COLLOQUIUM MATHEMATICUM

Size: px
Start display at page:

Download "COLLOQUIUM MATHEMATICUM"

Transcription

1 COLLOQUIUM MATHEMATICUM VOL NO 2 ON WEAK TYPE INEQUALITIES FOR RARE MAXIMAL FUNCTIONS BY K HARE (WATERLOO,ON) AND A STOKOLOS (ODESSA ANDKANSASCITY,MO) Abstract The properties of rare maximal functions(ie Hardy Littlewood maximal functions associated with sparse families of intervals) are investigated A simple criterionallowsonetodecideifagivenraremaximalfunctionsatisfiesaconverseweaktype inequality The summability properties of rare maximal functions are also considered Introduction For a locally integrable function f : R d R the classic Hardy Littlewood maximal function M f is defined as Mf(x) = sup f(y) dy I x I where the supremum is taken over all bounded cubic intervals I R d containing x It is well known that the Hardy Littlewood maximal function does notmapfromltol, butonly fromltoweak L Inparticular, thefollowing weak type inequality holds for every f L and arbitrary positive : () c d {x:mf(x)>} f {x : Mf(x) > } C d I {x:mf(x)>} A well known theorem of Hardy and Littlewood [2] states that if f is supported on the unit cube I d and f Llog + L(I d ), then Mf L(I d ) Later, Stein [3] proved that the converse of this theorem also holds: if f L and Mf L(I d ), then f Llog + L(I d ) The proofs of these results are based on the weak type inequalities () stated above, and these, in turn, are proved by usingthe Vitali and Whitney covering lemmas Of course, the covering lemmas depend on properties of the family of sets to which the argument is applied, thus it is natural to consider araremaximal functionwherethesupremumis taken over a restricted set of intervals, and ask whether these inequalities and Stein s phenomenon remain true 2000 Mathematics Subject Classification: Primary 42B25 ResearchofKHaresupportedinpartbyNSERC [73] f

2 74 K HARE AND A STOKOLOS We shall see that this need not be the case Indeed, in this note we characterize the rare maximal functions which satisfy the weak type inequality We also show that Stein s phenomenon need not hold for individual functions f, but that rare maximal functions never map an entire Orlicz class larger than Llog + L into L 2 Weak type inequalities For simplicity we restrict ourselves to the one-dimensional case which is entirely typical Let l = {l k } where l k, l k 0, and let I = {intervals I R : I l} We define the rare maximal function M l f by the formula M l f(x) = sup I I, I x I I f(y) dy Define E {x : M l f(x) > } For every > 0, E is an open set and is the union of the intervals I such that I I f > Applying a Vitali covering argument to these intervals yields the weak type inequality E 2 f E The situation with the converse inequality is quite different Theorem Let l = {2 m k } with m k R + The rare maximal function M l f satisfies the weak type inequality {x:m l f(x)>} f C {x : M l f(x) > } for some constant C and every f L if and only if sup(m k+ m k ) < k Proof First, we will prove that if sup k (m k+ m k ) = then there exists a summable function f such that sup Ì {M l f>} f {x : M l f(x) > } = To do this we use the assumption that sup k (m k+ m k ) = to inductively define a subsequence {m kn } as follows: Choose k such that m k + m k > Given m k,,m kn, select k n so that m kn > +m kn + and

3 WEAK TYPE INEQUALITIES 75 m kn + m kn > n Let {α j } = {m k,m k +,m k2,m k2 +,} and set f(x) = a k χ [0;2 α k] (x) k= where a k > 0 will be specified later Observe that {2 α j } is a lacunary sequence Since f is a decreasing function for positive x, which vanishes for negative x, M l f( x ) M l f( x ) and M l f(x) decreases for positive x In particular, for x [2 α n+ ;2 α n ] we have M l f(x) M l f(2 α n ) Also, notice that [2 m k j + ;2 m k j + ] 2 m n for all n > k j, and that f is constant on the interval [2 m k j + ;2 m k j] It follows that if x [2 m k j + ;2 m k j] then m 2 kj M l f(x) = M l f(2 m k j) = 2 m kj These observations imply that and hence 0 f(y) dy [0;2 m k j + ] {x > 0 : M l f(x) > M l f(2 m k j)} [0;2 m kj + ], {x : M l f(x) > M l f(2 m k j)} 2 2 m kj + One can show by direct calculation (using the lacunarity of {2 α j }) that 2 α n 0 f a s 2 α n + s 2 s<n s na α s Thus if n is chosen such that m kj + = α n then {M l f(x)>m l f(2 m k j )} f 2 m k j + Furthermore, if we let = M l f(2 m k j), then Hence Ì {M l f>} f {x : M l f(x) > } n a s +2 m k j a s 2 α s s= 0 s=n C f C s na s 2 α s s n a s2 α s ( s<n a s +2 m k j s n a s2 α s )2 m kj + C s n a s2 α s (2 m kj+ m kj ) s<n 2 m k jas + s n a s2 α s

4 76 K HARE AND A STOKOLOS Set now a s = 2 α s /s 2 Then a s 2 α s = s=n Since α n = m kj we have 2 m k j n s= n a s = 2 m k j Consequently, for all j N, and hence s= s=n s 2 n 2 α s s 2 2 m k j 2 αn n 2 = n 2 = o Ì {M l f>} f {x : M l f(x) > } C2m k j+ m kj C2 j, sup Ì {M l f>} f {x : M l f(x) > } = ( ) n Now assume sup(m k+ m k ) c 0 < Note that E is a disjoint union of intervals J, so E = J For every such J there is an index k and intervals J and J such that J J J, J J, J = 2 m k, J = 2 m k+ But J E, hence J f J Since m k+ m k c 0 for every k, E J 2 c 0 J 2 c 0 f J 2 c 0 f = 2 c 0 f = 2 c 0 f J J E and this is the desired inequality 3 Stein s phenomenon Standard arguments show that any rare maximal function satisfying the weak type inequality of Theorem has Stein s property (cf [, 6]) In contrast, our next result shows that suitable rare maximal functions do not Theorem 2 There exists a sequence l such that for some f L(I), f Llog + L(I) but M l f L(I)

5 WEAK TYPE INEQUALITIES 77 Proof We will demonstrate that if {m k } N is a strictly increasing sequence satisfying supm k /k = k N and l = {2 (mk+3) }, then Stein s phenomenon does not hold for the rare maximal function M l f To see this, set E k = [0;2 m k ] and G k = E k \E k+ = (2 m k+ ;2 m k ] Also, set G + k = (2 m k+ ;(2 m k+ +2 m k )/2], G k = ((2 m k+ +2 m k )/2;2 m k ] Notice G k 2 m k, while G + k = G k = 2 G k Choose an increasing subsequence m ni of m k such that m ni 2 i n i Set a k = 0 if k {n i } and a k = /m ni if k = n i Define The function f belongs to L(I) since Now f(x) = k 2 m k a k χ G + (x) k k 2 mk a k G + k k a k i 2 i < Next we show that f Llog + L(I) For this we first observe that a k loga k log(2 i n i ) 2 i < n i a k 0 i f log + f = 2 m k a k log(2 m k a k ) G + k a k 0 a k m k log2+ a k loga k 4 4 a k 0 a k 0 But clearly the first series diverges while the second is convergent So f Llog + L(I) Now we estimate M l f Let x G k and I be any interval of length I = 2 mn 3 containing x If I G + k+, then since the interval G k is separated from G + k+ by G k+, it follows that I G k+ 2 mk+ 2 As I = 2 mn 3 for some n and I > 2 mk+ 3 this means that I 2 mk 3 Thus I I f = I 2 m k+3 ( j>k,j {n i } I G + j f + j k,j {n i } I G + j j>k,j {n i }2 mj a j G + j + j k ) f 2 m j a j G + j I I

