Combining Decision Procedures: The Nelson-Oppen approach

Size: px
Start display at page:

Download "Combining Decision Procedures: The Nelson-Oppen approach"

Transcription

1 Combining Decision Procedures: The Nelson-Oppen approach Albert Oliveras and Enric Rodríguez-Carbonell Deduction and Verification Techniques Session 4 Fall 2009, Barcelona Combining Decision Procedures:The Nelson-Oppen approach p. 1

2 Need for combination In software verification, formulas like the following one arise: a=b+2 A=write(B,a+1,4) (read(a,b+3)=2 f(a 1) = f(b+1)) Here reasoning is needed over The theory of lineararithmetic(t LA ) The theory of arrays (T A ) The theory of uninterpreted functions (T UF ) Remember that T-solvers only deal with conjunctions of lits. Given T-solvers for the three individual theories, canwecombine them to obtainone for (T LA T A T UF )? Under certain conditions the Nelson-Oppen combination method gives a positive answer Combining Decision Procedures:The Nelson-Oppen approach p. 2

3 Motivating example - Convex case Consider the following set of literals: f(f(x) f(y)) = a f(0) = a +2 x = y There are twotheories involved: T LA(R) and T UF FIRST STEP:purify eachliteralsothatitbelongs toasingletheory f(f(x) f(y)) = a = f(e 1 ) = a = f(e 1 ) = a e 1 = f(x) f(y) e 1 = e 2 e 3 e 2 = f(x) e 3 = f(y) Combining Decision Procedures:The Nelson-Oppen approach p. 3

4 Motivating example - Convex case Consider the following set of literals: f(f(x) f(y)) = a f(0) = a +2 x = y There are twotheories involved: T LA(R) and T UF FIRST STEP:purify eachliteralsothatitbelongs toasingletheory f(0) = a +2 = f(e 4 ) = a +2 = f(e 4 ) = e 5 e 4 = 0 e 4 = 0 e 5 = a +2 Combining Decision Procedures:The Nelson-Oppen approach p. 3

5 Motivating example - Convex case (2) EUF Arithmetic f(e 1 ) = a e 2 e 3 = e 1 f(x) = e 2 e 4 = 0 f(y) = e 3 e 5 = a +2 f(e 4 ) = e 5 x = y The two solversonlyshare constants: e 1,e 2,e 3,e 4,e 5,a Tomergethe twomodelsintoasingleone, the solvershaveto agree on equalities between shared constants (interface equalities) This can be done by exchanging entailed interface equalities Combining Decision Procedures:The Nelson-Oppen approach p. 4

6 Motivating example - Convex case (2) EUF Arithmetic f(e 1 ) = a e 2 e 3 = e 1 f(x) = e 2 e 4 = 0 f(y) = e 3 e 5 = a +2 f(e 4 ) = e 5 e 2 = e 3 x = y The two solversonlyshare constants: e 1,e 2,e 3,e 4,e 5,a EUF-Solver says SAT Ari-Solver says SAT EUF = e 2 =e 3 Combining Decision Procedures:The Nelson-Oppen approach p. 5

7 Motivating example - Convex case (2) EUF Arithmetic f(e 1 ) = a e 2 e 3 = e 1 f(x) = e 2 e 4 = 0 f(y) = e 3 e 5 = a +2 f(e 4 ) = e 5 e 2 = e 3 x = y e 1 = e 4 The two solversonlyshare constants: e 1,e 2,e 3,e 4,e 5,a EUF-Solver says SAT Ari-Solver says SAT Ari = e 1 =e 4 Combining Decision Procedures:The Nelson-Oppen approach p. 6

8 Motivating example - Convex case (2) EUF Arithmetic f(e 1 ) = a e 2 e 3 = e 1 f(x) = e 2 e 4 = 0 f(y) = e 3 e 5 = a +2 f(e 4 ) = e 5 e 2 = e 3 x = y a = e 5 e 1 = e 4 The two solversonlyshare constants: e 1,e 2,e 3,e 4,e 5,a EUF-Solver says SAT Ari-Solver says SAT EUF = a=e 5 Combining Decision Procedures:The Nelson-Oppen approach p. 7

9 Motivating example - Convex case (2) EUF Arithmetic f(e 1 ) = a e 2 e 3 = e 1 f(x) = e 2 e 4 = 0 f(y) = e 3 e 5 = a +2 f(e 4 ) = e 5 e 2 = e 3 x = y a = e 5 e 1 = e 4 The two solversonlyshare constants: e 1,e 2,e 3,e 4,e 5,a EUF-Solver says SAT Ari-Solver says UNSAT Hence the original setof litswasunsat Combining Decision Procedures:The Nelson-Oppen approach p. 8

10 Nelson-Oppen The convex case A theory T is stably-infinite iff every T-satisfiable quantifier-free formula has an infinite model A theory T isconvex iff S = T a 1 =b 1... a n =b n = S = a i =b i for some i Deterministic Nelson-Oppen: Giventwostably-infiniteandconvex theories T 1 and T 2 Givenasetof literals S over the signatureof T 1 T 2 The (T 1 T 2 )-satisfiabilityof S canbe checked withthe algorithm Combining Decision Procedures:The Nelson-Oppen approach p. 9

11 Nelson-Oppen The convex case (2) Deterministic Nelson-Oppen 1. Purify S andsplititinto S 1 S 2. Let E the setof interface equalitiesbetween S 1 and S 2 2. If S 1 is T 1 -unsatisfiablethen UNSAT 3. If S 2 is T 2 -unsatisfiablethen UNSAT 4. If S 1 = T1 x=y with x=y E \S 2 then S 2 := S 2 {x=y} and goto 3 5. If S 2 = T2 x=y with x=y E \S 1 then S 1 := S 1 {x=y} and goto 2 6. Report SAT Combining Decision Procedures:The Nelson-Oppen approach p. 10

12 Motivating example Non-convex case Consider the following UNSATISFIABLE set of literals: 1 x 2 f(1) = a f(x) = b a = b +2 f(2) = f(1) +3 There are twotheories involved: T LA(Z) and T UF FIRST STEP:purify eachliteralsothatitbelongs toasingletheory f(1) = a = f(e 1 ) = a e 1 = 1 Combining Decision Procedures:The Nelson-Oppen approach p. 11

