2017 Physcs A Chapte - Unvesal Gavtaton Fall 07 hese notes ae ve pages. A quck summay: he text boxes n the notes contan the esults that wll compse the toolbox o Chapte. hee ae thee sectons: the law o gavtaton,

More information

Test 1 phy What mass of a material with density ρ is required to make a hollow spherical shell having inner radius r i and outer radius r o?

Test 1 phy What mass of a material with density ρ is required to make a hollow spherical shell having inner radius r i and outer radius r o? Test 1 phy 0 1. a) What s the pupose of measuement? b) Wte all fou condtons, whch must be satsfed by a scala poduct. (Use dffeent symbols to dstngush opeatons on ectos fom opeatons on numbes.) c) What

More information

Physics 202, Lecture 2. Announcements

Physics 202, Lecture 2. Announcements Physcs 202, Lectue 2 Today s Topcs Announcements Electc Felds Moe on the Electc Foce (Coulomb s Law The Electc Feld Moton of Chaged Patcles n an Electc Feld Announcements Homewok Assgnment #1: WebAssgn

More information

Remember: When an object falls due to gravity its potential energy decreases.

Remember: When an object falls due to gravity its potential energy decreases. Chapte 5: lectc Potental As mentoned seveal tmes dung the uate Newton s law o gavty and Coulomb s law ae dentcal n the mathematcal om. So, most thngs that ae tue o gavty ae also tue o electostatcs! Hee

More information

3.1 Electrostatic Potential Energy and Potential Difference

3.1 Electrostatic Potential Energy and Potential Difference 3. lectostatc Potental negy and Potental Dffeence RMMR fom mechancs: - The potental enegy can be defned fo a system only f consevatve foces act between ts consttuents. - Consevatve foces may depend only

More information

Energy in Closed Systems

Energy in Closed Systems Enegy n Closed Systems Anamta Palt palt.anamta@gmal.com Abstact The wtng ndcates a beakdown of the classcal laws. We consde consevaton of enegy wth a many body system n elaton to the nvese squae law and

More information

Physics 207 Lecture 16

Physics 207 Lecture 16 Physcs 07 Lectue 6 Goals: Lectue 6 Chapte Extend the patcle odel to gd-bodes Undestand the equlbu of an extended object. Analyze ollng oton Undestand otaton about a fxed axs. Eploy consevaton of angula

More information

ALL QUESTIONS ARE WORTH 20 POINTS. WORK OUT FIVE PROBLEMS.

ALL QUESTIONS ARE WORTH 20 POINTS. WORK OUT FIVE PROBLEMS. GNRAL PHYSICS PH -3A (D. S. Mov) Test (/3/) key STUDNT NAM: STUDNT d #: -------------------------------------------------------------------------------------------------------------------------------------------

More information

Capítulo. Three Dimensions

Capítulo. Three Dimensions Capítulo Knematcs of Rgd Bodes n Thee Dmensons Mecánca Contents ntoducton Rgd Bod Angula Momentum n Thee Dmensons Pncple of mpulse and Momentum Knetc Eneg Sample Poblem 8. Sample Poblem 8. Moton of a Rgd

More information

UNIT10 PLANE OF REGRESSION

UNIT10 PLANE OF REGRESSION UIT0 PLAE OF REGRESSIO Plane of Regesson Stuctue 0. Intoducton Ojectves 0. Yule s otaton 0. Plane of Regesson fo thee Vaales 0.4 Popetes of Resduals 0.5 Vaance of the Resduals 0.6 Summay 0.7 Solutons /

More information

Physics 1501 Lecture 19

Physics 1501 Lecture 19 Physcs 1501 ectue 19 Physcs 1501: ectue 19 Today s Agenda Announceents HW#7: due Oct. 1 Mdte 1: aveage 45 % Topcs otatonal Kneatcs otatonal Enegy Moents of Ineta Physcs 1501: ectue 19, Pg 1 Suay (wth copason

More information

If there are k binding constraints at x then re-label these constraints so that they are the first k constraints.