6 78 K HARE AND A STOKOLOS 2 m k+3 2 m k+3 j>k,j {n i } j>k,j {n i } a j + max j k,j {n i } 2m j a j a j +2 m β(k) a β(k) where β(k) = n i if k [n i ;n i+ ) (with the final inequality holding because {2 m n i a ni } is an increasing sequence) Otherwise I G + j = for all j > k Then we have f = f 2 m j a j max I I j k,j {n i } 2m j a j I j k,j {n i } I G + j In either case, if x G k then M l f(x) 2 m k+3 j k,j {n i } j>k,j {n i } a j +2 m β(k) a β(k) Thus M l f = ( M l f 2 m k+3 a j +2 m β(k) a β(k) ) G k k G k k j>k,j {n i } 8 j k j>k,j {n i }a + 2 m β(k) a β(k) 2 m k k By switching the order of summation one can see that a j n j a nj < Moreover, k j>k,j {n i } k 2 mβ(k) a β(k) 2 mk = i j {n i }ja j = j 2 m n iani k [n i ;n i+ ) 2 m k 2 i 2 m n iani 2 m n i < Hence M l f L(I) Let us note that the assumption sup k (m k+ m k ) = is weaker than sup k m k /k = It would be very interesting to investigate whether the condition sup k m k /k = is sharp in Theorem 2 Unfortunately, we are not able to answer this question If the answer were affirmative it would be a very unexpected fact Finally, we show that in the scale of Orlicz classes Φ(L) it is possible to prove a weak form of Stein s phenomenon Indeed, we have the following theorem

7 WEAK TYPE INEQUALITIES 79 Theorem 3 Let l k 0 and Φ : [0; ) [0; ) be some increasing function such that Φ(L) L(I) If M l f L(I) for all functions f Φ(L)(I), then Φ(L) Llog + L(I) Proof Assume that Φ(L) L(log + L) This is equivalent to the assumption that for ψ(t) Φ(t) tlogt there exist b k as k such that ψ(b k ) +0 as k We will show how to construct a function f Φ(L) with M l f L Without loss of generality we may assume that l k =2 m k with m k N and m k Let r j (t), j = 0,,, denote the standard Rademacher functions and define E k = {t [0;] : r mj (t) = ; j = 0,,,k} Notice that E k is a union of dyadic-rational intervals of length 2 m k, E k = 2 k and E k E k+ Let G k = E k \E k+ By construction the sets G k are pairwise disjoint Clearly each G k is a union of dyadic-rational intervals of length 2 m k+ and has measure 2 k Finally, we define the function f(x) = a k χ Gk (x) k= where a k are positive numbers which will be specified later It is obvious that Φ(f) = Φ(a k ) G k = k )a k log(a k )2 k k ψ(a k We will now estimate from below the rare maximal function Let x G k and let I be the unique dyadic-rational interval which contains x and has length I = 2 m k Notice I is contained in E k The crucial fact is that due to the dyadic structure of G j the value of the fraction G j I I = 2 j +k does not depend on the concrete choice of m k for j k Thus f(y)dy = j χ Gj (y)dy I I I j= Ia G j I a j = j 2 I j k j ka j +k

8 80 K HARE AND A STOKOLOS This means M l f(x) j ka j 2 j +k χ Gk (x), and hence M l f j 2 k j ka j +k G k k a j 2 j +k 2 k j k Changing the order of summation we have M l f j 2 j k ja j 2 = a j 2 j 2 j j These calculations show that if we can find a k such that a k 2 k k = and k ψ(a k )a k log(a k )2 k <, k then f Φ(L) but M l f L(I) Without loss of generality we may assume that ψ(b k ) 2 k and b k+ 2b k The second assumption ensures that there exists a strictly increasing sequence {n j } of positive integers such that 2 n j n j b j < 2nj+ n j + Set a k = b j if n j k < n j+ Then it is easy to check that a k 2 k k diverges Furthermore, k )a k log(a k )2 k ψ(a k ψ(b j )b j log(b j ) 2 k j n j k But and ψ(b j ) 2 j, thus ( b j logb j C 2n j 2 n j ) log C2 n j n j n j k ψ(a k )a k log(a k )2 k C j ψ(b j ) < Corollary Let l k 0 and α be a positive number If M l f L for all functions f L(log + L) α, then α

9 WEAK TYPE INEQUALITIES 8 The theorem above shows that there are no conditions in terms of the growth of theindividualfunctionf, exceptthetrivial condition f Llog + L, which guarantee the summability of the rare maximal operator However, it is easy to see that such a condition may be found in terms of the integral smoothness of f Namely, assume that the function f is defined on the unit torus and introduce the modulus of continuity of f in the standard way: Then M l f(x) sup k ω(f;h) = sup f( +t) f( ) t h l k l k l k f(x+t) f(x) dt+f(x) f(x+t) f(x) dt+f(x) l k k l k Thus M l f l k f( +t) f( ) dt l k + f k l k 2 k l k l k 0 l k f( +t) f( ) dt+ f 2 k ω(f;l k )+ f Recall that thecase l k = 2 k correspondsto the Hardy Littlewood maximal function Mf So the condition (2) ω(f;2 k ) < k is sufficient for the summability of Mf for the individual function f Thus (2) implies that f Llog + L and this condition is sharpin thesense that for an arbitrary modulus of continuity ω(δ) with ω(2 k ) =, there exists a function f such that ω(f;δ) ω(δ), while f Llog + L (for details see [4]) Thus there is no improvement of the class of summability for the Hardy Littlewood maximal operator of smooth functions However, if l k is a more rare sequence, such that (2) is not true, but (3) ω(f;l k ) <, k then (3) is a sufficient condition for the summability of the rare maximal function for the individual function, which is weaker than the inclusion of f in Llog + L

10 82 K HARE AND A STOKOLOS REFERENCES [] MdeGuzmán,DifferentiationofIntegralsinR n,lecturenotesinmath48, Springer, 975 [2] GHHardyandJELittlewood,Amaximaltheoremwithfunction-theoretic applications, Acta Math 54(930), 8 6 [3] EMStein,NoteontheclassLlogL,StudiaMath32(969), [4] PLUl yanov,embeddingofsomefunctionclassesh ω p,izvakadnauksssr Ser Mat 32(968), (in Russian) Department of Pure Mathematics University of Waterloo Waterloo, Ontario N2L 3G Canada kehare@mathuwaterlooca Department of Mathematics Odessa State University Petra Velikogo, Odessa, Ukraine Current address: Department of Mathematics UMKC Kansas City, MO , USA stokolos@excitecom Received 5 May 999 (382)

