2.2 Some Consequences of the Completeness Axiom

Size: px
Start display at page:

Download "2.2 Some Consequences of the Completeness Axiom"

Transcription

1 60 CHAPTER 2. IMPORTANT PROPERTIES OF R 2.2 Some Consequences of the Completeness Axiom In this section, we use the fact that R is complete to establish some important results. First, we will prove that Z is unbounded and establish the Archimedean principle. Second, we will prove that the rational numbers are dense in R. Finally, we will prove that Q is not complete Archimedean Property We first establish that Z is unbounded. While this result seems obvious, it turns out that it is not as easy to prove. It depends upon the completeness property of R. We establish this result by proving several lemmas and then use these lemmas to establish the main result. Lemma 2.2. Every non-empty subset S of the integers which is bounded above has a largest element. Proof. Since S is a non-empty subset of Z (hence of R) which is bounded above, by the supremum property (completeness axiom), sup S exists. Let w = sup S. It is enough to that w S. In a problem from the previous section, it was established that if a set contains its supremum, then the supremum is also the largest element. We do a proof by contradiction. Suppose that w / S. Since w < w, by theorem 2..33, there exists m S such that w < m w Since we assumed w / S, we can even write w < m < w We repeat the same argument using the fact that m < w to find n S such that m < n < w. So, we have w < m < n < w The inequality n < w is equivalent to w < n. If we add up the two inequalities w < m and w < n, we obtain < m n which is equivalent to n m <. But since m < n, we have n m > 0 and therefore 0 < n m <. Since both m and n are in S, they are integers. Therefore, n m is also an integer. Since there are no other integers between 0 and, the inequality 0 < n m < is not possible. It means that our assumption w / S cannot happen. Hence, w S. Remark This lemma looks very similar to the least upper bound property. But its conclusion is quite diff erent. The result of this lemma is obviously not true for subsets of R. An example is (0, 5) which is not empty, bounded above but

2 2.2. SOME CONSEQUENCES OF THE COMPLETENESS AXIOM 6 has no largest element. For this example, we would like to say that the largest element is the number "just before 5. The problem is that such a number does not exist. However, in the case of a subset of Z, such a number exists. Every integer has a successor and a predecessor. Lemma Every non-empty subset S of the integers which is bounded below has a smallest element. Proof. Similar to the previous lemma and left as an exercise. Theorem Z is unbounded both above and below. Proof. If Z were bounded above, by lemma 2.2. it would have a largest element, which we know it does not. A similar arguments is used to show that Z is not bounded below. We are now ready to state the Archimedean principle. Theorem (Archimedean Property) For each strictly positive real number x, there exists a positive integer n such that n < x. Proof. Let x be as in the theorem. Then, cannot be an upper bound of Z x since Z is not bounded above. Therefore, we can find n Z and n > 0 such that It follows that n < x. x < n This theorem tells us that by choosing n large enough, we can make n as close to 0 as we want. In other words, inf n : n Z+ = 0 where Z + denotes the set of positive integers. We will prove this in the exercises. The Archimedean property is sometimes stated differently. We give an equivalent statement which proof is left as an exercise. Theorem (Archimedean Property 2) If x and y are real numbers, x > 0, then there exists a positive integer n such that nx > y. Proof. See exercises Denseness of Q in R We have already mentioned the fact that if we represented the rational numbers on the real line, there would be many holes. These holes would correspond to the irrational numbers. If we think of the rational numbers as dots on the real line and the irrational numbers as holes, one might ask how the holes are distributed with respect to the dots. The next concept gives us a partial answer.

3 62 CHAPTER 2. IMPORTANT PROPERTIES OF R Definition (Dense) A subset S of R is said to be dense in R if between any two real numbers there exists an element of S. Another way to think of this is that S is dense in R if for any real numbers a and b such that a < b, we have S (a, b). Theorem Q is dense in R. That is, between any two real numbers, there exists a rational number. Proof. Let a and b be two arbitrary real numbers such that a < b. Then, b a > 0. By the Archimedean principle, we can choose n Z such that This is equivalent to saying that 0 < n < b a a < a + n < b (2.) We will finish the proof by showing there exists an integer m such that We define S = a < m n < b {x Z : x n > a } = {x Z : x > na} since n > 0 This set is bounded below by na. It is also non-empty since Z is not bounded above. Hence, by lemma 2.2.3, S has a smallest element. Call it m. We will show m is the integer we are looking for. We have m n > a (2.2) but m a (2.3) n since m is the smallest integer for which m n > a. If we write m n = m + n n then, combining equations 2.2 and 2.4 gives a < m n = m + n n If we use equation 2.3, we obtain (2.4) a < m n a + n Finally, using equation 2. gives a < m n < b which is what we wanted to prove.

4 2.2. SOME CONSEQUENCES OF THE COMPLETENESS AXIOM Completeness Definition A set S is said to be complete if every non-empty bounded subset of S has both a supremum and an infimum in S. Example R is complete, by the completeness axiom. Example 2.2. [0, ] is complete. If T [0, ] and T then by the completeness axiom, inf T and sup T exist since T R. Furthermore, 0 is a lower bound of T and is an upper bound of T hence 0 inf T sup T hence both inf T and sup T belong to [0, ]. Since T was arbitrary, the result follows. Example (0, ) is not complete since sup ((0, )) = / (0, ). Corollary Q is not complete. Proof. Define { S = x Q : 0 < x < } 2 ( = 0, ) 2 Q Clearly, S is a subset of Q. We will show that Q is not complete by showing that S does not have a supremum in Q. Because 2 is an upper bound of S, we have sup S 2. We want to show that in fact, sup S = 2. We do a proof by contradiction. Suppose that sup S < 2. Since Q is dense in R, we can find a rational number q such that sup S < q < 2. Thus q S. Therefore, we should have q sup S and not sup S < q < 2. So, we must have sup S = 2. We see that S, a subset of Q has a supremum which is not in Q Exercises. Prove lemma Prove that inf n : n Z+ integers. = 0 where Z + denotes the set of positive 3. Find the supremum and infimum of the sets below. (a) A = {, 2, 4, 8 },... = 2 n : n N. 2 + n (b) E = : n N. n 4. Prove theorem using the results of this section. 5. Prove that between any two real numbers there exists an irrational number. This proves that the set of irrational numbers, R \ Q is dense in R.