If there are k binding constraints at x then re-label these constraints so that they are the first k constraints. Mathematcal Foundatons -1- Constaned Optmzaton Constaned Optmzaton Ma{ f ( ) X} whee X {, h ( ), 1,, m} Necessay condtons fo to be a soluton to ths mamzaton poblem Mathematcally, f ag Ma{ f ( ) X}, then

More information

DYNAMICS VECTOR MECHANICS FOR ENGINEERS: Kinematics of Rigid Bodies in Three Dimensions. Seventh Edition CHAPTER

DYNAMICS VECTOR MECHANICS FOR ENGINEERS: Kinematics of Rigid Bodies in Three Dimensions. Seventh Edition CHAPTER Edton CAPTER 8 VECTOR MECANCS FOR ENGNEERS: DYNAMCS Fednand P. Bee E. Russell Johnston, J. Lectue Notes: J. Walt Ole Teas Tech Unvest Knematcs of Rgd Bodes n Thee Dmensons 003 The McGaw-ll Companes, nc.

More information

A. Thicknesses and Densities

A. Thicknesses and Densities 10 Lab0 The Eath s Shells A. Thcknesses and Denstes Any theoy of the nteo of the Eath must be consstent wth the fact that ts aggegate densty s 5.5 g/cm (ecall we calculated ths densty last tme). In othe

More information

19 The Born-Oppenheimer Approximation

19 The Born-Oppenheimer Approximation 9 The Bon-Oppenheme Appoxmaton The full nonelatvstc Hamltonan fo a molecule s gven by (n a.u.) Ĥ = A M A A A, Z A + A + >j j (883) Lets ewte the Hamltonan to emphasze the goal as Ĥ = + A A A, >j j M A

More information

Dynamics of Rigid Bodies

Dynamics of Rigid Bodies Dynamcs of Rgd Bodes A gd body s one n whch the dstances between consttuent patcles s constant thoughout the moton of the body,.e. t keeps ts shape. Thee ae two knds of gd body moton: 1. Tanslatonal Rectlnea

More information

COMPLEMENTARY ENERGY METHOD FOR CURVED COMPOSITE BEAMS

COMPLEMENTARY ENERGY METHOD FOR CURVED COMPOSITE BEAMS ultscence - XXX. mcocd Intenatonal ultdscplnay Scentfc Confeence Unvesty of skolc Hungay - pl 06 ISBN 978-963-358-3- COPLEENTRY ENERGY ETHOD FOR CURVED COPOSITE BES Ákos József Lengyel István Ecsed ssstant

More information

2/24/2014. The point mass. Impulse for a single collision The impulse of a force is a vector. The Center of Mass. System of particles

2/24/2014. The point mass. Impulse for a single collision The impulse of a force is a vector. The Center of Mass. System of particles /4/04 Chapte 7 Lnea oentu Lnea oentu of a Sngle Patcle Lnea oentu: p υ It s a easue of the patcle s oton It s a vecto, sla to the veloct p υ p υ p υ z z p It also depends on the ass of the object, sla

More information

8 Baire Category Theorem and Uniform Boundedness

8 Baire Category Theorem and Uniform Boundedness 8 Bae Categoy Theoem and Unfom Boundedness Pncple 8.1 Bae s Categoy Theoem Valdty of many esults n analyss depends on the completeness popety. Ths popety addesses the nadequacy of the system of atonal

More information

Mechanics Physics 151

Mechanics Physics 151 Mechancs Physcs 151 Lectue 18 Hamltonan Equatons of Moton (Chapte 8) What s Ahead We ae statng Hamltonan fomalsm Hamltonan equaton Today and 11/6 Canoncal tansfomaton 1/3, 1/5, 1/10 Close lnk to non-elatvstc

More information

1. Starting with the local version of the first law of thermodynamics q. derive the statement of the first law of thermodynamics for a control volume

1. Starting with the local version of the first law of thermodynamics q. derive the statement of the first law of thermodynamics for a control volume EN10: Contnuum Mechancs Homewok 5: Alcaton of contnuum mechancs to fluds Due 1:00 noon Fda Febua 4th chool of Engneeng Bown Unvest 1. tatng wth the local veson of the fst law of themodnamcs q jdj q t and

More information

Chapter 8. Linear Momentum, Impulse, and Collisions

Chapter 8. Linear Momentum, Impulse, and Collisions Chapte 8 Lnea oentu, Ipulse, and Collsons 8. Lnea oentu and Ipulse The lnea oentu p of a patcle of ass ovng wth velocty v s defned as: p " v ote that p s a vecto that ponts n the sae decton as the velocty

More information

Part V: Velocity and Acceleration Analysis of Mechanisms

Part V: Velocity and Acceleration Analysis of Mechanisms Pat V: Velocty an Acceleaton Analyss of Mechansms Ths secton wll evew the most common an cuently pactce methos fo completng the knematcs analyss of mechansms; escbng moton though velocty an acceleaton.