13 Motivating example Non-convex case Consider the following UNSATISFIABLE set of literals: 1 x 2 f(1) = a f(x) = b a = b +2 f(2) = f(1) +3 There are twotheories involved: T LA(Z) and T UF FIRST STEP:purify eachliteralsothatitbelongs toasingletheory f(2) = f(1) +3 = e 2 = 2 f(e 2 ) = e 3 f(e 1 ) = e 4 e 3 = e 4 +3 Combining Decision Procedures:The Nelson-Oppen approach p. 11

14 Motivating example Non-convex case(2) Arithmetic EUF 1 x f(e 1 ) = a x 2 f(x) = b e 1 = 1 f(e 2 ) = e 3 a = b +2 f(e 1 ) = e 4 e 2 = 2 e 3 = e 4 +3 a = e 4 The two solversonlyshare constants: x,e 1,a,b,e 2,e 3,e 4 Ari-Solver says SAT EUF-Solver says SAT EUF = a=e 4 Combining Decision Procedures:The Nelson-Oppen approach p. 12

15 Motivating example Non-convex case(2) Arithmetic EUF 1 x f(e 1 ) = a x 2 f(x) = b e 1 = 1 f(e 2 ) = e 3 a = b +2 f(e 1 ) = e 4 e 2 = 2 e 3 = e 4 +3 a = e 4 The two solversonlyshare constants: x,e 1,a,b,e 2,e 3,e 4 Ari-Solver says SAT EUF-Solver says SAT No theory entails any other interface equality, but... Combining Decision Procedures:The Nelson-Oppen approach p. 13

16 Motivating example Non-convex case(2) Arithmetic EUF 1 x f(e 1 ) = a x 2 f(x) = b e 1 = 1 f(e 2 ) = e 3 a = b +2 f(e 1 ) = e 4 e 2 = 2 e 3 = e 4 +3 a = e 4 The two solversonlyshare constants: x,e 1,a,b,e 2,e 3,e 4 Ari-Solver says SAT EUF-Solver says SAT Ari = T x = e 1 x = e 2. Let sconsiderboth cases. Combining Decision Procedures:The Nelson-Oppen approach p. 14

17 Motivating example Non-convex case(2) Ari-Solver says SAT Arithmetic EUF 1 x f(e 1 ) = a x 2 f(x) = b e 1 = 1 f(e 2 ) = e 3 a = b +2 f(e 1 ) = e 4 e 2 = 2 x = e 1 e 3 = e 4 +3 a = e 4 x = e 1 EUF-Solver says SAT EUF = T a=b, that whensentto Ari makesitunsat Combining Decision Procedures:The Nelson-Oppen approach p. 15

18 Motivating example Non-convex case(2) Let s trynow with x=e 2 Arithmetic EUF 1 x f(e 1 ) = a x 2 f(x) = b e 1 = 1 f(e 2 ) = e 3 a = b +2 f(e 1 ) = e 4 e 2 = 2 e 3 = e 4 +3 a = e 4 Combining Decision Procedures:The Nelson-Oppen approach p. 16

19 Motivating example Non-convex case(2) Ari-Solver says SAT Arithmetic EUF 1 x f(e 1 ) = a x 2 f(x) = b e 1 = 1 f(e 2 ) = e 3 a = b +2 f(e 1 ) = e 4 e 2 = 2 x = e 2 e 3 = e 4 +3 a = e 4 x = e 2 EUF-Solver says SAT EUF = T b=e 3,that whensentto Ari makesitunsat Combining Decision Procedures:The Nelson-Oppen approach p. 17

20 Motivating example Non-convex case(2) Arithmetic EUF 1 x f(e 1 ) = a x 2 f(x) = b e 1 = 1 f(e 2 ) = e 3 a = b +2 f(e 1 ) = e 4 e 2 = 2 x = e 2 e 3 = e 4 +3 a = e 4 x = e 2 Since both x=e 1 and x = e 2 are UNSAT, the setof literalsisunsat Combining Decision Procedures:The Nelson-Oppen approach p. 18

21 Nelson-Oppen - The non-convex case In the previous example Deterministic NO does not work Thiswasbecause T LA(Z) isnot convex: S LA(Z) = TLA(Z) x=e 1 x=e 2, but S LA(Z) = TLA(Z) x=e 1 and S LA(Z) = TLA(Z) x=e 2 However, there is a version of NO for non-convex theories Givenasetconstants C, anarrangement A over C is: A set of equalities and disequalites between constants in C For each x,y C either x=y A or x = y A Combining Decision Procedures:The Nelson-Oppen approach p. 19

22 Nelson-Oppen The non-convex case (2) Non-deterministic Nelson-Oppen: Giventwostably-infinitetheories T 1 and T 2 Givenasetof literals S over the signature T 1 T 2 The (T 1 T 2 )-satisfiabilityof S canbe checked via: 1. Purify S andsplititinto S 1 S 2 Let C be the setofsharedconstants 2. For everyarrangement A over C do If (S 1 A) is T 1 -satisfiableand (S 2 A) is T 2 -satisfiable report SAT 3. Report UNSAT Combining Decision Procedures:The Nelson-Oppen approach p. 20

Theory Combination. Clark Barrett. New York University. CS357, Stanford University, Nov 2, p. 1/24

Theory Combination. Clark Barrett. New York University. CS357, Stanford University, Nov 2, p. 1/24 CS357, Stanford University, Nov 2, 2015. p. 1/24 Theory Combination Clark Barrett barrett@cs.nyu.edu New York University CS357, Stanford University, Nov 2, 2015. p. 2/24 Combining Theory Solvers Given

More information

Foundations of Lazy SMT and DPLL(T)

Foundations of Lazy SMT and DPLL(T) Foundations of Lazy SMT and DPLL(T) Cesare Tinelli The University of Iowa Foundations of Lazy SMT and DPLL(T) p.1/86 Acknowledgments: Many thanks to Albert Oliveras for contributing some of the material