On pointwise estimates for maximal and singular integral operators by A.K. LERNER (Odessa)

On pointwise estimates for maximal and singular integral operators by A.K. LERNER (Odessa) On pointwise estimates for maximal and singular integral operators by A.K. LERNER (Odessa) Abstract. We prove two pointwise estimates relating some classical maximal and singular integral operators. In

More information

SHARP L p WEIGHTED SOBOLEV INEQUALITIES

SHARP L p WEIGHTED SOBOLEV INEQUALITIES Annales de l Institut de Fourier (3) 45 (995), 6. SHARP L p WEIGHTED SOBOLEV INEUALITIES Carlos Pérez Departmento de Matemáticas Universidad Autónoma de Madrid 28049 Madrid, Spain e mail: cperezmo@ccuam3.sdi.uam.es

More information

Herz (cf. [H], and also [BS]) proved that the reverse inequality is also true, that is,

Herz (cf. [H], and also [BS]) proved that the reverse inequality is also true, that is, REARRANGEMENT OF HARDY-LITTLEWOOD MAXIMAL FUNCTIONS IN LORENTZ SPACES. Jesús Bastero*, Mario Milman and Francisco J. Ruiz** Abstract. For the classical Hardy-Littlewood maximal function M f, a well known

More information

THE HARDY LITTLEWOOD MAXIMAL FUNCTION OF A SOBOLEV FUNCTION. Juha Kinnunen. 1 f(y) dy, B(x, r) B(x,r)

THE HARDY LITTLEWOOD MAXIMAL FUNCTION OF A SOBOLEV FUNCTION. Juha Kinnunen. 1 f(y) dy, B(x, r) B(x,r) Appeared in Israel J. Math. 00 (997), 7 24 THE HARDY LITTLEWOOD MAXIMAL FUNCTION OF A SOBOLEV FUNCTION Juha Kinnunen Abstract. We prove that the Hardy Littlewood maximal operator is bounded in the Sobolev

More information

Both these computations follow immediately (and trivially) from the definitions. Finally, observe that if f L (R n ) then we have that.

Both these computations follow immediately (and trivially) from the definitions. Finally, observe that if f L (R n ) then we have that. Lecture : One Parameter Maximal Functions and Covering Lemmas In this first lecture we start studying one of the basic and fundamental operators in harmonic analysis, the Hardy-Littlewood maximal function.

More information

A PROBABILISTIC PROOF OF THE VITALI COVERING LEMMA

A PROBABILISTIC PROOF OF THE VITALI COVERING LEMMA A PROBABILISTIC PROOF OF THE VITALI COVERING LEMMA E. GWALTNEY, P. HAGELSTEIN, AND D. HERDEN Abstract. The classical Vitali Covering Lemma on R states that there exists a constant c > 0 such that, given

More information

Borderline variants of the Muckenhoupt-Wheeden inequality

Borderline variants of the Muckenhoupt-Wheeden inequality Borderline variants of the Muckenhoupt-Wheeden inequality Carlos Domingo-Salazar Universitat de Barcelona joint work with M Lacey and G Rey 3CJI Murcia, Spain September 10, 2015 The Hardy-Littlewood maximal

More information

Remarks on localized sharp functions on certain sets in R n

Remarks on localized sharp functions on certain sets in R n Monatsh Math (28) 85:397 43 https://doi.org/.7/s65-7-9-5 Remarks on localized sharp functions on certain sets in R n Jacek Dziubański Agnieszka Hejna Received: 7 October 26 / Accepted: August 27 / Published

More information

Lebesgue s Differentiation Theorem via Maximal Functions

Lebesgue s Differentiation Theorem via Maximal Functions Lebesgue s Differentiation Theorem via Maximal Functions Parth Soneji LMU München Hütteseminar, December 2013 Parth Soneji Lebesgue s Differentiation Theorem via Maximal Functions 1/12 Philosophy behind

More information

JUHA KINNUNEN. Harmonic Analysis

JUHA KINNUNEN. Harmonic Analysis JUHA KINNUNEN Harmonic Analysis Department of Mathematics and Systems Analysis, Aalto University 27 Contents Calderón-Zygmund decomposition. Dyadic subcubes of a cube.........................2 Dyadic cubes

More information

Dyadic structure theorems for multiparameter function spaces

Dyadic structure theorems for multiparameter function spaces Rev. Mat. Iberoam., 32 c European Mathematical Society Dyadic structure theorems for multiparameter function spaces Ji Li, Jill Pipher and Lesley A. Ward Abstract. We prove that the multiparameter (product)

More information

Weighted norm inequalities for singular integral operators

Weighted norm inequalities for singular integral operators Weighted norm inequalities for singular integral operators C. Pérez Journal of the London mathematical society 49 (994), 296 308. Departmento de Matemáticas Universidad Autónoma de Madrid 28049 Madrid,

More information

ON DIFFERENTIAL BASES FORMED OF INTERVALS

ON DIFFERENTIAL BASES FORMED OF INTERVALS GEORGAN MATHEMATCAL JOURNAL: Vol. 4, No., 997, 8-00 ON DFFERENTAL ASES FORMED OF NTERVALS G. ONAN AND T. ZEREKDZE n memory of young mathematician A. ereashvili Abstract. Translation invariant subbases

More information

Geometric intuition: from Hölder spaces to the Calderón-Zygmund estimate

Geometric intuition: from Hölder spaces to the Calderón-Zygmund estimate Geometric intuition: from Hölder spaces to the Calderón-Zygmund estimate A survey of Lihe Wang s paper Michael Snarski December 5, 22 Contents Hölder spaces. Control on functions......................................2

More information

Uniform convergence of N-dimensional Walsh Fourier series

Uniform convergence of N-dimensional Walsh Fourier series STUDIA MATHEMATICA 68 2005 Uniform convergence of N-dimensional Walsh Fourier series by U. Goginava Tbilisi Abstract. We establish conditions on the partial moduli of continuity which guarantee uniform

More information

ON A MAXIMAL OPERATOR IN REARRANGEMENT INVARIANT BANACH FUNCTION SPACES ON METRIC SPACES

ON A MAXIMAL OPERATOR IN REARRANGEMENT INVARIANT BANACH FUNCTION SPACES ON METRIC SPACES Vasile Alecsandri University of Bacău Faculty of Sciences Scientific Studies and Research Series Mathematics and Informatics Vol. 27207), No., 49-60 ON A MAXIMAL OPRATOR IN RARRANGMNT INVARIANT BANACH

More information

CHAPTER 6. Differentiation

CHAPTER 6. Differentiation CHPTER 6 Differentiation The generalization from elementary calculus of differentiation in measure theory is less obvious than that of integration, and the methods of treating it are somewhat involved.