More information

Rotary motion

Rotary motion ectue 8 RTARY TN F THE RGD BDY Notes: ectue 8 - Rgd bod Rgd bod: j const numbe of degees of feedom 6 3 tanslatonal + 3 ota motons m j m j Constants educe numbe of degees of feedom non-fee object: 6-p

More information

Unit_III Complex Numbers: Some Basic Results: 1. If z = x +iy is a complex number, then the complex number z = x iy is

Unit_III Complex Numbers: Some Basic Results: 1. If z = x +iy is a complex number, then the complex number z = x iy is Unt_III Comple Nmbes: In the sstem o eal nmbes R we can sole all qadatc eqatons o the om a b c, a, and the dscmnant b 4ac. When the dscmnant b 4ac

More information

Instantaneous velocity field of a round jet

Instantaneous velocity field of a round jet Fee shea flows Instantaneos velocty feld of a ond et 3 Aveage velocty feld of a ond et 4 Vtal ogn nozzle coe Developng egon elf smla egon 5 elf smlaty caled vaables: ~ Q ξ ( ξ, ) y δ ( ) Q Q (, y) ( )

More information

gravity r2,1 r2 r1 by m 2,1

gravity r2,1 r2 r1 by m 2,1 Gavtaton Many of the foundatons of classcal echancs wee fst dscoveed when phlosophes (ealy scentsts and atheatcans) ted to explan the oton of planets and stas. Newton s ost faous fo unfyng the oton of

More information

Chapter IV Vector and Tensor Analysis IV.2 Vector and Tensor Analysis September 29,

Chapter IV Vector and Tensor Analysis IV.2 Vector and Tensor Analysis September 29, hapte I ecto and Tenso Analyss I. ecto and Tenso Analyss eptembe 9, 08 47 hapte I ecto and Tenso Analyss I. ecto and Tenso Analyss eptembe 9, 08 48 I. ETOR AND TENOR ANALYI I... Tenso functon th Let A

More information

Rotational Kinematics. Rigid Object about a Fixed Axis Western HS AP Physics 1

Rotational Kinematics. Rigid Object about a Fixed Axis Western HS AP Physics 1 Rotatonal Knematcs Rgd Object about a Fxed Axs Westen HS AP Physcs 1 Leanng Objectes What we know Unfom Ccula Moton q s Centpetal Acceleaton : Centpetal Foce: Non-unfom a F c c m F F F t m ma t What we

More information

VEKTORANALYS FLUX INTEGRAL LINE INTEGRAL. and. Kursvecka 2. Kapitel 4 5. Sidor 29 50

VEKTORANALYS FLUX INTEGRAL LINE INTEGRAL. and. Kursvecka 2. Kapitel 4 5. Sidor 29 50 VEKTORANAYS Ksecka INE INTEGRA and UX INTEGRA Kaptel 4 5 Sdo 9 5 A wnd TARGET PROBEM We want to psh a mne cat along a path fom A to B. Bt the wnd s blowng. How mch enegy s needed? (.e. how mch s the wok?

More information

Final Review of AerE 243 Class

Final Review of AerE 243 Class Final Review of AeE 4 Class Content of Aeodynamics I I Chapte : Review of Multivaiable Calculus Chapte : Review of Vectos Chapte : Review of Fluid Mechanics Chapte 4: Consevation Equations Chapte 5: Simplifications

More information

iclicker Quiz a) True b) False Theoretical physics: the eternal quest for a missing minus sign and/or a factor of two. Which will be an issue today?

iclicker Quiz a) True b) False Theoretical physics: the eternal quest for a missing minus sign and/or a factor of two. Which will be an issue today? Clce Quz I egsteed my quz tansmtte va the couse webste (not on the clce.com webste. I ealze that untl I do so, my quz scoes wll not be ecoded. a Tue b False Theoetcal hyscs: the etenal quest fo a mssng

More information

Thermodynamics of solids 4. Statistical thermodynamics and the 3 rd law. Kwangheon Park Kyung Hee University Department of Nuclear Engineering

Thermodynamics of solids 4. Statistical thermodynamics and the 3 rd law. Kwangheon Park Kyung Hee University Department of Nuclear Engineering Themodynamcs of solds 4. Statstcal themodynamcs and the 3 d law Kwangheon Pak Kyung Hee Unvesty Depatment of Nuclea Engneeng 4.1. Intoducton to statstcal themodynamcs Classcal themodynamcs Statstcal themodynamcs