More information

Model Based Theory Combination

Model Based Theory Combination Model Based Theory Combination SMT 2007 Leonardo de Moura and Nikolaj Bjørner {leonardo, nbjorner}@microsoft.com. Microsoft Research Model Based Theory Combination p.1/20 Combination of Theories In practice,

More information

SMT: Satisfiability Modulo Theories

SMT: Satisfiability Modulo Theories SMT: Satisfiability Modulo Theories Ranjit Jhala, UC San Diego April 9, 2013 Decision Procedures Last Time Propositional Logic Today 1. Combining SAT and Theory Solvers 2. Theory Solvers Theory of Equality

More information

First-Order Logic First-Order Theories. Roopsha Samanta. Partly based on slides by Aaron Bradley and Isil Dillig

First-Order Logic First-Order Theories. Roopsha Samanta. Partly based on slides by Aaron Bradley and Isil Dillig First-Order Logic First-Order Theories Roopsha Samanta Partly based on slides by Aaron Bradley and Isil Dillig Roadmap Review: propositional logic Syntax and semantics of first-order logic (FOL) Semantic

More information

CSE507. Satisfiability Modulo Theories. Computer-Aided Reasoning for Software. Emina Torlak

CSE507. Satisfiability Modulo Theories. Computer-Aided Reasoning for Software. Emina Torlak Computer-Aided Reasoning for Software CSE507 Satisfiability Modulo Theories courses.cs.washington.edu/courses/cse507/18sp/ Emina Torlak emina@cs.washington.edu Today Last lecture Practical applications

More information

Topics in Model-Based Reasoning

Topics in Model-Based Reasoning Towards Integration of Proving and Solving Dipartimento di Informatica Università degli Studi di Verona Verona, Italy March, 2014 Automated reasoning Artificial Intelligence Automated Reasoning Computational

More information

Combinations of Theories for Decidable Fragments of First-order Logic

Combinations of Theories for Decidable Fragments of First-order Logic Combinations of Theories for Decidable Fragments of First-order Logic Pascal Fontaine Loria, INRIA, Université de Nancy (France) Montreal August 2, 2009 Montreal, August 2, 2009 1 / 15 Context / Motivation

More information

WHAT IS AN SMT SOLVER? Jaeheon Yi - April 17, 2008

WHAT IS AN SMT SOLVER? Jaeheon Yi - April 17, 2008 WHAT IS AN SMT SOLVER? Jaeheon Yi - April 17, 2008 WHAT I LL TALK ABOUT Propositional Logic Terminology, Satisfiability, Decision Procedure First-Order Logic Terminology, Background Theories Satisfiability

More information

Finding Conflicting Instances of Quantified Formulas in SMT. Andrew Reynolds Cesare Tinelli Leonardo De Moura July 18, 2014

Finding Conflicting Instances of Quantified Formulas in SMT. Andrew Reynolds Cesare Tinelli Leonardo De Moura July 18, 2014 Finding Conflicting Instances of Quantified Formulas in SMT Andrew Reynolds Cesare Tinelli Leonardo De Moura July 18, 2014 Outline of Talk SMT solvers: Efficient methods for ground constraints Heuristic

More information

The Simplify Theorem Prover

The Simplify Theorem Prover The Simplify Theorem Prover Class Notes for Lecture No.8 by Mooly Sagiv Notes prepared by Daniel Deutch Introduction This lecture will present key aspects in the leading theorem proving systems existing

More information

Satisfiability Modulo Theories (SMT)

Satisfiability Modulo Theories (SMT) CS510 Software Engineering Satisfiability Modulo Theories (SMT) Slides modified from those by Aarti Gupta Textbook: The Calculus of Computation by A. Bradley and Z. Manna 1 Satisfiability Modulo Theory

More information

Tutorial 1: Modern SMT Solvers and Verification

Tutorial 1: Modern SMT Solvers and Verification University of Illinois at Urbana-Champaign Tutorial 1: Modern SMT Solvers and Verification Sayan Mitra Electrical & Computer Engineering Coordinated Science Laboratory University of Illinois at Urbana

More information

Solving Quantified Verification Conditions using Satisfiability Modulo Theories

Solving Quantified Verification Conditions using Satisfiability Modulo Theories Solving Quantified Verification Conditions using Satisfiability Modulo Theories Yeting Ge, Clark Barrett, Cesare Tinelli Solving Quantified Verification Conditions using Satisfiability Modulo Theories

More information

The Impact of Craig s Interpolation Theorem. in Computer Science

The Impact of Craig s Interpolation Theorem. in Computer Science The Impact of Craig s Interpolation Theorem in Computer Science Cesare Tinelli tinelli@cs.uiowa.edu The University of Iowa Berkeley, May 2007 p.1/28 The Role of Logic in Computer Science Mathematical logic

More information

Combining Decision Procedures

Combining Decision Procedures Combining Decision Procedures Ashish Tiwari tiwari@csl.sri.com http://www.csl.sri.com/. Computer Science Laboratory SRI International 333 Ravenswood Menlo Park, CA 94025 Combining Decision Procedures (p.1

More information

Satisfiability Modulo Theories

Satisfiability Modulo Theories Satisfiability Modulo Theories Bruno Dutertre SRI International Leonardo de Moura Microsoft Research Satisfiability a > b + 2, a = 2c + 10, c + b 1000 SAT a = 0, b = 3, c = 5 Model 0 > 3 + 2, 0 = 2 5 +

More information

Combined Satisfiability Modulo Parametric Theories

Combined Satisfiability Modulo Parametric Theories Intel 07 p.1/39 Combined Satisfiability Modulo Parametric Theories Sava Krstić*, Amit Goel*, Jim Grundy*, and Cesare Tinelli** *Strategic CAD Labs, Intel **The University of Iowa Intel 07 p.2/39 This Talk

More information

An Introduction to Satisfiability Modulo Theories

An Introduction to Satisfiability Modulo Theories ICCAD 2009 Tutorial p. 1/78 An Introduction to Satisfiability Modulo Theories Clark Barrett and Sanjit Seshia ICCAD 2009 Tutorial p. 2/78 Roadmap Theory Solvers Examples of Theory Solvers Combining Theory

More information

Quantifiers. Leonardo de Moura Microsoft Research

Quantifiers. Leonardo de Moura Microsoft Research Quantifiers Leonardo de Moura Microsoft Research Satisfiability a > b + 2, a = 2c + 10, c + b 1000 SAT a = 0, b = 3, c = 5 Model 0 > 3 + 2, 0 = 2 5 + 10, 5 + ( 3) 1000 Quantifiers x y x > 0 f x, y = 0

More information

Internals of SMT Solvers. Leonardo de Moura Microsoft Research

Internals of SMT Solvers. Leonardo de Moura Microsoft Research Internals of SMT Solvers Leonardo de Moura Microsoft Research Acknowledgements Dejan Jovanovic (SRI International, NYU) Grant Passmore (Univ. Edinburgh) Herbrand Award 2013 Greg Nelson What is a SMT Solver?