More information

A SHORT PROOF OF THE COIFMAN-MEYER MULTILINEAR THEOREM

A SHORT PROOF OF THE COIFMAN-MEYER MULTILINEAR THEOREM A SHORT PROOF OF THE COIFMAN-MEYER MULTILINEAR THEOREM CAMIL MUSCALU, JILL PIPHER, TERENCE TAO, AND CHRISTOPH THIELE Abstract. We give a short proof of the well known Coifman-Meyer theorem on multilinear

More information

Lebesgue-Radon-Nikodym Theorem

Lebesgue-Radon-Nikodym Theorem Lebesgue-Radon-Nikodym Theorem Matt Rosenzweig 1 Lebesgue-Radon-Nikodym Theorem In what follows, (, A) will denote a measurable space. We begin with a review of signed measures. 1.1 Signed Measures Definition

More information

HARMONIC ANALYSIS. Date:

HARMONIC ANALYSIS. Date: HARMONIC ANALYSIS Contents. Introduction 2. Hardy-Littlewood maximal function 3. Approximation by convolution 4. Muckenhaupt weights 4.. Calderón-Zygmund decomposition 5. Fourier transform 6. BMO (bounded

More information

Indeed, if we want m to be compatible with taking limits, it should be countably additive, meaning that ( )

Indeed, if we want m to be compatible with taking limits, it should be countably additive, meaning that ( ) Lebesgue Measure The idea of the Lebesgue integral is to first define a measure on subsets of R. That is, we wish to assign a number m(s to each subset S of R, representing the total length that S takes

More information

1/12/05: sec 3.1 and my article: How good is the Lebesgue measure?, Math. Intelligencer 11(2) (1989),

1/12/05: sec 3.1 and my article: How good is the Lebesgue measure?, Math. Intelligencer 11(2) (1989), Real Analysis 2, Math 651, Spring 2005 April 26, 2005 1 Real Analysis 2, Math 651, Spring 2005 Krzysztof Chris Ciesielski 1/12/05: sec 3.1 and my article: How good is the Lebesgue measure?, Math. Intelligencer

More information

MATH 202B - Problem Set 5

MATH 202B - Problem Set 5 MATH 202B - Problem Set 5 Walid Krichene (23265217) March 6, 2013 (5.1) Show that there exists a continuous function F : [0, 1] R which is monotonic on no interval of positive length. proof We know there

More information

ON HÖRMANDER S CONDITION FOR SINGULAR INTEGRALS

ON HÖRMANDER S CONDITION FOR SINGULAR INTEGRALS EVISTA DE LA UNIÓN MATEMÁTICA AGENTINA Volumen 45, Número 1, 2004, Páginas 7 14 ON HÖMANDE S CONDITION FO SINGULA INTEGALS M. LOENTE, M.S. IVEOS AND A. DE LA TOE 1. Introduction In this note we present

More information

Notes on uniform convergence

Notes on uniform convergence Notes on uniform convergence Erik Wahlén erik.wahlen@math.lu.se January 17, 2012 1 Numerical sequences We begin by recalling some properties of numerical sequences. By a numerical sequence we simply mean

More information

arxiv: v1 [math.ca] 7 Aug 2015

arxiv: v1 [math.ca] 7 Aug 2015 THE WHITNEY EXTENSION THEOREM IN HIGH DIMENSIONS ALAN CHANG arxiv:1508.01779v1 [math.ca] 7 Aug 2015 Abstract. We prove a variant of the standard Whitney extension theorem for C m (R n ), in which the norm

More information

2.2 Some Consequences of the Completeness Axiom

2.2 Some Consequences of the Completeness Axiom 60 CHAPTER 2. IMPORTANT PROPERTIES OF R 2.2 Some Consequences of the Completeness Axiom In this section, we use the fact that R is complete to establish some important results. First, we will prove that

More information

Classical Fourier Analysis

Classical Fourier Analysis Loukas Grafakos Classical Fourier Analysis Second Edition 4y Springer 1 IP Spaces and Interpolation 1 1.1 V and Weak IP 1 1.1.1 The Distribution Function 2 1.1.2 Convergence in Measure 5 1.1.3 A First

More information

HIGHER INTEGRABILITY WITH WEIGHTS

HIGHER INTEGRABILITY WITH WEIGHTS Annales Academiæ Scientiarum Fennicæ Series A. I. Mathematica Volumen 19, 1994, 355 366 HIGHER INTEGRABILITY WITH WEIGHTS Juha Kinnunen University of Jyväskylä, Department of Mathematics P.O. Box 35, SF-4351

More information

SHARP INEQUALITIES FOR MAXIMAL FUNCTIONS ASSOCIATED WITH GENERAL MEASURES

SHARP INEQUALITIES FOR MAXIMAL FUNCTIONS ASSOCIATED WITH GENERAL MEASURES SHARP INEQUALITIES FOR MAXIMAL FUNCTIONS ASSOCIATED WITH GENERAL MEASURES L. Grafakos Department of Mathematics, University of Missouri, Columbia, MO 65203, U.S.A. (e-mail: loukas@math.missouri.edu) and

More information

(b) If f L p (R), with 1 < p, then Mf L p (R) and. Mf L p (R) C(p) f L p (R) with C(p) depending only on p.

(b) If f L p (R), with 1 < p, then Mf L p (R) and. Mf L p (R) C(p) f L p (R) with C(p) depending only on p. Lecture 3: Carleson Measures via Harmonic Analysis Much of the argument from this section is taken from the book by Garnett, []. The interested reader can also see variants of this argument in the book

More information

Maximal Functions in Analysis

Maximal Functions in Analysis Maximal Functions in Analysis Robert Fefferman June, 5 The University of Chicago REU Scribe: Philip Ascher Abstract This will be a self-contained introduction to the theory of maximal functions, which

More information

8 Singular Integral Operators and L p -Regularity Theory

8 Singular Integral Operators and L p -Regularity Theory 8 Singular Integral Operators and L p -Regularity Theory 8. Motivation See hand-written notes! 8.2 Mikhlin Multiplier Theorem Recall that the Fourier transformation F and the inverse Fourier transformation

More information

MAT 570 REAL ANALYSIS LECTURE NOTES. Contents. 1. Sets Functions Countability Axiom of choice Equivalence relations 9

MAT 570 REAL ANALYSIS LECTURE NOTES. Contents. 1. Sets Functions Countability Axiom of choice Equivalence relations 9 MAT 570 REAL ANALYSIS LECTURE NOTES PROFESSOR: JOHN QUIGG SEMESTER: FALL 204 Contents. Sets 2 2. Functions 5 3. Countability 7 4. Axiom of choice 8 5. Equivalence relations 9 6. Real numbers 9 7. Extended

More information

A NUMBER-THEORETIC CONJECTURE AND ITS IMPLICATION FOR SET THEORY. 1. Motivation

A NUMBER-THEORETIC CONJECTURE AND ITS IMPLICATION FOR SET THEORY. 1. Motivation Acta Math. Univ. Comenianae Vol. LXXIV, 2(2005), pp. 243 254 243 A NUMBER-THEORETIC CONJECTURE AND ITS IMPLICATION FOR SET THEORY L. HALBEISEN Abstract. For any set S let seq (S) denote the cardinality