More information

Physics Exam II Chapters 25-29

Physics Exam II Chapters 25-29 Physcs 114 1 Exam II Chaptes 5-9 Answe 8 of the followng 9 questons o poblems. Each one s weghted equally. Clealy mak on you blue book whch numbe you do not want gaded. If you ae not sue whch one you do

More information

One-dimensional kinematics

One-dimensional kinematics Phscs 45 Fomula Sheet Eam 3 One-dmensonal knematcs Vectos dsplacement: Δ total dstance taveled aveage speed total tme Δ aveage veloct: vav t t Δ nstantaneous veloct: v lm Δ t v aveage acceleaton: aav t

More information

Physics 1: Mechanics

Physics 1: Mechanics Physcs : Mechancs Đào Ngọc Hạnh Tâm Offce: A.503, Emal: dnhtam@hcmu.edu.vn HCMIU, Vetnam Natonal Unvesty Acknowledgment: Sldes ae suppoted by Pof. Phan Bao Ngoc Contents of Physcs Pat A: Dynamcs of Mass

More information

V. Principles of Irreversible Thermodynamics. s = S - S 0 (7.3) s = = - g i, k. "Flux": = da i. "Force": = -Â g a ik k = X i. Â J i X i (7.

V. Principles of Irreversible Thermodynamics. s = S - S 0 (7.3) s = = - g i, k. Flux: = da i. Force: = -Â g a ik k = X i. Â J i X i (7. Themodynamcs and Knetcs of Solds 71 V. Pncples of Ievesble Themodynamcs 5. Onsage s Teatment s = S - S 0 = s( a 1, a 2,...) a n = A g - A n (7.6) Equlbum themodynamcs detemnes the paametes of an equlbum

More information

COORDINATE SYSTEMS, COORDINATE TRANSFORMS, AND APPLICATIONS

COORDINATE SYSTEMS, COORDINATE TRANSFORMS, AND APPLICATIONS Dola Bagaoo 0 COORDINTE SYSTEMS COORDINTE TRNSFORMS ND PPLICTIONS I. INTRODUCTION Smmet coce of coodnate sstem. In solvng Pscs poblems one cooses a coodnate sstem tat fts te poblem at and.e. a coodnate

More information

CSU ATS601 Fall Other reading: Vallis 2.1, 2.2; Marshall and Plumb Ch. 6; Holton Ch. 2; Schubert Ch r or v i = v r + r (3.

CSU ATS601 Fall Other reading: Vallis 2.1, 2.2; Marshall and Plumb Ch. 6; Holton Ch. 2; Schubert Ch r or v i = v r + r (3. 3 Eath s Rotaton 3.1 Rotatng Famewok Othe eadng: Valls 2.1, 2.2; Mashall and Plumb Ch. 6; Holton Ch. 2; Schubet Ch. 3 Consde the poston vecto (the same as C n the fgue above) otatng at angula velocty.

More information

Lie Subalgebras and Invariant Solutions to the Equation of Fluid Flows in Toroidal Field. Lang Xia

Lie Subalgebras and Invariant Solutions to the Equation of Fluid Flows in Toroidal Field. Lang Xia Le Subalgebas and Invaant Solutons to the Equaton of Flud Flows n Toodal Feld Lang a Emal: langxaog@gmalcom Abstact: Patal dffeental equatons (PDEs), patculaly coupled PDE systems, ae dffcult to solve

More information

MHD Oscillatory Flow in a Porous Plate

MHD Oscillatory Flow in a Porous Plate Global Jounal of Mathematcal Scences: Theoy and Pactcal. ISSN 97-3 Volume, Numbe 3 (), pp. 3-39 Intenatonal Reseach Publcaton House http://www.phouse.com MHD Oscllatoy Flow n a Poous Plate Monka Kala and

More information

Chapter 13 - Universal Gravitation

Chapter 13 - Universal Gravitation Chapte 3 - Unesal Gataton In Chapte 5 we studed Newton s thee laws of moton. In addton to these laws, Newton fomulated the law of unesal gataton. Ths law states that two masses ae attacted by a foce gen

More information

UNIVERSITÀ DI PISA. Math thbackground

UNIVERSITÀ DI PISA. Math thbackground UNIVERSITÀ DI ISA Electomagnetc Radatons and Bologcal l Inteactons Lauea Magstale n Bomedcal Engneeng Fst semeste (6 cedts), academc ea 2011/12 of. aolo Nepa p.nepa@et.unp.t Math thbackgound Edted b D.