5 64 CHAPTER 2. IMPORTANT PROPERTIES OF R 6. Prove that every interval which contains more than one element must contain an infinite number of rational as well as irrational numbers (hint: do it by contradiction). 7. Given x R, prove there is a unique (!) n Z such that n x < n. 8. The goal of this problem is to give a "real analysis" proof of the division algorithm which states that if a and b are positive integers, b 0, then there exists integers r and q where 0 r < b such that a = bq + r. We do the proof in several steps. Let a and b be positive integers and define (a) Prove that S. S = {n Z : nb a} (b) Prove that S is bounded above. (c) Explain why S has a largest member that we will call q. (d) Prove that if we define r = a bq then 0 r < b. (Note that this is the same as a = bq + r). 9. Are the integers complete? Justify your answer.

6 2.2. SOME CONSEQUENCES OF THE COMPLETENESS AXIOM Hints for the Exercises For all the problems, remember to first clearly state what you have to prove or do.. Prove lemma Hint: Proof is similar to that of lemma Prove that inf n : n Z+ = 0 where Z + denotes the set of positive integers. Hint: Use the definition of the infimum and the Archimedean property. 3. Find the supremum and infimum of the sets below. (a) A = {, 2, 4, 8 },... = 2 n : n N. Hint: Use the definition of supremum and infimum. 2 + n (b) E = : n N. n Hint: Use the definition of supremum and infimum. For infimum, also use the Archimedean property. 4. Prove theorem using the results of this section. Hint: Consider different cases on y and use Prove that between any two real numbers there exists an irrational number. This proves that the set of irrational numbers, R \ Q is dense in R. Hint: Use the definition of denseness, but instead of applying it to two arbitrary real numbers a and b, apply it to 2a and 2b. 6. Prove that every interval which contains more than one element must contain an infinite number of rational as well as irrational numbers (hint: do it by contradiction). Hint already given. 7. Given x R, prove there is a unique (!) n Z such that n x < n. Hint: You need to prove existence and uniqueness. For existence, define S = {k Z : k > x}. Explain why S is bounded below and not empty. What does this imply? For uniqueness, assume that there are two such numbers, say m and n. Using a proof similar to that of lemma 2.2., prove that m = n by showing that < m n <. 8. The goal of this problem is to give a "real analysis" proof of the division algorithm which states that if a and b are positive integers, b 0, then there exists integers r and q where 0 r < b such that a = bq + r. We do the proof in several steps. Let a and b be positive integers and define S = {n Z : nb a}

7 66 CHAPTER 2. IMPORTANT PROPERTIES OF R No hints since you are already guided through the proof. (a) Prove that S. (b) Prove that S is bounded above. (c) Explain why S has a largest member that we will call q. (d) Prove that if we define r = a bq then 0 r < b. (Note that this is the same as a = bq + r). 9. Are the integers complete? Justify your answer. Hint: Use the definition and the results of this section.

Consequences of the Completeness Property

Consequences of the Completeness Property Consequences of the Completeness Property Philippe B. Laval KSU Today Philippe B. Laval (KSU) Consequences of the Completeness Property Today 1 / 10 Introduction In this section, we use the fact that R

More information

Important Properties of R

Important Properties of R Chapter 2 Important Properties of R The purpose of this chapter is to explain to the reader why the set of real numbers is so special. By the end of this chapter, the reader should understand the difference

More information

5.5 Deeper Properties of Continuous Functions

5.5 Deeper Properties of Continuous Functions 5.5. DEEPER PROPERTIES OF CONTINUOUS FUNCTIONS 195 5.5 Deeper Properties of Continuous Functions 5.5.1 Intermediate Value Theorem and Consequences When one studies a function, one is usually interested

More information

Chapter One. The Real Number System

Chapter One. The Real Number System Chapter One. The Real Number System We shall give a quick introduction to the real number system. It is imperative that we know how the set of real numbers behaves in the way that its completeness and

More information

Structure of R. Chapter Algebraic and Order Properties of R

Structure of R. Chapter Algebraic and Order Properties of R Chapter Structure of R We will re-assemble calculus by first making assumptions about the real numbers. All subsequent results will be rigorously derived from these assumptions. Most of the assumptions

More information

Due date: Monday, February 6, 2017.