More information

Walker Ray Econ 204 Problem Set 3 Suggested Solutions August 6, 2015

Walker Ray Econ 204 Problem Set 3 Suggested Solutions August 6, 2015 Problem 1. Take any mapping f from a metric space X into a metric space Y. Prove that f is continuous if and only if f(a) f(a). (Hint: use the closed set characterization of continuity). I make use of

More information

Jordan Journal of Mathematics and Statistics (JJMS) 5(4), 2012, pp

Jordan Journal of Mathematics and Statistics (JJMS) 5(4), 2012, pp Jordan Journal of Mathematics and Statistics (JJMS) 5(4), 2012, pp223-239 BOUNDEDNESS OF MARCINKIEWICZ INTEGRALS ON HERZ SPACES WITH VARIABLE EXPONENT ZONGGUANG LIU (1) AND HONGBIN WANG (2) Abstract In

More information

Problem Set 2: Solutions Math 201A: Fall 2016

Problem Set 2: Solutions Math 201A: Fall 2016 Problem Set 2: s Math 201A: Fall 2016 Problem 1. (a) Prove that a closed subset of a complete metric space is complete. (b) Prove that a closed subset of a compact metric space is compact. (c) Prove that

More information

SOME MEASURABILITY AND CONTINUITY PROPERTIES OF ARBITRARY REAL FUNCTIONS

SOME MEASURABILITY AND CONTINUITY PROPERTIES OF ARBITRARY REAL FUNCTIONS LE MATEMATICHE Vol. LVII (2002) Fasc. I, pp. 6382 SOME MEASURABILITY AND CONTINUITY PROPERTIES OF ARBITRARY REAL FUNCTIONS VITTORINO PATA - ALFONSO VILLANI Given an arbitrary real function f, the set D

More information

REARRANGEMENT OF HARDY-LITTLEWOOD MAXIMAL FUNCTIONS IN LORENTZ SPACES

REARRANGEMENT OF HARDY-LITTLEWOOD MAXIMAL FUNCTIONS IN LORENTZ SPACES PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 128, Number 1, Pages 65 74 S 0002-9939(99)05128-X Article electronically published on June 30, 1999 REARRANGEMENT OF HARDY-LITTLEWOOD MAXIMAL FUNCTIONS

More information

Emma D Aniello and Laurent Moonens

Emma D Aniello and Laurent Moonens Annales Academiæ Scientiarum Fennicæ Mathematica Volumen 42, 207, 9 33 AVERAGING ON n-dimensional RECTANGLES Emma D Aniello and Laurent Moonens Seconda Università degli Studi di Napoli, Scuola Politecnica

More information

MAXIMAL AVERAGE ALONG VARIABLE LINES. 1. Introduction

MAXIMAL AVERAGE ALONG VARIABLE LINES. 1. Introduction MAXIMAL AVERAGE ALONG VARIABLE LINES JOONIL KIM Abstract. We prove the L p boundedness of the maximal operator associated with a family of lines l x = {(x, x 2) t(, a(x )) : t [0, )} when a is a positive

More information

Jordan Journal of Mathematics and Statistics (JJMS) 8(3), 2015, pp THE NORM OF CERTAIN MATRIX OPERATORS ON NEW DIFFERENCE SEQUENCE SPACES

Jordan Journal of Mathematics and Statistics (JJMS) 8(3), 2015, pp THE NORM OF CERTAIN MATRIX OPERATORS ON NEW DIFFERENCE SEQUENCE SPACES Jordan Journal of Mathematics and Statistics (JJMS) 8(3), 2015, pp 223-237 THE NORM OF CERTAIN MATRIX OPERATORS ON NEW DIFFERENCE SEQUENCE SPACES H. ROOPAEI (1) AND D. FOROUTANNIA (2) Abstract. The purpose

More information

M ath. Res. Lett. 16 (2009), no. 1, c International Press 2009

M ath. Res. Lett. 16 (2009), no. 1, c International Press 2009 M ath. Res. Lett. 16 (2009), no. 1, 149 156 c International Press 2009 A 1 BOUNDS FOR CALDERÓN-ZYGMUND OPERATORS RELATED TO A PROBLEM OF MUCKENHOUPT AND WHEEDEN Andrei K. Lerner, Sheldy Ombrosi, and Carlos

More information

NECESSARY CONDITIONS FOR WEIGHTED POINTWISE HARDY INEQUALITIES

NECESSARY CONDITIONS FOR WEIGHTED POINTWISE HARDY INEQUALITIES NECESSARY CONDITIONS FOR WEIGHTED POINTWISE HARDY INEQUALITIES JUHA LEHRBÄCK Abstract. We establish necessary conditions for domains Ω R n which admit the pointwise (p, β)-hardy inequality u(x) Cd Ω(x)

More information

A note on W 1,p estimates for quasilinear parabolic equations

A note on W 1,p estimates for quasilinear parabolic equations 200-Luminy conference on Quasilinear Elliptic and Parabolic Equations and Systems, Electronic Journal of Differential Equations, Conference 08, 2002, pp 2 3. http://ejde.math.swt.edu or http://ejde.math.unt.edu

More information

MAT1000 ASSIGNMENT 1. a k 3 k. x =

MAT1000 ASSIGNMENT 1. a k 3 k. x = MAT1000 ASSIGNMENT 1 VITALY KUZNETSOV Question 1 (Exercise 2 on page 37). Tne Cantor set C can also be described in terms of ternary expansions. (a) Every number in [0, 1] has a ternary expansion x = a

More information

WEIGHTED REVERSE WEAK TYPE INEQUALITY FOR GENERAL MAXIMAL FUNCTIONS

WEIGHTED REVERSE WEAK TYPE INEQUALITY FOR GENERAL MAXIMAL FUNCTIONS GEORGIAN MATHEMATICAL JOURNAL: Vol. 2, No. 3, 995, 277-290 WEIGHTED REVERSE WEAK TYPE INEQUALITY FOR GENERAL MAXIMAL FUNCTIONS J. GENEBASHVILI Abstract. Necessary and sufficient conditions are found to

More information

NOWHERE LOCALLY UNIFORMLY CONTINUOUS FUNCTIONS

NOWHERE LOCALLY UNIFORMLY CONTINUOUS FUNCTIONS NOWHERE LOCALLY UNIFORMLY CONTINUOUS FUNCTIONS K. Jarosz Southern Illinois University at Edwardsville, IL 606, and Bowling Green State University, OH 43403 kjarosz@siue.edu September, 995 Abstract. Suppose

More information

W. Lenski and B. Szal ON POINTWISE APPROXIMATION OF FUNCTIONS BY SOME MATRIX MEANS OF CONJUGATE FOURIER SERIES

W. Lenski and B. Szal ON POINTWISE APPROXIMATION OF FUNCTIONS BY SOME MATRIX MEANS OF CONJUGATE FOURIER SERIES F A S C I C U L I M A T H E M A T I C I Nr 55 5 DOI:.55/fascmath-5-7 W. Lenski and B. Szal ON POINTWISE APPROXIMATION OF FUNCTIONS BY SOME MATRIX MEANS OF CONJUGATE FOURIER SERIES Abstract. The results

More information

Problem set 1, Real Analysis I, Spring, 2015.