More information

2. Electrostatics. Dr. Rakhesh Singh Kshetrimayum 8/11/ Electromagnetic Field Theory by R. S. Kshetrimayum

2. Electrostatics. Dr. Rakhesh Singh Kshetrimayum 8/11/ Electromagnetic Field Theory by R. S. Kshetrimayum 2. Electostatics D. Rakhesh Singh Kshetimayum 1 2.1 Intoduction In this chapte, we will study how to find the electostatic fields fo vaious cases? fo symmetic known chage distibution fo un-symmetic known

More information

Optimization Methods: Linear Programming- Revised Simplex Method. Module 3 Lecture Notes 5. Revised Simplex Method, Duality and Sensitivity analysis

Optimization Methods: Linear Programming- Revised Simplex Method. Module 3 Lecture Notes 5. Revised Simplex Method, Duality and Sensitivity analysis Optmzaton Meods: Lnea Pogammng- Revsed Smple Meod Module Lectue Notes Revsed Smple Meod, Dualty and Senstvty analyss Intoducton In e pevous class, e smple meod was dscussed whee e smple tableau at each

More information

Chapter 12 Equilibrium and Elasticity

Chapter 12 Equilibrium and Elasticity Chapte 12 Equlbum and Elastcty In ths chapte we wll defne equlbum and fnd the condtons needed so that an object s at equlbum. We wll then apply these condtons to a vaety of pactcal engneeng poblems of

More information

TEST-03 TOPIC: MAGNETISM AND MAGNETIC EFFECT OF CURRENT Q.1 Find the magnetic field intensity due to a thin wire carrying current I in the Fig.

TEST-03 TOPIC: MAGNETISM AND MAGNETIC EFFECT OF CURRENT Q.1 Find the magnetic field intensity due to a thin wire carrying current I in the Fig. TEST-03 TPC: MAGNETSM AND MAGNETC EFFECT F CURRENT Q. Fnd the magnetc feld ntensty due to a thn we cayng cuent n the Fg. - R 0 ( + tan) R () 0 ( ) R 0 ( + ) R 0 ( + tan ) R Q. Electons emtted wth neglgble

More information

7/1/2008. Adhi Harmoko S. a c = v 2 /r. F c = m x a c = m x v 2 /r. Ontang Anting Moment of Inertia. Energy

7/1/2008. Adhi Harmoko S. a c = v 2 /r. F c = m x a c = m x v 2 /r. Ontang Anting Moment of Inertia. Energy 7//008 Adh Haoko S Ontang Antng Moent of neta Enegy Passenge undego unfo ccula oton (ccula path at constant speed) Theefoe, thee ust be a: centpetal acceleaton, a c. Theefoe thee ust be a centpetal foce,

More information

Chapter IV Vector and Tensor Analysis IV.2 Vector and Tensor Analysis September 23,

Chapter IV Vector and Tensor Analysis IV.2 Vector and Tensor Analysis September 23, hapte I ecto and Tenso Analyss I. ecto and Tenso Analyss eptembe, 07 47 hapte I ecto and Tenso Analyss I. ecto and Tenso Analyss eptembe, 07 48 I. ETOR AND TENOR ANALYI I... Tenso functon th Let A n n

More information

COMPUTATIONAL METHODS AND ALGORITHMS Vol. I - Methods of Potential Theory - V.I. Agoshkov, P.B. Dubovski

COMPUTATIONAL METHODS AND ALGORITHMS Vol. I - Methods of Potential Theory - V.I. Agoshkov, P.B. Dubovski METHODS OF POTENTIAL THEORY.I. Agoshkov and P.B. Dubovsk Insttute of Numecal Mathematcs, Russan Academy of Scences, Moscow, Russa Keywods: Potental, volume potental, Newton s potental, smple laye potental,

More information

Multipole Radiation. March 17, 2014

Multipole Radiation. March 17, 2014 Multpole Radaton Mach 7, 04 Zones We wll see that the poblem of hamonc adaton dvdes nto thee appoxmate egons, dependng on the elatve magntudes of the dstance of the obsevaton pont,, and the wavelength,