Due date: Monday, February 6, 2017. Modern Analysis Homework 3 Solutions Due date: Monday, February 6, 2017. 1. If A R define A = {x R : x A}. Let A be a nonempty set of real numbers, assume A is bounded above. Prove that A is bounded below

More information

In N we can do addition, but in order to do subtraction we need to extend N to the integers

In N we can do addition, but in order to do subtraction we need to extend N to the integers Chapter The Real Numbers.. Some Preliminaries Discussion: The Irrationality of 2. We begin with the natural numbers N = {, 2, 3, }. In N we can do addition, but in order to do subtraction we need to extend

More information

6.2 Deeper Properties of Continuous Functions

6.2 Deeper Properties of Continuous Functions 6.2. DEEPER PROPERTIES OF CONTINUOUS FUNCTIONS 69 6.2 Deeper Properties of Continuous Functions 6.2. Intermediate Value Theorem and Consequences When one studies a function, one is usually interested in

More information

MATH 117 LECTURE NOTES

MATH 117 LECTURE NOTES MATH 117 LECTURE NOTES XIN ZHOU Abstract. This is the set of lecture notes for Math 117 during Fall quarter of 2017 at UC Santa Barbara. The lectures follow closely the textbook [1]. Contents 1. The set

More information

In N we can do addition, but in order to do subtraction we need to extend N to the integers

In N we can do addition, but in order to do subtraction we need to extend N to the integers Chapter 1 The Real Numbers 1.1. Some Preliminaries Discussion: The Irrationality of 2. We begin with the natural numbers N = {1, 2, 3, }. In N we can do addition, but in order to do subtraction we need

More information

REAL ANALYSIS: INTRODUCTION

REAL ANALYSIS: INTRODUCTION REAL ANALYSIS: INTRODUCTION DR. RITU AGARWAL EMAIL: RAGARWAL.MATHS@MNIT.AC.IN MALVIYA NATIONAL INSTITUTE OF TECHNOLOGY JAIPUR Contents 1. The real number system 1 2. Field Axioms 1 3. Order Axioms 2 4.

More information

Lecture 2. Econ August 11

Lecture 2. Econ August 11 Lecture 2 Econ 2001 2015 August 11 Lecture 2 Outline 1 Fields 2 Vector Spaces 3 Real Numbers 4 Sup and Inf, Max and Min 5 Intermediate Value Theorem Announcements: - Friday s exam will be at 3pm, in WWPH

More information

Mathematics-I Prof. S.K. Ray Department of Mathematics and Statistics Indian Institute of Technology, Kanpur. Lecture 1 Real Numbers

Mathematics-I Prof. S.K. Ray Department of Mathematics and Statistics Indian Institute of Technology, Kanpur. Lecture 1 Real Numbers Mathematics-I Prof. S.K. Ray Department of Mathematics and Statistics Indian Institute of Technology, Kanpur Lecture 1 Real Numbers In these lectures, we are going to study a branch of mathematics called

More information

106 CHAPTER 3. TOPOLOGY OF THE REAL LINE. 2. The set of limit points of a set S is denoted L (S)

106 CHAPTER 3. TOPOLOGY OF THE REAL LINE. 2. The set of limit points of a set S is denoted L (S) 106 CHAPTER 3. TOPOLOGY OF THE REAL LINE 3.3 Limit Points 3.3.1 Main Definitions Intuitively speaking, a limit point of a set S in a space X is a point of X which can be approximated by points of S other

More information

1 The Real Number System

1 The Real Number System 1 The Real Number System The rational numbers are beautiful, but are not big enough for various purposes, and the set R of real numbers was constructed in the late nineteenth century, as a kind of an envelope

More information

Chapter 1 The Real Numbers

Chapter 1 The Real Numbers Chapter 1 The Real Numbers In a beginning course in calculus, the emphasis is on introducing the techniques of the subject;i.e., differentiation and integration and their applications. An advanced calculus

More information

Studying Rudin s Principles of Mathematical Analysis Through Questions. August 4, 2008

Studying Rudin s Principles of Mathematical Analysis Through Questions. August 4, 2008 Studying Rudin s Principles of Mathematical Analysis Through Questions Mesut B. Çakır c August 4, 2008 ii Contents 1 The Real and Complex Number Systems 3 1.1 Introduction............................................

More information

The Real Number System

The Real Number System MATH 337 The Real Number System Sets of Numbers Dr. Neal, WKU A set S is a well-defined collection of objects, with well-defined meaning that there is a specific description from which we can tell precisely

More information

Describing the Real Numbers

Describing the Real Numbers Describing the Real Numbers Anthony Várilly Math 25a, Fall 2001 1 Introduction The goal of these notes is to uniquely describe the real numbers by taking certain statements as axioms. This exercise might

More information

5.5 Deeper Properties of Continuous Functions

5.5 Deeper Properties of Continuous Functions 200 CHAPTER 5. LIMIT AND CONTINUITY OF A FUNCTION 5.5 Deeper Properties of Continuous Functions 5.5.1 Intermediate Value Theorem and Consequences When one studies a function, one is usually interested

More information

Sequences. Chapter 3. n + 1 3n + 2 sin n n. 3. lim (ln(n + 1) ln n) 1. lim. 2. lim. 4. lim (1 + n)1/n. Answers: 1. 1/3; 2. 0; 3. 0; 4. 1.