Problem set 1, Real Analysis I, Spring, 2015. Problem set 1, Real Analysis I, Spring, 015. (1) Let f n : D R be a sequence of functions with domain D R n. Recall that f n f uniformly if and only if for all ɛ > 0, there is an N = N(ɛ) so that if n

More information

arxiv: v1 [math.ca] 29 Dec 2018

arxiv: v1 [math.ca] 29 Dec 2018 A QUANTITATIVE WEIGHTED WEAK-TYPE ESTIMATE FOR CALDERÓN-ZYGMUND OPERATORS CODY B. STOCKDALE arxiv:82.392v [math.ca] 29 Dec 208 Abstract. The purpose of this article is to provide an alternative proof of

More information

SYMMETRIC INTEGRALS DO NOT HAVE THE MARCINKIEWICZ PROPERTY

SYMMETRIC INTEGRALS DO NOT HAVE THE MARCINKIEWICZ PROPERTY RESEARCH Real Analysis Exchange Vol. 21(2), 1995 96, pp. 510 520 V. A. Skvortsov, Department of Mathematics, Moscow State University, Moscow 119899, Russia B. S. Thomson, Department of Mathematics, Simon

More information

Weighted norm inequalities for maximally modulated singular integral operators

Weighted norm inequalities for maximally modulated singular integral operators To appear in Mathematische Annalen Weighted norm inequalities for maximally modulated singular integral operators Loukas Grafakos José María Martell Fernando Soria September 4, 2004 Abstract. We present

More information

On distribution functions of ξ(3/2) n mod 1

On distribution functions of ξ(3/2) n mod 1 ACTA ARITHMETICA LXXXI. (997) On distribution functions of ξ(3/2) n mod by Oto Strauch (Bratislava). Preliminary remarks. The question about distribution of (3/2) n mod is most difficult. We present a

More information

Slow P -point Ultrafilters

Slow P -point Ultrafilters Slow P -point Ultrafilters Renling Jin College of Charleston jinr@cofc.edu Abstract We answer a question of Blass, Di Nasso, and Forti [2, 7] by proving, assuming Continuum Hypothesis or Martin s Axiom,

More information

Jordan Journal of Mathematics and Statistics (JJMS) 9(1), 2016, pp BOUNDEDNESS OF COMMUTATORS ON HERZ-TYPE HARDY SPACES WITH VARIABLE EXPONENT

Jordan Journal of Mathematics and Statistics (JJMS) 9(1), 2016, pp BOUNDEDNESS OF COMMUTATORS ON HERZ-TYPE HARDY SPACES WITH VARIABLE EXPONENT Jordan Journal of Mathematics and Statistics (JJMS 9(1, 2016, pp 17-30 BOUNDEDNESS OF COMMUTATORS ON HERZ-TYPE HARDY SPACES WITH VARIABLE EXPONENT WANG HONGBIN Abstract. In this paper, we obtain the boundedness

More information

arxiv: v1 [math.ca] 3 Nov 2018

arxiv: v1 [math.ca] 3 Nov 2018 SPARSE DOMINATION AND THE STRONG MAXIMAL FUNCTION ALEX BARRON, JOSÉ M. CONDE-ALONSO, YUMENG OU, AND GUILLERMO REY arxiv:1811.01243v1 [math.ca] 3 Nov 2018 Abstract. We study the problem of dominating the

More information

A NOTE ON RETRACTS AND LATTICES (AFTER D. J. SALTMAN)

A NOTE ON RETRACTS AND LATTICES (AFTER D. J. SALTMAN) A NOTE ON RETRACTS AND LATTICES (AFTER D. J. SALTMAN) Z. REICHSTEIN Abstract. This is an expository note based on the work of D. J. Saltman. We discuss the notions of retract rationality and retract equivalence

More information

Real Analysis Math 131AH Rudin, Chapter #1. Dominique Abdi

Real Analysis Math 131AH Rudin, Chapter #1. Dominique Abdi Real Analysis Math 3AH Rudin, Chapter # Dominique Abdi.. If r is rational (r 0) and x is irrational, prove that r + x and rx are irrational. Solution. Assume the contrary, that r+x and rx are rational.

More information

ESTIMATES FOR MAXIMAL SINGULAR INTEGRALS

ESTIMATES FOR MAXIMAL SINGULAR INTEGRALS ESTIMATES FOR MAXIMAL SINGULAR INTEGRALS LOUKAS GRAFAKOS Abstract. It is shown that maximal truncations of nonconvolution L -bounded singular integral operators with kernels satisfying Hörmander s condition

More information

A NEW PROOF OF THE ATOMIC DECOMPOSITION OF HARDY SPACES

A NEW PROOF OF THE ATOMIC DECOMPOSITION OF HARDY SPACES A NEW PROOF OF THE ATOMIC DECOMPOSITION OF HARDY SPACES S. DEKEL, G. KERKYACHARIAN, G. KYRIAZIS, AND P. PETRUSHEV Abstract. A new proof is given of the atomic decomposition of Hardy spaces H p, 0 < p 1,

More information

Topological properties

Topological properties CHAPTER 4 Topological properties 1. Connectedness Definitions and examples Basic properties Connected components Connected versus path connected, again 2. Compactness Definition and first examples Topological

More information

arxiv:math/ v2 [math.nt] 3 Dec 2003

arxiv:math/ v2 [math.nt] 3 Dec 2003 arxiv:math/0302091v2 [math.nt] 3 Dec 2003 Every function is the representation function of an additive basis for the integers Melvyn B. Nathanson Department of Mathematics Lehman College (CUNY) Bronx,

More information

Geometric-arithmetic averaging of dyadic weights

Geometric-arithmetic averaging of dyadic weights Geometric-arithmetic averaging of dyadic weights Jill Pipher Department of Mathematics Brown University Providence, RI 2912 jpipher@math.brown.edu Lesley A. Ward School of Mathematics and Statistics University

More information

ON A DISTANCE DEFINED BY THE LENGTH SPECTRUM ON TEICHMÜLLER SPACE

ON A DISTANCE DEFINED BY THE LENGTH SPECTRUM ON TEICHMÜLLER SPACE Annales Academiæ Scientiarum Fennicæ Mathematica Volumen 28, 2003, 315 326 ON A DISTANCE DEFINED BY THE LENGTH SPECTRUM ON TEICHMÜLLER SPACE Hiroshige Shiga Tokyo Institute of Technology, Department of

More information

ON THE ENDPOINT REGULARITY OF DISCRETE MAXIMAL OPERATORS

ON THE ENDPOINT REGULARITY OF DISCRETE MAXIMAL OPERATORS ON THE ENDPOINT REGULARITY OF DISCRETE MAXIMAL OPERATORS EMANUEL CARNEIRO AND KEVIN HUGHES Abstract. Given a discrete function f : Z d R we consider the maximal operator X Mf n = sup f n m, r 0 Nr m Ω