More information

Chapter 10 and elements of 11, 12 Rotation of Rigid Bodies

Chapter 10 and elements of 11, 12 Rotation of Rigid Bodies Chapte 10 and elements of 11, 1 Rotaton of Rgd Bodes What s a Rgd Body? Rotatonal Knematcs Angula Velocty ω and Acceleaton α Rotaton wth Constant Acceleaton Angula vs. Lnea Knematcs Enegy n Rotatonal Moton:

More information

Stellar Astrophysics. dt dr. GM r. The current model for treating convection in stellar interiors is called mixing length theory:

Stellar Astrophysics. dt dr. GM r. The current model for treating convection in stellar interiors is called mixing length theory: Stella Astophyscs Ovevew of last lectue: We connected the mean molecula weght to the mass factons X, Y and Z: 1 1 1 = X + Y + μ 1 4 n 1 (1 + 1) = X μ 1 1 A n Z (1 + ) + Y + 4 1+ z A Z We ntoduced the pessue

More information

Review. Physics 231 fall 2007

Review. Physics 231 fall 2007 Reew Physcs 3 all 7 Man ssues Knematcs - moton wth constant acceleaton D moton, D pojectle moton, otatonal moton Dynamcs (oces) Enegy (knetc and potental) (tanslatonal o otatonal moton when detals ae not

More information

MULTIPOLE FIELDS. Multipoles, 2 l poles. Monopoles, dipoles, quadrupoles, octupoles... Electric Dipole R 1 R 2. P(r,θ,φ) e r

MULTIPOLE FIELDS. Multipoles, 2 l poles. Monopoles, dipoles, quadrupoles, octupoles... Electric Dipole R 1 R 2. P(r,θ,φ) e r MULTIPOLE FIELDS Mutpoes poes. Monopoes dpoes quadupoes octupoes... 4 8 6 Eectc Dpoe +q O θ e R R P(θφ) -q e The potenta at the fed pont P(θφ) s ( θϕ )= q R R Bo E. Seneus : Now R = ( e) = + cosθ R = (

More information

Rotating Disk Electrode -a hydrodynamic method

Rotating Disk Electrode -a hydrodynamic method Rotatng Dsk Electode -a hdodnamc method Fe Lu Ma 3, 0 ente fo Electochemcal Engneeng Reseach Depatment of hemcal and Bomolecula Engneeng Rotatng Dsk Electode A otatng dsk electode RDE s a hdodnamc wokng

More information

Multistage Median Ranked Set Sampling for Estimating the Population Median

Multistage Median Ranked Set Sampling for Estimating the Population Median Jounal of Mathematcs and Statstcs 3 (: 58-64 007 ISSN 549-3644 007 Scence Publcatons Multstage Medan Ranked Set Samplng fo Estmatng the Populaton Medan Abdul Azz Jeman Ame Al-Oma and Kamaulzaman Ibahm

More information

is the instantaneous position vector of any grid point or fluid

is the instantaneous position vector of any grid point or fluid Absolute inetial, elative inetial and non-inetial coodinates fo a moving but non-defoming contol volume Tao Xing, Pablo Caica, and Fed Sten bjective Deive and coelate the govening equations of motion in

More information

4.4 Continuum Thermomechanics

4.4 Continuum Thermomechanics 4.4 Contnuum Themomechancs The classcal themodynamcs s now extended to the themomechancs of a contnuum. The state aables ae allowed to ay thoughout a mateal and pocesses ae allowed to be eesble and moe

More information

Physics 111 Lecture 11

Physics 111 Lecture 11 Physcs 111 ectue 11 Angula Momentum SJ 8th Ed.: Chap 11.1 11.4 Recap and Ovevew Coss Poduct Revsted Toque Revsted Angula Momentum Angula Fom o Newton s Second aw Angula Momentum o a System o Patcles Angula

More information

Superposition. Section 8.5.3

Superposition. Section 8.5.3 Supeposition Section 8.5.3 Simple Potential Flows Most complex potential (invicid, iotational) flows can be modeled using a combination of simple potential flows The simple flows used ae: Unifom flows

More information

The Greatest Deviation Correlation Coefficient and its Geometrical Interpretation

The Greatest Deviation Correlation Coefficient and its Geometrical Interpretation By Rudy A. Gdeon The Unvesty of Montana The Geatest Devaton Coelaton Coeffcent and ts Geometcal Intepetaton The Geatest Devaton Coelaton Coeffcent (GDCC) was ntoduced by Gdeon and Hollste (987). The GDCC

More information

The Forming Theory and the NC Machining for The Rotary Burs with the Spectral Edge Distribution