Sequences. Chapter 3. n + 1 3n + 2 sin n n. 3. lim (ln(n + 1) ln n) 1. lim. 2. lim. 4. lim (1 + n)1/n. Answers: 1. 1/3; 2. 0; 3. 0; 4. 1. Chapter 3 Sequences Both the main elements of calculus (differentiation and integration) require the notion of a limit. Sequences will play a central role when we work with limits. Definition 3.. A Sequence

More information

Undergraduate Notes in Mathematics. Arkansas Tech University Department of Mathematics

Undergraduate Notes in Mathematics. Arkansas Tech University Department of Mathematics Undergraduate Notes in Mathematics Arkansas Tech University Department of Mathematics An Introductory Single Variable Real Analysis: A Learning Approach through Problem Solving Marcel B. Finan c All Rights

More information

MATH 102 INTRODUCTION TO MATHEMATICAL ANALYSIS. 1. Some Fundamentals

MATH 102 INTRODUCTION TO MATHEMATICAL ANALYSIS. 1. Some Fundamentals MATH 02 INTRODUCTION TO MATHEMATICAL ANALYSIS Properties of Real Numbers Some Fundamentals The whole course will be based entirely on the study of sequence of numbers and functions defined on the real

More information

Continuity. Chapter 4

Continuity. Chapter 4 Chapter 4 Continuity Throughout this chapter D is a nonempty subset of the real numbers. We recall the definition of a function. Definition 4.1. A function from D into R, denoted f : D R, is a subset of

More information

CHAPTER 8: EXPLORING R

CHAPTER 8: EXPLORING R CHAPTER 8: EXPLORING R LECTURE NOTES FOR MATH 378 (CSUSM, SPRING 2009). WAYNE AITKEN In the previous chapter we discussed the need for a complete ordered field. The field Q is not complete, so we constructed

More information

5 Set Operations, Functions, and Counting

5 Set Operations, Functions, and Counting 5 Set Operations, Functions, and Counting Let N denote the positive integers, N 0 := N {0} be the non-negative integers and Z = N 0 ( N) the positive and negative integers including 0, Q the rational numbers,

More information

2. Two binary operations (addition, denoted + and multiplication, denoted

2. Two binary operations (addition, denoted + and multiplication, denoted Chapter 2 The Structure of R The purpose of this chapter is to explain to the reader why the set of real numbers is so special. By the end of this chapter, the reader should understand the difference between

More information

Analysis III. Exam 1

Analysis III. Exam 1 Analysis III Math 414 Spring 27 Professor Ben Richert Exam 1 Solutions Problem 1 Let X be the set of all continuous real valued functions on [, 1], and let ρ : X X R be the function ρ(f, g) = sup f g (1)

More information

Math 320-2: Midterm 2 Practice Solutions Northwestern University, Winter 2015

Math 320-2: Midterm 2 Practice Solutions Northwestern University, Winter 2015 Math 30-: Midterm Practice Solutions Northwestern University, Winter 015 1. Give an example of each of the following. No justification is needed. (a) A metric on R with respect to which R is bounded. (b)

More information

POL502: Foundations. Kosuke Imai Department of Politics, Princeton University. October 10, 2005

POL502: Foundations. Kosuke Imai Department of Politics, Princeton University. October 10, 2005 POL502: Foundations Kosuke Imai Department of Politics, Princeton University October 10, 2005 Our first task is to develop the foundations that are necessary for the materials covered in this course. 1

More information

That is, there is an element

That is, there is an element Section 3.1: Mathematical Induction Let N denote the set of natural numbers (positive integers). N = {1, 2, 3, 4, } Axiom: If S is a nonempty subset of N, then S has a least element. That is, there is

More information

Section 2.5 : The Completeness Axiom in R

Section 2.5 : The Completeness Axiom in R Section 2.5 : The Completeness Axiom in R The rational numbers and real numbers are closely related. The set Q of rational numbers is countable and the set R of real numbers is not, and in this sense there

More information

Sets, Structures, Numbers

Sets, Structures, Numbers Chapter 1 Sets, Structures, Numbers Abstract In this chapter we shall introduce most of the background needed to develop the foundations of mathematical analysis. We start with sets and algebraic structures.

More information

Postulate 2 [Order Axioms] in WRW the usual rules for inequalities

Postulate 2 [Order Axioms] in WRW the usual rules for inequalities Number Systems N 1,2,3,... the positive integers Z 3, 2, 1,0,1,2,3,... the integers Q p q : p,q Z with q 0 the rational numbers R {numbers expressible by finite or unending decimal expansions} makes sense

More information

MATH202 Introduction to Analysis (2007 Fall and 2008 Spring) Tutorial Note #7

MATH202 Introduction to Analysis (2007 Fall and 2008 Spring) Tutorial Note #7 MATH202 Introduction to Analysis (2007 Fall and 2008 Spring) Tutorial Note #7 Real Number Summary of terminology and theorems: Definition: (Supremum & infimum) A supremum (or least upper bound) of a non-empty

More information

1.3. The Completeness Axiom.

1.3. The Completeness Axiom. 13 The Completeness Axiom 1 13 The Completeness Axiom Note In this section we give the final Axiom in the definition of the real numbers, R So far, the 8 axioms we have yield an ordered field We have seen

More information

A lower bound for X is an element z F such that

A lower bound for X is an element z F such that Math 316, Intro to Analysis Completeness. Definition 1 (Upper bounds). Let F be an ordered field. For a subset X F an upper bound for X is an element y F such that A lower bound for X is an element z F

More information

THE REAL NUMBERS Chapter #4

THE REAL NUMBERS Chapter #4 FOUNDATIONS OF ANALYSIS FALL 2008 TRUE/FALSE QUESTIONS THE REAL NUMBERS Chapter #4 (1) Every element in a field has a multiplicative inverse. (2) In a field the additive inverse of 1 is 0. (3) In a field

More information

Sequences. We know that the functions can be defined on any subsets of R. As the set of positive integers

Sequences. We know that the functions can be defined on any subsets of R. As the set of positive integers Sequences We know that the functions can be defined on any subsets of R. As the set of positive integers Z + is a subset of R, we can define a function on it in the following manner. f: Z + R f(n) = a