More information

Leonardo de Moura Microsoft Research

Leonardo de Moura Microsoft Research Leonardo de Moura Microsoft Research Logic is The Calculus of Computer Science (Z. Manna). High computational complexity Naïve solutions will not scale Is formula F satisfiable modulo theory T? SMT solvers

More information

Overview, cont. Overview, cont. Logistics. Optional Reference #1. Optional Reference #2. Workload and Grading

Overview, cont. Overview, cont. Logistics. Optional Reference #1. Optional Reference #2. Workload and Grading Course staff CS389L: Automated Logical Reasoning Lecture 1: ntroduction and Review of Basics şıl Dillig nstructor: şil Dillig E-mail: isil@cs.utexas.edu Office hours: Thursday after class until 6:30 pm

More information

Interpolation. Seminar Slides. Betim Musa. 27 th June Albert-Ludwigs-Universität Freiburg

Interpolation. Seminar Slides. Betim Musa. 27 th June Albert-Ludwigs-Universität Freiburg Interpolation Seminar Slides Albert-Ludwigs-Universität Freiburg Betim Musa 27 th June 2015 Motivation program add(int a, int b) { var x,i : int; l 0 assume(b 0); l 1 x := a; l 2 i := 0; while(i < b) {

More information

a > 3, (a = b a = b + 1), f(a) = 0, f(b) = 1

a > 3, (a = b a = b + 1), f(a) = 0, f(b) = 1 Yeting Ge New York University Leonardo de Moura Microsoft Research a > 3, (a = b a = b + 1), f(a) = 0, f(b) = 1 Dynamic symbolic execution (DART) Extended static checking Test-case generation Bounded model

More information

COLORS MAKE THEORIES HARD

COLORS MAKE THEORIES HARD DISI - Via Sommarive, 9-38123 POVO, Trento - Italy http://disi.unitn.it COLORS MAKE THEORIES HARD Roberto Sebastiani First version: February 1 2016, Latest update: July 25, 2016 Technical Report # DISI-16-001

More information

Symbolic Analysis. Xiangyu Zhang

Symbolic Analysis. Xiangyu Zhang Symbolic Analysis Xiangyu Zhang What is Symbolic Analysis CS510 S o f t w a r e E n g i n e e r i n g Static analysis considers all paths are feasible Dynamic considers one path or a number of paths Symbolic

More information

Leonardo de Moura Microsoft Research

Leonardo de Moura Microsoft Research Leonardo de Moura Microsoft Research Is formula F satisfiable modulo theory T? SMT solvers have specialized algorithms for T b + 2 = c and f(read(write(a,b,3), c-2)) f(c-b+1) b + 2 = c and f(read(write(a,b,3),

More information

Efficient Theory Combination via Boolean Search

Efficient Theory Combination via Boolean Search Efficient Theory Combination via Boolean Search Marco Bozzano a, Roberto Bruttomesso a, Alessandro Cimatti a, Tommi Junttila b, Silvio Ranise c, Peter van Rossum d, Roberto Sebastiani e a ITC-IRST, Via

More information

Proving Unsatisfiability in Non-linear Arithmetic by Duality

Proving Unsatisfiability in Non-linear Arithmetic by Duality Proving Unsatisfiability in Non-linear Arithmetic by Duality [work in progress] Daniel Larraz, Albert Oliveras, Enric Rodríguez-Carbonell and Albert Rubio Universitat Politècnica de Catalunya, Barcelona,

More information

Satisfiability Modulo Theories

Satisfiability Modulo Theories Satisfiability Modulo Theories Summer School on Formal Methods Menlo College, 2011 Bruno Dutertre and Leonardo de Moura bruno@csl.sri.com, leonardo@microsoft.com SRI International, Microsoft Research SAT/SMT

More information

CS156: The Calculus of Computation

CS156: The Calculus of Computation CS156: The Calculus of Computation Zohar Manna Winter 2010 It is reasonable to hope that the relationship between computation and mathematical logic will be as fruitful in the next century as that between

More information

SMT BASICS WS 2017/2018 ( ) LOGIC SATISFIABILITY MODULO THEORIES. Institute for Formal Models and Verification Johannes Kepler Universität Linz

SMT BASICS WS 2017/2018 ( ) LOGIC SATISFIABILITY MODULO THEORIES. Institute for Formal Models and Verification Johannes Kepler Universität Linz LOGIC SATISFIABILITY MODULO THEORIES SMT BASICS WS 2017/2018 (342.208) Armin Biere Martina Seidl biere@jku.at martina.seidl@jku.at Institute for Formal Models and Verification Johannes Kepler Universität

More information

Motivation. CS389L: Automated Logical Reasoning. Lecture 10: Overview of First-Order Theories. Signature and Axioms of First-Order Theory

Motivation. CS389L: Automated Logical Reasoning. Lecture 10: Overview of First-Order Theories. Signature and Axioms of First-Order Theory Motivation CS389L: Automated Logical Reasoning Lecture 10: Overview of First-Order Theories Işıl Dillig Last few lectures: Full first-order logic In FOL, functions/predicates are uninterpreted (i.e., structure

More information

A Randomized Satisfiability Procedure for Arithmetic and Uninterpreted Function Symbols

A Randomized Satisfiability Procedure for Arithmetic and Uninterpreted Function Symbols A Randomized Satisfiability Procedure for Arithmetic and Uninterpreted Function Symbols Sumit Gulwani and George C. Necula University of California, Berkeley {gulwani,necula}@cs.berkeley.edu Abstract.