The Forming Theory and the NC Machining for The Rotary Burs with the Spectral Edge Distribution oden Appled Scence The Fomn Theoy and the NC achnn fo The Rotay us wth the Spectal Ede Dstbuton Huan Lu Depatment of echancal Enneen, Zhejan Unvesty of Scence and Technoloy Hanzhou, c.y. chan, 310023,

More information

Chapter 3 Waves in an Elastic Whole Space. Equation of Motion of a Solid

Chapter 3 Waves in an Elastic Whole Space. Equation of Motion of a Solid Chapte 3 Waves n an Elastc Whole Space Equaton of Moton of a Sold Hopefully, many of the topcs n ths chapte ae evew. Howeve, I fnd t useful to dscuss some of the key chaactestcs of elastc contnuous meda.

More information

Some Approximate Analytical Steady-State Solutions for Cylindrical Fin

Some Approximate Analytical Steady-State Solutions for Cylindrical Fin Some Appoxmate Analytcal Steady-State Solutons fo Cylndcal Fn ANITA BRUVERE ANDRIS BUIIS Insttute of Mathematcs and Compute Scence Unvesty of Latva Rana ulv 9 Rga LV459 LATVIA Astact: - In ths pape we

More information

Machine Learning 4771

Machine Learning 4771 Machne Leanng 4771 Instucto: Tony Jebaa Topc 6 Revew: Suppot Vecto Machnes Pmal & Dual Soluton Non-sepaable SVMs Kenels SVM Demo Revew: SVM Suppot vecto machnes ae (n the smplest case) lnea classfes that

More information

PHYS 1443 Section 003 Lecture #21

PHYS 1443 Section 003 Lecture #21 PHYS 443 Secton 003 Lectue # Wednesday, Nov. 7, 00 D. Jaehoon Yu. Gavtatonal eld. negy n Planetay and Satellte Motons 3. scape Speed 4. lud and Pessue 5. Vaaton of Pessue and Depth 6. Absolute and Relatve

More information

2 dependence in the electrostatic force means that it is also

2 dependence in the electrostatic force means that it is also lectc Potental negy an lectc Potental A scala el, nvolvng magntues only, s oten ease to wo wth when compae to a vecto el. Fo electc els not havng to begn wth vecto ssues woul be nce. To aange ths a scala

More information

Event Shape Update. T. Doyle S. Hanlon I. Skillicorn. A. Everett A. Savin. Event Shapes, A. Everett, U. Wisconsin ZEUS Meeting, October 15,

Event Shape Update. T. Doyle S. Hanlon I. Skillicorn. A. Everett A. Savin. Event Shapes, A. Everett, U. Wisconsin ZEUS Meeting, October 15, Event Shape Update A. Eveett A. Savn T. Doyle S. Hanlon I. Skllcon Event Shapes, A. Eveett, U. Wsconsn ZEUS Meetng, Octobe 15, 2003-1 Outlne Pogess of Event Shapes n DIS Smla to publshed pape: Powe Coecton

More information

Pattern Analyses (EOF Analysis) Introduction Definition of EOFs Estimation of EOFs Inference Rotated EOFs

Pattern Analyses (EOF Analysis) Introduction Definition of EOFs Estimation of EOFs Inference Rotated EOFs Patten Analyses (EOF Analyss) Intoducton Defnton of EOFs Estmaton of EOFs Infeence Rotated EOFs . Patten Analyses Intoducton: What s t about? Patten analyses ae technques used to dentfy pattens of the

More information

4 SingularValue Decomposition (SVD)

4 SingularValue Decomposition (SVD) /6/00 Z:\ jeh\self\boo Kannan\Jan-5-00\4 SVD 4 SngulaValue Decomposton (SVD) Chapte 4 Pat SVD he sngula value decomposton of a matx s the factozaton of nto the poduct of thee matces = UDV whee the columns

More information

7.2.1 Basic relations for Torsion of Circular Members

7.2.1 Basic relations for Torsion of Circular Members Section 7. 7. osion In this section, the geomety to be consideed is that of a long slende cicula ba and the load is one which twists the ba. Such poblems ae impotant in the analysis of twisting components,

More information

Chapter 3 Vector Integral Calculus

Chapter 3 Vector Integral Calculus hapte Vecto Integal alculus I. Lne ntegals. Defnton A lne ntegal of a vecto functon F ove a cuve s F In tems of components F F F F If,, an ae functon of t, we have F F F F t t t t E.. Fn the value of the