More information

ADVANCED CALCULUS - MTH433 LECTURE 4 - FINITE AND INFINITE SETS

ADVANCED CALCULUS - MTH433 LECTURE 4 - FINITE AND INFINITE SETS ADVANCED CALCULUS - MTH433 LECTURE 4 - FINITE AND INFINITE SETS 1. Cardinal number of a set The cardinal number (or simply cardinal) of a set is a generalization of the concept of the number of elements

More information

MA103 Introduction to Abstract Mathematics Second part, Analysis and Algebra

MA103 Introduction to Abstract Mathematics Second part, Analysis and Algebra 206/7 MA03 Introduction to Abstract Mathematics Second part, Analysis and Algebra Amol Sasane Revised by Jozef Skokan, Konrad Swanepoel, and Graham Brightwell Copyright c London School of Economics 206

More information

DR.RUPNATHJI( DR.RUPAK NATH )

DR.RUPNATHJI( DR.RUPAK NATH ) Contents 1 Sets 1 2 The Real Numbers 9 3 Sequences 29 4 Series 59 5 Functions 81 6 Power Series 105 7 The elementary functions 111 Chapter 1 Sets It is very convenient to introduce some notation and terminology

More information

HW 4 SOLUTIONS. , x + x x 1 ) 2

HW 4 SOLUTIONS. , x + x x 1 ) 2 HW 4 SOLUTIONS The Way of Analysis p. 98: 1.) Suppose that A is open. Show that A minus a finite set is still open. This follows by induction as long as A minus one point x is still open. To see that A

More information

Continuity. Chapter 4

Continuity. Chapter 4 Chapter 4 Continuity Throughout this chapter D is a nonempty subset of the real numbers. We recall the definition of a function. Definition 4.1. A function from D into R, denoted f : D R, is a subset of

More information

Chapter 1. Sets and Numbers

Chapter 1. Sets and Numbers Chapter 1. Sets and Numbers 1. Sets A set is considered to be a collection of objects (elements). If A is a set and x is an element of the set A, we say x is a member of A or x belongs to A, and we write

More information

WORKSHEET ON NUMBERS, MATH 215 FALL. We start our study of numbers with the integers: N = {1, 2, 3,...}

WORKSHEET ON NUMBERS, MATH 215 FALL. We start our study of numbers with the integers: N = {1, 2, 3,...} WORKSHEET ON NUMBERS, MATH 215 FALL 18(WHYTE) We start our study of numbers with the integers: Z = {..., 2, 1, 0, 1, 2, 3,... } and their subset of natural numbers: N = {1, 2, 3,...} For now we will not

More information

Properties of the Integers

Properties of the Integers Properties of the Integers The set of all integers is the set and the subset of Z given by Z = {, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, }, N = {0, 1, 2, 3, 4, }, is the set of nonnegative integers (also called

More information

a + b = b + a and a b = b a. (a + b) + c = a + (b + c) and (a b) c = a (b c). a (b + c) = a b + a c and (a + b) c = a c + b c.

a + b = b + a and a b = b a. (a + b) + c = a + (b + c) and (a b) c = a (b c). a (b + c) = a b + a c and (a + b) c = a c + b c. Properties of the Integers The set of all integers is the set and the subset of Z given by Z = {, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, }, N = {0, 1, 2, 3, 4, }, is the set of nonnegative integers (also called

More information

MATH31011/MATH41011/MATH61011: FOURIER ANALYSIS AND LEBESGUE INTEGRATION. Chapter 2: Countability and Cantor Sets

MATH31011/MATH41011/MATH61011: FOURIER ANALYSIS AND LEBESGUE INTEGRATION. Chapter 2: Countability and Cantor Sets MATH31011/MATH41011/MATH61011: FOURIER ANALYSIS AND LEBESGUE INTEGRATION Chapter 2: Countability and Cantor Sets Countable and Uncountable Sets The concept of countability will be important in this course

More information

Real Analysis Math 131AH Rudin, Chapter #1. Dominique Abdi

Real Analysis Math 131AH Rudin, Chapter #1. Dominique Abdi Real Analysis Math 3AH Rudin, Chapter # Dominique Abdi.. If r is rational (r 0) and x is irrational, prove that r + x and rx are irrational. Solution. Assume the contrary, that r+x and rx are rational.

More information

1. Theorem. (Archimedean Property) Let x be any real number. There exists a positive integer n greater than x.

1. Theorem. (Archimedean Property) Let x be any real number. There exists a positive integer n greater than x. Advanced Calculus I, Dr. Block, Chapter 2 notes. Theorem. (Archimedean Property) Let x be any real number. There exists a positive integer n greater than x. 2. Definition. A sequence is a real-valued function

More information

A NEW SET THEORY FOR ANALYSIS

A NEW SET THEORY FOR ANALYSIS Article A NEW SET THEORY FOR ANALYSIS Juan Pablo Ramírez 0000-0002-4912-2952 Abstract: We present the real number system as a generalization of the natural numbers. First, we prove the co-finite topology,

More information

3.1 Basic properties of real numbers - continuation Inmum and supremum of a set of real numbers

3.1 Basic properties of real numbers - continuation Inmum and supremum of a set of real numbers Chapter 3 Real numbers The notion of real number was introduced in section 1.3 where the axiomatic denition of the set of all real numbers was done and some basic properties of the set of all real numbers

More information

Iowa State University. Instructor: Alex Roitershtein Summer Homework #1. Solutions

Iowa State University. Instructor: Alex Roitershtein Summer Homework #1. Solutions Math 501 Iowa State University Introduction to Real Analysis Department of Mathematics Instructor: Alex Roitershtein Summer 015 EXERCISES FROM CHAPTER 1 Homework #1 Solutions The following version of the