More information

Constraint Solving for Finite Model Finding in SMT Solvers

Constraint Solving for Finite Model Finding in SMT Solvers myjournal manuscript No. (will be inserted by the editor) Constraint Solving for Finite Model Finding in SMT Solvers Andrew Reynolds Cesare Tinelli Clark Barrett Received: date / Accepted: date Abstract

More information

To Ackermann-ize or not to Ackermann-ize? On Efficiently Handling Uninterpreted Function

To Ackermann-ize or not to Ackermann-ize? On Efficiently Handling Uninterpreted Function To Ackermann-ize or not to Ackermann-ize? On Efficiently Handling Uninterpreted Function Symbols in SMT(EUF T ) Roberto Bruttomesso, Alessandro Cimatti, Anders Franzén,2, Alberto Griggio 2, Alessandro

More information

Strategies for Combining Decision Procedures

Strategies for Combining Decision Procedures Strategies for Combining Decision Procedures Sylvain Conchon 1 and Sava Krstić 2 1 École des Mines de Nantes 2 OGI School of Science & Engineering at Oregon Health & Sciences University Abstract. Implementing

More information

What s Decidable About Arrays?

What s Decidable About Arrays? What s Decidable About Arrays? Aaron R. Bradley Zohar Manna Henny B. Sipma Computer Science Department Stanford University 1 Outline 0. Motivation 1. Theories of Arrays 2. SAT A 4. Undecidable Problems

More information

Decision Procedures. Jochen Hoenicke. Software Engineering Albert-Ludwigs-University Freiburg. Summer 2012

Decision Procedures. Jochen Hoenicke. Software Engineering Albert-Ludwigs-University Freiburg. Summer 2012 Decision Procedures Jochen Hoenicke Software Engineering Albert-Ludwigs-University Freiburg Summer 2012 Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 1 / 28 Quantifier-free Rationals

More information

Satisfiability Modulo Theories

Satisfiability Modulo Theories Satisfiability Modulo Theories Summer School on Formal Methods Menlo College, 2011 Bruno Dutertre and Leonardo de Moura bruno@csl.sri.com, leonardo@microsoft.com SRI International, Microsoft Research SAT/SMT

More information

Automated Program Verification and Testing 15414/15614 Fall 2016 Lecture 7: Procedures for First-Order Theories, Part 1

Automated Program Verification and Testing 15414/15614 Fall 2016 Lecture 7: Procedures for First-Order Theories, Part 1 Automated Program Verification and Testing 15414/15614 Fall 2016 Lecture 7: Procedures for First-Order Theories, Part 1 Matt Fredrikson mfredrik@cs.cmu.edu October 17, 2016 Matt Fredrikson Theory Procedures

More information

An Interpolating Theorem Prover

An Interpolating Theorem Prover An Interpolating Theorem Prover K.L. McMillan Cadence Berkeley Labs Abstract. We present a method of deriving Craig interpolants from proofs in the quantifier-free theory of linear inequality and uninterpreted

More information

Outline. Formale Methoden der Informatik First-Order Logic for Forgetters. Why PL1? Why PL1? Cont d. Motivation

Outline. Formale Methoden der Informatik First-Order Logic for Forgetters. Why PL1? Why PL1? Cont d. Motivation Outline Formale Methoden der Informatik First-Order Logic for Forgetters Uwe Egly Vienna University of Technology Institute of Information Systems Knowledge-Based Systems Group Motivation Syntax of PL1

More information

The Eager Approach to SMT. Eager Approach to SMT

The Eager Approach to SMT. Eager Approach to SMT The Eager Approach to SMT Sanjit A. Seshia UC Berkeley Slides based on ICCAD 09 Tutorial Eager Approach to SMT Input Formula Satisfiability-preserving Boolean Encoder Boolean Formula SAT Solver SAT Solver

More information

Decision Procedures for Verification

Decision Procedures for Verification Decision Procedures for Verification Zohar Manna with Aaron R. Bradley Computer Science Department Stanford University 1 Motivation int[] BubbleSort(int[] a) { int i, j, t; for (i := a 1; i > 0; i := i

More information

AVACS Automatic Verification and Analysis of Complex Systems REPORTS. of SFB/TR 14 AVACS. Editors: Board of SFB/TR 14 AVACS

AVACS Automatic Verification and Analysis of Complex Systems REPORTS. of SFB/TR 14 AVACS. Editors: Board of SFB/TR 14 AVACS AVACS Automatic Verification and Analysis of Complex Systems REPORTS of SFB/TR 14 AVACS Editors: Board of SFB/TR 14 AVACS Constraint Solving for Interpolation Andrey Rybalchenko by Viorica Sofronie-Stokkermans

More information

Lazy Satisfiability Modulo Theories

Lazy Satisfiability Modulo Theories Journal on Satisfiability, Boolean Modeling and Computation 3 (2007) 141 224 Lazy Satisfiability Modulo Theories Roberto Sebastiani roberto.sebastiani@disi.unitn.it Dipartimento di Ingegneria e Scienza

More information

Course An Introduction to SAT and SMT. Cap. 2: Satisfiability Modulo Theories

Course An Introduction to SAT and SMT. Cap. 2: Satisfiability Modulo Theories Course An Introduction to SAT and SMT Chapter 2: Satisfiability Modulo Theories Roberto Sebastiani DISI, Università di Trento, Italy roberto.sebastiani@unitn.it URL: http://disi.unitn.it/rseba/didattica/sat_based18/

More information

UCLID: Deciding Combinations of Theories via Eager Translation to SAT. SAT-based Decision Procedures

UCLID: Deciding Combinations of Theories via Eager Translation to SAT. SAT-based Decision Procedures UCLID: Deciding Combinations of Theories via Eager Translation to SAT Sanjit A. Seshia SAT-based Decision Procedures Input Formula Input Formula Satisfiability-preserving Boolean Encoder Boolean Formula