More information

STRAIGHT LINE EMBEDDINGS OF CUBIC PLANAR GRAPHS WITH INTEGER EDGE LENGTHS

STRAIGHT LINE EMBEDDINGS OF CUBIC PLANAR GRAPHS WITH INTEGER EDGE LENGTHS STRAIGHT LINE EMBEDDINGS OF CUBIC PLANAR GRAPHS WITH INTEGER EDGE LENGTHS JIM GEELEN, ANJIE GUO, AND DAVID MCKINNON Abstract. We prove that every simple cubic planar graph admits a planar embedding such

More information

THE JOHN-NIRENBERG INEQUALITY WITH SHARP CONSTANTS

THE JOHN-NIRENBERG INEQUALITY WITH SHARP CONSTANTS THE JOHN-NIRENBERG INEQUALITY WITH SHARP CONSTANTS ANDREI K. LERNER Abstract. We consider the one-dimensional John-Nirenberg inequality: {x I 0 : fx f I0 > α} C 1 I 0 exp C 2 α. A. Korenovskii found that

More information

On sets of integers whose shifted products are powers

On sets of integers whose shifted products are powers On sets of integers whose shifted products are powers C.L. Stewart 1 Department of Pure Mathematics, University of Waterloo, Waterloo, Ontario, Canada, NL 3G1 Abstract Let N be a positive integer and let

More information

On Convergence of Sequences of Measurable Functions

On Convergence of Sequences of Measurable Functions On Convergence of Sequences of Measurable Functions Christos Papachristodoulos, Nikolaos Papanastassiou Abstract In order to study the three basic kinds of convergence (in measure, almost every where,

More information

Regularity and compactness for the DiPerna Lions flow

Regularity and compactness for the DiPerna Lions flow Regularity and compactness for the DiPerna Lions flow Gianluca Crippa 1 and Camillo De Lellis 2 1 Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy. g.crippa@sns.it 2 Institut für Mathematik,

More information

Math 118B Solutions. Charles Martin. March 6, d i (x i, y i ) + d i (y i, z i ) = d(x, y) + d(y, z). i=1

Math 118B Solutions. Charles Martin. March 6, d i (x i, y i ) + d i (y i, z i ) = d(x, y) + d(y, z). i=1 Math 8B Solutions Charles Martin March 6, Homework Problems. Let (X i, d i ), i n, be finitely many metric spaces. Construct a metric on the product space X = X X n. Proof. Denote points in X as x = (x,

More information

Jónsson posets and unary Jónsson algebras

Jónsson posets and unary Jónsson algebras Jónsson posets and unary Jónsson algebras Keith A. Kearnes and Greg Oman Abstract. We show that if P is an infinite poset whose proper order ideals have cardinality strictly less than P, and κ is a cardinal

More information

Euler Equations: local existence

Euler Equations: local existence Euler Equations: local existence Mat 529, Lesson 2. 1 Active scalars formulation We start with a lemma. Lemma 1. Assume that w is a magnetization variable, i.e. t w + u w + ( u) w = 0. If u = Pw then u

More information

Rings With Topologies Induced by Spaces of Functions

Rings With Topologies Induced by Spaces of Functions Rings With Topologies Induced by Spaces of Functions Răzvan Gelca April 7, 2006 Abstract: By considering topologies on Noetherian rings that carry the properties of those induced by spaces of functions,

More information

REAL AND COMPLEX ANALYSIS

REAL AND COMPLEX ANALYSIS REAL AND COMPLE ANALYSIS Third Edition Walter Rudin Professor of Mathematics University of Wisconsin, Madison Version 1.1 No rights reserved. Any part of this work can be reproduced or transmitted in any

More information

ANALYSIS QUALIFYING EXAM FALL 2017: SOLUTIONS. 1 cos(nx) lim. n 2 x 2. g n (x) = 1 cos(nx) n 2 x 2. x 2.

ANALYSIS QUALIFYING EXAM FALL 2017: SOLUTIONS. 1 cos(nx) lim. n 2 x 2. g n (x) = 1 cos(nx) n 2 x 2. x 2. ANALYSIS QUALIFYING EXAM FALL 27: SOLUTIONS Problem. Determine, with justification, the it cos(nx) n 2 x 2 dx. Solution. For an integer n >, define g n : (, ) R by Also define g : (, ) R by g(x) = g n

More information

2 (Bonus). Let A X consist of points (x, y) such that either x or y is a rational number. Is A measurable? What is its Lebesgue measure?

2 (Bonus). Let A X consist of points (x, y) such that either x or y is a rational number. Is A measurable? What is its Lebesgue measure? MA 645-4A (Real Analysis), Dr. Chernov Homework assignment 1 (Due 9/5). Prove that every countable set A is measurable and µ(a) = 0. 2 (Bonus). Let A consist of points (x, y) such that either x or y is

More information

Wavelets and modular inequalities in variable L p spaces

Wavelets and modular inequalities in variable L p spaces Wavelets and modular inequalities in variable L p spaces Mitsuo Izuki July 14, 2007 Abstract The aim of this paper is to characterize variable L p spaces L p( ) (R n ) using wavelets with proper smoothness

More information

In N we can do addition, but in order to do subtraction we need to extend N to the integers

In N we can do addition, but in order to do subtraction we need to extend N to the integers Chapter The Real Numbers.. Some Preliminaries Discussion: The Irrationality of 2. We begin with the natural numbers N = {, 2, 3, }. In N we can do addition, but in order to do subtraction we need to extend

More information

On the uniform summability of multiple Walsh- Fourier series

On the uniform summability of multiple Walsh- Fourier series From the SelectedWorks of Ushangi Goginava 000 On the uniform summability of multiple Walsh- Fourier series Ushangi Goginava Available at: https://works.bepress.com/ushangi_goginava/4/ Dedicated to the

More information

In N we can do addition, but in order to do subtraction we need to extend N to the integers

In N we can do addition, but in order to do subtraction we need to extend N to the integers Chapter 1 The Real Numbers 1.1. Some Preliminaries Discussion: The Irrationality of 2. We begin with the natural numbers N = {1, 2, 3, }. In N we can do addition, but in order to do subtraction we need

More information

Classical Fourier Analysis

Classical Fourier Analysis Loukas Grafakos Classical Fourier Analysis Third Edition ~Springer 1 V' Spaces and Interpolation 1 1.1 V' and Weak V'............................................ 1 1.1.l The Distribution Function.............................