More information

1 The Well Ordering Principle, Induction, and Equivalence Relations

1 The Well Ordering Principle, Induction, and Equivalence Relations 1 The Well Ordering Principle, Induction, and Equivalence Relations The set of natural numbers is the set N = f1; 2; 3; : : :g. (Some authors also include the number 0 in the natural numbers, but number

More information

Week 2: Sequences and Series

Week 2: Sequences and Series QF0: Quantitative Finance August 29, 207 Week 2: Sequences and Series Facilitator: Christopher Ting AY 207/208 Mathematicians have tried in vain to this day to discover some order in the sequence of prime

More information

MATH1050 Greatest/least element, upper/lower bound

MATH1050 Greatest/least element, upper/lower bound MATH1050 Greatest/ element, upper/lower bound 1 Definition Let S be a subset of R x λ (a) Let λ S λ is said to be a element of S if, for any x S, x λ (b) S is said to have a element if there exists some

More information

Definition 2.1. A metric (or distance function) defined on a non-empty set X is a function d: X X R that satisfies: For all x, y, and z in X :

Definition 2.1. A metric (or distance function) defined on a non-empty set X is a function d: X X R that satisfies: For all x, y, and z in X : MATH 337 Metric Spaces Dr. Neal, WKU Let X be a non-empty set. The elements of X shall be called points. We shall define the general means of determining the distance between two points. Throughout we

More information

Homework 1 (revised) Solutions

Homework 1 (revised) Solutions Homework 1 (revised) Solutions 1. Textbook, 1.1.1, # 1.1.2 (p. 24) Let S be an ordered set. Let A be a non-empty finite subset. Then A is bounded and sup A, inf A A Solution. The hint was: Use induction,

More information

Metric Spaces and Topology

Metric Spaces and Topology Chapter 2 Metric Spaces and Topology From an engineering perspective, the most important way to construct a topology on a set is to define the topology in terms of a metric on the set. This approach underlies

More information

Essential Background for Real Analysis I (MATH 5210)

Essential Background for Real Analysis I (MATH 5210) Background Material 1 Essential Background for Real Analysis I (MATH 5210) Note. These notes contain several definitions, theorems, and examples from Analysis I (MATH 4217/5217) which you must know for

More information

A lower bound for X is an element z F such that

A lower bound for X is an element z F such that Math 316, Intro to Analysis Completeness. Definition 1 (Upper bounds). Let F be an ordered field. For a subset X F an upper bound for X is an element y F such that A lower bound for X is an element z F

More information

Copyright 2010 Pearson Education, Inc. Publishing as Prentice Hall.

Copyright 2010 Pearson Education, Inc. Publishing as Prentice Hall. .1 Limits of Sequences. CHAPTER.1.0. a) True. If converges, then there is an M > 0 such that M. Choose by Archimedes an N N such that N > M/ε. Then n N implies /n M/n M/N < ε. b) False. = n does not converge,

More information

Lecture Notes in Real Analysis Anant R. Shastri Department of Mathematics Indian Institute of Technology Bombay

Lecture Notes in Real Analysis Anant R. Shastri Department of Mathematics Indian Institute of Technology Bombay Lecture Notes in Real Analysis 2010 Anant R. Shastri Department of Mathematics Indian Institute of Technology Bombay August 6, 2010 Lectures 1-3 (I-week) Lecture 1 Why real numbers? Example 1 Gaps in the

More information

Midterm Review Math 311, Spring 2016

Midterm Review Math 311, Spring 2016 Midterm Review Math 3, Spring 206 Material Review Preliminaries and Chapter Chapter 2. Set theory (DeMorgan s laws, infinite collections of sets, nested sets, cardinality) 2. Functions (image, preimage,

More information

Theorems. Theorem 1.11: Greatest-Lower-Bound Property. Theorem 1.20: The Archimedean property of. Theorem 1.21: -th Root of Real Numbers

Theorems. Theorem 1.11: Greatest-Lower-Bound Property. Theorem 1.20: The Archimedean property of. Theorem 1.21: -th Root of Real Numbers Page 1 Theorems Wednesday, May 9, 2018 12:53 AM Theorem 1.11: Greatest-Lower-Bound Property Suppose is an ordered set with the least-upper-bound property Suppose, and is bounded below be the set of lower

More information

Principles of Real Analysis I Fall I. The Real Number System

Principles of Real Analysis I Fall I. The Real Number System 21-355 Principles of Real Analysis I Fall 2004 I. The Real Number System The main goal of this course is to develop the theory of real-valued functions of one real variable in a systematic and rigorous

More information

Analysis I. Classroom Notes. H.-D. Alber

Analysis I. Classroom Notes. H.-D. Alber Analysis I Classroom Notes H-D Alber Contents 1 Fundamental notions 1 11 Sets 1 12 Product sets, relations 5 13 Composition of statements 7 14 Quantifiers, negation of statements 9 2 Real numbers 11 21

More information

A LITTLE REAL ANALYSIS AND TOPOLOGY

A LITTLE REAL ANALYSIS AND TOPOLOGY A LITTLE REAL ANALYSIS AND TOPOLOGY 1. NOTATION Before we begin some notational definitions are useful. (1) Z = {, 3, 2, 1, 0, 1, 2, 3, }is the set of integers. (2) Q = { a b : aεz, bεz {0}} is the set

More information

5.4 Continuity: Preliminary Notions

5.4 Continuity: Preliminary Notions 5.4. CONTINUITY: PRELIMINARY NOTIONS 181 5.4 Continuity: Preliminary Notions 5.4.1 Definitions The American Heritage Dictionary of the English Language defines continuity as an uninterrupted succession,

More information

Contents Ordered Fields... 2 Ordered sets and fields... 2 Construction of the Reals 1: Dedekind Cuts... 2 Metric Spaces... 3

Contents Ordered Fields... 2 Ordered sets and fields... 2 Construction of the Reals 1: Dedekind Cuts... 2 Metric Spaces... 3 Analysis Math Notes Study Guide Real Analysis Contents Ordered Fields 2 Ordered sets and fields 2 Construction of the Reals 1: Dedekind Cuts 2 Metric Spaces 3 Metric Spaces 3 Definitions 4 Separability

More information

CONSTRUCTION OF THE REAL NUMBERS.