More information

Satisfiability Modulo Theories (SMT)

Satisfiability Modulo Theories (SMT) Satisfiability Modulo Theories (SMT) Sylvain Conchon Cours 7 / 9 avril 2014 1 Road map The SMT problem Modern efficient SAT solvers CDCL(T) Examples of decision procedures: equality (CC) and difference

More information

1.5 Non-linear Real Arithmetic

1.5 Non-linear Real Arithmetic A Simplex variant: Transform the satisfiability problem into the form A x = 0 l x u (where l i may be and u i may be + ). Relation to optimization problem is obscured. But: More efficient if one needs

More information

Dipartimento di Scienze dell Informazione

Dipartimento di Scienze dell Informazione UNIVERSITÀ DEGLI STUDI DI MILANO Dipartimento di Scienze dell Informazione RAPPORTO INTERNO N 309-06 Deciding Extensions of the Theory of Arrays by Integrating Decision Procedures and Instantiation Strategies

More information

A Reduction Approach to Decision Procedures

A Reduction Approach to Decision Procedures A Reduction Approach to Decision Procedures Deepak Kapur and Calogero G. Zarba University of New Mexico Abstract. We present an approach for designing decision procedures based on the reduction of complex

More information

Solving SAT Modulo Theories

Solving SAT Modulo Theories Solving SAT Modulo Theories R. Nieuwenhuis, A. Oliveras, and C.Tinelli. Solving SAT and SAT Modulo Theories: from an Abstract Davis-Putnam-Logemann-Loveland Procedure to DPLL(T) Mooly Sagiv Motivation

More information

Developing Efficient SMT Solvers

Developing Efficient SMT Solvers Developing Efficient SMT Solvers CMU May 2007 Leonardo de Moura leonardo@microsoft.com Microsoft Research CMU May 2007 p.1/66 Credits Slides inspired by previous presentations by: Clark Barrett, Harald

More information

Predicate Abstraction via Symbolic Decision Procedures

Predicate Abstraction via Symbolic Decision Procedures Predicate Abstraction via Symbolic Decision Procedures Shuvendu K. Lahiri Thomas Ball Byron Cook May 26, 2005 Technical Report MSR-TR-2005-53 Microsoft Research Microsoft Corporation One Microsoft Way

More information

General overview of a T-Solver for Difference Logic

General overview of a T-Solver for Difference Logic General overview of a T-Solver for Difference Logic Albert Oliveras and Enric Rodríguez-Carbonell Deduction and Verification Techniques Session 3 Fall 2009, Barcelona General overview of a T-Solver fordifference

More information

Integrating a SAT Solver with an LCF-style Theorem Prover

Integrating a SAT Solver with an LCF-style Theorem Prover Integrating a SAT Solver with an LCF-style Theorem Prover A Fast Decision Procedure for Propositional Logic for the System Tjark Weber webertj@in.tum.de PDPAR 05, July 12, 2005 Integrating a SAT Solver

More information

Round 9: Satisfiability Modulo Theories, Part II

Round 9: Satisfiability Modulo Theories, Part II Round 9: Satisfiability Modulo Theories, Part II Tommi Junttila Aalto University School of Science Department of Computer Science CS-E322 Declarative Programming Spring 218 Tommi Junttila (Aalto University)

More information

Join Algorithms for the Theory of Uninterpreted Functions

Join Algorithms for the Theory of Uninterpreted Functions Join Algorithms for the Theory of Uninterpreted Functions Sumit Gulwani 1, Ashish Tiwari 2, and George C. Necula 1 1 University of California, Berkeley, CA 94720, {gulwani,necula}@cs.berkeley.edu 2 SRI

More information

Introduction to SAT (constraint) solving. Justyna Petke

Introduction to SAT (constraint) solving. Justyna Petke Introduction to SAT (constraint) solving Justyna Petke SAT, SMT and CSP solvers are used for solving problems involving constraints. The term constraint solver, however, usually refers to a CSP solver.

More information

CS156: The Calculus of Computation Zohar Manna Autumn 2008

CS156: The Calculus of Computation Zohar Manna Autumn 2008 Page 3 of 52 Page 4 of 52 CS156: The Calculus of Computation Zohar Manna Autumn 2008 Lecturer: Zohar Manna (manna@cs.stanford.edu) Office Hours: MW 12:30-1:00 at Gates 481 TAs: Boyu Wang (wangboyu@stanford.edu)

More information

Lecture 2/11: Satisfiability Modulo Theories, Part I

Lecture 2/11: Satisfiability Modulo Theories, Part I EECS 219C: Computer-Aided Verification, Spr 15 Lecturer: S. A. Seshia Lecture 2/11: Satisfiability Modulo Theories, Part I Scribe: Daniel Bundala Editor: Sanjit A. Seshia Satisfiability modulo theories

More information

Automated Program Verification and Testing 15414/15614 Fall 2016 Lecture 8: Procedures for First-Order Theories, Part 2

Automated Program Verification and Testing 15414/15614 Fall 2016 Lecture 8: Procedures for First-Order Theories, Part 2 Automated Program Verification and Testing 15414/15614 Fall 2016 Lecture 8: Procedures for First-Order Theories, Part 2 Matt Fredrikson mfredrik@cs.cmu.edu October 17, 2016 Matt Fredrikson Theory Procedures

More information

Equality Logic and Uninterpreted Functions

Equality Logic and Uninterpreted Functions Equality Logic and Uninterpreted Functions Seminar: Decision Procedures Michaela Tießler 28.06.2016 Agenda 1. Definitions 2. Use of Uninterpreted Functions 3. Decision Procedures formula: atom: term: Equality

More information

Polite Theories Revisited

Polite Theories Revisited Polite Theories Revisited Dejan Jovanović and Clark Barrett New York University dejan@cs.nyu.edu, barrett@cs.nyu.edu c Springer-Verlag Abstract. The classic method of Nelson and Oppen for combining decision

More information

4. The Dual Simplex Method

4. The Dual Simplex Method 4. The Dual Simplex Method Javier Larrosa Albert Oliveras Enric Rodríguez-Carbonell Problem Solving and Constraint Programming (RPAR) Session 4 p.1/34 Basic Idea (1) Algorithm as explained so far known