More information

OSCILLATORY SINGULAR INTEGRALS ON L p AND HARDY SPACES

OSCILLATORY SINGULAR INTEGRALS ON L p AND HARDY SPACES POCEEDINGS OF THE AMEICAN MATHEMATICAL SOCIETY Volume 24, Number 9, September 996 OSCILLATOY SINGULA INTEGALS ON L p AND HADY SPACES YIBIAO PAN (Communicated by J. Marshall Ash) Abstract. We consider boundedness

More information

Math General Topology Fall 2012 Homework 13 Solutions

Math General Topology Fall 2012 Homework 13 Solutions Math 535 - General Topology Fall 2012 Homework 13 Solutions Note: In this problem set, function spaces are endowed with the compact-open topology unless otherwise noted. Problem 1. Let X be a compact topological

More information

M K -TYPE ESTIMATES FOR MULTILINEAR COMMUTATOR OF SINGULAR INTEGRAL OPERATOR WITH GENERAL KERNEL. Guo Sheng, Huang Chuangxia and Liu Lanzhe

M K -TYPE ESTIMATES FOR MULTILINEAR COMMUTATOR OF SINGULAR INTEGRAL OPERATOR WITH GENERAL KERNEL. Guo Sheng, Huang Chuangxia and Liu Lanzhe Acta Universitatis Apulensis ISSN: 582-5329 No. 33/203 pp. 3-43 M K -TYPE ESTIMATES FOR MULTILINEAR OMMUTATOR OF SINGULAR INTEGRAL OPERATOR WITH GENERAL KERNEL Guo Sheng, Huang huangxia and Liu Lanzhe

More information

PERIODS IMPLYING ALMOST ALL PERIODS FOR TREE MAPS. A. M. Blokh. Department of Mathematics, Wesleyan University Middletown, CT , USA

PERIODS IMPLYING ALMOST ALL PERIODS FOR TREE MAPS. A. M. Blokh. Department of Mathematics, Wesleyan University Middletown, CT , USA PERIODS IMPLYING ALMOST ALL PERIODS FOR TREE MAPS A. M. Blokh Department of Mathematics, Wesleyan University Middletown, CT 06459-0128, USA August 1991, revised May 1992 Abstract. Let X be a compact tree,

More information

Weighted a priori estimates for elliptic equations

Weighted a priori estimates for elliptic equations arxiv:7.00879v [math.ap] Nov 07 Weighted a priori estimates for elliptic equations María E. Cejas Departamento de Matemática Facultad de Ciencias Exactas Universidad Nacional de La Plata CONICET Calle

More information

Lecture 9. d N(0, 1). Now we fix n and think of a SRW on [0,1]. We take the k th step at time k n. and our increments are ± 1

Lecture 9. d N(0, 1). Now we fix n and think of a SRW on [0,1]. We take the k th step at time k n. and our increments are ± 1 Random Walks and Brownian Motion Tel Aviv University Spring 011 Lecture date: May 0, 011 Lecture 9 Instructor: Ron Peled Scribe: Jonathan Hermon In today s lecture we present the Brownian motion (BM).

More information

Copyright 2010 Pearson Education, Inc. Publishing as Prentice Hall.

Copyright 2010 Pearson Education, Inc. Publishing as Prentice Hall. .1 Limits of Sequences. CHAPTER.1.0. a) True. If converges, then there is an M > 0 such that M. Choose by Archimedes an N N such that N > M/ε. Then n N implies /n M/n M/N < ε. b) False. = n does not converge,

More information

STABLE KNESER HYPERGRAPHS AND IDEALS IN N WITH THE NIKODÝM PROPERTY

STABLE KNESER HYPERGRAPHS AND IDEALS IN N WITH THE NIKODÝM PROPERTY PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 00, Number 0, Pages 000 000 S 0002-9939(XX)0000-0 STABLE KNESER HYPERGRAPHS AND IDEALS IN N WITH THE NIKODÝM PROPERTY NOGA ALON, LECH DREWNOWSKI,

More information

NOTES ON PLANAR SEMIMODULAR LATTICES. IV. THE SIZE OF A MINIMAL CONGRUENCE LATTICE REPRESENTATION WITH RECTANGULAR LATTICES

NOTES ON PLANAR SEMIMODULAR LATTICES. IV. THE SIZE OF A MINIMAL CONGRUENCE LATTICE REPRESENTATION WITH RECTANGULAR LATTICES NOTES ON PLANAR SEMIMODULAR LATTICES. IV. THE SIZE OF A MINIMAL CONGRUENCE LATTICE REPRESENTATION WITH RECTANGULAR LATTICES G. GRÄTZER AND E. KNAPP Abstract. Let D be a finite distributive lattice with

More information

Duality of multiparameter Hardy spaces H p on spaces of homogeneous type

Duality of multiparameter Hardy spaces H p on spaces of homogeneous type Duality of multiparameter Hardy spaces H p on spaces of homogeneous type Yongsheng Han, Ji Li, and Guozhen Lu Department of Mathematics Vanderbilt University Nashville, TN Internet Analysis Seminar 2012

More information

5 Measure theory II. (or. lim. Prove the proposition. 5. For fixed F A and φ M define the restriction of φ on F by writing.

5 Measure theory II. (or. lim. Prove the proposition. 5. For fixed F A and φ M define the restriction of φ on F by writing. 5 Measure theory II 1. Charges (signed measures). Let (Ω, A) be a σ -algebra. A map φ: A R is called a charge, (or signed measure or σ -additive set function) if φ = φ(a j ) (5.1) A j for any disjoint

More information

NOTES ON PLANAR SEMIMODULAR LATTICES. IV. THE SIZE OF A MINIMAL CONGRUENCE LATTICE REPRESENTATION WITH RECTANGULAR LATTICES

NOTES ON PLANAR SEMIMODULAR LATTICES. IV. THE SIZE OF A MINIMAL CONGRUENCE LATTICE REPRESENTATION WITH RECTANGULAR LATTICES NOTES ON PLANAR SEMIMODULAR LATTICES. IV. THE SIZE OF A MINIMAL CONGRUENCE LATTICE REPRESENTATION WITH RECTANGULAR LATTICES G. GRÄTZER AND E. KNAPP Abstract. Let D be a finite distributive lattice with

More information

Estimates for probabilities of independent events and infinite series

Estimates for probabilities of independent events and infinite series Estimates for probabilities of independent events and infinite series Jürgen Grahl and Shahar evo September 9, 06 arxiv:609.0894v [math.pr] 8 Sep 06 Abstract This paper deals with finite or infinite sequences

More information

WEAK TYPE ESTIMATES FOR SINGULAR INTEGRALS RELATED TO A DUAL PROBLEM OF MUCKENHOUPT-WHEEDEN

WEAK TYPE ESTIMATES FOR SINGULAR INTEGRALS RELATED TO A DUAL PROBLEM OF MUCKENHOUPT-WHEEDEN WEAK TYPE ESTIMATES FOR SINGULAR INTEGRALS RELATED TO A DUAL PROBLEM OF MUCKENHOUPT-WHEEDEN ANDREI K. LERNER, SHELDY OMBROSI, AND CARLOS PÉREZ Abstract. A ell knon open problem of Muckenhoupt-Wheeden says

More information

REAL VARIABLES: PROBLEM SET 1. = x limsup E k

REAL VARIABLES: PROBLEM SET 1. = x limsup E k REAL VARIABLES: PROBLEM SET 1 BEN ELDER 1. Problem 1.1a First let s prove that limsup E k consists of those points which belong to infinitely many E k. From equation 1.1: limsup E k = E k For limsup E

More information

ON APPROXIMATE DIFFERENTIABILITY OF THE MAXIMAL FUNCTION

ON APPROXIMATE DIFFERENTIABILITY OF THE MAXIMAL FUNCTION ON APPROXIMATE DIFFERENTIABILITY OF THE MAXIMAL FUNCTION PIOTR HAJ LASZ, JAN MALÝ Dedicated to Professor Bogdan Bojarski Abstract. We prove that if f L 1 R n ) is approximately differentiable a.e., then

More information