CONSTRUCTION OF THE REAL NUMBERS. CONSTRUCTION OF THE REAL NUMBERS. IAN KIMING 1. Motivation. It will not come as a big surprise to anyone when I say that we need the real numbers in mathematics. More to the point, we need to be able to

More information

Problem Set 2: Solutions Math 201A: Fall 2016

Problem Set 2: Solutions Math 201A: Fall 2016 Problem Set 2: s Math 201A: Fall 2016 Problem 1. (a) Prove that a closed subset of a complete metric space is complete. (b) Prove that a closed subset of a compact metric space is compact. (c) Prove that

More information

Foundations of Mathematical Analysis

Foundations of Mathematical Analysis Foundations of Mathematical Analysis Fabio Bagagiolo Dipartimento di Matematica, Università di Trento email:fabio.bagagiolo@unitn.it Contents 1 Introduction 2 2 Basic concepts in mathematical analysis

More information

Solution of the 7 th Homework

Solution of the 7 th Homework Solution of the 7 th Homework Sangchul Lee December 3, 2014 1 Preliminary In this section we deal with some facts that are relevant to our problems but can be coped with only previous materials. 1.1 Maximum

More information

4130 HOMEWORK 4. , a 2

4130 HOMEWORK 4. , a 2 4130 HOMEWORK 4 Due Tuesday March 2 (1) Let N N denote the set of all sequences of natural numbers. That is, N N = {(a 1, a 2, a 3,...) : a i N}. Show that N N = P(N). We use the Schröder-Bernstein Theorem.

More information

Part III. 10 Topological Space Basics. Topological Spaces

Part III. 10 Topological Space Basics. Topological Spaces Part III 10 Topological Space Basics Topological Spaces Using the metric space results above as motivation we will axiomatize the notion of being an open set to more general settings. Definition 10.1.

More information

WORKSHEET MATH 215, FALL 15, WHYTE. We begin our course with the natural numbers:

WORKSHEET MATH 215, FALL 15, WHYTE. We begin our course with the natural numbers: WORKSHEET MATH 215, FALL 15, WHYTE We begin our course with the natural numbers: N = {1, 2, 3,...} which are a subset of the integers: Z = {..., 2, 1, 0, 1, 2, 3,... } We will assume familiarity with their

More information

1. Supremum and Infimum Remark: In this sections, all the subsets of R are assumed to be nonempty.

1. Supremum and Infimum Remark: In this sections, all the subsets of R are assumed to be nonempty. 1. Supremum and Infimum Remark: In this sections, all the subsets of R are assumed to be nonempty. Let E be a subset of R. We say that E is bounded above if there exists a real number U such that x U for

More information

Part 2 Continuous functions and their properties

Part 2 Continuous functions and their properties Part 2 Continuous functions and their properties 2.1 Definition Definition A function f is continuous at a R if, and only if, that is lim f (x) = f (a), x a ε > 0, δ > 0, x, x a < δ f (x) f (a) < ε. Notice

More information

Lecture 2: A crash course in Real Analysis

Lecture 2: A crash course in Real Analysis EE5110: Probability Foundations for Electrical Engineers July-November 2015 Lecture 2: A crash course in Real Analysis Lecturer: Dr. Krishna Jagannathan Scribe: Sudharsan Parthasarathy This lecture is

More information

Economics 204 Summer/Fall 2011 Lecture 2 Tuesday July 26, 2011 N Now, on the main diagonal, change all the 0s to 1s and vice versa:

Economics 204 Summer/Fall 2011 Lecture 2 Tuesday July 26, 2011 N Now, on the main diagonal, change all the 0s to 1s and vice versa: Economics 04 Summer/Fall 011 Lecture Tuesday July 6, 011 Section 1.4. Cardinality (cont.) Theorem 1 (Cantor) N, the set of all subsets of N, is not countable. Proof: Suppose N is countable. Then there

More information

Boolean Algebras. Chapter 2

Boolean Algebras. Chapter 2 Chapter 2 Boolean Algebras Let X be an arbitrary set and let P(X) be the class of all subsets of X (the power set of X). Three natural set-theoretic operations on P(X) are the binary operations of union

More information

Solutions to Assignment 1

Solutions to Assignment 1 Solutions to Assignment 1 Question 1. [Exercises 1.1, # 6] Use the division algorithm to prove that every odd integer is either of the form 4k + 1 or of the form 4k + 3 for some integer k. For each positive

More information

Course 212: Academic Year Section 1: Metric Spaces

Course 212: Academic Year Section 1: Metric Spaces Course 212: Academic Year 1991-2 Section 1: Metric Spaces D. R. Wilkins Contents 1 Metric Spaces 3 1.1 Distance Functions and Metric Spaces............. 3 1.2 Convergence and Continuity in Metric Spaces.........

More information

Relations. Relations. Definition. Let A and B be sets.