More information

Quantifier Instantiation Techniques for Finite Model Finding in SMT

Quantifier Instantiation Techniques for Finite Model Finding in SMT Quantifier Instantiation Techniques for Finite Model Finding in SMT Andrew Reynolds, Cesare Tinelli Amit Goel, Sava Krstic Morgan Deters, Clark Barrett Satisfiability Modulo Theories (SMT) SMT solvers

More information

Non-linear Interpolant Generation and Its Application to Program Verification

Non-linear Interpolant Generation and Its Application to Program Verification Non-linear Interpolant Generation and Its Application to Program Verification Naijun Zhan State Key Laboratory of Computer Science, Institute of Software, CAS Joint work with Liyun Dai, Ting Gan, Bow-Yaw

More information

SMT Solvers: Theory and Implementation

SMT Solvers: Theory and Implementation SMT Solvers: Theory and Implementation Summer School on Logic and Theorem Proving Leonardo de Moura leonardo@microsoft.com Microsoft Research Oregon 2008 p.1/168 Overview Satisfiability is the problem

More information

Rewriting for Satisfiability Modulo Theories

Rewriting for Satisfiability Modulo Theories 1 Dipartimento di Informatica Università degli Studi di Verona Verona, Italy July 10, 2010 1 Joint work with Chris Lynch (Department of Mathematics and Computer Science, Clarkson University, NY, USA) and

More information

Introduction to Artificial Intelligence Propositional Logic & SAT Solving. UIUC CS 440 / ECE 448 Professor: Eyal Amir Spring Semester 2010

Introduction to Artificial Intelligence Propositional Logic & SAT Solving. UIUC CS 440 / ECE 448 Professor: Eyal Amir Spring Semester 2010 Introduction to Artificial Intelligence Propositional Logic & SAT Solving UIUC CS 440 / ECE 448 Professor: Eyal Amir Spring Semester 2010 Today Representation in Propositional Logic Semantics & Deduction

More information

ILP Modulo Theories. Panagiotis Manolios and Vasilis Papavasileiou. Northeastern University

ILP Modulo Theories. Panagiotis Manolios and Vasilis Papavasileiou. Northeastern University ILP Modulo Theories Panagiotis Manolios and Vasilis Papavasileiou Northeastern University {pete,vpap}@ccs.neu.edu Abstract. We present Integer Linear Programming (ILP) Modulo Theories (IMT). An IMT instance

More information

Bernhard Nebel, Julien Hué, and Stefan Wölfl. June 27 & July 2/4, 2012

Bernhard Nebel, Julien Hué, and Stefan Wölfl. June 27 & July 2/4, 2012 Bernhard Nebel, Julien Hué, and Stefan Wölfl Albert-Ludwigs-Universität Freiburg June 27 & July 2/4, 2012 vs. complexity For some restricted constraint languages we know some polynomial time algorithms

More information

A DPLL(T ) Theory Solver for a Theory of Strings and Regular Expressions

A DPLL(T ) Theory Solver for a Theory of Strings and Regular Expressions A DPLL(T ) Theory Solver for a Theory of Strings and Regular Expressions Tianyi Liang 1, Andrew Reynolds 1, Cesare Tinelli 1, Clark Barrett 2, and Morgan Deters 2 1 Department of Computer Science, The

More information

A Little Logic. Propositional Logic. Satisfiability Problems. Solving Sudokus. First Order Logic. Logic Programming

A Little Logic. Propositional Logic. Satisfiability Problems. Solving Sudokus. First Order Logic. Logic Programming A Little Logic International Center for Computational Logic Technische Universität Dresden Germany Propositional Logic Satisfiability Problems Solving Sudokus First Order Logic Logic Programming A Little

More information

Dipartimento di Scienze dell Informazione

Dipartimento di Scienze dell Informazione UNIVERSITÀ DEGLI STUDI DI MILANO Dipartimento di Scienze dell Informazione RAPPORTO INTERNO N 313-07 Combination Methods for Satisfiability and Model-Checking of Infinite-State Systems Silvio Ghilardi,

More information

Interactive Theorem Proving in Industry

Interactive Theorem Proving in Industry 1 Interactive Theorem Proving in Industry John Harrison Intel Corporation 16 April 2012 2 Milner on automation and interaction I wrote an automatic theorem prover in Swansea for myself and became shattered

More information

Lazy Proofs for DPLL(T)-Based SMT Solvers

Lazy Proofs for DPLL(T)-Based SMT Solvers Lazy Proofs for DPLL(T)-Based SMT Solvers Guy Katz, Clark Barrett New York University Cesare Tinelli, Andrew Reynolds The University of Iowa Liana Hadarean Synopsys Inc. Abstract With the integration of

More information

UNIVERSITA DEGLI STUDI DI MILANO. Dipartimento di Scienze dell Informazione

UNIVERSITA DEGLI STUDI DI MILANO. Dipartimento di Scienze dell Informazione UNIVERSITA DEGLI STUDI DI MILANO Dipartimento di Scienze dell Informazione RAPPORTO INTERNO N RI 337-12 From Strong Amalgamability to Modularity of Quantifier-Free Interpolation Roberto Bruttomesso, Silvio

More information

Knowledge base (KB) = set of sentences in a formal language Declarative approach to building an agent (or other system):

Knowledge base (KB) = set of sentences in a formal language Declarative approach to building an agent (or other system): Logic Knowledge-based agents Inference engine Knowledge base Domain-independent algorithms Domain-specific content Knowledge base (KB) = set of sentences in a formal language Declarative approach to building

More information

A New Look at BDDs for Pseudo-Boolean Constraints

A New Look at BDDs for Pseudo-Boolean Constraints Journal of Artificial Intelligence Research 45 (22) 443-48 Submitted 3/2; published /2 A New Look at BDDs for Pseudo-Boolean Constraints Ignasi Abío Robert Nieuwenhuis Albert Oliveras Enric Rodríguez-Carbonell