More information

working pages for Paul Richards class notes; do not copy or circulate without permission from PGR 2004/11/3 10:50

working pages for Paul Richards class notes; do not copy or circulate without permission from PGR 2004/11/3 10:50 woking pages fo Paul Richads class notes; do not copy o ciculate without pemission fom PGR 2004/11/3 10:50 CHAPTER7 Solid angle, 3D integals, Gauss s Theoem, and a Delta Function We define the solid angle,

More information

Tian Zheng Department of Statistics Columbia University

Tian Zheng Department of Statistics Columbia University Haplotype Tansmsson Assocaton (HTA) An "Impotance" Measue fo Selectng Genetc Makes Tan Zheng Depatment of Statstcs Columba Unvesty Ths s a jont wok wth Pofesso Shaw-Hwa Lo n the Depatment of Statstcs at

More information

EM-2. 1 Coulomb s law, electric field, potential field, superposition q. Electric field of a point charge (1)

EM-2. 1 Coulomb s law, electric field, potential field, superposition q. Electric field of a point charge (1) EM- Coulomb s law, electic field, potential field, supeposition q ' Electic field of a point chage ( ') E( ) kq, whee k / 4 () ' Foce of q on a test chage e at position is ee( ) Electic potential O kq

More information

Correspondence Analysis & Related Methods

Correspondence Analysis & Related Methods Coespondence Analyss & Related Methods Ineta contbutons n weghted PCA PCA s a method of data vsualzaton whch epesents the tue postons of ponts n a map whch comes closest to all the ponts, closest n sense

More information

Physics 2212 GH Quiz #2 Solutions Spring 2016

Physics 2212 GH Quiz #2 Solutions Spring 2016 Physics 2212 GH Quiz #2 Solutions Sping 216 I. 17 points) Thee point chages, each caying a chage Q = +6. nc, ae placed on an equilateal tiangle of side length = 3. mm. An additional point chage, caying

More information

3. A Review of Some Existing AW (BT, CT) Algorithms

3. A Review of Some Existing AW (BT, CT) Algorithms 3. A Revew of Some Exstng AW (BT, CT) Algothms In ths secton, some typcal ant-wndp algothms wll be descbed. As the soltons fo bmpless and condtoned tansfe ae smla to those fo ant-wndp, the pesented algothms

More information

I. CONSTRUCTION OF THE GREEN S FUNCTION

I. CONSTRUCTION OF THE GREEN S FUNCTION I. CONSTRUCTION OF THE GREEN S FUNCTION The Helmohltz equation in 4 dimensions is 4 + k G 4 x, x = δ 4 x x. In this equation, G is the Geen s function and 4 efes to the dimensionality. In the vey end,

More information

Electron density: Properties of electron density (non-negative): => exchange-correlation functionals should respect these conditions.

Electron density: Properties of electron density (non-negative): => exchange-correlation functionals should respect these conditions. lecton densty: ρ ( =... Ψ(,,..., ds d... d Pobablty of fndng one electon of abtay spn wthn a volume element d (othe electons may be anywhee. s Popetes of electon densty (non-negatve:.. 3. ρ ( d = ρ( =

More information

PHY121 Formula Sheet

PHY121 Formula Sheet HY Foula Sheet One Denson t t Equatons o oton l Δ t Δ d d d d a d + at t + at a + t + ½at² + a( - ) ojectle oton y cos θ sn θ gt ( cos θ) t y ( sn θ) t ½ gt y a a sn θ g sn θ g otatonal a a a + a t Ccula

More information

Applied Aerodynamics

Applied Aerodynamics Applied Aeodynamics Def: Mach Numbe (M), M a atio of flow velocity to the speed of sound Compessibility Effects Def: eynolds Numbe (e), e ρ c µ atio of inetial foces to viscous foces iscous Effects If

More information

Chapter 22: Electric Fields. 22-1: What is physics? General physics II (22102) Dr. Iyad SAADEDDIN. 22-2: The Electric Field (E)

Chapter 22: Electric Fields. 22-1: What is physics? General physics II (22102) Dr. Iyad SAADEDDIN. 22-2: The Electric Field (E) Geneal physics II (10) D. Iyad D. Iyad Chapte : lectic Fields In this chapte we will cove The lectic Field lectic Field Lines -: The lectic Field () lectic field exists in a egion of space suounding a

More information