Relations. Relations. Definition. Let A and B be sets. Relations Relations. Definition. Let A and B be sets. A relation R from A to B is a subset R A B. If a A and b B, we write a R b if (a, b) R, and a /R b if (a, b) / R. A relation from A to A is called

More information

MATH41011/MATH61011: FOURIER SERIES AND LEBESGUE INTEGRATION. Extra Reading Material for Level 4 and Level 6

MATH41011/MATH61011: FOURIER SERIES AND LEBESGUE INTEGRATION. Extra Reading Material for Level 4 and Level 6 MATH41011/MATH61011: FOURIER SERIES AND LEBESGUE INTEGRATION Extra Reading Material for Level 4 and Level 6 Part A: Construction of Lebesgue Measure The first part the extra material consists of the construction

More information

HOMEWORK #2 - MA 504

HOMEWORK #2 - MA 504 HOMEWORK #2 - MA 504 PAULINHO TCHATCHATCHA Chapter 1, problem 6. Fix b > 1. (a) If m, n, p, q are integers, n > 0, q > 0, and r = m/n = p/q, prove that (b m ) 1/n = (b p ) 1/q. Hence it makes sense to

More information

Problem set 1, Real Analysis I, Spring, 2015.

Problem set 1, Real Analysis I, Spring, 2015. Problem set 1, Real Analysis I, Spring, 015. (1) Let f n : D R be a sequence of functions with domain D R n. Recall that f n f uniformly if and only if for all ɛ > 0, there is an N = N(ɛ) so that if n

More information

Chapter 8. P-adic numbers. 8.1 Absolute values

Chapter 8. P-adic numbers. 8.1 Absolute values Chapter 8 P-adic numbers Literature: N. Koblitz, p-adic Numbers, p-adic Analysis, and Zeta-Functions, 2nd edition, Graduate Texts in Mathematics 58, Springer Verlag 1984, corrected 2nd printing 1996, Chap.

More information

We have been going places in the car of calculus for years, but this analysis course is about how the car actually works.

We have been going places in the car of calculus for years, but this analysis course is about how the car actually works. Analysis I We have been going places in the car of calculus for years, but this analysis course is about how the car actually works. Copier s Message These notes may contain errors. In fact, they almost

More information

Metric Space Topology (Spring 2016) Selected Homework Solutions. HW1 Q1.2. Suppose that d is a metric on a set X. Prove that the inequality d(x, y)

Metric Space Topology (Spring 2016) Selected Homework Solutions. HW1 Q1.2. Suppose that d is a metric on a set X. Prove that the inequality d(x, y) Metric Space Topology (Spring 2016) Selected Homework Solutions HW1 Q1.2. Suppose that d is a metric on a set X. Prove that the inequality d(x, y) d(z, w) d(x, z) + d(y, w) holds for all w, x, y, z X.

More information

F (x) = P [X x[. DF1 F is nondecreasing. DF2 F is right-continuous

F (x) = P [X x[. DF1 F is nondecreasing. DF2 F is right-continuous 7: /4/ TOPIC Distribution functions their inverses This section develops properties of probability distribution functions their inverses Two main topics are the so-called probability integral transformation

More information

Introduction to Mathematical Analysis I. Second Edition. Beatriz Lafferriere Gerardo Lafferriere Nguyen Mau Nam

Introduction to Mathematical Analysis I. Second Edition. Beatriz Lafferriere Gerardo Lafferriere Nguyen Mau Nam Introduction to Mathematical Analysis I Second Edition Beatriz Lafferriere Gerardo Lafferriere Nguyen Mau Nam Introduction to Mathematical Analysis I Second Edition Beatriz Lafferriere Gerardo Lafferriere

More information

M208 Pure Mathematics AA1. Numbers

M208 Pure Mathematics AA1. Numbers M208 Pure Mathematics AA1 Numbers Note to reader Mathematical/statistical content at the Open University is usually provided to students in printed books, with PDFs of the same online. This format ensures

More information

The Lebesgue Integral

The Lebesgue Integral The Lebesgue Integral Brent Nelson In these notes we give an introduction to the Lebesgue integral, assuming only a knowledge of metric spaces and the iemann integral. For more details see [1, Chapters

More information

MATH 131A: REAL ANALYSIS (BIG IDEAS)

MATH 131A: REAL ANALYSIS (BIG IDEAS) MATH 131A: REAL ANALYSIS (BIG IDEAS) Theorem 1 (The Triangle Inequality). For all x, y R we have x + y x + y. Proposition 2 (The Archimedean property). For each x R there exists an n N such that n > x.

More information

Lebesgue Measure. Dung Le 1

Lebesgue Measure. Dung Le 1 Lebesgue Measure Dung Le 1 1 Introduction How do we measure the size of a set in IR? Let s start with the simplest ones: intervals. Obviously, the natural candidate for a measure of an interval is its

More information

Sequences CHAPTER 3. Definition. A sequence is a function f : N R.

Sequences CHAPTER 3. Definition. A sequence is a function f : N R. CHAPTER 3 Sequences 1. Limits and the Archimedean Property Our first basic object for investigating real numbers is the sequence. Before we give the precise definition of a sequence, we will give the intuitive

More information

Numbers 1. 1 Overview. 2 The Integers, Z. John Nachbar Washington University in St. Louis September 22, 2017

Numbers 1. 1 Overview. 2 The Integers, Z. John Nachbar Washington University in St. Louis September 22, 2017 John Nachbar Washington University in St. Louis September 22, 2017 1 Overview. Numbers 1 The Set Theory notes show how to construct the set of natural numbers N out of nothing (more accurately, out of

More information