More information

Zap: Automated Theorem Proving for Software Analysis

Zap: Automated Theorem Proving for Software Analysis Zap: Automated Theorem Proving for Software Analysis Thomas Ball Shuvendu K. Lahiri Madanlal Musuvathi October 8, 2005 Technical Report MSR-TR-2005-137 Microsoft Research Microsoft Corporation One Microsoft

More information

Propositional Logic: Gentzen System, G

Propositional Logic: Gentzen System, G CS402, Spring 2017 Quiz on Thursday, 6th April: 15 minutes, two questions. Sequent Calculus in G In Natural Deduction, each line in the proof consists of exactly one proposition. That is, A 1, A 2,...,

More information

An overview of SLAM. Albert Oliveras, Enric Rodríguez-Carbonell. Deduction and Verification Techniques Session 5 Fall 2009, Barcelona

An overview of SLAM. Albert Oliveras, Enric Rodríguez-Carbonell. Deduction and Verification Techniques Session 5 Fall 2009, Barcelona An overview of SLAM Albert Oliveras, Enric Rodríguez-Carbonell Deduction and Verification Techniques Session 5 Fall 2009, Barcelona Anoverviewof SLAM p.1 Overview of the session TheSLAMloop SLAM components:

More information

SMT and Its Application in Software Verification

SMT and Its Application in Software Verification SMT and Its Application in Software Verification Yu-Fang Chen IIS, Academia Sinica Based on the slides of Barrett, Sanjit, Kroening, Rummer, Sinha, Jhala, and Majumdar Assertion in C int main(){ int x;

More information

NP-completeness of small conflict set generation for congruence closure

NP-completeness of small conflict set generation for congruence closure NP-completeness of small conflict set generation for congruence closure Andreas Fellner 1,2, Pascal Fontaine 3, Georg Hofferek 4 and Bruno Woltzenlogel Paleo 2,5 1 IST-Austria, Klosterneuburg (Austria)

More information

An Introduction to Z3

An Introduction to Z3 An Introduction to Z3 Huixing Fang National Trusted Embedded Software Engineering Technology Research Center April 12, 2017 Outline 1 SMT 2 Z3 Huixing Fang (ECNU) An Introduction to Z3 April 12, 2017 2

More information

LRA Interpolants from No Man s Land. Leonardo Alt, Antti E. J. Hyvärinen, and Natasha Sharygina University of Lugano, Switzerland

LRA Interpolants from No Man s Land. Leonardo Alt, Antti E. J. Hyvärinen, and Natasha Sharygina University of Lugano, Switzerland LR Interpolants from No Man s Land Leonardo lt, ntti E. J. Hyvärinen, and Natasha Sharygina University of Lugano, Switzerland Motivation The goal: Finding the right proof The tool: Make interpolation

More information

Data Structures with Arithmetic Constraints: a Non-Disjoint Combination

Data Structures with Arithmetic Constraints: a Non-Disjoint Combination Data Structures with Arithmetic Constraints: a Non-Disjoint Combination E. Nicolini, C. Ringeissen, and M. Rusinowitch LORIA & INRIA Nancy Grand Est FroCoS 09 E. Nicolini et al. (LORIA & INRIA) Data structures

More information

Constraint Solving for Interpolation

Constraint Solving for Interpolation Constraint Solving for Interpolation Andrey Rybalchenko 1,2 and Viorica Sofronie-Stokkermans 2 1 Ecole Polytechnique FédéraledeLausanne 2 Max-Planck-Institut für Informatik, Saarbrücken Abstract. Interpolation

More information

Propositional Reasoning

Propositional Reasoning Propositional Reasoning CS 440 / ECE 448 Introduction to Artificial Intelligence Instructor: Eyal Amir Grad TAs: Wen Pu, Yonatan Bisk Undergrad TAs: Sam Johnson, Nikhil Johri Spring 2010 Intro to AI (CS

More information

Notes. Corneliu Popeea. May 3, 2013

Notes. Corneliu Popeea. May 3, 2013 Notes Corneliu Popeea May 3, 2013 1 Propositional logic Syntax We rely on a set of atomic propositions, AP, containing atoms like p, q. A propositional logic formula φ Formula is then defined by the following

More information

First Order Logic (FOL)

First Order Logic (FOL) First Order Logic (FOL) Testing, Quality Assurance, and Maintenance Winter 2018 Prof. Arie Gurfinkel based on slides by Prof. Ruzica Piskac, Nikolaj Bjorner, and others References Chpater 2 of Logic for

More information

c Copyright by Clark Wayne Barrett 2003 All Rights Reserved ii

c Copyright by Clark Wayne Barrett 2003 All Rights Reserved ii CHECKING VALIDITY OF QUANTIFIER-FREE FORMULAS IN COMBINATIONS OF FIRST-ORDER THEORIES a dissertation submitted to the department of computer science and the committee on graduate studies of stanford university

More information

Solving Quantified Linear Arithmetic by Counterexample- Guided Instantiation

Solving Quantified Linear Arithmetic by Counterexample- Guided Instantiation Noname manuscript No. (will be inserted by the editor) Solving Quantified Linear Arithmetic by Counterexample- Guided Instantiation Andrew Reynolds Tim King Viktor Kuncak Received: date / Accepted: date

More information

SAT Modulo Linear Arithmetic for Solving Polynomial Constraints

SAT Modulo Linear Arithmetic for Solving Polynomial Constraints jar manuscript No. (will be inserted by the editor) SAT Modulo Linear Arithmetic for Solving Polynomial Constraints Cristina Borralleras Salvador Lucas Albert Oliveras Enric Rodríguez-Carbonell Albert

More information

1 FUNDAMENTALS OF LOGIC NO.10 HERBRAND THEOREM Tatsuya Hagino hagino@sfc.keio.ac.jp lecture URL https://vu5.sfc.keio.ac.jp/slide/ 2 So Far Propositional Logic Logical connectives (,,, ) Truth table Tautology

More information

Resolution for Predicate Logic

Resolution for Predicate Logic Logic and Proof Hilary 2016 James Worrell Resolution for Predicate Logic A serious drawback of the ground resolution procedure is that it requires looking ahead to predict which ground instances of clauses

More information